WO2023120484A1 - 導電性組成物およびそれを用いた導電体、積層構造体ならびに電子部品 - Google Patents

導電性組成物およびそれを用いた導電体、積層構造体ならびに電子部品 Download PDF

Info

Publication number
WO2023120484A1
WO2023120484A1 PCT/JP2022/046700 JP2022046700W WO2023120484A1 WO 2023120484 A1 WO2023120484 A1 WO 2023120484A1 JP 2022046700 W JP2022046700 W JP 2022046700W WO 2023120484 A1 WO2023120484 A1 WO 2023120484A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive composition
conductor
conductive
conductive particles
particles
Prior art date
Application number
PCT/JP2022/046700
Other languages
English (en)
French (fr)
Inventor
征矢 山藤
直行 塩澤
京 清野
和也 佐藤
健太郎 大渕
裕之 東海
咲月 小澤
真梨子 嶋宮
康昭 荒井
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Publication of WO2023120484A1 publication Critical patent/WO2023120484A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a conductive composition, a conductor obtained by solidifying the conductive composition, a laminate structure comprising a layer of the conductor, and an electronic component comprising the conductor or laminate structure.
  • a paste-like conductive composition in which metal powder is mixed with an organic binder has been used as a material for forming patterned conductors such as electrodes of printed wiring boards.
  • a conductive composition can be applied in a pattern and then solidified to form a desired conductor, and the conductor thus formed generally has high hardness. Therefore, it has been difficult to say that such a conductive composition can exhibit sufficient functions in wiring boards such as flexible printed wiring boards that require flexibility. Therefore, a conductive composition capable of forming a conductor that is suitable for a wiring board such as a flexible printed wiring board that requires flexibility and that can stably exhibit sufficient functions even when it is bent together with the wiring board. things are sought.
  • the pattern and degree of change in the shape of the wearable device depends on the shape and size of the clothing, the physique and movement pattern (tendency) of the wearer of the clothing, etc. is different.
  • the pattern and degree of change in the shape of the clothing differ greatly depending on the subject. Patterns and degrees vary greatly from subject to subject as well. In such a case, the wearable device may not be able to sufficiently follow the change in the shape of the clothing due to insufficient expansion and contraction of the wearable device, and as a result, the wearable device may not operate stably.
  • the conductive composition tends to deteriorate over time after preparation, when storing for a long period of time, it is common to suppress the deterioration by sealing and storing in an appropriate storage container. .
  • the deterioration of the conductive composition progresses over time. Therefore, if the entire amount of the conductive composition sealed in the storage container is not used at once after opening, the remaining conductive
  • the adhesive composition deteriorates during reuse and cannot be reused. Specifically, the conductivity and stretchability of the coating film of the conductive composition are deteriorated, and as a result, the device may not operate stably.
  • the remaining conductive composition must be discarded, and it is necessary to prepare a new conductive composition, so there is a problem that the efficiency of use of the conductive composition decreases and the cost increases. . Furthermore, the disposal of the conductive composition without using it all up can increase the environmental load. Therefore, from the viewpoint of improving the efficiency of use (reducing costs and suppressing environmental load), there is a demand for a conductive composition that suppresses deterioration over time after preparation.
  • the present invention provides a conductive composition for forming a conductor having stably high conductivity in the same way (that is, regardless of the degree of expansion and contraction) even in the case of large expansion and contraction as well as in the case of slight expansion and contraction. exists as a technical problem.
  • the present invention provides a conductive composition capable of forming a conductor having high conductivity stably regardless of the degree of expansion and contraction, which is required for wearable devices, and suppressing deterioration over time after preparation. , a conductor obtained by solidifying a conductive composition, a laminate structure comprising a layer of the conductor, and an electronic component comprising the conductor or the laminate structure.
  • Another object of the present invention is to provide a method for producing a conductor, a laminated structure comprising a layer of the conductor, or an electronic component comprising the conductor or laminated structure, using the conductive composition. That is.
  • the present inventors have found that in a conductive composition containing a binder resin, conductive particles and a solvent, the proton spin-spin relaxation time measured by the CPMG method of pulse NMR is 10 to 500 milliseconds.
  • the inventors have found that the above problems can be solved.
  • the present invention is based on such findings. That is, the gist of the present invention is as follows.
  • a conductive composition containing a binder resin, conductive particles, and a solvent A conductive composition characterized by having a proton spin-spin relaxation time of 10 to 500 milliseconds as measured by CPMG method of pulsed NMR.
  • a dispersion of the conductive particles in the solvent has an Rsp value measured by pulse NMR of 0.02 to 1.0.
  • a conductive composition capable of forming a conductor having both high conductivity and stretchability required for wearable devices, a conductor obtained by solidifying the conductive composition, and the conductor Laminated structures comprising layers and electronic components comprising said conductors or laminated structures can be provided. Furthermore, according to the present invention, it is possible to provide a method for producing a conductor, a laminated structure comprising a layer of the conductor, or an electronic component comprising the conductor or laminated structure, using the conductive composition. can.
  • a conductive composition whose deterioration over time after preparation is suppressed.
  • Such a conductive composition exhibits high conductivity and stretchability even after a long period of time after preparation, for example, after opening a storage container in which the conductive composition is sealed. It is reusable as a conductive composition capable of forming a combined conductor. Therefore, the use efficiency of the conductive composition can be improved, and as a result, the cost can be reduced and the environmental load can be suppressed.
  • the conductive composition of the present invention contains a binder resin, conductive particles and a solvent, and the proton spin-spin relaxation time measured by the CPMG method (CarrPurcell Meiboom-Gill method) of pulse NMR is 10 to 500 milliseconds, preferably is a conductive composition adjusted to 100-300 milliseconds. According to such a conductive composition of the present invention, a conductor having both high conductivity and stretchability required for wearable devices can be formed. Although the reason why the conductive composition of the present invention can form a conductor having both high conductivity and stretchability is not clear, it can be inferred as follows.
  • spin-spin relaxation time T 2 proton spin-spin relaxation time measured by the CPMG method of pulsed NMR is an index of the dispersed state of particles. It is considered.
  • the components of the conductive composition, particularly the conductive particles are in an appropriate dispersed state in the conductive composition. is considered to form More specifically, it is thought that a dispersed state of the conductive particles in the conductive composition is formed such that the conductive particles are appropriately distributed in order for the conductor to have both high conductivity and stretchability.
  • the conductor formed by solidifying the conductive composition of the present invention can have both high conductivity and stretchability.
  • the CPMG method using pulse NMR for measuring the proton spin-spin relaxation time T2 of the conductive composition a known method can be used, for example, using Spin Track manufactured by Resonance Systems.
  • the spin-spin relaxation time T2 can be measured.
  • the conductive composition is sufficiently stirred using a spatula, stirred for 1 minute using a Mixer Mixer (ARE-310, manufactured by Thinky Co., Ltd.), and Spin Track manufactured by Resonance System.
  • the decay curve Y (t) is obtained by the CPMG method under the measurement conditions of a measurement temperature of 30 ° C., a frequency of 20 MHz, a 90 ° pulse, a pulse width of 2.5 ⁇ s, and an integration number of 16 times.
  • the properties described above can be used to form conductors for wearable devices such as clothing-mounted devices, external devices, body surface devices, electronic skin devices, and internal devices. It can be used preferably.
  • wearable devices such as clothing-mounted devices, external devices, body surface devices, electronic skin devices, and internal devices. It can be used preferably.
  • Each component contained in the conductive composition of the present invention will be described in detail below.
  • the electrically conductive composition of the present invention contains a binder resin.
  • a binder resin any material having rubber elasticity at room temperature can be used without particular limitation.
  • thermoplastic resins, elastomers, and the like can be preferably used.
  • Binder resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thermoplastic resin any of known and commonly used ones can be used.
  • Polyether resins, acrylic resins, polystyrene resins, butadiene resins, acrylonitrile-butadiene copolymers, acrylonitrile-butadiene-styrene copolymers, styrene-butadiene copolymers, acrylic acid copolymers, and the like can be mentioned.
  • Thermoplastic resins may be saturated or unsaturated. Among these thermoplastic resins, saturated polyester resins and unsaturated polyester resins are preferably used from the viewpoint of adhesion to the substrate.
  • elastomer for example, rubber, thermoplastic elastomer, functional group-containing elastomer, block copolymer, etc. can be suitably used.
  • Any known and commonly used rubber can be used, for example, diene rubber, non-diene rubber, and the like.
  • thermoplastic elastomer any known and commonly used thermoplastic elastomer can be used, and examples include styrene elastomers, olefin elastomers, urethane elastomers, polyester elastomers, polyamide elastomers, acrylic elastomers, and silicone elastomers. be done.
  • any known and commonly used one can be used, but from the viewpoint of stretchability, urethane-based, olefin-based, etc. are preferable, and from the viewpoint of solvent resistance, (meth)acryloyl groups and acid anhydrides are preferable. Those having a functional group such as a physical group, a carboxyl group, an epoxy group, etc. are preferable.
  • block copolymer Any known and commonly used block copolymer can be used, but a block copolymer composed of a hard segment and a soft segment is preferably used.
  • block copolymers have low crystallinity and weak intermolecular forces, so the glass transition temperature (Tg) is low compared to other rubbers, and is high even when mixed with conductive particles. Flexible and stretchable. Block copolymers are therefore suitable for forming electrical conductors for wearable devices.
  • the block copolymer means one having rubber elasticity at room temperature (25°C).
  • the block copolymer a known and commonly used one can be used as long as it satisfies the above conditions.
  • block copolymers of hard segments and soft segments are more preferred.
  • the term "hard segment” refers to a segment having a Tg of 30°C or higher.
  • a soft segment means a segment having a Tg of 0° C. or lower.
  • Tg be the value measured by the starting point method based on the prescription
  • the Tg observed at 40 ° C. or higher was measured using a differential scanning calorimeter (DSC-6100, manufactured by Hitachi High-Tech Science Co., Ltd.) under a nitrogen gas atmosphere. It is obtained from a DSC curve in which a 10 mg sample is stabilized by heating multiple times from 25° C. to 200° C. at a heating rate of 10° C. per minute. Note that ⁇ -alumina is used as a reference.
  • the content ratio of the hard segment and the soft segment in the block copolymer is not particularly limited as long as the curing of the present invention is achieved, but preferably 10:90 to 70:30, More preferably, it is 10:90 to 40:60.
  • the content ratio of the hard segment and the soft segment is within the range described above, it is preferable because disconnection when the conductor obtained by solidifying the conductive composition is elongated is suppressed.
  • block copolymer when the hard segment is X block, X' block, and the soft segment is Y block, Y' block, X block-Y block type diblock copolymer, X block-Y block -X block type, X block-Y block-X' block type, Y block-X block-Y block type, Y block-X block-Y' block type triblock copolymers, etc., but other An X block-Y block-X block type triblock copolymer is preferable from the viewpoint of compatibility with components and excellent flexibility.
  • the unit structure constituting the hard segment in the block copolymer is not particularly limited as long as the effects of the present invention are exhibited, and examples thereof include methyl (meth)acrylate units and styrene units.
  • the unit structure constituting the soft segment is not particularly limited as long as the effects of the present invention are exhibited, and examples thereof include n-butyl acrylate units and butadiene units.
  • As the block copolymer for example, a triblock copolymer of polymethyl(meth)acrylate/polyn-butyl(meth)acrylate/polymethyl(meth)acrylate can be used.
  • (meth)acrylate is a generic term for acrylate and methacrylate, and the same applies to other similar expressions.
  • a commercially available block copolymer can be used.
  • Commercially available block copolymers include, for example, acrylic triblock copolymers manufactured by Arkema Co., Ltd. manufactured using living polymerization. More specifically, SBM type represented by polystyrene-polybutadiene-polymethyl methacrylate, MAM type represented by polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate, and carboxylic acid modification treatment or hydrophilic group modification Treated MAM N-type or MAM A-type acrylic triblock copolymers can be used.
  • SBM types include, for example, E41, E40, E21 and E20.
  • MAM types include, for example, M51, M52, M53 and M22.
  • MAM N types include, for example, 52N and 22N.
  • MAM A type examples include SM4032XM10.
  • Clarity registered trademark
  • Clarity® is a block copolymer derived from methyl methacrylate and butyl acrylate.
  • block copolymer in addition to the commercially available products mentioned above, appropriately prepared synthetic products can also be used.
  • Synthetic products of block copolymers containing (meth)acrylate polymer blocks include, for example, block copolymers synthesized by the method described in JP-A-2007-516326 or JP-A-2005-515281. be done.
  • the weight average molecular weight of the block copolymer is preferably 20,000 to 400,000, more preferably 50,000 to 300,000.
  • the weight average molecular weight is 20,000 or more, toughness and flexibility can be imparted to the conductor formed by solidifying the conductive composition, and the conductive composition is molded into a film and dried. Excellent tackiness can be obtained when the coating is applied to a substrate and dried.
  • the weight average molecular weight is 400,000 or less, the conductive composition has good viscosity, and higher printability and workability can be achieved.
  • the weight average molecular weight is 50,000 or more, an excellent effect can be obtained in terms of relaxation against external impact.
  • the tensile elongation at break of the block copolymer is preferably 100 to 600%, as measured by the international standard ISO 37 of the International Organization for Standardization. When the tensile elongation at break is 100 to 600%, the conductor formed by solidifying the conductive composition is excellent in stretchability and electrical resistance stability.
  • the tensile elongation at break of the block copolymer is more preferably 300-600%.
  • rubber or functional group-containing elastomers When rubber or functional group-containing elastomers are used as elastomers, they are usually blended with sulfur vulcanizing agents or non-sulfur vulcanizing agents. However, since metal particles such as silver powder may be oxidized or sulfurized by a sulfur-based vulcanizing agent and corroded, when metal particles are used as conductive particles, the elastomer should not contain a sulfur-based vulcanizing agent. is preferred, and it is preferred to blend a non-sulfur vulcanizing agent as needed.
  • the conductive composition of the present invention may contain a slight amount of sulfur compounds within the range that does not impair the effects of the present invention.
  • the elastomer may contain known additives such as softeners and plasticizers.
  • Softening agents include, for example, mineral oil-based softening agents, vegetable oil-based softening agents, and the like.
  • mineral oil-based softeners include various oils such as paraffinic process oils, naphthenic process oils, and aromatic process oils.
  • Vegetable oil softeners include, for example, castor oil, broccoli oil, linseed oil, rapeseed oil, soybean oil, palm oil, coconut oil, peanut oil, pine oil, and tall oil. These softeners may be used singly or in combination of two or more. Desired rubber elasticity and extensibility can be adjusted by the amount of the softening agent added.
  • the content of the elastomer in the conductive composition is preferably 5 to 40% by mass, more preferably 14 to 28% by mass in terms of solid content based on the total solid content contained in the conductive composition. Further, from the viewpoint of stretchability of the formed conductor, the content of the block copolymer in the entire elastomer is preferably 85 to 100% by mass. When the content of the block copolymer is within the above range, the stretchability of the conductor formed by solidifying the conductive composition is improved.
  • the conductive composition of the present invention may contain other organic binders such as thermoplastic resins other than the elastomer within a range that does not impair the effects of the present invention.
  • the solid content refers to the conductive composition excluding the solvent.
  • the electrically conductive composition of the present invention comprises electrically conductive particles.
  • the conductive particles contained in the conductive composition conventionally known materials used in conductive compositions can be used, such as graphite, acetylene black, ketjen black, channel black, furnace black, and lamp black. , carbon particles such as thermal black, metal particles such as copper powder, nickel powder, silver powder, metal carbides such as WC, B 4 C, ZrC, NbC, MoC, TiC, TaC, metal nitrides such as TiN, ZrN, TaN , WSi 2 , MoSi 2 and other metal silicides. These conductive particles may be used singly or in combination of two or more.
  • the conductive particles metal particles, more preferably silver powder, are preferably used since a conductive composition with low electrical resistance can be obtained.
  • the electrically conductive particles are preferably in a chained (aggregated) state (ie, chained electrically conductive particles). Therefore, as the conductive particles, it is particularly preferable to use silver powder in a chained (aggregated) state, ie, chain-like silver powder.
  • the Rsp value measured by pulse NMR of a dispersion liquid in which conductive particles are dispersed in a solvent described later, for example, Spin Track manufactured by Resonance Systems is preferably 0.02 to 1.0. , more preferably 0.03 to 0.5, more preferably 0.05 to 0.2.
  • This Rsp value is an index of the compatibility (affinity) between the conductive particles and the solvent in the conductive composition, and the larger the Rsp value, the higher the compatibility between the conductive particles and the solvent (that is, the conductive The smaller the Rsp value, the lower the compatibility between the conductive particles and the solvent (that is, the lower the dispersibility of the conductive particles in the conductive composition). show.
  • Formula (2) [In the formula, Rav is the reciprocal of the spin-spin relaxation time when measuring a dispersion in which 1% by mass of conductive particles are dispersed in the same organic solvent as the conductive composition, and Rb is the same organic solvent as the conductive composition. The reciprocal spin-spin relaxation time is shown when the solvent alone is measured. ] can be calculated based on
  • the conductive particles preferably have a particle density value of 10 to 40 ⁇ m as measured by a grind gauge.
  • the grain density value of the conductive particles can be measured using a grind gauge (SU2050MHJ, manufactured by Daiichi Sokkan Seisakusho Co., Ltd.). Specifically, the conductive composition was sufficiently stirred using a spatula, and then stirred for 1 minute using a awatori mixer (ARE-310, manufactured by Thinky Co., Ltd.).
  • the phrase "a grain density value measured by a grind gauge of 10 to 40 ⁇ m" means that the conductive particles are such that the grain density value of the conductive particles measured by the method described above is in the range of 10 to 40 ⁇ m. It is meant to be present in the conductive composition.
  • the grain density value of the conductive particles is preferably 15-40 ⁇ m, more preferably 20-40 ⁇ m.
  • the conductive particles preferably have a tap density of 2.0 g/cm 3 or less, more preferably 0.3 to 1.5 g/cm 3 , more preferably 0.3 to 1.5 g/cm 3 when measured with 1000 taps according to ISO 3953. is 0.3 to 1.0 g/cm 3 .
  • the conductive particles have a tap density in such a range, the volume per unit mass of the conductive particles increases, and the conductive particles have many contact points. , it is considered that high conductivity can be obtained. As a result, it is considered that an increase in the resistance value can be sufficiently suppressed regardless of whether the conductor is stretched or contracted strongly or weakly.
  • each particle (primary particle) that constitutes the conductive particles is not particularly limited as long as the effect of the present invention is exhibited. etc., preferably spherical or substantially spherical.
  • the conductive particles one type of particles having the same shape may be used alone, or two or more types of particles having different shapes may be used in combination.
  • the average particle size (average primary particle size) of the conductive particles (primary particles) is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m. Further, when the conductive particles are chain-shaped conductive particles, the average particle size (average secondary particle size) of the chain-shaped conductive particles (secondary particles) is preferably 1 to 100 ⁇ m, more preferably 10 to 50 ⁇ m. be. For example, when the conductive particles are chain-shaped silver powder, the average primary particle diameter of each silver powder particle constituting the chain-shaped silver powder is preferably 1.0 m or less, more preferably 0.1 to 1.0 ⁇ m.
  • the average secondary particle size (D50) of the chain-like silver powder is preferably 10 ⁇ m or more, more preferably 10 to 50 ⁇ m.
  • the average secondary particle size is within such a range, it is believed that the conductive particles in the conductive composition have many contact points with each other, resulting in high conductivity. As a result, it is considered that an increase in the resistance value can be sufficiently suppressed regardless of whether the conductor is stretched or contracted strongly or weakly.
  • the average primary particle size of the conductive particles was obtained by observing the conductive particles in powder form with a scanning electron microscope at a magnification of 10,000 times, randomly extracting 10 primary particles, and measuring the particle size. It can be measured as an average value of those particle sizes at the time of measurement.
  • the average secondary particle size (D50) of conductive particles can be measured according to the following procedure. First, the conductive composition is diluted with 3000% by mass of propylene glycol monomethyl ether acetate to obtain a solution. The resulting solution was measured using a laser diffraction scattering particle size distribution analyzer (TM3000, manufactured by Microtrac Bell) with the refractive index of the solvent set to 1.40 in the measurement range of 0.020 ⁇ m to 1000.00 ⁇ m. The particle size distribution is measured in the reflection mode, and the cumulative 50% particle size is obtained from the particle size distribution, which is taken as the average secondary particle size (D50) particle size of the conductive particles.
  • TM3000 laser diffraction scattering particle size distribution analyzer
  • the apparent porosity of the chain-shaped conductive particles is preferably 50 to 95%, more preferably 60 to 90%.
  • the apparent porosity of the chain-like conductive particles is an index representing the state of the aggregation structure (secondary particles) in which the primary particles of the conductive particles are connected to form appropriate voids.
  • the apparent porosity is preferably 50 to 95%, more preferably 60 to 95%.
  • the DBP oil absorption of the conductive particles measured according to JIS K 6217-4:2017 is preferably 30-300 ml/100 g, more preferably 50-200 ml/100 g.
  • the DBP oil absorption of the chain-shaped silver powder measured according to JIS K 6217-4:2017 is preferably 50 to 150 ml/100 g.
  • the content of the conductive particles in the conductive composition is 60 to 95 mass%, preferably 65 to 85 mass%, more preferably 60 to 95 mass% in terms of solid content, based on the total solid content contained in the conductive composition. 70 to 80% by mass.
  • the conductor formed by solidifying the conductive composition has a low initial electrical resistance value before stretching, and also during stretching A conductor having a stably low electrical resistance value can be obtained.
  • the conductive composition of the present invention contains a solvent.
  • a solvent an organic solvent is preferably used from the viewpoint of preparation of the conductive composition, viscosity adjustment for applying the conductive composition to a substrate or the like.
  • Examples of types of organic solvents include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, and petroleum solvents. More specifically, ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl Ether, glycol ethers such as dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether; ethyl acetate, butyl acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, propylene glycol methyl ether acetate ,
  • the boiling point of the organic solvent is not particularly limited, it is preferably 150°C or higher, more preferably 200°C or higher. When an organic solvent having a boiling point within such a range is used, it is possible to prevent deterioration of continuous printability and workability of the conductive composition due to volatilization of the organic solvent in the device manufacturing process.
  • the content of the solvent in the conductive composition is preferably 1 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 15 to 30% by mass, relative to the total mass of the conductive composition. .
  • the conductive composition of the present invention may contain a fatty acid in addition to each component described above. It is believed that the fatty acid contained in the conductive composition promotes the dissociation of the aggregated conductive particles, and further stably maintains the dispersed state of the conductive particles.
  • the conductive particles have a T2 within the range described above, the dissociation and dispersion of the conductive particles by the fatty acid is suitable for forming a conductor having both high conductivity and stretchability. It is considered that the rate will be maintained stably.
  • the electrically conductive composition contains a fatty acid, the dispersed state of the electrically conductive particles can be stably maintained, so that it is possible to suppress deterioration of the performance of the electrically conductive composition over time. be.
  • any of linear fatty acids, branched fatty acids, and cyclic fatty acids can be used, and both saturated fatty acids and unsaturated fatty acids can be used.
  • the number of carbon atoms in the fatty acid is not particularly limited as long as the effect of the present invention is exhibited, but is, for example, 10-18.
  • Stearic acid, oleic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, linolenic acid and the like are particularly preferably used from the viewpoint of suppressing adverse effects on wiring layers and electrodes using the conductive composition.
  • One type of fatty acid may be used alone, or two or more types may be used in combination.
  • the content of the fatty acid in the conductive composition is preferably 0.01 to 10% by mass, more preferably 0.05 to 5, in terms of solid content based on the total solid content contained in the conductive composition. % by mass, more preferably 0.1 to 1% by mass.
  • the conductive composition of the present invention may contain silica in addition to the components described above.
  • silica By including silica in the conductive composition, it is believed that the dispersed state of the conductive particles in the conductive composition can be stably maintained. Then, when the conductive particles have T 2 in the range described above, silica stabilizes the dispersion state of the conductive particles to be suitable for forming a conductor having both high conductivity and stretchability. is considered to be maintained at Furthermore, since the electrically conductive composition contains silica, the dispersed state of the electrically conductive particles can be stably maintained, so that it is possible to suppress the deterioration of the performance of the electrically conductive composition over time. be. In particular, it is believed that the dissociation and dispersion state of the conductive particles can be maintained particularly stably by using the above fatty acid and silica in combination.
  • silica for example, fused silica, spherical silica, amorphous silica, crystalline silica, etc. can be used.
  • silica silica subjected to various surface treatments can also be used.
  • One type of silica may be used alone, or two or more types may be used in combination.
  • the surface area of silica is not particularly limited as long as the effect of the present invention is exhibited, but the BET specific surface area is preferably 100 to 1000 m 2 /g, more preferably 100 to 800 m 2 /g, and still more preferably 100 to 500 m 2 /g. It is considered that silica having a BET specific surface area within such a range can stably maintain the dispersed state of silica in the conductive composition. Further, when the silica has a BET specific surface area within the range described above, the silica stabilizes the dispersed state of the conductive particles to be suitable for forming a conductor having both high conductivity and stretchability.
  • the BET specific surface area can be measured by a gas adsorption method according to JIS Z8831.
  • the average particle size (D50) of silica is preferably 1 to 1000 nm, more preferably 5 to 500 nm, still more preferably 10 to 100 nm.
  • the content of silica in the conductive composition is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% in terms of solid matter, based on the total solid content contained in the conductive composition. % by mass, more preferably 0.5 to 3% by mass.
  • the conductive composition of the present invention may contain other components in addition to the components described above.
  • Other components that are commonly used in the production of conductive compositions can be used without particular limitation as long as they do not impair the effects of the present invention.
  • Other components include, for example, thermosetting components, additives, pigments, and the like.
  • Thermosetting components include polyester resins (urethane-modified, epoxy-modified, acrylic-modified, etc.), epoxy resins, urethane resins, phenolic resins, melamine resins, vinyl-based Resins, silicone resins and blocked isocyanates are included.
  • Additives include coupling agents, photopolymerization initiators, and flame retardants.
  • the conductive composition of the present invention can be produced, for example, by kneading an elastomer dissolved in a solvent and conductive particles.
  • the kneading method include a method using a stirring and mixing device such as a roll mill. Specifically, an elastomer solution having a solid content of 50% by mass is prepared by dissolving an elastomer in a solvent, conductive particles are added to the elastomer solution, pre-stirred and mixed with a stirrer, and then kneaded with a three-roll mill. Thus, a conductive composition can be obtained.
  • the conductive composition can be a liquid conductive composition or a paste-like (semi-solid) conductive composition.
  • the viscosity of the conductive composition of the present invention is not particularly limited, but is preferably adjusted to 100 to 5000 dPa ⁇ s, more preferably 200 to 1000 dPa ⁇ s. By adjusting the viscosity of the conductive composition to such a range, it is possible to obtain a conductive composition that is excellent in printability and workability required in the device manufacturing process.
  • the conductive composition as described above can be pattern-coated on a base material and heat-treated to form a conductor.
  • the heat treatment includes drying treatment, heat curing treatment, and the like.
  • the electrically conductive composition described above can be solidified to form an electrical conductor.
  • a conductive layer can be formed by forming a coating film made of a conductive composition, drying, and solidifying it. Solidification of the conductive composition is performed by drying or heat-treating the conductive composition. Heat treatment includes hot air drying, heat curing, and the like. Molding may be performed prior to the heat treatment.
  • the conductor layer can be obtained by applying the above-described conductive composition to a base material in a desired shape and then solidifying the composition.
  • the layer of conductor may be of various shapes depending on the application in which it is used. For example, it can be suitably applied to conductor circuits, wiring, anisotropic conductive connections, and the like.
  • a conductive circuit When manufacturing a conductive circuit, it includes a pattern forming step of printing or applying the conductive composition on a substrate to form a coating film pattern, and a step of solidifying the patterned coating film.
  • a masking method, a method using a resist, or the like can be used to form the coating film pattern.
  • the pattern forming process includes a printing method and a dispensing method.
  • the printing method includes, for example, gravure printing, offset printing, screen printing, etc. Screen printing is preferable when forming a fine circuit.
  • gravure printing and offset printing are suitable for large-area coating methods.
  • the dispensing method is a method of forming a pattern extruded from a needle by controlling the coating amount of the conductive composition, and is suitable for partial pattern formation such as ground wiring and pattern formation on uneven portions.
  • any electrically insulating substrate can be used without particular limitation, such as paper-phenol resin, paper-epoxy resin, glass cloth-epoxy resin, glass-polyimide, glass. All grades (FR-4, etc.) using composite materials such as cloth/nonwoven fabric - epoxy resin, glass cloth/paper - epoxy resin, synthetic fiber - epoxy resin, fluororesin/polyethylene/polyphenylene ether, polyphenylene oxide/cyanate ester, etc.
  • polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • plastics such as polyimide, polyphenylene sulfide, polyamide, etc., urethane, silicone rubber, acrylic rubber, butadiene rubber, etc.
  • Sheets or films made of crosslinked rubber, sheets or films made of thermoplastic elastomers such as polyester, polyurethane, polyolefin, and styrenic block copolymers can be used.
  • the conductor to the applications described later. can be done.
  • the elastic material the same materials as those described in the elastomer can be used.
  • the substrate to which the conductive composition is applied is a stretchable material (hereinafter referred to as "stretchable substrate"), and it is particularly preferred that the tensile elongation at break is 200% or more.
  • stretchable substrate a stretchable material
  • the base material expands slightly more than the conductor when the conductor is elongated, so that a conductor with stable electrical resistance during elongation can be obtained.
  • the tensile elongation at break of the substrate is measured by the above-mentioned ISO 37-compliant measurement method.
  • the conductor has a specific range of change in resistance when the conductor is stretched.
  • the change in resistance when the conductor is elongated by 30% is preferably more than 20 times and 50 times or less, more preferably 20 times or less. Since the change in the resistance value of the conductor when the conductor is stretched is within the range described above, sufficiently high conductivity can be maintained when the conductor is stretched.
  • the change in the resistance value of the conductor is the difference between the resistance value of the conductor after stretching and the resistance value of the conductor before stretching (resistance value of conductor after stretching - resistance value of conductor before stretching). calculated as Both the resistance values of the conductor before stretching and in each stretching state are measured by connecting to a digital multimeter (PC720M, manufactured by Sanwa Electric Instrument Co., Ltd.).
  • the conductor described above can be formed into a laminated structure by forming a plurality of layers.
  • the method of forming the laminated structure is not particularly limited.
  • the material may be applied and then cured.
  • the laminate structure may include layers other than the conductors described above, such as a metal layer, an insulating layer, a protective layer, an adhesive layer, an adhesive layer, and a void layer.
  • Electronic components can be formed using the conductors and laminated structures described above as constituent elements. There are no particular restrictions on the structure, formation method, application, etc. of electronic components as long as they are composed of the above-described conductors or laminated structures. Examples include sensors, actuators, capacitors, inductors, transistors, converters, thermistors, Connectors, transformers, capacitors, diodes, regulators, motors, antennas, switches, etc., may be mentioned, and may have multiple uses among these uses.
  • the conductor obtained by solidifying the conductive composition of the present invention has excellent stability in electrical resistance even when it repeats expansion and contraction as described above and when it maintains an elongated state.
  • it can be suitably used to form conductors for wearable devices such as clothing-mounted devices, extracorporeal devices, body surface devices, electronic skin devices, and internal devices.
  • a conductive layer can be applied to the electrodes of the flexible printed circuit board.
  • the conductive composition of the present invention is also suitable for forming layers of conductors such as actuator electrodes. It is also suitable for forming conductors with designs that have been difficult to achieve in the past due to insufficient stretchability and electrical resistance stability. Specific uses of conductors include, for example, the following.
  • the conductor of the present invention can be applied as a wiring material for wearable biosensors worn on clothing or the body to acquire/transmit action potentials/biological information generated from animals and plants including humans. It is essential that the sensor is attached to a place that is in close contact with or close to the surface tissue of animals and plants, including humans, and the surface tissue expands and contracts. In addition, when it is worn on clothing, the pattern and degree of change (expansion and contraction) in the shape of the clothing differ depending on the physique and movement pattern (tendency) of the wearer of the clothing. Conventional rigid and flexible substrates do not have the ability to follow the mounting position that expands and contracts, and the mounting position of the sensor is limited, and as a result, the biological information obtained is limited. According to the conductor of the present invention, the sensor wiring material can be applied to the surface tissue and clothing of animals and plants including humans, so it can be used as a wearable biosensor that can be attached to areas where expansion and contraction occurs and clothing. can.
  • the wiring used in wearable biosensors can be formed by screen printing or a dispensing method, so it is possible to miniaturize signal wiring, which is thought to contribute to the miniaturization of sensor devices.
  • a conductor wiring composed of a laminate structure in which a conductor layer of the present invention is provided on an elastic base material can be used as an elastically deformable wiring board sheet.
  • such conductor wiring can be attached to the surface of an object having a three-dimensional shape such as a molded product while being stretched or deformed without breaking the wiring. Therefore, the laminate structure in which the conductor layer of the present invention is provided on an elastic base material can be suitably used for pressure-sensitive sensors, touch sensors, or antenna wiring.
  • Conductive particles A Conductive particle B
  • Conductive particle C Binder resin A: acrylic block copolymer (LA2250, manufactured by Kuraray Co., Ltd.)
  • Binder resin B polyvinylpyrrolidone (K30, manufactured by Nippon Shokubai Co., Ltd.)
  • Solvent A diethylene glycol monoethyl ether acetate
  • Solvent B terpineol
  • Solvent C propylene glycol Silica: AEROSIL (AEROSIL 200, manufactured by EVONIK, BET specific surface area 200 m 2 /g)
  • Fatty acid lauric acid
  • Table 1 The particle shape, average primary particle size, average secondary particle size (D50), tap density and apparent porosity of conductive particles A to C were as shown in Table 1 below.
  • the tap density of each conductive particle was measured according to ISO 3953 with 1000 taps.
  • Each conductive composition was prepared according to the following procedure. First, according to the composition shown in Table 2 below, each binder resin was dissolved in each solvent to prepare a binder resin solution having a solid content of 50% by mass. Next, each conductive particle and the binder resin solution described above are mixed so as to have the composition shown in Table 2 below, pre-stirred and mixed with a stirrer, and then kneaded using a three-roll mill (EXAKT50, manufactured by EXAKT). Then, conductive compositions of Examples 1 to 7 and Comparative Examples 1 and 2 were obtained.
  • EXAKT50 manufactured by EXAKT
  • each conductive composition was sufficiently stirred using a spatula, stirred for 1 minute using a Mixer Mixer (ARE-310, manufactured by Thinky Co., Ltd.), and Spin Track manufactured by Resonance System,
  • ARE-310 manufactured by Thinky Co., Ltd.
  • Spin Track manufactured by Resonance System A decay curve Y(t) was obtained by the CPMG method under the measurement conditions of 30° C. measurement temperature, 20 MHz frequency, 90° pulse, 2.5 ⁇ sec pulse width, and 16 integration times, using protons as measurement nuclei.
  • Formula (2) [In the formula, Rav is the reciprocal of the spin-spin relaxation time when measuring a dispersion in which 1% by mass of conductive particles are dispersed in the same organic solvent as the conductive composition, and Rb is the same organic solvent as the conductive composition. The reciprocal spin-spin relaxation time is shown when the solvent alone is measured. ] was calculated based on The Rb value was obtained by measuring only each solvent used for each conductive composition by the same method as described above.
  • each conductive composition is sufficiently stirred using a spatula, stirred for 1 minute using a awatori mixer (ARE-310, manufactured by Thinky Co., Ltd.), and 0.3 g per gram of the conductive composition Propylene glycol monomethyl ether acetate is added and diluted to obtain a dilution, and the obtained dilution is a grind gauge (SU2050MHJ, manufactured by Daiichi Sokhan Seisakusho Co., Ltd.) with a scraper (SK9225, manufactured by Daiichi Sokhan Seisakusho Co., Ltd.) ), the scale was read at intervals of 5.0 ⁇ m, and the upper limit of the interval where 20 or more grains were observed was taken as the grain density value.
  • ARE-310 awatori mixer
  • the conductivity of the conductor during stretching was evaluated according to the following evaluation criteria.
  • the resistance value of the conductor was measured by connecting to a digital multimeter (PC720M, manufactured by Sanwa Electric Instrument Co., Ltd.). Table 2 shows the evaluation results.
  • The resistance value increased by a factor of 20 or less compared to before elongation, and a sufficiently high conductivity was maintained.
  • Increase in resistance value is more than 20 times and not more than 50 times compared to before elongation, and high conductivity is maintained.
  • x The increase in resistance value is more than 50 times that before elongation, and the maintenance of conductivity is insufficient.
  • each conductive composition is subjected to the same method as described above. , the conductivity of the conductor during elongation was evaluated. Table 2 shows the evaluation results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

[課題]ウェアラブルデバイスに求められる高い導電性と伸縮性とを兼ね備えた導電体を形成することができる導電性組成物を提供する。 [解決手段]導電性組成物において、バインダー樹脂、導電粒子および溶剤を配合し、パルスNMRのCPMG法により測定されるプロトンのスピン-スピン緩和時間が10~500ミリ秒とする。

Description

導電性組成物およびそれを用いた導電体、積層構造体ならびに電子部品
 本発明は、導電性組成物、および該導電性組成物を固化させた導電体、該導電体の層を備える積層構造体、ならびに該導電体または積層構造体を備える電子部品に関する。
 従来、プリント配線板の電極等のパターン状の導電体を形成する材料として、有機バインダーに金属粉末を混合したペースト状の導電性組成物が用いられている。このような導電性組成物は、パターン状に塗布した後に固化させることにより所望の導電体を形成することができるが、形成される導電体は一般的に高い硬度を有する。したがって、このような導電性組成物は、フレキシブルプリント配線板等の屈曲性が求められる配線板において十分な機能を発揮し得るとは言い難かった。そのため、フレキシブルプリント配線板等の屈曲性が求められる配線板に適した、配線板と共に屈曲した場合であっても安定的に十分な機能が発揮される導電体を形成することができる導電性組成物が求められている。
 また、近年のウェアラブルデバイス分野の成長に伴い、導電体に伸縮性を付与することも求められている。特に、体との密着度が高いウェアラブルデバイスほど、高度な伸縮性が要求される。このような要求に対して、例えば、金属粉末を含有させる有機バインダーとしてエラストマーを用い、得られる導電体に屈曲性だけでなく伸縮性を付与することができる導電性組成物が提案されている(例えば、特許文献1)。
 しかしながら、例えば、ウェアラブルデバイスが被服に取り付けて用いられる場合には、その被服の形状やサイズ、被服の着用者の体格や動作のパターン(傾向)等によって、ウェアラブルデバイスの形状の変化のパターンや程度が異なる。すなわち、同じ被服を異なる対象が着用して同じ動作をする場合には、被服の形状の変化のパターンや程度が対象によって大きく異なることから、被服に取り付けられて用いられるウェアラブルデバイスの形状の変化のパターンや程度も同様に対象によって大きく異なる。そのような場合、ウェアラブルデバイスの伸縮が不十分であるため被服の形状の変化にウェアラブルデバイスが十分に追従できず、結果としてウェアラブルデバイスが安定的に作動しない場合があり得る。
 また、導電性組成物は調製後に経時的に劣化する傾向があるため、長期間保存する場合には、適切な保存容器に密封して保存することでその劣化を抑制するのが一般的である。しかしながら、いったん保存容器を開封すると導電性組成物の劣化が経時的に進行することから、開封後、保存容器に密封された導電性組成物の全量を一度に使用しない場合には、残りの導電性組成物が再度の使用時に劣化して再使用できない場合がある。具体的には、導電性組成物の塗膜の導電性や伸縮性が悪化し、結果としてデバイスが安定的に作動しない不具合が生じ得る。そのような場合、残りの導電性組成物は廃棄せざるを得ず、新しい導電性組成物を準備する必要が生じるため、導電性組成物の使用効率が低下しコストが増大するという問題がある。さらには、導電性組成物を使用し切らず廃棄することにより、環境負荷を増大させることにもなり得る。したがって、使用効率の向上(コストの低減や環境負荷の抑制)の観点から、調製後の経時的な劣化が抑制された導電性組成物が求められている。
国際公開第2015/005204号パンフレット
 したがって、大きく伸縮させた場合でもわずかしか伸縮させなかった場合でも同様に(すなわち、伸縮の程度によらず)安定的に高い導電性を有する導電体を形成するための導電性組成物を提供することが、技術的課題として存在する。
 また、調製後の経時的な劣化が抑制され、その結果、保存容器を開封した後に長期間経過した場合であっても、高い導電性と伸縮性とを兼ね備えた導電体を形成することができる導電性組成物として再使用可能な導電性組成物を提供することも、技術的課題として存在する。
 そこで、本発明は、ウェアラブルデバイスに求められる、伸縮の程度によらず安定的に高い導電性を有する導電体を形成することができ、調製後の経時的な劣化が抑制された導電性組成物、および導電性組成物を固化させた導電体、該導電体の層を備える積層構造体、ならびに該導電体または積層構造体を備える電子部品を提供することを目的とする。また、本発明の別の目的は、上記導電性組成物を用いた、導電体、該導電体の層を備える積層構造体または該導電体もしくは積層構造体を備える電子部品の製造方法を提供することである。
 本発明者らは、鋭意研究した結果、バインダー樹脂、導電粒子および溶剤を含む導電性組成物において、パルスNMRのCPMG法により測定されるプロトンのスピン-スピン緩和時間を10~500ミリ秒とすることにより、上記の課題を解決できるとの知見を得た。本発明はかかる知見によるものである。すなわち、本発明の要旨は以下の通りである。
[1]バインダー樹脂、導電粒子、および溶剤を含む導電性組成物であって、
 パルスNMRのCPMG法により測定されるプロトンのスピン-スピン緩和時間が10~500ミリ秒であることを特徴とする、導電性組成物。
[2]前記導電粒子を前記溶剤に分散させた分散液のパルスNMRにより測定されるRsp値が0.02~1.0である、[1]に記載の導電性組成物。
[3]前記パルスNMRのCPMG法により測定されるプロトンのスピン-スピン緩和時間が100~300ミリ秒であることを特徴とする、[1]または[2]に記載の導電性組成物。
[4]前記導電粒子が金属粒子である、[1]~[3]のいずれかに記載の導電性組成物。
[5]シリカをさらに含む、[1]~[4]のいずれかに記載の導電性組成物。
[6]脂肪酸をさらに含む、[1]~[5]のいずれかに記載の導電性組成物。
[7]導電体の形成に用いられる、[1]~[6]のいずれかに記載の導電性組成物。
[8][1]~[7]のいずれかに記載の導電性組成物を固化した、導電体。
[9]30%伸長時の抵抗値変化が50倍以内である、[8]に記載の導電体。
[10]基材と、該基材に積層された[8]または[9]に記載の導電体の層とを備える、積層構造体。
[11]前記基材が、引っ張り破断伸び率200%以上の伸縮性基材である、[10]に記載の積層構造体。
[12][8]もしくは[9]に記載の導電体の層、または[10]もしくは[11]に記載の積層構造体を備える、電子部品。
[13]導電体の層を備える電子部品の製造方法であって、[1]~[7]のいずれかに記載の導電性組成物を固化することにより前記導電体の層を形成する工程を含む、方法。
 本発明によれば、ウェアラブルデバイスに求められる高い導電性と伸縮性とを兼ね備えた導電体を形成することができる導電性組成物、および導電性組成物を固化させた導電体、該導電体の層を備える積層構造体、ならびに該導電体または積層構造体を備える電子部品を提供することができる。さらに、本発明によれば、上記導電性組成物を用いた、導電体、該導電体の層を備える積層構造体または該導電体もしくは積層構造体を備える電子部品の製造方法を提供することができる。
 また、本発明によれば、調製後の経時的な劣化が抑制された導電性組成物を提供することができる。そのような導電性組成物は、調製後に長期間経過した場合、例えば、導電性組成物を密封した保存容器を開封した後に長期間経過した場合であっても、高い導電性と伸縮性とを兼ね備えた導電体を形成することができる導電性組成物として再使用可能である。したがって、導電性組成物の使用効率を向上させることができ、結果として、コストを低減し、環境負荷を抑制することができる。
[導電性組成物]
 本発明の導電性組成物は、バインダー樹脂、導電粒子および溶剤を含み、パルスNMRのCPMG法(CarrPurcell Meiboom-Gill法)により測定されるプロトンのスピン-スピン緩和時間が10~500ミリ秒、好ましくは100~300ミリ秒に調整された導電性組成物である。このような本発明の導電性組成物によれば、ウェアラブルデバイスに求められる高い導電性と伸縮性とを兼ね備えた導電体を形成することができる。本発明の導電性組成物により高い導電性と伸縮性とを兼ね備えた導電体を形成することができる理由は定かではないが、以下のように推論できる。一般的に、パルスNMRのCPMG法により測定されるプロトンのスピン-スピン緩和時間(以下、単に「スピン-スピン緩和時間T」、「T」ともいう。)は粒子の分散状態の指標として考えられている。本発明の導電性組成物においては、このスピン-スピン緩和時間Tを上述した特定の範囲とした場合に、導電性組成物の成分、特に導電粒子が、導電性組成物において適切な分散状態を形成すると考えられる。より具体的には、導電体が高い導電性と伸縮性とを兼ね備えるために適切な導電粒子の分布となるような、導電性組成物における導電粒子の分散状態が形成されると考えられる。そして、その結果、本発明の導電性組成物を固化して形成される導電体は、高い導電性と伸縮性とを兼ね備え得ると考えられる。
 導電性組成物のプロトンのスピン-スピン緩和時間Tを測定するためのパルスNMRを用いたCPMG法としては、公知の方法を用いることができ、例えば、Resonance Systems社製のSpin Trackを用いてスピン-スピン緩和時間Tを測定することができる。具体的には、導電性組成物をスパチュラを用いて十分に撹拌し、あわとり練太郎(ARE-310、株式会社シンキー製)を用いて1分間撹拌し、Resonance System社製のSpin Trackを用いて、測定核をプロトンとし、測定温度30℃、周波数20MHz、90°パルス、パルス幅2.5μ秒、積算回数16回の測定条件で、CPMG法により減衰曲線Y(t)を得、得られた減衰曲線Y(t)に対応する下記式(1):
 Y(t)=Aexp(-t/T)+Y     式(1)
[式中、AおよびYはそれぞれ定数、Tは緩和時間、tは測定時間を示す。]
に基づいてプロトンの緩和時間(スピン-スピン緩和時間)Tを算出することができる。
 本発明の導電性組成物によれば、上記のような特性を利用して、被服装着デバイス、体外デバイス、体表デバイス、電子皮膚デバイス、体内デバイス等のウェアラブルデバイス用の導電体の形成に好適に用いることができる。以下、本発明の導電性組成物が含有する各成分について詳述する。
<バインダー樹脂>
 本発明の導電性組成物は、バインダー樹脂を含む。導電性組成物におけるバインダー樹脂は、室温においてゴム弾性を有する材料であれば特に制限なく使用することができ、例えば、熱可塑性樹脂、エラストマー等を好適に用いることができる。バインダー樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 熱可塑性樹脂としては、公知慣用のものをいずれも用いることができ、例えば、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、フェノキシ樹脂、ポリヒドロキシポリエーテル樹脂、アクリル樹脂、ポリスチレン樹脂、ブタジエン樹脂、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、スチレン・ブタジエン共重合体、アクリル酸共重合体等が挙げられる。熱可塑性樹脂は、飽和物であってもよく、不飽和物であってもよい。これらの熱可塑性樹脂のうち、基材との接着性の観点から、飽和ポリエステル樹脂、不飽和ポリエステル樹脂が好適に用いられる。
 エラストマーとしては、例えば、ゴム、熱可塑性エラストマー、官能基含有エラストマー、ブロック共重合体等を好適に用いることができる。
 ゴムとしては、公知慣用のものをいずれも用いることができ、例えば、ジエン系ゴム、非ジエン系ゴム等が挙げられる。
 熱可塑性エラストマーとしては、公知慣用のものをいずれも用いることができ、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマー等が挙げられる。
 官能基含有エラストマーとしては、公知慣用のものをいずれも用いることができるが、伸縮性の観点から、ウレタン系、オレフィン系等が好ましく、耐溶剤性の観点から、(メタ)アクリロイル基や酸無水物基、カルボキシル基、エポキシ基等の官能基を有するものが好ましい。
 ブロック共重合体としては、公知慣用の物をいずれも用いることができるが、好ましくはハードセグメントとソフトセグメントとからなるブロック共重合体が用いられる。
 上述したエラストマーの中でも、ブロック共重合体は、結晶性が低く分子間力が弱いため、他のゴムと比較してガラス転移温度(Tg)が低く、導電粒子と混合した場合であっても高い柔軟性を有し伸びがよい。したがって、ブロック共重合体はウェアラブルデバイス用の導電体の形成に好適である。なお、本明細書において、ブロック共重合体は、室温(25℃)においてゴム弾性を有するものであるものをいう。ブロック共重合体として、前記条件を満たすものであれば公知慣用のものを用いることができる。特に、ハードセグメントとソフトセグメントとのブロック共重合体がより好適である。本明細書において、ハードセグメントとは、Tgが30℃以上のものをいう。一方、ソフトセグメントとはTgが0℃以下のものをいう。なお、Tgは、JIS K7121の規定に準拠して始点法により測定された値とする。
 ただし、昇温速度や温度については、40℃以上で観測されるTgは、具体的には、示差走査熱量計(DSC-6100、株式会社日立ハイテクサイエンス製)を用い、窒素ガス雰囲気下、約10mgのサンプルを25℃から毎分10℃の昇温速度で200℃まで昇温を複数回繰り返すことで安定させたDSC曲線から得られる。なお、リファレンスにはα-アルミナが用いられる。
 また、40℃未満で観測されるTgは、示差走査熱量計(DSC-6100、株式会社日立ハイテクサイエンス製)を用い、窒素ガス雰囲気下、約10mgのサンプルを-100℃から毎分20℃の昇温速度で100℃まで昇温を複数回繰り返すことで安定させたDSC曲線から得られる。なお、リファレンスは上記と同様にα-アルミナが用いられる。
 ブロック共重合体におけるハードセグメントおよびソフトセグメントの含有割合(ハードセグメントの質量:ソフトセグメントの質量)は、本発明の硬化が奏される限り特に限定されないが、好ましくは10:90~70:30、より好ましくは、10:90~40:60である。ハードセグメントおよびソフトセグメントの含有割合が上述した範囲内にある場合、導電性組成物を固化させて得られる導電体が伸長した場合の断線が抑制されるため好ましい。
 上記したブロック共重合体は、ハードセグメントをXブロック、X’ブロック、ソフトセグメントをYブロック、Y’ブロックと表記すると、Xブロック-Yブロック型のジブロック共重合体や、Xブロック-Yブロック-Xブロック型、Xブロック-Yブロック-X’ブロック型、Yブロック-Xブロック-Yブロック型、Yブロック-Xブロック-Y’ブロック型のトリブロック共重合体などが挙げられるが、他の成分との相溶性や柔軟性に優れるといった観点からXブロック-Yブロック-Xブロック型のトリブロック共重合体であることが好ましい。
 ブロック共重合体におけるハードセグメントを構成する単位構造としては、本発明の効果が奏される限り特に限定されず、例えば、メチル(メタ)アクリレート単位、スチレン単位等が挙げられる。また、ソフトセグメントを構成する単位構造としては、本発明の効果が奏される限り特に限定されず、例えば、n-ブチルアクリレート単位、ブタジエン単位等が挙げられる。ブロック共重合体としては、例えば、ポリメチル(メタ)アクリレート/ポリn-ブチル(メタ)アクリレート/ポリメチル(メタ)アクリレートのトリブロック共重合体を用いることができる。なお、本願明細書において(メタ)アクリレートとは、アクリレートおよびメタクリレートを総称する用語であり、他の類似の表現についても同様である。
 ブロック共重合体は、市販品を用いることができる。ブロック共重合体の市販品としては、例えば、アルケマ株式会社製の、リビング重合を用いて製造されるアクリル系トリブロックコポリマー等が挙げられる。より具体的には、ポリスチレン-ポリブタジエン-ポリメチルメタアクリレートに代表されるSBMタイプ、ポリメチルメタアクリレート-ポリブチルアクリレート-ポリメチルメタアクリレートに代表されるMAMタイプ、およびカルボン酸変性処理または親水基変性処理されたMAM NタイプまたはMAM Aタイプのアクリル系トリブロックコポリマーを用いることができる。SBMタイプとしては、例えば、E41、E40、E21およびE20が挙げられる。MAMタイプとしては、例えば、M51、M52、M53およびM22等が挙げられる。MAM Nタイプとしては、例えば、52Nおよび22N等が挙げられる。MAM Aタイプとしては、例えば、SM4032XM10等が挙げられる。また、ブロック共重合体の市販品の別の例としては、株式会社クラレ製のアクリル系ブロック共重合体であるクラリティ(登録商標)が挙げられる。クラリティ(登録商標)は、メタクリル酸メチルとアクリル酸ブチルとから誘導されるブロック共重合体である。
 ブロック共重合体は、上述した市販品に加え、適宜調製した合成品を用いることもできる。(メタ)アクリレートポリマーブロックを含むブロック共重合体の合成品としては、例えば、特表2007-516326号公報または特表2005-515281号公報に記載される方法により合成されるブロック共重合体が挙げられる。
 ブロック共重合体の重量平均分子量は、好ましくは20,000~400,000であり、より好ましくは50,000~300,000である。重量平均分子量が20,000以上である場合には、導電性組成物を固化して形成される導電体に強靭性や柔軟性を付与することができ、導電性組成物をフィルム状に成形乾燥したときや基板に塗布して乾燥した場合に優れたタック性を得ることができる。また、重量平均分子量が400,000以下である場合には、導電性組成物が良好な粘度を有し、より高い印刷性および加工性を達成することができる。また、重量平均分子量が50,000以上である場合には、外部からの衝撃に対する緩和性において優れた効果が得られる。
 国際標準化機構の国際規格ISO 37に準拠した測定方法による、ブロック共重合体の引っ張り破断伸び率は、好ましくは100~600%である。引っ張り破断伸び率が100~600%である場合には、導電性組成物を固化して形成される導電体の伸縮性および電気抵抗の安定性により優れる。ブロック共重合体の引っ張り破断伸び率は、より好ましくは300~600%である。なお、引っ張り破断伸び率は、以下の式に従って算出することができる。
 引っ張り破断伸び率(%)=(破断点伸び(mm)-初期寸法mm)/(初期寸法mm)×100
 エラストマーとして、ゴムや官能基含有エラストマーが用いられる場合、通常、それらには硫黄系加硫剤や非硫黄系加硫剤等が配合される。但し、銀粉等の金属粒子は、硫黄系加硫化剤により酸化や硫化されて腐食する恐れがあることから、導電粒子として金属粒子が用いられる場合には、エラストマーに硫黄系加硫剤を配合しないことが好ましく、必要に応じて非硫黄系加硫剤を配合することが好ましい。
 本発明の導電性組成物は、本発明の効果を損なわない範囲において、若干量の硫黄化合物を含んでもよい。
 また、エラストマーは、軟化剤、可塑剤等の公知の添加剤を含んでもよい。軟化剤としては、例えば、鉱物油系軟化剤、植物油系軟化剤等が挙げられる。鉱物油系軟化剤としては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル等の各種オイルが挙げられる。植物油系軟化剤としては、例えば、ひまし油、錦実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、パイン油、トール油等が挙げられる。これら軟化剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。軟化剤の添加量により、所望のゴム弾性や伸張性を調整することができる。
 導電性組成物におけるエラストマーの含有量は、導電性組成物中に含まれる全固形分量を基準として、固形分換算で、好ましくは5~40質量%、より好ましくは14~28質量%である。また、形成される導電体の伸縮性の観点から、エラストマー全体におけるブロック共重合体の含有量は、好ましくは85~100質量%である。ブロック共重合体の含有量が上記範囲内にある場合、導電性組成物を固化して形成される導電体の伸縮性がより良好となる。なお、本発明の導電性組成物は、本発明の効果を損なわない範囲で、エラストマー以外の熱可塑性樹脂等の他の有機バインダーを含んでもよい。本発明において固形分とは、導電性組成物から溶剤を除いたものをいう。
<導電粒子>
 本発明の導電性組成物は、導電粒子を含む。導電性組成物に含まれる導電粒子としては、導電性組成物に使用される従来公知の材料を使用することができ、例えば、黒鉛、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等の炭素粒子、銅粉、ニッケル粉、銀粉等の金属粒子、WC、BC、ZrC、NbC、MoC、TiC、TaC等の金属炭化物、TiN、ZrN、TaN等の金属窒化物、WSi、MoSi等の金属ケイ化物等が挙げられる。これらの導電粒子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。導電粒子としては、電気抵抗の低い導電性組成物が得られることから好ましくは金属粒子、より好ましくは銀粉が用いられる。また、本発明の導電性組成物において、導電粒子は、好ましくは連鎖(凝集)した状態(すなわち、連鎖状の導電粒子)である。したがって、導電粒子としては、連鎖(凝集)した状態の銀粉、すなわち連鎖状の銀粉を用いることが特に好ましい。
 本発明の導電性組成物は、導電粒子を後述する溶剤に分散させた分散液のパルスNMR、例えばResonance Systems社製のSpin Trackにより測定されるRsp値が、好ましくは0.02~1.0、より好ましくは0.03~0.5、さらに好ましくは0.05~0.2である。このRsp値は、導電性組成物における導電粒子と溶剤との相溶性(親和性)の指標となるものであり、Rsp値が大きいほど、導電粒子と溶剤との相溶性が高い(すなわち、導電性組成物における導電粒子の分散性が高い)ことを示し、Rsp値が小さいほど、導電粒子と溶剤との相溶性が低い(すなわち、導電性組成物における導電粒子の分散性が低い)ことを示す。そして、Rsp値が大きいほど、導電性組成物中に分散している導電粒子が沈降した場合であっても、撹拌することにより導電粒子が再度分散されやすい。なお、Rsp値は、パルスNMRを用いて、下記式(2):
 Rsp=(Rav-Rb)/(Rb)(1)     式(2)
[式中、Ravは1質量%の導電粒子を導電性組成物と同じ有機溶剤に分散させた分散液を測定した際のスピン-スピン緩和時間逆数であり、Rbは導電性組成物と同じ有機溶剤のみを測定した際のスピン-スピン緩和時間逆数を示す。]に基づいて算出することができる。
 導電粒子は、グラインドゲージにより測定される粒密集値が、好ましくは10~40μmである。導電粒子の粒密集値は、グラインドゲージ(SU2050MHJ、株式会社第一測範製作所製)を用いて測定することができる。具体的には、導電性組成物をスパチュラを用いて十分に撹拌し、あわとり練太郎(ARE-310、株式会社シンキー製)を用いて1分間撹拌し、導電性組成物1グラム当たり0.3グラムのプロピレングリコールモノメチルエーテルアセテートを添加し希釈して希釈物を得、得られた希釈物をグラインドゲージ(SU2050MHJ、株式会社第一測範製作所製)にスクレーパー(SK9225、株式会社第一測範製作所製)を用いて塗布し、5.0μm間隔で目盛を読み取った際に粒が20粒以上観察される区間の上限を粒密集値とする。したがって、導電粒子に関し、「グラインドゲージにより測定される粒密集値が10~40μm」とは、上述した方法により測定される導電粒子の粒密集値が10~40μmの範囲であるように導電粒子が導電性組成物中に存在することを意味する。導電粒子の粒密集値は、好ましくは15~40μm、より好ましくは20~40μmである。
 導電粒子は、ISO 3953に準拠して、タップ回数1000回として測定した場合のタップ密度が、好ましくは2.0g/cm以下、より好ましくは0.3~1.5g/cm、さらに好ましくは0.3~1.0g/cmである。詳細なメカニズムは明らかではないが、導電粒子がこのような範囲のタップ密度を有することにより、導電粒子の単位質量当たりの体積が大きくなり、導電粒子同士が多くの接触点を有することになるため、高い導電性が得られると考えられる。その結果、導電体を強く伸縮させた場合であっても弱く伸縮させた場合であっても、抵抗値の上昇を十分に抑制することができると考えられる。
 導電粒子を構成する各粒子(一次粒子)の形状は、本発明の効果が奏される限り特に限定されず、例えば、球状、略球状、針状、楕円球状、フレーク状、鱗片状、不定形状等が挙げられ、好ましくは球状、略球状である。導電粒子としては、同一の形状を有する1種の粒子を単独で用いてもよく、異なる形状を有する2種以上の粒子を組み合わせて用いてもよい。
 導電粒子(一次粒子)の平均粒子径(平均一次粒子径)は、好ましくは0.1~10μm、より好ましくは0.1~5μmである。また、導電粒子が連鎖状の導電粒子である場合、連鎖状の導電粒子(二次粒子)の平均粒子径(平均二次粒子径)は、好ましくは1~100μm、より好ましくは10~50μmである。例えば、導電粒子が連鎖状の銀粉である場合、連鎖状の銀粉を構成する各銀粉粒子の平均一次粒子径は、好ましくは1.0m以下、より好ましくは0.1~1.0μmである。さらに、連鎖状の銀粉の平均二次粒子径(D50)は、好ましくは10μm以上、より好ましくは10~50μmである。平均二次粒子径がこのような範囲にある場合、導電性組成物中の導電粒子同士が多くの接触点を有することになるため、高い導電性が得られると考えられる。その結果、導電体を強く伸縮させた場合であっても弱く伸縮させた場合であっても、抵抗値の上昇を十分に抑制することができると考えられる。
 導電粒子の平均一次粒子径は、粉体状態にある導電粒子を走査型電子顕微鏡にて10,000倍の倍率で観察し、ランダムに10個の一次粒子を抽出し、その粒子径を測定した際のそれらの粒子径の平均値として測定することができる。
 導電粒子の平均二次粒子径(D50)は、以下の手順に従って測定することができる。まず、導電性組成物を3000質量%のプロピレングリコールモノメチルエーテルアセテートで希釈して溶液を得る。得られた溶液を、レーザー回折散乱式粒度分布測定装置(TM3000、マイクロトラック・ベル社製)を用いて、溶媒の屈折率を1.40として、0.020μm~1000.00μmの測定範囲で、反射モードにて粒度分布の測定を行い、当該粒度分布から、累積50%の粒子径を求め、導電粒子の平均二次粒子径(D50)粒子径とする。
 導電粒子が連鎖状の導電粒子である場合、連鎖状の導電粒子のみかけ空隙率は、好ましくは50~95%、より好ましくは60~90%である。連鎖状の導電粒子のみかけ空隙率は、導電粒子の一次粒子が連結して適度な空隙が存在する凝集構造(二次粒子)の状態を表す指標となるものである。例えば、導電粒子が連鎖状の銀粉である場合、そのみかけ空隙率は、好ましくは50~95%、より好ましくは60~95%である。
 連鎖状の導電粒子のみかけ空隙率は、以下のようにして測定することができる。
 すなわち、
 導電粒子の密度をρ(g/cm)とし、
 質量M(g)の導電粒子に、1kg重の荷重をかけてから1時間経過した後の導電粒子の体積をV(cm)とした場合に、みかけ密度ρ(g/cm)は、
  ρ=M/V
と定義され、みかけ密度から、下記式によりみかけ空隙率(P)を算出することができる。
  P=(1-ρ/ρ)×100
 例えば、導電粒子が連鎖状の銀粉である場合、密度ρは10.49g/cmである。
 導電粒子のJIS K 6217-4:2017に準拠して測定されるDBP吸油量は、好ましくは30~300ml/100g、より好ましくは50~200ml/100gである。例えば、導電粒子が連鎖状の銀粉である場合、連鎖状の銀粉のJIS K 6217-4:2017に準拠して測定されるDBP吸油量は、好ましくは50~150ml/100gである。
 導電性組成物における導電粒子の含有量は、導電性組成物中に含まれる全固形分量を基準として、固形分換算で60~95質量%であり、好ましくは65~85質量%、より好ましくは70~80質量%である。導電性組成物における導電粒子の含有量がこのような範囲である場合には、導電性組成物を固化して形成される導電体として、伸張前の初期電気抵抗値が低く、かつ伸張時にも電気抵抗値が安定的に低い導電体を得ることができる。
<溶剤>
 本発明の導電性組成物は、溶剤を含む。溶剤としては、導電性組成物の調製の観点、基材等に導電性組成物を塗布するための粘度調整の観点等から、好ましくは有機溶剤が用いられる。
 有機溶剤の種類としては、例えば、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤等が挙げられる。より具体的には、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールブチルエーテルアセテートなどのエステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコール、ブチレングリコール、テルピネオール等のアルコール類;オクタン、デカン等の脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等が挙げられる。有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 有機溶剤の沸点は特に限定されないが、好ましくは150℃以上、より好ましくは200℃以上である。このような範囲の沸点を有する有機溶剤を用いる場合には、デバイス作製工程において、有機溶剤が揮発して導電性組成物の連続印刷性や加工性が低下するのを抑制することができる。
 導電性組成物中の溶剤の含有量は、導電性組成物の総質量に対して、好ましくは1~50質量%、より好ましくは10~40質量%、さらに好ましくは15~30質量%である。
<脂肪酸>
 本発明の導電性組成物は、上述した各成分に加えて脂肪酸を含んでもよい。導電性組成物が脂肪酸を含むことによって、凝集状態にある導電粒子の解離が促進され、さらに導電粒子の分散状態を安定的に維持することができると考えられる。そして、導電粒子が上述した範囲のTを有する場合には、脂肪酸によって、導電粒子の解離、分散状態が、高い導電性と伸縮性とを兼ね備えた導電体を形成するのに適したものに安定的に維持されると考えられる。さらに、導電性組成物が脂肪酸を含むことによって導電粒子の分散状態を安定的に維持することができるため、導電性組成物の性能の経時的な劣化を抑制できるという付随的な効果も奏される。
 脂肪酸の種類としては、直鎖状脂肪酸、分岐状脂肪酸、環状脂肪酸のいずれも用いることができ、飽和脂肪酸および不飽和脂肪酸のいずれも用いることができる。
 脂肪酸の炭素数は、本発明の効果が奏される限り特に限定されないが、例えば10~18個である。導電性組成物を用いた配線層や電極への悪影響を抑制する観点から、ステアリン酸、オレイン酸、ミリスチン酸、パルミチン酸、リノール酸、ラウリン酸、リノレン酸等が特に好ましく用いられる。脂肪酸は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 導電性組成物中の脂肪酸の含有量は、導電性組成物中に含まれる全固形分量を基準として、固形分換算で、好ましくは0.01~10質量%、より好ましくは0.05~5質量%、さらに好ましくは0.1~1質量%である。
<シリカ>
 本発明の導電性組成物は、上述した各成分に加えてシリカを含んでもよい。導電性組成物がシリカを含むことによって、導電性組成物中の導電粒子の分散状態を安定的に維持することができると考えられる。そして、導電粒子が上述した範囲のTを有する場合には、シリカによって、導電粒子の分散状態が、高い導電性と伸縮性とを兼ね備えた導電体を形成するのに適したものに安定的に維持されると考えられる。さらに、導電性組成物がシリカを含むことによって導電粒子の分散状態を安定的に維持することができるため、導電性組成物の性能の経時的な劣化を抑制できるという付随的な効果も奏される。特に、上述した脂肪酸とシリカとを組み合わせて用いることにより、導電粒子の解離、分散状態を特に安定的に維持することができると考えられる。
 シリカの種類としては、例えば、溶融シリカ、球状シリカ、無定形シリカ、結晶性シリカ等を用いることができる。また、シリカとしては、各種の表面処理が施されたシリカを用いることもできる。シリカは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シリカの表面積は、本発明の効果が奏される限り特に限定されないが、BET比表面積が、好ましくは100~1000m/g、より好ましくは100~800m/g、さらに好ましくは100~500m/gである。シリカがこのような範囲のBET比表面積を有することにより、導電性組成物中のシリカの分散状態を安定的に維持することができると考えられる。また、シリカが上述した範囲のBET比表面積を有する場合には、シリカによって、導電粒子の分散状態が、高い導電性と伸縮性とを兼ね備えた導電体を形成するのに適したものに安定的に維持されると考えられる。さらに、このようにシリカによって導電粒子の分散状態を安定的に維持することができるため、導電性組成物の性能の経時的な劣化を抑制できるという付随的な効果も奏される。なお、BET比表面積は、JIS Z8831に準拠してガス吸着法により測定することができる。
 シリカの平均粒子径(D50)は、好ましくは1~1000nm、より好ましくは5~500nm、さらに好ましくは10~100nmである。
 導電性組成物中のシリカの含有量は、導電性組成物中に含まれる全固形分量を基準として、固形物換算で、好ましくは0.01~10質量%、より好ましくは0.1~5質量%、さらに好ましくは0.5~3質量%である。
<その他の成分>
 本発明の導電性組成物は、上述した各成分に加えて他の成分を含んでもよい。他の成分としては、導電性組成物の製造に通常用いられるものであって、本発明の効果を損なわないものであれば、特に限定されることなく用いることができる。他の成分としては、例えば、熱硬化成分、添加剤、顔料等が挙げられる。
 熱硬化成分としては、硬化反応による分子量増加、架橋形成によりフィルム形成可能なポリエステル樹脂(ウレタン変性体、エポキシ変性体、アクリル変性体等)、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、メラミン樹脂、ビニル系樹脂、シリコーン樹脂およびブロックイソシアネートが挙げられる。
 添加剤としては、カップリング剤、光重合開始剤、難燃剤等が挙げられる。
 本発明の導電性組成物は、例えば、溶剤に溶解したエラストマーと導電粒子とを混練することにより製造することができる。混練方法としては、例えば、ロールミル等の撹拌混合装置を使用する方法が挙げられる。具体的には、エラストマーを溶剤に溶解した固形分50質量%のエラストマー溶液を調製し、このエラストマー溶液に導電粒子を添加し、撹拌機にて予備撹拌混合した後、3本ロールミルにて混練することで、導電性組成物を得ることができる。使用するエラストマー成分の種類や溶剤の配合割合によって、液状の導電性組成物としたり、ペースト状(半固形状)の導電性組成物としたりすることができる。
 本発明の導電性組成物は、粘度は特に制限はないが、好ましくは100~5000dPa・s、より好ましくは200~1000dPa・sに調整される。導電性組成物の粘度をこのような範囲に調整することにより、デバイス作製工程に求められる印刷性や加工性に優れた導電性組成物とすることができる。
 本発明において、上述したような導電性組成物は、例えば、基材上にパターン塗布し、熱処理を行うことで、導電体を形成することができる。この熱処理としては、乾燥処理や熱硬化処理等が挙げられる。
[導電体]
 上述した導電性組成物は、固化させて導電体を形成することができる。例えば、導電性組成物からなる塗布膜を形成し、乾燥、固化させることにより導電体の層とすることができる。導電性組成物の固化は、導電性組成物を乾燥または熱処理することで行われる。熱処理としては、熱風乾燥、熱硬化等が挙げられる。熱処理に先立ち、成形を行ってもよい。例えば、導電体の層は、基材上に上記の導電性組成物を所望の形状となるように塗布した後、固化させることにより導電体の層を得ることができる。導電体の層は、使用される用途に応じた種々の形状であってよい。例えば、導体回路、配線、異方導電接続等に好適に適用することができる。
 導体回路を製造する場合、上記の導電性組成物を基材上に印刷または塗布して塗膜パターンを形成するパターン形成工程と、パターニングされた塗膜を固化させる工程とを含む。塗膜パターンの形成には、マスキング法またはレジストを用いる方法等を使用できる。
 パターン形成工程としては、印刷方法およびディスペンス方法が挙げられる。印刷方法としては、例えば、グラビア印刷、オフセット印刷、スクリーン印刷等が挙げられ、微細な回路を形成する場合、スクリーン印刷が好ましい。また、大面積の塗布方法としては、グラビア印刷およびオフセット印刷が適している。ディスペンス方法とは、導電性組成物の塗布量をコントロールしてニードルから押し出しパターンを形成する方法であり、アース配線等の部分的なパターン形成や凹凸のある部分へのパターン形成に適している。
 導電性組成物を塗布する基材としては、電気絶縁性のものであれば特に制限なく使用することができ、紙-フェノール樹脂、紙-エポキシ樹脂、ガラス布-エポキシ樹脂、ガラス-ポリイミド、ガラス布/不織布-エポキシ樹脂、ガラス布/紙-エポキシ樹脂、合成繊維-エポキシ樹脂、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル、ポリフェニレンオキシド・シアネートエステル等の複合材を用いた全てのグレード(FR-4等)の銅張積層板、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリイミド、ポリフェニレンスルフィド、ポリアミド等のプラスチックからなるシートまたはフィルム、ウレタン、シリコンゴム、アクリルゴム、ブタジエンゴム等の架橋ゴムからなるシートまたはフィルム、ポリエステル系、ポリウレタン系、ポリオレフィン系、スチレン系ブロックコポリマー系等の熱可塑性エラストマーからなるシートまたはフィルム等が挙げられる。これらの中でも、屈曲性がある材料だけでなく、伸縮性を有する材料(例えば、ゴム、熱可塑性エラストマー、ウレタン等)を基材として用いることにより、後述するような用途に導電体を適用することができる。伸縮性を有する材料としては、上述したエラストマーにおいて説明したのと同様のものを用いることができる。
 好ましい実施形態において、導電性組成物を塗布する基材は伸縮性を有する材料(以下、「伸縮性基材」という)であり、特に、引っ張り破断伸び率が200%以上であることが好ましい。基材としてこのような伸縮性基材を用いることにより、導電体の伸長時に基材が導電体よりわずかに大きく伸長するため、伸長時の電気抵抗が安定した導電体を得ることが出来る。なお、基材の引っ張り破断伸び率は、上述したISO 37に準拠した測定方法により測定される。
 別の好ましい実施形態において、導電体は、該導電体を伸長させた場合における抵抗値の変化が特定の範囲である。具体的には、導電体を30%伸長させた場合における抵抗値の変化が、好ましくは20倍超50倍以下、より好ましくは20倍以下である。導電体を伸長させた場合における該導電体の抵抗値の変化が上述した範囲であることにより、導電体を伸長させた場合に十分に高い導電性を維持することができる。なお、導電体の抵抗値の変化は、導電体の伸長後の抵抗値と導電体の伸長前の抵抗値との差(導電体の伸長後の抵抗値-導電体の伸長前の抵抗値)として算出される。伸長前およびそれぞれの伸長状態における導電体の抵抗値は、いずれもデジタルマルチメータ(PC720M、三和電気計器株式会社製)に接続して測定される。
[積層構造体]
 上述した導電体は、複数の層を形成することで積層構造体とすることができる。積層構造体の形成方法に特に制限はないが、例えば、導電性組成物を固化して形成される導電体を熱や圧力またはその両方によって張り合わせてもよいし、導電体の上に導電性組成物を塗布したのち固化させてもよい。積層構造体は金属層、絶縁層、保護層、接着層、粘着層、空隙層等の上述した導電体以外の層を備えてもよい。
[電子部品]
 上述した導電体や積層構造体を構成要素として電子部品を形成することができる。上述した導電体や積層構造体を構成要素とする電子部品であれば、その構造、形成方法、用途等に特に制限はないが、例えば、センサー、アクチュエータ、コンデンサー、インダクター、トランジスタ、コンバータ、サーミスタ、コネクター、トランス、キャパシタ、ダイオード、レギュレーター、モーター、アンテナ、スイッチ等が挙げられ、これらの用途のうちの複数の用途を併せ持つものでもよい。
[導電体、積層構造体および電子部品の用途]
 本発明の導電性組成物を固化させた導電体は、上述したように伸縮を繰り返す場合や、伸長した状態を維持する場合においても、電気抵抗の安定性に優れているため、導体回路および配線以外にも、被服装着デバイス、体外デバイス、体表デバイス、電子皮膚デバイス、体内デバイス等のウェアラブルデバイス用の導電体の形成に好適に用いることができる。また、導電体の層をフレキシブルプリント基板の電極に適用することもできる。さらに、本発明の導電性組成物は、アクチュエータ電極等の導電体の層を形成するのにも適している。また、伸縮性や電気抵抗の安定性が不十分であることにより、従来実現が困難であったデザインの導電体の形成にも適している。導電体の具体的な用途としては、例えば、以下のようなものが挙げられる。
<ウェアラブル生体センサー>
 人間を含めた動植物から発生する活動電位/生体情報を取得/伝達するために被服や体に装着するウェアラブル生体センサー用配線材料として、本発明の導電体を適用することができる。センサーの装着箇所は、人間を含めた動植物の表層組織に密着ないしは近接する場所であることが必須となるが、表層組織は伸び縮みが発生する。また、被服に装着する場合には、被服の着用者の体格や動作のパターン(傾向)等によって、被服の形状の変化(伸び縮み)のパターンや程度が異なる。従来の硬質基板やフレキシブル基板では、伸び縮みする装着箇所への追従性が無く、センサーの装着箇所も限定的となり、結果として得られる生体情報も限られていた。本発明の導電体によれば、人間を含めた動植物の表層組織や被服にもセンサー用配線材料を適用できるため、伸び縮みが発生する箇所や被服にも装着可能なウェアラブル生体センサーとすることができる。
 ウェアラブル生体センサーに使う配線は、スクリーン印刷或いはディスペンス工法によって配線形成が可能であることから、信号配線の微細化も可能となり、センサーデバイスの小型化に寄与すると考えられる。
<スマートテキスタイル用配線材料>
 近年、布帛生地をセンサーとして用いるいわゆる「スマートテキスタイル」という分野広がりを見せつつある。本発明の導電体を用いて伸縮性があり熱圧着等が可能な基材上に配線形成を行なった配線板ないしセンサーは、伸縮時の電気抵抗の安定性に優れているため、伸縮性を持つ布帛生地の表面に貼りつけることで、エレクトロニクス・デバイスの機能を持った布帛生地、すなわちスマートテキスタイルの開発が可能となる。スマートテキスタイルとしては、感圧センサーやタッチセンサー、アンテナ配線等の機能を布帛生地に付与することができる。
<3D造形成形品用配線>
 従来のFIM(フィルム・インサート・モールド成型)工法による電子機器の筐体等向けのプラスチック成型品では、ポリカーボネート等のプラスチックフィルムをベース基材とし、意匠印刷の後、熱プレス加工したものが採用されている。本発明の導電体を伸縮性の基材上に設けた積層構造体からなる導体配線は伸長時の断線が無く、抵抗値変化が抑制されている特性を持つため、プラスチック成型品の意匠印刷時に導体配線を形成し、その後の熱プレス(部分的に伸びが発生)による成型加工を行なうことで3D形状の配線を内蔵したエレクトロニクス・デバイスを実現することができる。
 また、上述したようなエラストマー等のような伸縮性の基材を用いて熱プレス加工を行なうことで、柔らかい筐体内に柔らかい配線を備えた伸縮変形可能なエレクトロニクス・デバイスを実現することができる。感圧センサーやタッチセンサー、またはアンテナ配線用等として好適に利用することができる。
<伸縮変形可能な配線シートないし配線基板>
 本発明の導電体の層を伸縮性の基材上に設けた積層構造体からなる導体配線は、伸縮変形可能な配線板シートとして利用することができる。例えば、このような導体配線を成型加工品などの立体的形状を持つ対象物の表面へ、配線の断線を発生させること無く、伸張ないし変形させながら対象物に貼りつけることが可能となる。したがって、本発明の導電体の層を伸縮性の基材上に設けた積層構造体は、感圧センサーやタッチセンサー、またはアンテナ配線用として好適に利用することができる。
<フレキシブル配線シートないし配線基板>
 従来の導電性ペーストを用いたフレキシブル配線シートないし配線基板では、爪折りという極端な折り曲げを行なった際、配線の断線が発生するという事象が発生する。この点、本発明の導電体を用いる場合、伸び特性を有する導電材料であることから、これまでの導電ペーストでは対応しきれなかった領域の折り曲げ性にも対応することができ、爪折り時でも、配線の断線が発生しないフレキシブル配線シートないし配線基板を実現することができる。
実施例
 以下、実施例を挙げて、本発明をさらに詳細に説明するが、本発明は、これらの実施例に限定されるものではない。なお、実施例において、「部」および「%」の記載は、特に断りのない限りいずれも質量基準である。
[導電性組成物の調製]
 導電性組成物の材料として、下記の材料を準備した。
 導電粒子A
 導電粒子B
 導電粒子C
 バインダー樹脂A:アクリルブロック共重合体(LA2250、株式会社クラレ製)
 バインダー樹脂B:ポリビニルピロリドン(K30、株式会社日本触媒製)
 溶剤A:ジエチレングリコールモノエチルエーテルアセテート
 溶剤B:ターピネオール
 溶剤C:プロピレングリコール
 シリカ:AEROSIL(AEROSIL200、EVONIK社製、BET比表面積200m/g)
 脂肪酸:ラウリン酸
 なお、導電粒子A~Cの粒子形状、平均一次粒子径、平均二次粒子径(D50)、タップ密度および見かけ空隙率はそれぞれ下記表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
 各導電粒子のタップ密度は、ISO 3953に準拠して、タップ回数1000回として測定した。
 以下の手順に従って、各導電性組成物を調製した。
 まず、下記表2に示す組成に従って、上述した各バインダー樹脂を各溶剤に溶解して、固形分50質量%となるようにバインダー樹脂溶液を調製した。次いで、上述した各導電粒子とバインダー樹脂溶液とを、下記表2に示す組成となるよう混合し、撹拌機にて予備撹拌混合した後、3本ロールミル(EXAKT50、EXAKT社製)を用いて混練し、実施例1~7および比較例1~2の各導電性組成物を得た。
Figure JPOXMLDOC01-appb-T000002
 各導電性組成物のプロトンのスピン-スピン緩和時間TおよびRsp値は、それぞれ下記の方法により測定した。すなわち、各導電性組成物をスパチュラを用いて十分に撹拌し、あわとり練太郎(ARE-310、株式会社シンキー製)を用いて1分間撹拌し、Resonance System社製のSpin Trackを用いて、測定核をプロトンとし、測定温度30℃、周波数20MHz、90°パルス、パルス幅2.5μ秒、積算回数16回の測定条件で、CPMG法により減衰曲線Y(t)を得た。得られた減衰曲線Y(t)に対応する下記式(1):
 Y(t)=Aexp(-t/T)+Y     式(1)
[式中、AおよびYはそれぞれ定数、Tは緩和時間、tは測定時間を示す。]
に基づいてプロトンの緩和時間(スピン-スピン緩和時間)Tを算出した。
 次いで、Rsp値は、下記式(2):
 Rsp=(Rav-Rb)/(Rb)(1)     式(2)
[式中、Ravは1質量%の導電粒子を導電性組成物と同じ有機溶剤に分散させた分散液を測定した際のスピン-スピン緩和時間逆数であり、Rbは導電性組成物と同じ有機溶剤のみを測定した際のスピン-スピン緩和時間逆数を示す。]に基づいて算出した。なお、Rb値は、各導電性組成物に用いた各溶剤のみを上記と同様の方法にて測定することにより求めた。
 各導電粒子の粒密集値は、下記の方法により測定した。すなわち、各導電性組成物をスパチュラを用いて十分に撹拌し、あわとり練太郎(ARE-310、株式会社シンキー製)を用いて1分間撹拌し、導電性組成物1グラム当たり0.3グラムのプロピレングリコールモノメチルエーテルアセテートを添加し希釈して希釈物を得、得られた希釈物をグラインドゲージ(SU2050MHJ、株式会社第一測範製作所製)にスクレーパー(SK9225、株式会社第一測範製作所製)を用いて塗布し、5.0μm間隔で目盛を読み取り、粒が20粒以上観察される区間の上限を粒密集値とした。
[導電性組成物の評価]
 調製直後(新品)の実施例および比較例の各導電性組成物を、基材にスクリーン印刷で塗布し、80℃で30分間熱処理して、線幅1mm、厚さ20μm、長さ40mmの導電体を基材上に形成した後、伸張前の導電体の抵抗値を測定した。基材としては、ウレタンフィルム(TG88-I、武田産業株式会社製、厚さ70μm、引っ張り破断伸び率500%)を使用した。導電体を5mm/秒の速度で所定の伸張度(2%伸長、10%伸長、30%伸長、50%伸長)となるまで伸張した後、その状態で15秒保持し導電体の抵抗値を測定し、以下の評価基準に従って、導電体の伸張時の導電性を評価した。なお、導電体の抵抗値は、デジタルマルチメータ(PC720M、三和電気計器株式会社製)に接続して測定した。評価結果を表2に示す。
 ○:伸長前と比較して抵抗値の上昇が20倍以下であり、十分に高い導電性が維持される。
 △:伸長前と比較して抵抗値の上昇が20倍超50倍以下であり、高い導電性が維持される。
 ×:伸長前と比較して抵抗値の上昇が50倍超であり、導電性の維持が不十分である。
 調製直後に保存容器に充填、密封した実施例および比較例の各導電性組成物を準備し、保存容器の開封後6ヵ月経過後の各導電性組成物について、上述したのと同様の方法に従って、導電体の伸長時の導電性を評価した。評価結果を表2に示す。
 表2に示す評価結果から、調製直後の各実施例の導電性組成物を用いた場合には、伸長時においても高い導電性が維持されることが分かる。すなわち、バインダー樹脂、導電粒子および溶剤を含む導電性組成物であって、パルスNMRのCPMG法により測定されるプロトンのスピン-スピン緩和時間Tが10~500ミリ秒である導電性組成物によれば、高い導電性と伸縮性とを兼ね備えた導電体を形成することができる。また、各実施例の導電性組成物は、開封後6ヵ月経過後であっても、このような伸長時における高い導電性がほぼ維持されることが分かる。すなわち、各実施例の導電性組成物においては、調製後の経時劣化が抑制されていると言える。一方、各比較例の導電性組成物を用いた場合には、調製直後または開封後6ヵ月経過後の導電性組成物のいずれであっても、伸長時に高い導電性が維持されないことが分かる。

Claims (13)

  1.  バインダー樹脂、導電粒子、および溶剤を含む導電性組成物であって、
     パルスNMRのCPMG法により測定されるプロトンのスピン-スピン緩和時間が10~500ミリ秒であることを特徴とする、導電性組成物。
  2.  前記導電粒子を前記溶剤に分散させた分散液のパルスNMRにより測定されるRsp値が0.02~1.0である、請求項1に記載の導電性組成物。
  3.  前記パルスNMRのCPMG法により測定されるプロトンのスピン-スピン緩和時間が100~300ミリ秒であることを特徴とする、請求項1に記載の導電性組成物。
  4.  前記導電粒子が金属粒子である、請求項1に記載の導電性組成物。
  5.  シリカをさらに含む、請求項1に記載の導電性組成物。
  6.  脂肪酸をさらに含む、請求項1に記載の導電性組成物。
  7.  導電体の形成に用いられる、請求項1に記載の導電性組成物。
  8.  請求項1に記載の導電性組成物を固化した、導電体。
  9.  30%伸長時の抵抗値変化が50倍以内である、請求項8に記載の導電体。
  10.  基材と、該基材に積層された請求項8に記載の導電体の層とを備える、積層構造体。
  11.  前記基材が、引っ張り破断伸び率200%以上の伸縮性基材である、請求項10に記載の積層構造体。
  12.  請求項8に記載の導電体の層、または請求項10に記載の積層構造体を備える、電子部品。
  13.  導電体の層を備える電子部品の製造方法であって、請求項1に記載の導電性組成物を固化することにより前記導電体の層を形成する工程を含む、方法。
PCT/JP2022/046700 2021-12-20 2022-12-19 導電性組成物およびそれを用いた導電体、積層構造体ならびに電子部品 WO2023120484A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-206106 2021-12-20
JP2021206106 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023120484A1 true WO2023120484A1 (ja) 2023-06-29

Family

ID=86902470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046700 WO2023120484A1 (ja) 2021-12-20 2022-12-19 導電性組成物およびそれを用いた導電体、積層構造体ならびに電子部品

Country Status (1)

Country Link
WO (1) WO2023120484A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079724A (ja) * 2013-09-12 2015-04-23 東洋紡株式会社 導電性ペースト
WO2016114298A1 (ja) * 2015-01-14 2016-07-21 東洋紡株式会社 伸縮性電極および配線シート、生体情報計測用インターフェス
WO2017026130A1 (ja) * 2015-08-07 2017-02-16 太陽インキ製造株式会社 導電性組成物、導電体および基材
WO2018235734A1 (ja) * 2017-06-19 2018-12-27 太陽インキ製造株式会社 導電性組成物およびそれを用いた導電体並びに積層構造体
JP2020055918A (ja) * 2018-09-28 2020-04-09 太陽インキ製造株式会社 導電性組成物およびそれを用いた導電体並びに積層構造体
JP2020132756A (ja) * 2019-02-19 2020-08-31 太陽インキ製造株式会社 導電性組成物およびそれを用いた導電体並びに積層構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079724A (ja) * 2013-09-12 2015-04-23 東洋紡株式会社 導電性ペースト
WO2016114298A1 (ja) * 2015-01-14 2016-07-21 東洋紡株式会社 伸縮性電極および配線シート、生体情報計測用インターフェス
WO2017026130A1 (ja) * 2015-08-07 2017-02-16 太陽インキ製造株式会社 導電性組成物、導電体および基材
WO2018235734A1 (ja) * 2017-06-19 2018-12-27 太陽インキ製造株式会社 導電性組成物およびそれを用いた導電体並びに積層構造体
JP2020055918A (ja) * 2018-09-28 2020-04-09 太陽インキ製造株式会社 導電性組成物およびそれを用いた導電体並びに積層構造体
JP2020132756A (ja) * 2019-02-19 2020-08-31 太陽インキ製造株式会社 導電性組成物およびそれを用いた導電体並びに積層構造体

Similar Documents

Publication Publication Date Title
KR102616622B1 (ko) 도전성 조성물 및 그것을 사용한 도전체 그리고 적층 구조체
JP7170484B2 (ja) 導電性組成物およびそれを用いた導電体並びに積層構造体
JP6521138B1 (ja) 成形フィルム用導電性組成物、成形フィルム、成形体およびその製造方法
KR20150011817A (ko) 도전성 조성물
DE112013000686T5 (de) Flexible Schaltungen und Substrate mit spannungsschaltbarem dielektrischem Material
JP2009230952A (ja) 導電性ペースト組成物及び電子回路並びに電子部品
CN109690698A (zh) 柔性基板用银糊
JP2012230866A (ja) 導電性ペースト
JP2023095877A (ja) 導電性組成物およびそれを用いた導電体並びに積層構造体
JP5859823B2 (ja) 加熱硬化型導電性ペースト組成物
WO2017026130A1 (ja) 導電性組成物、導電体および基材
WO2023120484A1 (ja) 導電性組成物およびそれを用いた導電体、積層構造体ならびに電子部品
JP2023091380A (ja) 導電性組成物およびそれを用いた導電体、積層構造体ならびに電子部品
JP7147767B2 (ja) 導電性ペースト、伸縮性導体およびそれを用いた電子部品、衣服型電子機器
JP2009218450A (ja) 電磁波障害対策シ−ト
JP2010235738A (ja) 導電性インキ
KR20150102712A (ko) 도전성 조성물 및 도전체
JP2022088712A (ja) 成形フィルム用導電性組成物、成形フィルム、及びその製造方法、並びに、成形体及びその製造方法
JP6869059B2 (ja) 導電性樹脂組成物
JP2022047973A (ja) 導電性組成物およびそれを用いた導電体、積層構造体並びに電子部品
JP2022047979A (ja) 導電性組成物およびそれを用いた導電体、積層構造体並びに電子部品
JP2023152129A (ja) 導電性組成物およびその製造方法、ならびに導電性組成物を用いた導電体および積層構造体
JP2008106121A (ja) 導電性インキ、導電回路および非接触型メディア
US11932771B2 (en) Stretchable conductive paste and film
JP2021109901A (ja) 導電性組成物およびその固形物、並びにトランスデューサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911186

Country of ref document: EP

Kind code of ref document: A1