WO2023120838A1 - 인쇄소 발생 대기오염 저감 시스템 및 그 운영 방법 - Google Patents

인쇄소 발생 대기오염 저감 시스템 및 그 운영 방법 Download PDF

Info

Publication number
WO2023120838A1
WO2023120838A1 PCT/KR2022/008365 KR2022008365W WO2023120838A1 WO 2023120838 A1 WO2023120838 A1 WO 2023120838A1 KR 2022008365 W KR2022008365 W KR 2022008365W WO 2023120838 A1 WO2023120838 A1 WO 2023120838A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
sensor
contamination
gas
printing
Prior art date
Application number
PCT/KR2022/008365
Other languages
English (en)
French (fr)
Inventor
송민영
전혜준
Original Assignee
재단법인 서울특별시 서울기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 서울특별시 서울기술연구원 filed Critical 재단법인 서울특별시 서울기술연구원
Publication of WO2023120838A1 publication Critical patent/WO2023120838A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/442Auxiliary equipment or operation thereof controlling filtration by measuring the concentration of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/4272Special valve constructions adapted to filters or filter elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration

Definitions

  • the present invention relates to environmental technology, and more particularly, to a system for reducing air pollution generated in a printing shop and a technology for operating such a system.
  • a printing shop is a place where a large amount of output is printed using one or more printing devices.
  • High-quality digital printing technology using laser or ultraviolet rays has been developed, but it is not suitable for printing many outputs at once and is expensive, so rotary and sheetfed printing using ink is still widely used.
  • FIG. 1 schematically shows a conventional printing shop.
  • An air purifying module 11 is provided in the printing device 10 and an exhaust port 12 is connected thereto.
  • the intake port 20 communicating with the fan 30 is placed near the printing device 10 .
  • Such a printing shop structure alone cannot sufficiently purify pollutants generated from the printing press. It is dangerous to the personnel inside the printing plant and also causes air pollution. When the indoor air quality is poor, such air is introduced into the printing device 10 again, causing failure of the printing device 10 and shortening the lifespan of the air purifying module 11 .
  • Patent Document 1 Korea Patent Registration No. 10-2308883
  • Patent Document 2 Korea Patent Registration No. 10-1867001
  • Patent Document 3 Korean Patent Publication No. 10-2019-0078328
  • the present invention has been made to solve the above problems.
  • One embodiment of the present invention for solving the above problems is to reduce air pollution generated in a printing shop including a plurality of printing devices 10 including an air purification module 11 and an exhaust port 12 connected thereto
  • a printing area M in which the plurality of printing devices 10 are located is located in the printing shop, and a particulate matter processor ( 100); a gaseous substance preprocessor 200 communicating with the particulate matter processor 100 and connected through a second valve V2; a high-concentration processing filter unit 210 and a low-concentration processing filter unit 220 that communicate with the gaseous material preprocessor 200 and are branched through a third valve V3; a fan 300 in which the high-concentration processing filter unit 210 and the low-concentration processing filter unit 220 are connected to each other; A first bypass connecting the second valve V2 and the fan 300 to bypass the gaseous material preprocessor 200, the high-concentration process filter unit 210, and the low-concentration process filter unit 220 flow path (L1); a second bypass flow path (L1)
  • Another embodiment of the present invention for solving the above problems is a method of operating the above-described system, comprising: (a) checking whether the printing apparatus 10 is in operation; (b) When the printing device 10 is in operation, whether the particle contamination concentration measured by the first sensor S1 is equal to or higher than the particle contamination standard and whether the gas contamination concentration measured by the first sensor S1 is gas Checking whether or not the contamination standard is higher; (c1) When the concentration of particle contamination measured by the first sensor (S1) is greater than or equal to the particle contamination standard and the concentration of gas contamination measured by the first sensor (S1) is greater than or equal to the gas contamination standard, the fan 300 is operated; , Controlling the first valve (V1) and the second valve (V2) so that the exhaust gas discharged from the printing apparatus 10 passes through the particulate matter processor 100 and the gaseous material preprocessor 200.
  • the first valve V1 and the second valve V2 so that the exhaust gas discharged from the printing apparatus 10 passes through the second bypass passage L2 and then passes through the gaseous material preprocessor 200 ) to control; and (c4) stopping the fan 300 when the particle contamination concentration measured by the first sensor S1 is less than the particle contamination standard and the gas contamination concentration measured by the first sensor S1 is less than the gas contamination standard. It provides a method, including the step of doing.
  • step (c4) when the gas pollution standard is a low-concentration gas pollution standard, and (d1) the gas pollution concentration measured by the first sensor S1 is higher than the low-concentration gas pollution standard or higher than the high-concentration gas pollution standard controlling the third valve (V3) so that exhaust gas discharged from the printing apparatus 10 passes through the gaseous material preprocessor 200 and then passes through the high concentration processing filter unit 210; and (d2) when the gas pollution concentration measured by the first sensor S1 is less than the high concentration gas pollution standard, exhaust gas discharged from the printing apparatus 10 passes through the gaseous material preprocessor 200 and then It is preferable to further include controlling the third valve V3 to pass through the low-concentration treatment filter unit 210 .
  • the warning unit 400 notifies the replacement of the air purifying module 11 of the printing apparatus 10, operates the fan 300, and exhaust gas discharged from the printing apparatus 10 is the particulate matter. Controls the first valve (V1), the second valve (V2) and the third valve (V3) to pass through the processor 100, the gaseous material preprocessor 200, and the high-concentration treatment filter unit 210 It is preferable that after the step (01), the control unit 500 checks the replacement signal of the air purifying module 11 of the printing apparatus 10, and then the step (a) proceeds.
  • the warning unit 400 The replacement of the air purifying module 11 of the printing apparatus 10 is notified, the fan 300 is operated, and the exhaust gas discharged from the printing apparatus 10 passes through the particulate matter processor 100 and the gaseous material and controlling the first valve (V1), the second valve (V2) and the third valve (V3) to pass through the processor (200) and the high-concentration process filter unit (210), ), it is preferable that the step (a) proceeds after the control unit 500 confirms the replacement signal of the air purifying module 11 of the printing apparatus 10.
  • the step (11) may include checking, by the control unit 500, the number of the printing devices 10; Checking, by the control unit 500, the amount of exhaust gas per unit time discharged from the exhaust port 11 of the printing apparatus 10; And the control unit 500 determines the unit time, the accumulated measurement time, the number of the printing devices 10, the amount of exhaust gas per unit time of the printing devices 10, and the accumulated measurement time during the second It is preferable to include a step of calculating the total amount of particle contamination and the total amount of gas contamination using a plurality of values of concentrations of particle contamination and gas contamination measured by the sensor S2.
  • step (c4) it is preferable that the air discharged through the fan 300 is re-supplied to the printing area M, and the re-supplied air is introduced into the printing apparatus 10.
  • a paper loading area (P) is located in the printing office
  • a third sensor (S3) for measuring the concentration of particle contamination is located in the paper loading area (P)
  • a paper inlet is located in the paper loading area (P).
  • the branch inlet is connected to the particulate matter processor 10, and after the step (a), (e1) when the printing device 10 is not in operation, the particle contamination concentration measured by the third sensor S3 is Checking whether or not the particle contamination standard is higher; (e2) When the particle contamination concentration measured by the third sensor S3 is equal to or higher than the particle contamination standard, the fan 300 is operated, and the exhaust gas discharged from the printing apparatus 10 is removed from the particulate matter processor 100. controlling the first valve (V1) and the second valve (V2) to pass through the first bypass passage (L1) after passing through; and (e3) stopping the fan 300 when the particle contamination concentration measured by the third sensor S1 is less than the particle contamination criterion.
  • the warning unit 400 outputs the particle contamination concentration and the gas contamination concentration using the particle contamination concentration measured by the first sensor S1 and the gas contamination concentration measured by the first sensor S1. do.
  • an air pollution reduction system and operation method specialized for a printing shop environment are provided.
  • Particulate matter and gaseous matter are removed simultaneously. Even if only one of the two concentrations is high, it can be selectively removed, and if the concentration is low and there is no need to remove it, the function can be temporarily stopped to extend the lifespan. This reduces operating costs.
  • the present invention also detects air quality leaking into the printing area and operates the facility accordingly. Using this mechanism, the life of the air purifying module of the printing device can be indirectly checked to notify replacement or evacuation in serious cases. In particular, since not only the concentration but also the total amount of pollutants are considered as indicators for this purpose, the lifespan of the air purifying module over time can also be confirmed.
  • the purified air is supplied to the printing area again, so that relatively clean air is introduced into the printing device. This extends the life of the air purifying module, and thus the air inside the printing shop can be further improved.
  • the system according to the present invention can also treat such pollutants. For example, even when pollutants caused by the printing device are small and there are many pollutants only in the corresponding place due to work in the paper loading area, proper facility operation is possible.
  • 1 is a conceptual diagram for explaining the exhaust gas flow of a conventional printing plant.
  • FIG. 2 is a conceptual diagram for explaining a system according to the present invention.
  • FIG. 3 is a flowchart for explaining a method according to the present invention.
  • the system according to the invention operates in a printing shop equipped with a plurality of printing devices 10 .
  • a printing area M in which a plurality of printing devices 10 are located and a paper loading area P in which papers are loaded are located.
  • the corresponding area is referred to as a printing area M, and there is a paper loading area P adjacent to the printing area M for work convenience. .
  • the printing area M and the paper loading area P do not mean spaces physically divided by non-bearing walls or partitions (temporary walls).
  • the printing area M and the paper loading area P may be divided in various ways according to the environment of the printing office.
  • the printing device 10 includes an air purifying module 11 and is provided with an exhaust port 12 connected thereto.
  • An intake port 20 is located adjacent to the exhaust port 12 .
  • exhaust gas from the printing apparatus 10 flows in through the inlet 20 .
  • a first sensor S1 is positioned between the exhaust port 12 and the intake port 20 .
  • the first sensor S1 measures both particle contamination concentration and gas contamination concentration.
  • the measured value of the first sensor (S1) represents the contamination level of the exhaust gas discharged from the printing apparatus (10).
  • the second sensor S2 is located outside the printing device 10 as within the printing area M.
  • the second sensor S2 also measures both particle contamination concentration and gas contamination concentration.
  • the measurement value of the second sensor (S2) represents the overall contamination level of the exhaust gas discharged from all of the plurality of printing devices (10). Since it is located in the printing area (M), it does not represent the overall indoor air quality in the printing plant. Therefore, if the measurement value of the second sensor S2 exceeds a specific standard even though the printing apparatus 10 is not operating, it is possible to estimate the abnormalities of the air purifying modules 11 of the plurality of printing presses 10 .
  • the first sensor S1 and the second sensor S2 may be an assembly of a PM sensor and a VOCs sensor to measure both particle contamination concentration and gas contamination concentration, but other combinations are possible.
  • valves V1, V2, and V3 to be described later are controlled according to the measured values of the first sensor S1 and the second sensor S2.
  • the second sensor (S2) may measure the total amount of particle contamination and the total amount of gas contamination for a set period.
  • the second sensor S2 may measure only the contamination concentration like the first sensor S1 and the total amount may be calculated by the controller 500.
  • the valves V1, V2, and V3 are controlled or the warning unit 400 operates by using this to obtain more accurate Control and warning are possible.
  • a branch intake port communicating with the particulate matter processor 100 is located and the third sensor S3 is located there.
  • the third sensor (S3) measures the particle contamination concentration. This reflects that gas pollutants will not be generated only by tributaries.
  • the third sensor S3 may be a PM sensor, and valves V1, V2, and V3 described below are controlled according to the measured value.
  • the particulate matter processor 100 communicates with the intake port 20 and is connected through the first valve V1.
  • the gaseous substance preprocessor 200 communicates with the particulate matter processor 100 and is connected through the second valve V2.
  • the particulate matter processor 100 may be any device for reducing particulate pollutants, and the gaseous material preprocessor 200 may be any device capable of preprocessing prior to processing gas pollutants in a later filter.
  • a high concentration processing filter unit 210 and a low concentration processing filter unit 220 connected to branch through a third valve V3 are located.
  • the high-concentration processing filter unit 210 and the low-concentration processing filter unit 220 are joined and connected to the fan 300 .
  • the RPM of the fan 300 can be controlled by the control unit 500, and the RPM can be automatically controlled according to the measured values of the first sensor S1, the second sensor S2, and the third sensor S3. .
  • first bypass flow path L1 connecting the second valve V2 and the fan 300 to bypass the gaseous material preprocessor 200, the high-concentration process filter unit 210, and the low-concentration process filter unit 220.
  • exhaust gas passing through the particulate matter processor 100 may directly flow to the fan 300 through the first bypass flow path L1.
  • a second bypass flow path L2 connecting the first valve V1 and the gaseous material preprocessor 200 to bypass the particulate matter processor 100 is further provided.
  • exhaust gas from the inlet 20 can flow directly to the gaseous material preprocessor 200.
  • a warning unit 400 and a control unit 500 are further provided.
  • the warning unit 400 visually and/or audibly outputs the particle contamination concentration and the gas contamination concentration measured by the first sensor S1. For example, by applying the reference value of each of the three stages, it may be divided into caution, danger, and serious stages, and output in different colors or different sounds.
  • the warning unit 400 may further output an evacuation step other than caution, danger, and serious.
  • the control unit 500 may be hardware equipped with an algorithm for controlling the valves V1, V2, and V3 according to the first sensor S1, the second sensor S2, and the third sensor S3, so that according to the present invention automatically control the system according to
  • the fan 300 may be manually controlled through the controller 500, and the RPM of the fan 300 may be automatically controlled using measurement values from each sensor.
  • the controller 500 may calculate each total amount using this. For example, the control unit 500 checks the total amount of exhaust gas per unit time by checking the number of printing devices 10 and the amount of exhaust gas per unit time discharged from the exhaust port 11 of the printing device 10, and controls the amount during the accumulated measurement time. 2 After confirming a plurality of values of the concentration of particle contamination and gas contamination measured by the sensor (S2) (the number of which is the number of dividing the cumulative measurement time by the unit time), it is possible to roughly calculate the total amount by using these values. .
  • the control unit 500 checks the air purifying module 11 replacement signal of the printing device 10 and proceeds to the next step.
  • the system should operate to improve indoor air quality along with a warning.
  • the valves (V1) operate the fan 300 along with the warning and allow exhaust gas discharged from the printing apparatus 10 to pass through the particulate matter processor 100, the gaseous material preprocessor 200 and the high concentration treatment filter unit 210. , V2, V3) are controlled.
  • the fan 300 operates at the highest RPM.
  • whether the total amount of particle contamination and the total amount of gas contamination measured by the second sensor S2 or calculated through the controller 500 is equal to or greater than a predetermined standard may be checked together. Through this, even if the current pollutant concentration measured by the second sensor S2 does not have a significant problem, it is possible to predict that the indoor air quality will soon deteriorate due to the aging of the air purifying modules 11, and to preemptively prevent the indoor air quality from getting worse. The replacement of the air purification module 11 is notified.
  • the method according to the present invention is performed, and first, whether the printing device 10 is operating is checked (S200).
  • the printing device 10 If the printing device 10 is not operating, by determining whether the particle contamination concentration measured by the third sensor S3 is higher than the standard, the paper loading area not caused by the printing device 10 but caused by the paper Check the level of particle contamination in (P). If there is no problem here, the fan 300 is not operated (S540). This is because the printing device 10 does not operate, and the indoor air quality is good in both the printing area M and the paper loading area P.
  • valves V1, V2, and V3 and the fan 300 are controlled using the particle contamination concentration and the gas contamination concentration measured by the first sensor S1 (S300 and S400). .
  • the fan 300 is operated, and the printing device
  • the first valve V1 and the second valve V2 are controlled so that the exhaust gas discharged in step 10 passes through the particulate matter processor 100 and the gaseous material preprocessor 200 (S510).
  • the first bypass flow path L1 and the second bypass flow path L2 are not used.
  • the system may be configured to operate even if only one of the measured values of the plurality of first sensors S1 is higher than a reference value.
  • the measurement values of two or three or more first sensors S1 are set as minimum criteria, and these criteria can be changed according to the printing shop environment. .
  • Exhaust gas discharged through the inlet 12 of the printing apparatus 10 may flow to the inlet 12 by the fan inside the printing apparatus 10, but when the fan 300 operates, the inlet 12 ) becomes more flexible.
  • the aforementioned gas pollution standards are low-concentration gas pollution standards. Higher concentration gas pollution standards are set separately. Low-concentration gas pollution standards and high-concentration gas pollution standards may vary depending on the type of gaseous material and sensor.
  • the third valve V3 is controlled so that the exhaust gas passes through the gaseous material preprocessor 200 and then through the high concentration treatment filter unit 210. And, when the measured gas pollution concentration is less than the high-concentration gas pollution standard, the third valve V3 is controlled to pass through the low-concentration treatment filter unit 210.
  • Exhaust gas in which both particulate matter and gaseous matter are treated while passing through the high-concentration process filter unit 210 or the low-concentration process filter unit 220, passes through the fan 300 and is discharged.
  • the air discharged through the fan 300 may be outside air, it is re-supplied to the printing area M and introduced into the printing device 10, thereby extending the life of the air purifying module 11 of the printing device 10. And operation durability of the printing device 10 can be helpful.
  • the fan 300 when the particle contamination concentration measured by the first sensor S1 is greater than the particle contamination standard and the gas contamination concentration measured by the first sensor S1 is less than the gas contamination standard, that is, when only particulate matter is identified, the fan 300 ) is operated, and the first valve V1 and the second valve V2 are operated so that the exhaust gas discharged from the printing apparatus 10 passes through the particulate matter processor 100 and then passes through the first bypass passage L1.
  • Control (S520) It reaches the fan 300 through the first bypass flow path L1 and thereafter is as described above.
  • the fan 300 When the particle contamination concentration measured by the first sensor S1 is less than the particle contamination standard and the gas contamination concentration measured by the first sensor S1 is above the gas contamination standard, that is, when only gaseous substances are identified, the fan 300 is operated. and controls the first valve V1 and the second valve V2 so that the exhaust gas discharged from the printing apparatus 10 passes through the second bypass passage L2 and then passes through the gaseous material preprocessor 200 Do (S530). Thereafter, the third valve V3 is controlled in the above-described manner, and passes through the high-concentration processing filter unit 210 or the low-concentration processing filter unit 220 and reaches the fan 300 .
  • the fan ( 300) is preferably stopped (S540). In some cases, the fan 300 may operate only at a relatively low RPM even in this case to help the exhaust gas discharged through the exhaust port 12 of the printing apparatus 10 flow into the intake port 20 .
  • the RPM of the fan 300 is controlled in proportion to the concentration of particle contamination or gas contamination measured by the first sensor S1. Desir. That is, it is desirable to operate the fan 300 at a higher RPM at high contaminant concentrations.
  • the system may be controlled by further using the third sensor S3 located in the paper loading area P.
  • the fan 300 When the printing apparatus 10 is not in operation or when the particle contamination concentration measured by the third sensor S3 is equal to or higher than the particle contamination standard (S210), the fan 300 operates. That is, when the concentration of particle contamination measured by the third sensor S3 is equal to or higher than the particle contamination standard, the fan 300 is operated, and exhaust gas discharged from the printing apparatus 10 passes through the particulate matter processor 100 and then removed.
  • the first valve V1 and the second valve V2 are controlled to pass through the first bypass flow path L1 (S520).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명은 공기정화모듈(11)과 이에 연결된 배기구(12)를 포함하는 인쇄장치(10)를 다수 포함하는 인쇄소에서 발생하는 대기오염을 저감하는 시스템과 이를 운영하는 방법을 제공한다.

Description

인쇄소 발생 대기오염 저감 시스템 및 그 운영 방법
본 발명은 환경 기술에 관한 것으로, 보다 구체적으로 인쇄소에서 발생하는 대기오염을 저감하기 위한 시스템과 그러한 시스템을 운영하는 기술에 관한 것이다.
인쇄소는 하나 이상의 인쇄장치를 이용하여 다량의 출력물을 인쇄하는 장소이다. 레이저나 자외선을 이용한 고품질 디지털 인쇄 기술이 개발되었으나 많은 출력물을 한 번에 인쇄하기에 적절하지 않으며 고가이어서 여전히 잉크를 이용한 윤전, 매엽인쇄 등이 널리 사용된다.
인쇄를 위해 종이가 고속으로 롤링(rolling)되어야 하기에 인쇄기는 많은 열을 배출하며, 배출된 열이 잉크 또는 종이와 지속적으로 접함에 따라 다양한 대기 오염물질이 발생한다. 대기 오염물질은 입자오염과 가스오염을 모두 포함하여 동시에 배출된다. 입자오염으로서 미세먼지 등이 배출되며 가스오염으로서 휘발성유기물질(VOCs), 이산화질소, 오존 등이 배출된다. 인쇄 중 배출되는 총 VOCs는 평균 대기의 5배인 것으로 보고된다.
인쇄기에서 배출되는 열은 전자기기인 인쇄기에 악영향을 주기에, 대부분의 인쇄기는 팬을 이용하여 내부 공기를 외부로 배출하는 공랭식 원리를 채택한다. 그러나, 팬에 의해 오염물질이 인쇄소 내부에 널리 확산된다. 물론, 인쇄기에서도 이를 방지하기 위해 팬 배기구 측에 공기정화장치가 부착되기도 한다. 다만, 대부분의 인쇄기에 구비되는 공기정화장치는 여과망 수준에 불과하며, 그러한 여과망으로도 초미세먼지 등은 정화시키지 못한다. 또한, 인쇄기에 구비된 공기정화장치의 수명이 다하였는지 여부를 직관적으로 확인하기 어려워, 실질적으로 공기정화장치 기능을 하지 못하는 경우도 상당수이다.
이러한 이유로 대부분의 인쇄소 실내공기질은 좋지 않다. 인쇄기로부터 발생한 배가스를 인쇄소 외부로 배출하는 별도의 팬이 있는 경우도 많지만, 이러한 것만으로 인쇄소의 실내공기질은 크게 개선되지 않는 실정이며, 인쇄소 내 공기를 별도로 정화하지 않고 팬으로 외부에 강제 배출시키면 인쇄소 주변의 대기가 오염된다. 특히, 인쇄거리라고 불릴 정도로 많은 인쇄소가 모여 있는 장소라면 인쇄소에 의한 대기오염은 심각하다.
도 1은 종래의 인쇄소를 개략적으로 도시한다. 인쇄장치(10)에 공기정화모듈(Air Purifying Module)(11)이 구비되고 여기에 배기구(12)가 연결된다. 팬(30)과 연통하는 흡기구(20)를 인쇄장치(10) 인근에 위치시킨다. 팬(30) 외측 또는 내측에 여과망(31)이 있는 경우도 있다. 이러한 인쇄소 구조만으로는 인쇄기에서 발생한 오염물질을 충분히 정화하지 못한다. 인쇄소 내부 인력에게도 위험하며 대기오염을 야기하기도 한다. 실내공기질이 좋지 않은 경우, 그러한 공기가 다시 인쇄정치(10)에 유입되므로 인쇄장치(10)의 고장을 유발하고 공기정화모듈(11)의 수명을 단축시킨다.
인쇄소에서 발생하는 오염물질들은 대부분 이미 알려진 오염물질이어서 이를 처리하는 다양한 기술 적용을 고려할 수 있다. 그러나, 인쇄소는 작업량, 작업시간, 시설규모 등 작업 특성에 따라 오염물질 발생 정도의 편차가 매우 커서 일률적으로 기술 적용이 어렵다. 또한, 전술한 바와 같이 입자오염과 가스오염이 동시에 발생한다는 점 역시 문제이다. 대부분의 인쇄소는 영세하므로 장비 설치비 또는 운영비가 고가인 경우 이를 적용하는 것 역시 쉽지 않다.
(특허문헌 1) 한국등록특허 제10-2308883호
(특허문헌 2) 한국등록특허 제10-1867001호
(특허문헌 3) 한국공개특허 제10-2019-0078328호
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것이다.
인쇄소의 환경에 특화되어 인쇄소의 실내공기질을 개선하고 인쇄소 외부로 배출되는 공기질을 개선하여 대기오염을 저감할 수 있는 기술을 제안하고자 한다.
입자상물질과 가스상물질이 함께 배출되는 인쇄소 환경에 특화된 기술로서, 오염 농도에 따라 운전 여부와 사용 필터가 선택되어 저렴한 운영 비용으로 영세한 인쇄소에서 적용될 수 있는 기술을 개발하고자 한다.
인쇄장치의 공기정화모듈에 오염물질이 유입되지 않도록 함으로써 수명을 연장시키며, 인쇄장치의 공기정화모듈의 기능이 상당히 떨어진 경우 이를 자동으로 알림으로써, 공기정화모듈 오류로 인해 오염농도가 지속적으로 상승하는 현상을 방지하고자 한다.
상기와 같은 과제를 해결하기 위한 본 발명의 일 실시예는, 공기정화모듈(11)과 이에 연결된 배기구(12)를 포함하는 인쇄장치(10)를 다수 포함하는 인쇄소에서 발생하는 대기오염을 저감하는 시스템으로서, 인쇄소에는 상기 다수의 인쇄장치(10)가 위치한 인쇄영역(M)이 위치하고, 상기 배기구(12)에 위치한 흡기구(20)와 연통되되 제 1 밸브(V1)를 통해 연결된 입자상물질 처리기(100); 상기 입자상물질 처리기(100)와 연통되되 제 2 밸브(V2)를 통해 연결된 가스상물질 전처리기(200); 상기 가스상물질 전처리기(200)와 연통되되 제 3 밸브(V3)를 통해 분기되도록 연결된 고농도 처리 필터부(210) 및 저농도 처리 필터부(220); 상기 고농도 처리 필터부(210)와 상기 저농도 처리 필터부(220)가 합류하여 연결된 팬(300); 상기 가스상물질 전처리기(200), 상기 고농도 처리 필터부(210) 및 상기 저농도 처리 필터부(220)를 바이패스하도록 상기 제 2 밸브(V2)와 상기 팬(300)을 연결하는 제 1 바이패스 유로(L1); 상기 입자상물질 처리기(100)를 바이패스하도록 상기 제 1 밸브(V1)와 상기 가스상물질 전처리기(200)를 연결하는 제 2 바이패스 유로(L2) ; 상기 배기구(12)마다 위치하여 입자오염 농도 및 가스오염 농도를 측정하여 이에 따라 상기 밸브들(V1, V2, V3)을 제어하는 제 1 센서(S1); 및 상기 인쇄영역(M)에 내로서 상기 다수의 인쇄장치(10)의 외측에 위치하여 입자오염 농도 및 가스오염 농도를 측정하여 이에 따라 상기 밸브들(V1, V2, V3)을 더 제어하는 제 2 센서(S2)를 포함하는, 시스템을 제공한다.
상기와 같은 과제를 해결하기 위한 본 발명의 다른 실시예는, 전술한 시스템을 운영하는 방법으로서, (a) 상기 인쇄장치(10)가 동작 중인지 여부를 확인하는 단계; (b) 상기 인쇄장치(10)가 동작 중인 경우, 상기 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 이상인지 여부 및 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 이상인지 여부를 확인하는 단계; (c1) 상기 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 이상이고 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 이상인 경우, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 입자상물질 처리기(100) 및 상기 가스상물질 전처리기(200)를 통과하도록 상기 제 1 밸브(V1) 및 상기 제 2 밸브(V2)를 제어하는 단계; (c2) 상기 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 이상이고 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 미만인 경우, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 입자상물질 처리기(100)를 통과한 후 상기 제 1 바이패스 유로(L1)를 통과하도록 상기 제 1 밸브(V1) 및 상기 제 2 밸브(V2)를 제어하는 단계; (c3) 상기 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 미만이고 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 이상인 경우, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 제 2 바이패스 유로(L2)를 통과한 후 상기 가스상물질 전처리기(200)를 통과하도록 상기 제 1 밸브(V1) 및 상기 제 2 밸브(V2)를 제어하는 단계; 및 (c4) 상기 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 미만이고 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 미만인 경우, 상기 팬(300)을 중지시키는 단계를 포함하는, 방법을 제공한다.
또한, 상기 (c4) 단계 이후, 상기 가스오염기준은 저농도 가스오염기준이고, (d1) 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 상기 저농도 가스오염기준보다 높은 고농도 가스오염기준 이상인 경우, 상기 인쇄장치(10)에서 배출된 배가스가 상기 가스상물질 전처리기(200)를 통과한 후 상기 고농도 처리 필터부(210)를 통과하도록 상기 제 3 밸브(V3)를 제어하는 단계; 및 (d2) 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 상기 고농도 가스오염기준 미만인 경우, 상기 인쇄장치(10)에서 배출된 배가스가 상기 가스상물질 전처리기(200)를 통과한 후 상기 저농도 처리 필터부(210)를 통과하도록 상기 제 3 밸브(V3)를 제어하는 단계를 더 포함하는 것이 바람직하다.
또한, 상기 (a) 단계 이전에, (01) 상기 제 2 센서(S2)에서 측정한 입자오염 농도가 입자오염기준 이상이거나 또는 상기 제 2 센서(S2)에서 측정한 가스오염 농도가 가스오염기준 이상인 경우, 경고부(400)가 상기 인쇄장치(10)의 공기정화모듈(11) 교체를 알림하고, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 입자상물질 처리기(100), 상기 가스상물질 전처리기(200) 및 상기 고농도 처리 필터부(210)를 통과하도록 상기 제 1 밸브(V1), 상기 제 2 밸브(V2) 및 상기 제 3 밸브(V3)를 제어하는 단계를 포함하고, 상기 (01) 단계 이후, 제어부(500)가 상기 인쇄장치(10)의 공기정화모듈(11) 교체 신호를 확인한 후 상기 (a) 단계가 진행되는 것이 바람직하다.
또한, 상기 (a) 단계 이전에, (11) 제어부(500)가 상기 제 2 센서(S2)에서 측정한 입자오염 농도 및 가스오염 농도를 누적하여 입자오염 총량 및 가스오염 총량을 연산하는 단계; 및 (12) 상기 제어부(500)가 연산한 입자오염 총량이 기 설정된 입자오염총량기준 이상이거나 또는 상기 제어부(500)가 연산한 가스오염 총량이 가스오염총량기준 이상인 경우, 경고부(400)가 상기 인쇄장치(10)의 공기정화모듈(11) 교체를 알림하고, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 입자상물질 처리기(100), 상기 가스상물질 전처리기(200) 및 상기 고농도 처리 필터부(210)를 통과하도록 상기 제 1 밸브(V1), 상기 제 2 밸브(V2) 및 상기 제 3 밸브(V3)를 제어하는 단계를 포함하고, 상기 (12) 단계 이후, 상기 제어부(500)가 상기 인쇄장치(10)의 공기정화모듈(11) 교체 신호를 확인한 후 상기 (a) 단계가 진행되는 것이 바람직하다.
또한, 상기 (11) 단계는, 상기 제어부(500)가 상기 인쇄장치(10)의 개수를 확인하는 단계; 상기 제어부(500)가 상기 인쇄장치(10)의 배기구(11)에서 배출되는 단위시간당 배가스량을 확인하는 단계; 및 상기 제어부(500)가, 단위시간과, 누적된 측정시간과, 상기 인쇄장치(10)의 개수와, 상기 인쇄장치(10)의 단위시간당 배가스량과, 상기 누적된 측정시간 동안 상기 제 2 센서(S2)에서 측정한 입자오염 농도 및 가스오염 농도의 다수의 값을 이용하여, 입자오염 총량 및 가스오염 총량을 연산하는 단계를 포함하는 것이 바람직하다.
또한, 상기 (c4) 단계 이후, 상기 팬(300)을 통해 배출된 공기가 상기 인쇄영역(M)에 재공급되고, 상기 재공급된 공기는 상기 인쇄장치(10)에 유입되는 것이 바람직하다.
또한, 인쇄소에는 지류적재영역(P)이 위치하고, 상기 지류적재영역(P)에는 입자오염 농도를 측정하는 제 3 센서(S3)가 위치하고, 상기 지류적재영역(P)에 지류흡기구가 위치하고, 상기 지류흡기구는 상기 입자상물질 처리기(10)에 연결되고, 상기 (a) 단계 이후, (e1) 상기 인쇄장치(10)가 동작 중이 아닌 경우, 상기 제 3 센서(S3)에서 측정된 입자오염 농도가 입자오염기준 이상인지 여부를 확인하는 단계; (e2) 상기 제 3 센서(S3)에서 측정된 입자오염 농도가 입자오염기준 이상인 경우, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 입자상물질 처리기(100)를 통과한 후 상기 제 1 바이패스 유로(L1)를 통과하도록 상기 제 1 밸브(V1) 및 상기 제 2 밸브(V2)를 제어하는 단계; 및 (e3) 상기 제 3 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 미만인경우, 상기 팬(300)을 중지시키는 단계를 더 포함하는 것이 바람직하다.
또한, 상기 제 1 센서(S1)에서 측정된 입자오염 농도 또는 상기 제 1 센서(S1)에서 측정된 가스오염 농도에 비례하여 상기 팬(300)의 RPM을 제어하는 것이 바람직하다.
또한, 상기 제 1 센서(S1)에서 측정된 입자오염 농도 및 상기 제 1 센서(S1)에서 측정된 가스오염 농도를 이용하여 경고부(400)가 입자오염 농도 및 가스오염 농도를 출력하는 것이 바람직하다.
본 발명에 의해, 인쇄소 환경에 특화된 대기오염 저감 시스템과 운영 방법이 제공된다.
입자상물질과 가스상물질이 동시에 제거된다. 둘 중 어느 하나의 농도만 높은 경우에도 선택적으로 이를 제거하고 농도가 낮아 제거할 필요가 없는 경우라면 수명 연장을 위해 기능을 잠시 정지시킬 수 있다. 이를 통해 운영 비용이 절감된다.
인쇄장치의 배기구에 인접하여 흡기구가 위치하더라도 배기구와 흡기구를 완전 밀봉하기 쉽지 않은데, 본 발명은 이러한 실정을 고려하여 인쇄영역으로 새어 나오는 공기질도 감지하고 이에 따라 설비를 운영한다. 이러한 메커니즘을 활용하여 인쇄장치의 공기정화모듈의 수명을 간접적으로 확인하여 교체를 알리거나 심각한 경우 대피를 알릴 수도 있다. 특히, 이를 위한 지표로서 오염물질의 농도뿐만 아니라 총량을 함께 고려하기에, 시간에 따른 공기정화모듈의 수명도 함께 확인할 수 있다.
정화된 공기는 다시 인쇄영역으로 공급됨으로써, 인쇄장치에 비교적 깨끗한 공기가 유입되도록 한다. 이는 공기정화모듈의 수명을 연장시키고, 이로 인해 인쇄소 내부의 공기는 더욱 개선될 수 있다.
지류적재영역에는 인쇄기가 아닌 지류 자체에 의한 미세먼지 등이 많은데, 본 발명에 의한 시스템은 이러한 오염물질도 처리할 수 있다. 예컨대, 인쇄장치에 기인한 오염물질은 적고 지류적재영역에서의 작업으로 해당 장소에서만 오염물질이 많은 경우에도 적절한 설비 운영이 가능하다.
도 1은 종래의 인쇄소의 배가스 흐름을 설명하기 위한 개념도이다.
도 2는 본 발명에 따른 시스템을 설명하기 위한 개념도이다.
도 3은 본 발명에 따른 방법을 설명하기 위한 순서도이다.
이하, 도면을 참조하여 본 발명에 대하여 설명한다.
시스템의 설명
본 발명에 따른 시스템은, 다수의 인쇄장치(10)가 구비된 인쇄소에서 작동한다. 인쇄소에는 다수의 인쇄장치(10)가 위치하는 인쇄영역(M)과 지류가 적재되는 지류적재영역(P)에 위치한다. 대부분의 인쇄소에서 인쇄장치(10)는 일정 장소에 모여 배치되기에 해당 영역이 인쇄영역(M)으로 지칭되고, 작업의 편의성을 위해 인쇄영역(M)에 인접하게 지류적재영역(P)이 있다.
여기서, 인쇄영역(M)과 지류적재영역(P)은 비내력벽이나 파티션(가벽) 등으로 물리적으로 구분된 공간을 의미하는 것은 아니다. 인쇄소의 환경에 따라 다양한 방식으로 인쇄영역(M)과 지류적재영역(P)이 구분될 수 있다.
인쇄장치(10)는 공기정화모듈(11)을 포함하고 이에 연결된 배기구(12)가 구비된 것이다.
배기구(12)에 인접하게 흡기구(20)가 위치한다. 팬(300)이 동작하면 흡기구(20)를 통해 인쇄장치(10)로부터의 배가스가 유입된다.
배기구(12)와 흡기구(20)는 인접하되 기밀하게 연결되는 것은 기술적으로 어려우며, 그렇게 연결될 필요도 없다.
배기구(12)와 흡기구(20) 사이에는 제 1 센서(S1)가 위치한다. 제 1 센서(S1)는 입자오염 농도 및 가스오염 농도를 모두 측정한다. 제 1 센서(S1)의 측정값은 인쇄장치(10)에서 배출되는 배가스의 오염 수준을 나타낸다.
인쇄영역(M)에 내로서 인쇄장치(10)의 외측에는 제 2 센서(S2)가 위치한다. 제 2 센서(S2) 역시 입자오염 농도 및 가스오염 농도를 모두 측정한다. 제 2 센서(S2)의 측정값은 다수의 인쇄장치(10) 전부에서 배출되는 배가스의 전반적인 오염 수준을 나타낸다. 인쇄영역(M)에 위치하므로 인쇄소 내의 전반적인 실내공기질을 나타내지는 않는다. 따라서, 인쇄장치(10)가 가동하지 않았는데 제 2 센서(S2)의 측정값이 특정 기준 이상이라면 다수의 인쇄기(10)의 공기정화모듈(11)들의 이상을 추정할 수 있다.
제 1 센서(S1) 및 제 2 센서(S2)는 입자오염 농도 및 가스오염 농도 모두를 측정하기 위해 PM센서와 VOCs센서의 조립체일 수 있으나, 다른 조합도 가능하다. 또한, 제 1 센서(S1)와 제 2 센서(S2)의 측정값에 따라 후술하는 밸브들(V1, V2, V3)이 제어된다.
본 발명의 일 실시예에서, 제 2 센서(S2)는 설정된 기간 동안의 입자오염 총량 및 가스오염 총량을 측정할 수도 있다. 다만, 이 경우 센서 조립체 자체가 커지고 고가이므로 후술하는 다른 실시예에서 제 2 센서(S2)는 제 1 센서(S1)와 같이 오염농도만을 측정하고 제어부(500)에 의해 총량이 연산될 수도 있다. 제 2 센서(S2) 자체적으로 또는 연산에 의해 입자오염 총량 및 가스오염 총량이 연산되면, 이를 더 이용하여 밸브들(V1, V2, V3)이 제어되거나 경고부(400)가 동작하도록 하여 보다 정확한 제어 및 경고가 가능하다.
지류적재영역(M)에는 입자상물질 처리기(100)와 연통되는 지류흡기구가 위치하고 여기에 제 3 센서(S3)가 위치한다. 제 3 센서(S3)는 입자오염 농도를 측정한다. 지류만으로 가스오염 물질이 발생하지 않을 것임을 반영한 것이다. 마찬가지로 제 3 센서(S3)는 PM센서일 수 있으며 그 측정값에 따라 후술하는 밸브들(V1, V2, V3)이 제어된다.
입자상물질 처리기(100)는 흡기구(20)와 연통되어 제 1 밸브(V1)를 통해 연결된다. 가스상물질 전처리기(200)는 입자상물질 처리기(100)와 연통되어 제 2 밸브(V2)를 통해 연결된다. 입자상물질 처리기(100)는 입자오염 물질을 저감시키기 위한 어떠한 기기일 수 있으며, 가스상물질 전처리기(200)은 후단의 필터에서 가스오염 물질을 처리하기 이전의 전처리가 가능한 어떠한 기기일 수 있다.
가스상물질 전처리기(200)의 후단에는 제 3 밸브(V3)를 통해 분기되도록 연결된 고농도 처리 필터부(210) 및 저농도 처리 필터부(220)가 위치한다.
고농도 처리 필터부(210)와 저농도 처리 필터부(220)는 합류하여 팬(300)에 연결된다. 팬(300)은 제어부(500)에 의해 RPM이 제어될 수 있으며, 제 1 센서(S1), 제 2 센서(S2) 및 제 3 센서(S3)의 측정값에 따라 RPM이 자동 제어될 수 있다.
한편, 가스상물질 전처리기(200), 고농도 처리 필터부(210) 및 저농도 처리 필터부(220)를 바이패스하도록 제 2 밸브(V2)와 팬(300)을 연결하는 제 1 바이패스 유로(L1)가 더 구비된다. 제 2 밸브(V2)를 제어함으로써, 입자상물질 처리기(100)를 통과한 배가스는 제 1 바이패스 유로(L1)를 통해 팬(300)으로 직접 유동할 수 있다.
또한, 입자상물질 처리기(100)를 바이패스하도록 제 1 밸브(V1)와 가스상물질 전처리기(200)를 연결하는 제 2 바이패스 유로(L2) 가 더 구비된다. 제 1 밸브(V1)를 제어함으로써, 흡입구(20)로부터의 배가스는 가스상물질 전처리기(200)로 직접 유동할 수 있다.
팬(300)을 통과한 가스, 즉 정화된 가스가 해당 인쇄소의 인쇄영역(M)으로 재공급되는 유로가 더 구비된다.
경고부(400)와 제어부(500)가 더 구비된다.
경고부(400)는 제 1 센서(S1)에서 측정된 입자오염 농도 및 가스오염 농도를 시각적 및/또는 청각적으로 출력한다. 예컨대, 각 3단계의 기준값을 적용하여, 주의, 위험, 심각 단계로 구분하고 서로 다른 색상 또는 서로 다른 소리로 출력할 수 있다.
본 발명의 일 실시예에서, 제 2 센서(S2)에서 측정된 입자오염 농도 및 가스오염 농도가 소정의 기준 이상인 경우, 이는 공기정화모듈(11) 등의 오류로 인쇄소 실내공기질 전체가 악화됨을 의미하므로, 경고부(400)가 주의, 위험, 심각 이외의 대피 단계를 더 출력할 수도 있다.
제어부(500)에는 제 1 센서(S1), 제 2 센서(S2) 및 제 3 센서(S3)에 따라 밸브들(V1, V2, V3)을 제어하는 알고리즘이 구비된 하드웨어일 수 있어서, 본 발명에 따른 시스템을 자동 제어한다. 또한, 제어부(500)를 통해 팬(300)을 수동 제어할 수도 있으며, 각 센서에서의 측정값을 이용하여 팬(300)의 RPM을 자동 제어할 수 있다.
본 발명의 일 실시예에서, 제 2 센서(S2)가 입자오염 농도 및 가스오염 농도만을 측정하는 센서이고 총량은 측정하지 않는 경우, 제어부(500)는 이를 이용하여 각 총량을 연산할 수 있다. 예컨대, 제어부(500)가 인쇄장치(10)의 개수와 인쇄장치(10)의 배기구(11)에서 배출되는 단위시간당 배가스량을 확인하여 단위시간당 총 배가스량을 확인하고, 누적된 측정시간 동안 제 2 센서(S2)에서 측정한 입자오염 농도 및 가스오염 농도의 다수의 값(그 개수는, 누적된 측정시간을 단위시간으로 나눈 수)을 확인한 후, 이들을 이용하면 총량의 개략적인 연산이 가능하다.
방법의 설명
우선, 제 2 센서(S2)에서 측정되는 값을 확인하여야 한다(S100). 제 2 센서(S2)에서 측정된 입자오염 농도 또는 가스오염 농도의 측정값이 소정의 기준 이상이라면 다수의 인쇄기(10)의 공기정화모듈(11)들에 이상이 있음을 추정할 수 있어서 실내공기질이 이미 좋지 않은 경우이기 때문이다. 소정의 기준 이상이라면 경고부(400)를 통해 공기정화모듈(11)의 교체를 경고하고 경우에 따라 작업자의 대피 단계를 출력할 수도 있다(S110). 이 경우, 안전을 위해 제어부(500)는 인쇄장치(10)의 공기정화모듈(11) 교체 신호를 확인한 후 그 다음 단계로 진행시킨다.
이 경우, 경고와 더불어 실내공기질 개선을 위해 시스템이 동작하여야 한다. 경고와 더불어 팬(300)을 동작시키고, 인쇄장치(10)에서 배출된 배가스가 입자상물질 처리기(100), 가스상물질 전처리기(200) 및 고농도 처리 필터부(210)를 통과하도록 밸브들(V1, V2, V3)을 제어한다. 팬(300)은 가장 높은 RPM으로 동작시킨다.
본 발명의 일 실시예에서, 제 2 센서(S2)에서 측정되거나 제어부(500)를 통해 연산되는 입자오염 총량 및 가스오염 총량이 소정의 기준 이상인지 여부를 함께 확인할 수 있다. 이를 통해, 제 2 센서(S2)에서 측정된 현재의 오염 농도는 크게 문제가 없더라도 공기정화모듈(11)들이 노후하여 조만간 실내공기질이 나빠질 것을 예측할 수 있으며, 실내공기질이 더욱 나빠지기 전에 선제적으로 공기정화모듈(11)의 교체를 알림하게 된다.
제 2 센서(S2)에서의 측정값이 모두 기준 미만이어서 전체적인 실내공기질에 문제가 없다면 본 발명에 따른 방법이 수행되며, 먼저 인쇄장치(10)의 동작 여부를 확인한다(S200).
인쇄장치(10)가 동작하지 않고 있다면, 제 3 센서(S3)에서 측정된 입자오염 농도가 기준 이상인지 여부를 판단함으로써, 인쇄장치(10)에 기인한 것이 아니며 지류에 의해 기인한 지류적재영역(P)의 입자오염 정도를 확인한다. 여기에서도 문제가 없다면 팬(300)을 동작시키지 않는다(S540). 인쇄장치(10)도 동작하지 않고, 인쇄영역(M) 및 지류적재영역(P) 모두 실내공기질이 양호하기 때문이다.
인쇄장치(10)가 동작하고 있다면, 제 1 센서(S1)에서 측정된 입자오염 농도 및 가스오염 농도를 이용하여 밸브(V1, V2, V3)와 팬(300)을 제어한다(S300, S400).
구체적으로, 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 이상이고 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 이상인 경우, 팬(300)을 동작시키고, 인쇄장치(10)에서 배출된 배가스가 입자상물질 처리기(100) 및 가스상물질 전처리기(200)를 통과하도록 제 1 밸브(V1) 및 제 2 밸브(V2)를 제어한다(S510). 제 1 바이패스 유로(L1) 및 제 2 바이패스 유로(L2)는 사용되지 않는다.
인쇄장치(10)가 다수개인 경우, 다수의 제 1 센서(S1)에서의 측정값 중 어느 하나만 기준 이상이어도 시스템이 동작하도록 구성될 수 있다. 10개 이상의 인쇄장치(10)를 사용하는 인쇄소라면 2개 또는 3개 이상의 제 1 센서(S1)에서의 측정값을 최소 기준으로 설정하는 등, 이러한 기준은 인쇄소 환경에 따라 얼마든지 변경될 수 있다.
인쇄장치(10)의 흡기구(12)를 통해 배출된 배가스는 인쇄장치(10) 내부의 팬에 의해서 흡기구(12)로 유동할 수 있으나, 팬(300)이 동작하면 그 힘에 의해 흡기구(12)로 더욱 유동하게 된다.
전술한 가스오염기준은 저농도 가스오염기준이다. 이보다 큰 고농도 가스오염기준이 별도 설정된다. 저농도 가스오염기준과 고농도 가스오염기준은 가스상물질과 센서의 종류에 따라 달라질 수 있다.
제 1 센서(S1)에서 측정된 가스오염 농도가 고농도 가스오염기준 이상인 경우 배가스가 가스상물질 전처리기(200)를 통과한 후 고농도 처리 필터부(210)를 통과하도록 제 3 밸브(V3)를 제어하고, 측정된 가스오염 농도가 고농도 가스오염기준 미만인 경우 저농도 처리 필터부(210)를 통과하도록 제 3 밸브(V3)를 제어한다.
이와 같이 가스오염 농도에 따라 사용하는 필터를 구분함으로써, 불필요하게 높은 성능의 고농도 처리 필터의 수명이 단축되는 문제를 방지할 수 있다.
고농도 처리 필터부(210) 또는 저농도 처리 필터부(220)를 통과하며 입자상물질과 가스상물질이 모두 처리된 배가스는 팬(300)을 통과하여 배출된다. 팬(300)을 통해 배출된 공기는 외기가 될 수도 있지만, 인쇄영역(M)에 재공급되어 인쇄장치(10)에 유입되게 함으로써, 인쇄장치(10)의 공기정화모듈(11)의 수명 연장 및 인쇄장치(10)의 동작 내구성에 도움을 줄 수 있다.
한편, 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 이상이고 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 미만인 경우, 즉 입자상물질만 확인된 경우, 팬(300)을 동작시키고, 인쇄장치(10)에서 배출된 배가스가 입자상물질 처리기(100)를 통과한 후 제 1 바이패스 유로(L1)를 통과하도록 제 1 밸브(V1) 및 제 2 밸브(V2)를 제어한다(S520). 제 1 바이패스 유로(L1)를 통해 팬(300)에 이르게 되며 이후는 전술한 바와 같다.
제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 미만이고 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 이상인 경우, 즉 가스상물질만 확인된 경우, 팬(300)을 동작시키고, 인쇄장치(10)에서 배출된 배가스가 제 2 바이패스 유로(L2)를 통과한 후 가스상물질 전처리기(200)를 통과하도록 제 1 밸브(V1) 및 제 2 밸브(V2)를 제어한다(S530). 이후, 전술한 방법으로 제 3 밸브(V3)가 제어되어 고농도 처리 필터부(210) 또는 저농도 처리 필터부(220)를 통과하여 팬(300)에 이르게 된다.
제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 미만이고 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 미만인 경우, 즉 입자상물질과 가스상물질 모두 확인되지 않는다면, 팬(300)을 중지시키는 것이 바람직하다(S540). 경우에 따라 팬(300)은 이 경우에도 비교적 낮은 RPM으로만 작동하여 인쇄장치(10)의 배기구(12)를 통해 배출된 배가스가 흡기구(20)로 유입되는 것을 도울 수도 있다.
어느 경우이든, 팬(300)이 동작하는 단계(S510, S520, S530)에서는, 제 1 센서(S1)에서 측정된 입자오염 농도 또는 가스오염 농도에 비례하여 팬(300)의 RPM이 제어되는 것이 바람직하다. 즉, 높은 오염 농도에서는 보다 높은 RPM으로 팬(300)이 동작하는 것이 바람직하다.
한편, 지류적재영역(P)에 위치하는 제 3 센서(S3)를 더 이용하여 시스템이 제어될 수 있다.
인쇄장치(10)가 동작 중이 아닌 경우이나, 제 3 센서(S3)에서 측정된 입자오염 농도가 입자오염기준 이상이라면(S210), 팬(300)이 동작한다. 즉, 제 3 센서(S3)에서 측정된 입자오염 농도가 입자오염기준 이상인 경우, 팬(300)을 동작시키고, 인쇄장치(10)에서 배출된 배가스가 입자상물질 처리기(100)를 통과한 후 제 1 바이패스 유로(L1)를 통과하도록 제 1 밸브(V1) 및 상기 제 2 밸브(V2)를 제어한다(S520).
본 발명의 일 실시예에서, 인쇄장치(10)가 동작 중이지만 입자상물질 및 가스상물질 모두 기준보다 낮은 경우에도 제 3 센서(S3)에서 측정된 입자오염 농도를 확인한 후, 입자오염기준보다 높다면 S520 단계가 수행될 수도 있다.
(부호의 설명)
10: 인쇄장치
11: 공기정화모듈(Air Purifying Module; APM)
12: 배기구
20: 흡기구
30: 팬
31: 여과망
100: 입자상물질 처리기
200: 가스상물질 처리기
210: 고농도 처리 필터부
220: 저농도 처리 필터부
300: 팬
S1: 제 1 센서
S2: 제 2 센서
S3: 제 3 센서
V1: 제 1 밸브
V2: 제 2 밸브
V3: 제 3 밸브
L1: 제 1 바이패스 유로
L2: 제 2 바이패스 유로
M: 인쇄영역
P: 지류적재영역

Claims (10)

  1. 공기정화모듈(11)과 이에 연결된 배기구(12)를 포함하는 인쇄장치(10)를 다수 포함하는 인쇄소에서 발생하는 대기오염을 저감하는 시스템으로서,
    인쇄소에는 상기 다수의 인쇄장치(10)가 위치한 인쇄영역(M)이 위치하고,
    상기 배기구(12)에 위치한 흡기구(20)와 연통되되 제 1 밸브(V1)를 통해 연결된 입자상물질 처리기(100);
    상기 입자상물질 처리기(100)와 연통되되 제 2 밸브(V2)를 통해 연결된 가스상물질 전처리기(200);
    상기 가스상물질 전처리기(200)와 연통되되 제 3 밸브(V3)를 통해 분기되도록 연결된 고농도 처리 필터부(210) 및 저농도 처리 필터부(220);
    상기 고농도 처리 필터부(210)와 상기 저농도 처리 필터부(220)가 합류하여 연결된 팬(300);
    상기 가스상물질 전처리기(200), 상기 고농도 처리 필터부(210) 및 상기 저농도 처리 필터부(220)를 바이패스하도록 상기 제 2 밸브(V2)와 상기 팬(300)을 연결하는 제 1 바이패스 유로(L1);
    상기 입자상물질 처리기(100)를 바이패스하도록 상기 제 1 밸브(V1)와 상기 가스상물질 전처리기(200)를 연결하는 제 2 바이패스 유로(L2) ;
    상기 배기구(12)마다 위치하여 입자오염 농도 및 가스오염 농도를 측정하여 이에 따라 상기 밸브들(V1, V2, V3)을 제어하는 제 1 센서(S1); 및
    상기 인쇄영역(M)에 내로서 상기 다수의 인쇄장치(10)의 외측에 위치하여 입자오염 농도 및 가스오염 농도를 측정하여 이에 따라 상기 밸브들(V1, V2, V3)을 더 제어하는 제 2 센서(S2)를 포함하는,
    시스템.
  2. 제 1 항에 따른 시스템을 운영하는 방법으로서,
    (a) 상기 인쇄장치(10)가 동작 중인지 여부를 확인하는 단계;
    (b) 상기 인쇄장치(10)가 동작 중인 경우, 상기 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 이상인지 여부 및 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 이상인지 여부를 확인하는 단계;
    (c1) 상기 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 이상이고 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 이상인 경우, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 입자상물질 처리기(100) 및 상기 가스상물질 전처리기(200)를 통과하도록 상기 제 1 밸브(V1) 및 상기 제 2 밸브(V2)를 제어하는 단계;
    (c2) 상기 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 이상이고 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 미만인 경우, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 입자상물질 처리기(100)를 통과한 후 상기 제 1 바이패스 유로(L1)를 통과하도록 상기 제 1 밸브(V1) 및 상기 제 2 밸브(V2)를 제어하는 단계;
    (c3) 상기 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 미만이고 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 이상인 경우, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 제 2 바이패스 유로(L2)를 통과한 후 상기 가스상물질 전처리기(200)를 통과하도록 상기 제 1 밸브(V1) 및 상기 제 2 밸브(V2)를 제어하는 단계; 및
    (c4) 상기 제 1 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 미만이고 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 가스오염기준 미만인 경우, 상기 팬(300)을 중지시키는 단계를 포함하는,
    방법.
  3. 제 2 항에 있어서,
    상기 (c4) 단계 이후,
    상기 가스오염기준은 저농도 가스오염기준이고,
    (d1) 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 상기 저농도 가스오염기준보다 높은 고농도 가스오염기준 이상인 경우, 상기 인쇄장치(10)에서 배출된 배가스가 상기 가스상물질 전처리기(200)를 통과한 후 상기 고농도 처리 필터부(210)를 통과하도록 상기 제 3 밸브(V3)를 제어하는 단계; 및
    (d2) 상기 제 1 센서(S1)에서 측정된 가스오염 농도가 상기 고농도 가스오염기준 미만인 경우, 상기 인쇄장치(10)에서 배출된 배가스가 상기 가스상물질 전처리기(200)를 통과한 후 상기 저농도 처리 필터부(210)를 통과하도록 상기 제 3 밸브(V3)를 제어하는 단계를 더 포함하는,
    방법.
  4. 제 2 항에 있어서,
    상기 (a) 단계 이전에,
    (01) 상기 제 2 센서(S2)에서 측정한 입자오염 농도가 입자오염기준 이상이거나 또는 상기 제 2 센서(S2)에서 측정한 가스오염 농도가 가스오염기준 이상인 경우, 경고부(400)가 상기 인쇄장치(10)의 공기정화모듈(11) 교체를 알림하고, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 입자상물질 처리기(100), 상기 가스상물질 전처리기(200) 및 상기 고농도 처리 필터부(210)를 통과하도록 상기 제 1 밸브(V1), 상기 제 2 밸브(V2) 및 상기 제 3 밸브(V3)를 제어하는 단계를 포함하고,
    상기 (01) 단계 이후, 제어부(500)가 상기 인쇄장치(10)의 공기정화모듈(11) 교체 신호를 확인한 후 상기 (a) 단계가 진행되는,
    방법.
  5. 제 2 항에 있어서,
    상기 (a) 단계 이전에,
    (11) 제어부(500)가 상기 제 2 센서(S2)에서 측정한 입자오염 농도 및 가스오염 농도를 누적하여 입자오염 총량 및 가스오염 총량을 연산하는 단계; 및
    (12) 상기 제어부(500)가 연산한 입자오염 총량이 기 설정된 입자오염총량기준 이상이거나 또는 상기 제어부(500)가 연산한 가스오염 총량이 가스오염총량기준 이상인 경우, 경고부(400)가 상기 인쇄장치(10)의 공기정화모듈(11) 교체를 알림하고, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 입자상물질 처리기(100), 상기 가스상물질 전처리기(200) 및 상기 고농도 처리 필터부(210)를 통과하도록 상기 제 1 밸브(V1), 상기 제 2 밸브(V2) 및 상기 제 3 밸브(V3)를 제어하는 단계를 포함하고,
    상기 (12) 단계 이후, 상기 제어부(500)가 상기 인쇄장치(10)의 공기정화모듈(11) 교체 신호를 확인한 후 상기 (a) 단계가 진행되는,
    방법.
  6. 제 5 항에 있어서,
    상기 (11) 단계는,
    상기 제어부(500)가 상기 인쇄장치(10)의 개수를 확인하는 단계;
    상기 제어부(500)가 상기 인쇄장치(10)의 배기구(11)에서 배출되는 단위시간당 배가스량을 확인하는 단계; 및
    상기 제어부(500)가, 단위시간과, 누적된 측정시간과, 상기 인쇄장치(10)의 개수와, 상기 인쇄장치(10)의 단위시간당 배가스량과, 상기 누적된 측정시간 동안 상기 제 2 센서(S2)에서 측정한 입자오염 농도 및 가스오염 농도의 다수의 값을 이용하여, 입자오염 총량 및 가스오염 총량을 연산하는 단계를 포함하는,
    방법.
  7. 제 2 항에 있어서,
    상기 (c4) 단계 이후,
    상기 팬(300)을 통해 배출된 공기가 상기 인쇄영역(M)에 재공급되고, 상기 재공급된 공기는 상기 인쇄장치(10)에 유입되는,
    방법.
  8. 제 2 항에 있어서,
    인쇄소에는 지류적재영역(P)이 위치하고, 상기 지류적재영역(P)에는 입자오염 농도를 측정하는 제 3 센서(S3)가 위치하고, 상기 지류적재영역(P)에 지류흡기구가 위치하고, 상기 지류흡기구는 상기 입자상물질 처리기(10)에 연결되고,
    상기 (a) 단계 이후,
    (e1) 상기 인쇄장치(10)가 동작 중이 아닌 경우, 상기 제 3 센서(S3)에서 측정된 입자오염 농도가 입자오염기준 이상인지 여부를 확인하는 단계;
    (e2) 상기 제 3 센서(S3)에서 측정된 입자오염 농도가 입자오염기준 이상인 경우, 상기 팬(300)을 동작시키고, 상기 인쇄장치(10)에서 배출된 배가스가 상기 입자상물질 처리기(100)를 통과한 후 상기 제 1 바이패스 유로(L1)를 통과하도록 상기 제 1 밸브(V1) 및 상기 제 2 밸브(V2)를 제어하는 단계; 및
    (e3) 상기 제 3 센서(S1)에서 측정된 입자오염 농도가 입자오염기준 미만인경우, 상기 팬(300)을 중지시키는 단계를 더 포함하는,
    방법.
  9. 제 2 항에 있어서,
    상기 제 1 센서(S1)에서 측정된 입자오염 농도 또는 상기 제 1 센서(S1)에서 측정된 가스오염 농도에 비례하여 상기 팬(300)의 RPM을 제어하는,
    방법.
  10. 제 2 항에 있어서,
    상기 제 1 센서(S1)에서 측정된 입자오염 농도 및 상기 제 1 센서(S1)에서 측정된 가스오염 농도를 이용하여 경고부(400)가 입자오염 농도 및 가스오염 농도를 출력하는,
    방법.
PCT/KR2022/008365 2021-12-23 2022-06-14 인쇄소 발생 대기오염 저감 시스템 및 그 운영 방법 WO2023120838A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210186247A KR102672978B1 (ko) 2021-12-23 2021-12-23 인쇄소 발생 대기오염 저감 시스템 및 그 운영 방법
KR10-2021-0186247 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120838A1 true WO2023120838A1 (ko) 2023-06-29

Family

ID=86903174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008365 WO2023120838A1 (ko) 2021-12-23 2022-06-14 인쇄소 발생 대기오염 저감 시스템 및 그 운영 방법

Country Status (2)

Country Link
KR (1) KR102672978B1 (ko)
WO (1) WO2023120838A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204433A (ja) * 1994-01-25 1995-08-08 Babcock Hitachi Kk 排ガスの浄化処理方法およびその装置
JPH1190177A (ja) * 1997-09-16 1999-04-06 Shimakawa Seisakusho:Kk バッファを備えた有害ガスの浄化装置及び浄化方法
KR20030024670A (ko) * 2002-11-19 2003-03-26 실버브룩 리서치 피티와이 리미티드 프린터용 공기공급구조
KR20160102676A (ko) * 2015-02-23 2016-08-31 주식회사 애니텍 공기정화장치
KR101731854B1 (ko) * 2016-02-02 2017-05-02 한국표준과학연구원 대기 중 가스상 물질 및 입자상 오염물질의 분리 포집 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3464878B2 (ja) * 1996-10-18 2003-11-10 京浜ドック株式会社 空気清浄装置
SG11201801075SA (en) 2016-01-22 2018-03-28 Sharp Kk Air cleaner
KR102182147B1 (ko) 2018-06-07 2020-11-23 주식회사 애니텍 지하철 승강장용 공기정화장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204433A (ja) * 1994-01-25 1995-08-08 Babcock Hitachi Kk 排ガスの浄化処理方法およびその装置
JPH1190177A (ja) * 1997-09-16 1999-04-06 Shimakawa Seisakusho:Kk バッファを備えた有害ガスの浄化装置及び浄化方法
KR20030024670A (ko) * 2002-11-19 2003-03-26 실버브룩 리서치 피티와이 리미티드 프린터용 공기공급구조
KR20160102676A (ko) * 2015-02-23 2016-08-31 주식회사 애니텍 공기정화장치
KR101731854B1 (ko) * 2016-02-02 2017-05-02 한국표준과학연구원 대기 중 가스상 물질 및 입자상 오염물질의 분리 포집 장치

Also Published As

Publication number Publication date
KR102672978B1 (ko) 2024-06-28
KR20230096606A (ko) 2023-06-30

Similar Documents

Publication Publication Date Title
KR100503121B1 (ko) 처리장치및처리방법
WO2010062032A4 (ko) 밸러스트수 처리 시스템
WO2019189964A1 (ko) 공기정화시스템
WO2013024935A1 (en) Gas type fire-fighting apparatus having double detective function for ships
WO2023120838A1 (ko) 인쇄소 발생 대기오염 저감 시스템 및 그 운영 방법
WO2019190222A1 (ko) 공중부양체를 이용한 대기정화장치 및 대기정화처리 방법
WO2022098061A1 (ko) 바이오에어로졸 제거 성능 평가 시스템 및 방법
WO2020045720A1 (ko) 인공신경망을 이용한 멀티모달 센서 이상 감지 장치 및 방법
KR20090069360A (ko) 시료의 교체작업 없이 한 개의 라인을 통해 복수 개의시료를 가스 분석장치로 공급하는 장치
WO2020036387A1 (ko) 건식 가스 정화 장치
WO2021020819A1 (ko) 저농도 대기 오염 물질 농축 키트
CN112763655A (zh) 一种自动质控方法、系统及装置
WO2021117946A1 (ko) 공기청정기
KR20150041838A (ko) 에어로더
CN116727401A (zh) 一种通风柜自适应控制系统及方法
WO2022092722A1 (ko) 흡착 방식의 유해가스 처리시스템
WO2018182154A1 (ko) 소각로의 배기가스 처리시스템
WO2021225239A1 (ko) 국소배기 기능을 갖는 유해가스 정화장치
WO2010013920A2 (ko) 호흡용 공기 공급 시스템
WO2022131516A1 (ko) 공기조화기
JP2008275383A (ja) 混合成分系の濃度測定方法及び装置、及びその装置を用いた省エネルギー或いは排気浄化設備の運転制御システム。
KR102344401B1 (ko) 집진기 오염농도 측정장치 및 이를 이용한 집진기 오염농도 측정방법
JP2005127907A (ja) ガス検知システム及び複合ガス検知システム
WO2015167294A1 (ko) 다단 탈질/질산화 처리조를 이용한 폐수처리장치의 제어시스템
WO2019022321A1 (ko) 이산화탄소 분리막 모듈 성능 평가 시스템 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911478

Country of ref document: EP

Kind code of ref document: A1