WO2023119367A1 - 半導体レーザ - Google Patents

半導体レーザ Download PDF

Info

Publication number
WO2023119367A1
WO2023119367A1 PCT/JP2021/047032 JP2021047032W WO2023119367A1 WO 2023119367 A1 WO2023119367 A1 WO 2023119367A1 JP 2021047032 W JP2021047032 W JP 2021047032W WO 2023119367 A1 WO2023119367 A1 WO 2023119367A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction grating
layer
wavelength
waveguide
semiconductor laser
Prior art date
Application number
PCT/JP2021/047032
Other languages
English (en)
French (fr)
Inventor
拓郎 藤井
浩司 武田
徹 瀬川
圭穂 前田
慎治 松尾
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/047032 priority Critical patent/WO2023119367A1/ja
Publication of WO2023119367A1 publication Critical patent/WO2023119367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Definitions

  • the present invention relates to a semiconductor laser that has a diffraction grating and can operate at high temperatures.
  • DFB lasers distributed feedback laser diodes
  • DFB lasers distributed feedback laser diodes
  • the gain wavelength and resonance wavelength of the active layer match.
  • Non-Patent Documents 3 to 6 A structure using a material having excellent resistance is disclosed (Non-Patent Documents 3 to 6).
  • a semiconductor laser comprises a waveguide structure including, in order, a first conductor layer, an active layer, and a second semiconductor layer; a p-type semiconductor layer disposed in contact with a side surface of the active layer, an n-type semiconductor layer disposed in contact with the other side surface of the active layer, and a waveguide layer optically coupled in the waveguide direction of the active layer a first diffraction grating disposed on any one of the bottom surface of the first semiconductor layer, the top surface of the second semiconductor layer, and the side surface of the active layer; and the bottom surface of the waveguide layer.
  • a second diffraction grating arranged on either one of the upper surface and a refractive index control section for changing the refractive index of the waveguide layer.
  • FIG. 1A is a perspective top view showing the configuration of a semiconductor laser according to a first embodiment of the present invention.
  • FIG. FIG. 1B is a cross-sectional view taken along line IB-IB' showing the configuration of the semiconductor laser according to the first embodiment of the present invention.
  • FIG. 1C is an IC-IC' sectional view showing the configuration of the semiconductor laser according to the first embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the operation of the semiconductor laser according to the first embodiment of the present invention;
  • FIG. 2B is a diagram for explaining the operation of the semiconductor laser according to the first embodiment of the present invention;
  • FIG. 3 is a top perspective view showing an example of the configuration of the semiconductor laser according to the first embodiment of the invention.
  • FIG. 4 is a perspective top view showing the configuration of a semiconductor laser according to a second embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the operation of the semiconductor laser according to the second embodiment of the invention.
  • FIG. 6A is a diagram for explaining the operation of the semiconductor laser according to the second embodiment of the present invention;
  • FIG. 6B is a diagram for explaining the operation of the semiconductor laser according to the second embodiment of the present invention;
  • FIG. 7A is a diagram for explaining the operation of the semiconductor laser according to the second embodiment of the present invention;
  • FIG. 7B is a diagram for explaining the operation of the semiconductor laser according to the second embodiment of the present invention;
  • FIG. 8A is a diagram for explaining the operation of the semiconductor laser according to the second embodiment of the present invention;
  • FIG. 8B is a diagram for explaining the operation of the semiconductor laser according to the second embodiment of the present invention;
  • the SiO 2 101 may be a dielectric such as SiN or SiNO other than SiO 2 .
  • SiO 2 101 is also formed on the substrate. Si is used for the substrate, and semiconductors and dielectrics other than Si may be used.
  • the DFB region 11 is formed on the SiO 2 101 by a first semiconductor layer (InP) 112, a multiple quantum well (MQW) 113 as an active layer, and a second semiconductor layer.
  • (InP) 114 are stacked to form a waveguide structure.
  • a p-type InP layer 115_1 is arranged in contact with one side surface of this waveguide structure in the width direction (the X direction in the drawing), and a p-type contact layer (for example, p-type InGaAs) 116_1 is disposed thereon to form a p-type contact layer.
  • a type electrode (eg, gold) 117_1 is provided.
  • an n-type InP layer 115_2 is arranged in contact with the other side surface, and an n-type electrode (for example, gold) 117_2 is provided thereon via an n-type contact layer (for example, n-type InGaAs) 116_2.
  • the MQW active layer 113 is composed of an InGaAsP well layer and an InGaAsP barrier layer in the 1.55 ⁇ m wavelength band, and has a thickness of about 105 nm with 6 cycles.
  • the thicknesses of the first semiconductor layer (InP) 112 and the second semiconductor layer (InP) 114 are 165 nm and 80 nm, respectively.
  • the thickness of the SiO 2 101 is 2 ⁇ m
  • the thickness of the p-type InP layer 115_1 and the n-type InP layer 115_2 is 350 nm.
  • the MQW active layer 113 may be in the 1.31 ⁇ m wavelength band.
  • InGaAs, InGaAlAs, GaInNAs, etc. may be used for the MQW other than InGaAsP.
  • Other configurations such as the period and thickness of the MQW may be used.
  • a DFB diffraction grating (first diffraction grating) 111 is provided on the upper surface of the second semiconductor layer (InP) 114 above the active layer 113 .
  • the coupling coefficient of the DFB diffraction grating (first diffraction grating) 111 is determined by the refractive index of InP and the refractive index of air.
  • the pitch (period) is about 200 nm to 300 nm and the depth is about 10 nm to 50 nm, which are set according to the desired emission (oscillation) wavelength and coupling coefficient.
  • a diffraction grating may be provided at the boundary between the first semiconductor layer (InP) 112 and SiO 2 101 below the active layer 113 .
  • the coupling coefficient of the diffraction grating is determined by the refractive index of InP and the refractive index of SiO2 .
  • a diffraction grating may be provided on the side surface of the active layer 113, that is, the boundary between the active layer 113 and the p-type InP layer 115_1 or the boundary between the active layer 113 and the n-type InP layer 115_2.
  • a mask having a diffraction grating shape (unevenness shape) pattern may be used in the step of processing the active layer 113 into a waveguide structure.
  • the DFB region 11 of the semiconductor laser 10 has a structure of a membrane-type laser, and a current is laterally injected into the active layer 113 to cause laser oscillation and emit laser light (arrow 15 in the figure). ).
  • the DBR region 12 is connected to the DFB region 11 in the waveguide direction (the Y direction in the drawing).
  • the DBR region 12 should be optically coupled to the DFB region 11 .
  • the DBR region 12 comprises an InP waveguide layer 122 and a SiO2 clad 123 covering the InP waveguide layer 122 on the SiO2 101, and the heater 14 is provided on the surface of the SiO2 clad 123, as shown in FIG. 1C. Prepare.
  • a DBR diffraction grating (second diffraction grating) 121 is provided between the upper surface of the InP waveguide layer 122 and the SiO 2 clad 123.
  • a DBR diffraction grating 121 may be provided at the boundary between the bottom surface of the InP waveguide layer 122 and the SiO 2 101 .
  • the pitch (period) is about 200 nm to 300 nm and the depth is about 10 nm to 50 nm, which are set according to the desired emission (oscillation) wavelength and coupling coefficient.
  • the pitch (period) is set in relation to the emission wavelength of the DFB diffraction grating (first diffraction grating) 111, as will be described later.
  • the heater 14 changes the temperature of the InP waveguide layer 122 to change the refractive index. This changes the coupling coefficient of the diffraction grating 121 of the InP waveguide layer 122 and changes the peak wavelength.
  • the heater 14 may be made of metal or resin. Moreover, although an example in which the heater 14 is placed on the surface of the SiO 2 clad 123 has been shown, the heater 14 may be embedded in the SiO 2 clad 123 or the SiO 2 101, and the temperature of the InP waveguide layer 122 may be changed. Any configuration that allows
  • the lengths of the DFB region 11 and the DBR region 12 are 75 ⁇ m and 50 ⁇ m, respectively, and the width of the active layer 113 of the DFB region 11 and the width of the InP waveguide 122 of the DBR region 12 are 1.0 ⁇ m.
  • the output waveguide 13 has a tapered shape in which the width narrows toward the output end.
  • the output waveguide 13 may not be arranged.
  • the DFB grating without ⁇ /4 shift has two stopband edge emission wavelengths (short wavelength side and long wavelength side), which coincide with the wavelength of the gain peak of the MQW active layer 113. It can oscillate at wavelengths at two stopband edges.
  • FIGS. 2A and 2B show the emission spectrum S11 of the DFB diffraction grating, the reflection spectrum S12 of the DBR diffraction grating, and the MQW active layer in a semiconductor laser (distributed reflector laser, DR laser) in which the DBR diffraction grating is integrated in the DFB laser. and gain spectrum S113.
  • a semiconductor laser distributed reflector laser, DR laser
  • FIG. 2A shows each spectrum (1_1) at room temperature and each spectrum (1_2) at high temperature in the conventional DR laser.
  • the DBR diffraction grating selects either the short-wavelength side or the long-wavelength side of the DFB diffraction grating for stopband emission (for example, ⁇ 1_1) and oscillates (1_1 in the figure).
  • the gain peak S113 of the MQW active layer shifts to the long wavelength side (wavelength ⁇ 1_a) and the intensity decreases.
  • the oscillation wavelength due to the DFB diffraction grating and the DBR diffraction grating also shifts to the longer wavelength side, but the shift amount of this wavelength ( ⁇ 1_1') is smaller than the gain peak.
  • a shift occurs between the gain peak ( ⁇ 1_a) of the MQW active layer and the oscillation wavelength peak ( ⁇ 1_1') (1_2 in the figure). This degrades the characteristics of the DR laser at high temperatures.
  • FIG. 2B shows each spectrum (1_3) at room temperature and each spectrum (1_4) at high temperature in the semiconductor laser 10 according to the present embodiment.
  • the oscillation wavelength of the DFB diffraction grating (first diffraction grating) 111 and the DBR diffraction grating (second diffraction grating) 121 is adjusted as in the conventional DR laser.
  • the gain peak wavelength of the MQW active layer 113 match at the wavelength ⁇ 1_1 (1_3 in the figure).
  • the Bragg wavelength of the DBR diffraction grating 121 is set so that the DFB diffraction grating 111 oscillates at the emission wavelength on the short wavelength side.
  • the heater 14 arranged near the InP waveguide layer 122 having the DBR diffraction grating 121 is turned ON to raise the temperature (for example, about 100° C.) to raise the temperature of the InP waveguide layer 122 of the DBR diffraction grating 121. to increase As a result, the refractive index of the InP waveguide layer 122 of the DBR diffraction grating 121 increases, and the Bragg wavelength of the DBR diffraction grating 121 shifts to the longer wavelength side.
  • the Bragg wavelength of the DBR diffraction grating 121 coincides with the emission wavelength on the long wavelength side of the DFB diffraction grating 111, and oscillates at the emission wavelength ( ⁇ 1_2) on the long wavelength side.
  • the gain peak of the MQW active layer 113 also shifts to the longer wavelength side (1_4 in the figure), as described above.
  • the emission wavelength on the long wavelength side of the DFB diffraction grating 111 which matches the Bragg wavelength of the DBR diffraction grating 121, and the gain peak of the MQW active layer 113 match at high temperatures, so that the laser oscillates. , a decrease in output at high temperatures is suppressed, and good high-temperature operating characteristics are obtained.
  • the semiconductor laser according to the present embodiment a decrease in output at high temperatures is suppressed, and good high-temperature operation characteristics are obtained.
  • a semiconductor laser 10_2 according to a modification of the present embodiment includes a waveguide region 16 between the DFB region 11 and the DBR region 12, as shown in FIG.
  • the waveguide region 16 comprises an InP waveguide layer 122 and a SiO 2 cladding 123 covering the InP waveguide on the SiO 2 101, and has the same layer structure as the DBR region 12, but with a diffraction grating and a heater 14. do not have.
  • the length of the waveguide region 16 is approximately 20 ⁇ m.
  • the InP waveguide layer 122 of the DBR region 12 is connected to the DBR diffraction grating (second diffraction grating) 121 and the heater 14 via the active layer 113 of the DFB region 11 with a predetermined distance (for example, 20 ⁇ m) therebetween.
  • the waveguide region 16 suppresses heat conduction from the DBR region 12 to the DFB region 11 when the heater 14 raises the temperature.
  • the shift amount of the peak wavelength of the DBR diffraction grating 121 required to match the emission wavelength on the long wavelength side of the DFB diffraction grating 111 increases, so the power consumption of the heater increases.
  • the intensity of the gain peak of the MQW active layer 113 is reduced, the output of the semiconductor laser is reduced.
  • the semiconductor laser 10_2 since heat conduction from the DBR region 12 to the DFB region 11 is suppressed, temperature increase in the DFB region 11 is suppressed, shift of the peak wavelength of the DFB diffraction grating 111, The gain peak wavelength shift and intensity reduction of the MQW active layer 113 are suppressed. As a result, an increase in power consumption of the heater and a decrease in output of the semiconductor laser are suppressed.
  • the semiconductor laser according to this modified example it is possible to suppress the influence of the temperature rise of the heater on the DFB region 11 at high temperatures, and to realize good high-temperature operation characteristics.
  • a waveguide region (InP) without a diffraction grating and a heater has a tapered shape that tapers from the DFB region toward the DBR region, and the waveguide region (InP) is formed in the SiO 2 101 below the waveguide region (InP).
  • a semiconductor laser 20 according to the present embodiment is composed of a DFB region 11 and a DBR region 22 on SiO 2 101, as shown in FIG.
  • the DBR region 22 includes one DBR diffraction grating (second diffraction grating) 221_1 and another DBR diffraction grating (third diffraction grating) optically coupled thereto in the waveguide direction (the Y direction in the drawing). 221_2.
  • Other configurations are the same as those of the first embodiment.
  • the first diffraction grating 111, one DBR diffraction grating (second diffraction grating) 221_1, and another DBR diffraction grating (third diffraction grating) 221_2 are arranged in order in the waveguide direction. be.
  • the first diffraction grating 111, another DBR diffraction grating (third diffraction grating) 221_2, and one DBR diffraction grating (second diffraction grating) 221_1 are arranged in order in the waveguide direction. good too.
  • the first diffraction grating 111, the one DBR diffraction grating (second diffraction grating) 221_1, and the other DBR diffraction grating (third diffraction grating) 221_2 are arranged in contact with each other, They may be arranged side by side, or may be arranged so as to be optically coupled.
  • the lengths of the first diffraction grating 111, the second diffraction grating 221_1, and the third diffraction grating 221_2 are, for example, 75 ⁇ m, 50 ⁇ m, and 50 ⁇ m, respectively.
  • the heater 14 is arranged on the surface of the SiO 2 clad 123 at a position capable of raising the temperature of the InP waveguide layer 122 near the second diffraction grating 221_1 and the third diffraction grating 221_2.
  • the heater 14 is arranged on the surface of the SiO2 clad 123 is shown, but the present invention is not limited to this, and may be embedded in the SiO2 clad 123 so that the temperature of the InP waveguide layer 122 can be changed. If it is shown, but the present invention is not limited to this, and may be embedded in the SiO2 clad 123 so that the temperature of the InP waveguide layer 122 can be changed. If it is
  • the pitch (period) of each diffraction grating is set so that the Bragg wavelength of the third diffraction grating 221_2 is on the longer wavelength side than the Bragg wavelength of the second diffraction grating 221_1.
  • the Bragg wavelength of the second diffraction grating 221_1 is set on the shorter wavelength side than the emission wavelength of the DFB diffraction grating (first diffraction grating) 111 on the short wavelength side when the heater 14 is off.
  • the Bragg wavelength of the second diffraction grating 221_1 may be set to match the emission wavelength of the DFB diffraction grating 111 on the shorter wavelength side when the heater 14 is on, as will be described later.
  • the semiconductor laser 20 oscillates at an emission wavelength on the short wavelength side of the DFB diffraction grating 111 at room temperature with the heater 14 turned on.
  • this emission wavelength is comparable to the MQW gain peak wavelength.
  • the operation of the semiconductor laser 20 according to this embodiment differs from the first embodiment in that the heater 14 is turned on at room temperature and turned off at high temperature.
  • FIG. 5 shows the reflection spectrum S11 of the DFB diffraction grating (first diffraction grating) 111, the reflection spectrum S22_1 of one DBR diffraction grating (second diffraction grating) 221_1, and the other DBR diffraction grating in the semiconductor laser 20.
  • the reflection spectrum S22_2 of the (third diffraction grating) 221_2 and the gain spectrum S113 of the MQW active layer 113 are shown.
  • the figure shows each spectrum (2_1) at room temperature and each spectrum (2_2) at high temperature.
  • the Bragg wavelength of the second diffraction grating 221_1 and the emission wavelength on the short wavelength side of the DFB diffraction grating 111 match (wavelength ⁇ 2_1), and oscillation occurs (2_1 in the figure). ).
  • the gain peak S113 of the MQW active layer shifts to the longer wavelength side than the oscillation wavelength S11 of the DFB diffraction grating and the DBR diffraction grating. deteriorates.
  • the emission wavelength on the long wavelength side of the DFB diffraction grating 111 matches the Bragg wavelength of the third diffraction grating 221_2 and the gain peak wavelength of the MQW active layer 113. (2_2 in the figure).
  • the semiconductor laser 20 by turning on the heater 14 at room temperature and turning it off at high temperatures, the reduction in output at high temperatures is suppressed, and good high-temperature operation characteristics are obtained.
  • the heater 14 can be turned on when the injection current to the DFB laser is low at room temperature, and can be turned off when the injection current to the DFB laser is high at high temperature.
  • the power consumption at high temperatures can be uniformed, and the total power consumption can be reduced.
  • the semiconductor laser according to the present embodiment a decrease in output at high temperatures is suppressed, good high-temperature operating characteristics are obtained, and low power consumption can be achieved.
  • Figures 6A and 6B show the calculation results of the temperature dependence of the oscillation peak wavelength and gain peak wavelength in the DFB laser.
  • the experimental data obtained with the DFB laser was used for the temperature characteristics of the gain and the temperature dependence of the oscillation wavelength, which were set to 0.4 nm/K and 0.085 nm/K, respectively.
  • the shift amount of the gain peak wavelength 2_4 is larger than the shift amount of the oscillation wavelength 2_30, and the difference is 18.9 nm at 80°C (arrow in the figure).
  • the full width at half maximum of the gain spectrum of the normal MQW active layer 113 is about 40 nm, it is estimated that the gain is reduced to about half.
  • FIG. 6B shows an example of the relationship between the temperature dependence of the two oscillation wavelengths 2_31 and 2_32 and the temperature dependence of the gain peak wavelength 2_4 in the DFB laser.
  • the difference between the two oscillation wavelengths 2_31 and 2_32 that is, the stop band width (wavelength switching width) is assumed to be 9 nm.
  • the difference between the oscillation wavelengths 2_31 and 2_32 and the gain wavelength 2_4 is about 5 nm at room temperature (25° C.), 55° C. and 80° C. (arrows in the figure).
  • the temperature range covered by the oscillation wavelength of one DFB laser is halved. can be reduced to 5 nm or less.
  • FIG. 7A shows the reflection spectrum when the coupling coefficient of the DFB diffraction grating is changed in the 1.55 ⁇ m wavelength band.
  • the equivalent refractive index of the active layer region was 2.7 for the 1.55 ⁇ m wavelength band and 2.9 for the 1.31 ⁇ m wavelength band.
  • FIG. 7B shows the coupling coefficient dependence of the stop band width of the DFB diffraction grating in the 1.55 ⁇ m wavelength band. From this, it can be seen that a coupling coefficient of about 400 cm ⁇ 1 is necessary to obtain a wavelength switching width of 9 nm.
  • the stop band width similarly increases as the coupling coefficient increases in the 1.31 ⁇ m wavelength band.
  • the semiconductor laser 20 is a membrane laser having a thin-film structure surrounded by a medium with a low refractive index such as air, there is a gap between InP and SiO 2 or a medium with a low refractive index such as air.
  • a diffraction grating is formed in Therefore, since the coupling coefficient depends on the refractive index difference between InP and SiO 2 or air, the coupling coefficient can be set to about 900 cm ⁇ 1 and the stop band width can be set to about 10 to 20 nm.
  • a coupling coefficient of 400 cm ⁇ 1 or 600 cm ⁇ 1 can be set for the DFB diffraction grating, and the stop band width of the DFB wavelength can be made about 9 nm. Therefore, the deviation between the gain wavelength and the oscillation wavelength can be reduced to 5 nm or less, and the decrease in output at high temperatures can be suppressed.
  • the heater 14 is arranged at a position where the temperature of the second diffraction grating 221_1 and the third diffraction grating 221_2 can be raised.
  • a heater 14 may be arranged.
  • an example of arranging two DBR diffraction gratings in the DBR region is shown, but the present invention is not limited to this.
  • a plurality of DBR gratings of three or more may be arranged.
  • a modulated diffraction grating or a sampled diffraction grating may be arranged in the DBR region.
  • the embodiment of the present invention shows an example in which the wavelength of the DBR region is shifted by the heater, it is not limited to this.
  • An electrode connected to a power supply may be placed in the waveguide layer of the DBR region and a reverse bias may be applied to pull out carriers to change the refractive index and shift the wavelength of the DBR region.
  • a configuration for changing the refractive index of the DBR region hereinafter referred to as "refractive index control section" may be provided.
  • the refractive index control unit is a heater
  • the heater can be turned on to increase the temperature of the DBR region and increase the refractive index.
  • the refractive index can be increased by turning on the refractive index control section and applying a reverse bias to the DBR region to extract carriers. In this manner, the refractive index of the DBR region can be increased and the wavelength of the DBR region can be shifted to the long wavelength side while the refractive index control section is on.
  • the state in which the emission wavelength of the DFB diffraction grating matches the Bragg wavelength of the DBR diffraction grating is, for example, the emission peak in the emission spectrum of the DFB diffraction grating and the DBR It refers to a state in which broad peaks overlap in the reflection spectrum of a diffraction grating.
  • only one stop band emission (for example, the short wavelength side) of the DFB diffraction grating receives feedback from the DBR diffraction grating, so that the emission from the short wavelength side stop band can be extracted in the DFB diffraction grating.
  • an example of the configuration of the semiconductor laser for wavelength bands of 1.55 ⁇ m and 1.31 ⁇ m has been shown, but other wavelength bands may be used.
  • a structure using InP-based compound semiconductors has been shown as a layer structure of a semiconductor laser such as an active layer, a waveguide layer, p-type and n-type semiconductor layers, other InP-based compound semiconductors may be used.
  • other semiconductors such as GaAs or Si may be used, and materials that can constitute a semiconductor laser may be used.
  • the present invention can be applied to light-emitting devices in Internet communication systems, computer systems, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本発明の半導体レーザ(10)は、順に、第1の半導体層(112)と、活性層(113)と、第2の半導体層(114)とを備える導波路構造と、活性層(113)の一方の側面に接して配置されるp型半導体層(115_1)と、活性層(113)の他方の側面に接して配置されるn型半導体層(115_2)と、活性層(113)の導波方向に光学的に結合される導波路層(122)と、前記第1の半導体層の下面と、前記第2の半導体層の上面と、前記活性層の側面とのいずれか一方に配置される第1の回折格子(111)と、導波路層(122)の下面と上面とのいずれか一方に配置される第2の回折格子(121)と、導波路層(122)の屈折率を変化させる屈折率制御部(14)とを備える。 これにより、本発明の半導体レーザは、簡易な構成で良好な高温動作を提供できる。

Description

半導体レーザ
 本発明は、回折格子を有し、高温動作できる半導体レーザに関する。
 近年、インターネットにおいて急激に増大する伝送容量に対応するため、光デバイスの省電力化が必要とされ、とくに、室温から高温の広い温度範囲で動作できる半導体レーザが必要とされている。
 また、光電子デバイスのモジュール実装の高密度化にともない、デバイス温度が増加するので、高温で動作できる半導体レーザが必要とされている。
 従来、半導体レーザは、例えば、DFBレーザ(Distributed feedback laser diode、分布帰還型レーザ)は、量子井戸構造の活性層と回折格子などの共振器構造からなる構成により、単一モードで発振できる(非特許文献1、2)。ここで、良好なレーザ特性を得るためには、活性層の利得波長と共振波長とが一致することが必要である。
T. Fujii et al., "Heterogeneously Integrated Membrane Lasers on Si Substrate for Low Operating Energy Optical Links," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 1, pp. 1-8, Jan.-Feb. 2018, Art no. 1500408, doi: 10.1109/JSTQE.2017.2778510. "Widely tunable laser with lattice filter on Si photonic platform," Takuma Aihara, Tatsurou Hiraki, Takuro Fujii, Koji Takeda, Tai Tsuchizawa, Takaaki Kakitsuka, Hiroshi Fukuda, Shinji Matsuo, Compound Semiconductor Week 2021 (CSW 2021)   TuA2-5  2021年05月 M. Chacinski, M. Isaksson and R. Schatz,"High-speed direct Modulation of widely tunable MG-Y laser," in IEEE Photonics Technology Letters, vol. 17, no. 6, pp. 1157-1159, June 2005, doi: 10.1109/LPT.2005.846489. S. Paul et al., "10-Gb/s Direct Modulation of Widely Tunable 1550-nm MEMS VCSEL," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 6, pp. 436-443, Nov.-Dec. 2015, Art no. 1700908, doi: 10.1109/JSTQE.2015.2418218. K. Hasebe, T. Sato, K. Takeda, T. Fujii, T. Kakitsuka and S. Matsuo, "High-Speed Modulation of Lateral p-i-n Diode Structure Electro-Absorption Modulator Integrated With DFB Laser," in Journal of Lightwave Technology, vol. 33, no. 6, pp. 1235-1240, 15 March15, 2015, doi: 10.1109/JLT.2014.2383385. Gladyshev, A.G., Novikov, I.I., Karachinsky, L.Y. et al., "Optical properties of InGaAs/InGaAlAs quantum wells for the 1520-1580 nm spectral range," Semiconductors  50, 1186-1190 (2016). https://doi.org/10.1134/S1063782616090098.
 従来のDFBレーザでは、利得波長の温度依存性と屈折率の温度依存性が異なるために、動作温度を変えると材料利得と発振波長の不一致が生じ、特性が劣化する。
 そこで、従来のDFBレーザでは、高温で良好な特性で動作させるために、温度コントローラを備えて低温で動作させる構成、又は半導体変調器や半導体光増幅器などを一体集積する構成、活性層に高温動作に優れる材料を用いる構成などが開示されている(非特許文献3~6)。
 しかしながら、これらの構成は複雑であるため、製造プロセスの複雑化、製造コストの増加などが問題となっていた。
 上述したような課題を解決するために、本発明に係る半導体レーザは、順に、第1の導体層と、活性層と、第2の半導体層とを備える導波路構造と、前記活性層の一方の側面に接して配置されるp型半導体層と、前記活性層の他方の側面に接して配置されるn型半導体層と、前記活性層の導波方向に光学的に結合される導波路層と、前記第1の半導体層の下面と、前記第2の半導体層の上面と、前記活性層の側面とのいずれか一方に配置される第1の回折格子と、前記導波路層の下面と上面とのいずれか一方に配置される第2の回折格子と、前記導波路層の屈折率を変化させる屈折率制御部とを備える。
 本発明によれば、簡易な構成で良好な高温動作を実現できる半導体レーザを提供できる。
図1Aは、本発明の第1の実施の形態に係る半導体レーザの構成を示す上面透視図である。 図1Bは、本発明の第1の実施の形態に係る半導体レーザの構成を示すIB-IB’断面図である。 図1Cは、本発明の第1の実施の形態に係る半導体レーザの構成を示すIC-IC’断面図である。 図2Aは、本発明の第1の実施の形態に係る半導体レーザの動作を説明するための図である。 図2Bは、本発明の第1の実施の形態に係る半導体レーザの動作を説明するための図である。 図3は、本発明の第1の実施の形態に係る半導体レーザの構成の一例を示す上面透視図である。 図4は、本発明の第2の実施の形態に係る半導体レーザの構成を示す上面透視図である。 図5は、本発明の第2の実施の形態に係る半導体レーザの動作を説明するための図である。 図6Aは、本発明の第2の実施の形態に係る半導体レーザの動作を説明するための図である。 図6Bは、本発明の第2の実施の形態に係る半導体レーザの動作を説明するための図である。 図7Aは、本発明の第2の実施の形態に係る半導体レーザの動作を説明するための図である。 図7Bは、本発明の第2の実施の形態に係る半導体レーザの動作を説明するための図である。 図8Aは、本発明の第2の実施の形態に係る半導体レーザの動作を説明するための図である。 図8Bは、本発明の第2の実施の形態に係る半導体レーザの動作を説明するための図である。
<第1の実施の形態>
 本発明の第1の実施の形態に係る半導体レーザについて、図1A~図2Bを参照して説明する。
<半導体レーザの構成>
 本実施の形態に係る半導体レーザ10は、図1Aに示すように、SiO101上に、DFB(Distributed feedback)領域11と、DBR(Distributed Bragg Reflector)領域12と、出力用導波路13から構成される。
 ここで、SiO101は、SiO以外のSiN、SiNOなどの誘電体を用いてもよい。また、SiO101は、基板上に形成される。基板には、Siが用いられ、Si以外の半導体や誘電体を用いてもよい。
 DFB領域11は、図1Bに示すように、SiO101上に、第1の半導体層(InP)112と、活性層として多重量子井戸(MQW、multi quantum well)113と、第2の半導体層(InP)114とが積層され、導波路構造に形成される。この導波路構造の幅方向(図中X方向)の一方の側面に、p型InP層115_1が接して配置され、その上にp型コンタクト層(例えば、p型InGaAs)116_1を介して、p型電極(例えば、金)117_1を備える。また、他方の側面に、n型InP層115_2が接して配置され、その上にn型コンタクト層(例えば、n型InGaAs)116_2を介して、n型電極(例えば、金)117_2を備える。
 ここで、例えば、MQW活性層113は、1.55μm波長帯のInGaAsP井戸層とInGaAsP障壁層とからなり、6周期で厚さが105nm程度である。第1の半導体層(InP)112と第2の半導体層(InP)114との厚さはそれぞれ165nm、80nmである。また、SiO101の厚さは2μm、p型InP層115_1およびn型InP層115_2の厚さは350nmである。
 ここで、MQW活性層113は、1.31μm波長帯でもよい。MQWには、InGaAsP以外でもInGaAs、InGaAlAs、GaInNAsなどを用いてもよい。MQWの周期、厚さなどの構成は、他の構成でもよい。
 DFB領域11では、活性層113の上方の第2の半導体層(InP)114の上面にDFB回折格子(第1の回折格子)111を備える。DFB回折格子(第1の回折格子)111の結合係数は、InPの屈折率と空気の屈折率で決定される。ここで、DFB回折格子111において、例えば、ピッチ(周期)は200nm~300nm程度であり、深さは10nm~50nm程度であり、所望の発光(発振)波長や結合係数によって設定される。
 また、活性層113の下方の第1の半導体層(InP)112とSiO101の境界に回折格子を備えてもよい。この場合、回折格子の結合係数はInPの屈折率とSiOの屈折率で決定される。
 また、活性層113の側面、すなわち活性層113とp型InP層115_1との境界または活性層113とn型InP層115_2との境界に回折格子を備えてもよい。この場合、活性層113を導波路構造に加工する工程において回折格子形状(凹凸形状)パターンを有するマスクを用いればよい。
 このように、半導体レーザ10のDFB領域11は、メンブレン型のレーザの構成を有し、活性層113に横方向に電流が注入され、レーザ発振し、レーザ光を出射する(図中、矢印15)。
 DBR領域12は、図1Aに示すように、DFB領域11に、導波方向(図中、Y方向)に接続される。ここで、DBR領域12は、DFB領域11に光学的に結合されればよい。
 DBR領域12は、図1Cに示すように、SiO101上に、InP導波路層122と、InP導波路層122を覆うSiOクラッド123とを備え、SiOクラッド123の表面にヒータ14を備える。
 また、DBR領域12では、InP導波路層122の上面とSiOクラッド123と境界にDBR回折格子(第2の回折格子)121を備える。または、InP導波路層122の下面とSiO101との境界に、DBR回折格子121を備えてもよい。
 ここで、DBR回折格子121において、例えば、ピッチ(周期)は200nm~300nm程度であり、深さは10nm~50nm程度であり、所望の発光(発振)波長や結合係数によって設定される。とくに、ピッチ(周期)は、後述のように、DFB回折格子(第1の回折格子)111の発光波長と関係で設定される。
 DBR領域12において、ヒータ14によりInP導波路層122の温度を変化させ、屈折率を変化させる。これにより、InP導波路層122の回折格子121の結合係数が変化して、ピーク波長が変化する。
 ヒータ14は、金属製でも樹脂製でもよい。また、ヒータ14をSiOクラッド123の表面に配置する例を示したが、これに限らず、SiOクラッド123またはSiO101内に埋め込んでもよく、InP導波路層122の温度を変化させることができる構成であればよい。
 ここで、例えば、DFB領域11とDBR領域12の長さはそれぞれ75μm、50μmであり、DFB領域11の活性層113の幅およびDBR領域12のInP導波路122の幅は1.0μmである。
 出力用導波路13は、出力端に向けて幅が狭くなるテーパ形状を有する。ここで、出力用導波路13は配置されなくてもよい。
<半導体レーザの動作>
 本実施の形態に係る半導体レーザ10の動作を、以下に説明する。
 従来のDFBレーザでは、λ/4シフトを有さないDFB回折格子は2つのストップバンド端発光波長(短波長側と長波長側)を有するので、MQW活性層113の利得ピークの波長と一致する2つストップバンド端の波長で発振できる。
 図2A、Bに、DFBレーザにDBR回折格子が集積される半導体レーザ(Distributed Reflectorレーザ、 DRレーザ)における、DFB回折格子の発光スペクトルS11と、DBR回折格子の反射スペクトルS12と、MQW活性層の利得スペクトルS113とを示す。
 図2Aに、従来のDRレーザにおける室温時の各スペクトル(1_1)と、高温時の各スペクトル(1_2)とを示す。
 従来のDRレーザでは、DBR回折格子が、DFB回折格子の短波長側と長波長側いずれか一方のストップバンド発光の波長(例えば、λ1_1)を選択して発振する(図中、1_1)。
 高温では、MQW活性層の利得ピークS113が長波長側にシフトして(波長λ1_a)、強度が減少する。一方、DFB回折格子とDBR回折格子による発振波長も長波長側にシフトするが、この波長(λ1_1’)のシフト量は利得ピークより小さい。その結果、MQW活性層の利得ピーク(λ1_a)と発振波長のピーク(λ1_1’)には、ずれが生じる(図中、1_2)。これにより、DRレーザの高温時の特性は劣化する。
 図2Bに、本実施の形態に係る半導体レーザ10における室温時の各スペクトル(1_3)と、高温時の各スペクトル(1_4)とを示す。
 半導体レーザ10では、室温では、ヒータ14がオフの状態で、従来のDRレーザと同様に、DFB回折格子(第1の回折格子)111とDBR回折格子(第2の回折格子)121による発振波長と、MQW活性層113の利得ピークの波長とが、波長λ1_1で一致する(図中、1_3)。ここで、DFB回折格子111の短波長側の発光波長で発振するように、DBR回折格子121のブラッグ波長が設定される。
 高温時には、DBR回折格子121を有するInP導波路層122の近傍に配置されるヒータ14をONにして昇温して(例えば、100℃程度)、DBR回折格子121のInP導波路層122の温度を増加させる。これにより、DBR回折格子121のInP導波路層122の屈折率が増加して、DBR回折格子121のブラッグ波長が長波長側にシフトする。
 その結果、半導体レーザ10では、DBR回折格子121のブラッグ波長がDFB回折格子111の長波長側の発光波長と一致して、長波長側の発光波長(λ1_2)で発振する。
 高温時には、MQW活性層113の利得ピークも、上述の通り、長波長側にシフトする(図中、1_4)。
 このように、半導体レーザ10では、高温時に、DBR回折格子121のブラッグ波長と一致するDFB回折格子111の長波長側の発光波長と、MQW活性層113の利得ピークとが一致して発振するので、高温時の出力の低下が抑制され、良好な高温動作特性が得られる。
 本実施の形態に係る半導体レーザによれば、高温時の出力の低下が抑制され、良好な高温動作特性が得られる。
<変形例>
 本実施の形態の変形例に係る半導体レーザ10_2は、図3に示すように、DFB領域11とDBR領域12の間に、導波路領域16を備える。
 導波路領域16は、SiO101上に、InP導波路層122と、InP導波路を覆うSiOクラッド123とを備え、DBR領域12と同じ層構成を有するが、回折格子とヒータ14を備えない。導波路領域16の長さは、20μm程度である。
 換言すれば、DBR領域12のInP導波路層122は、DFB領域11の活性層113と所定の間隔(例えば、20μm)を介して、DBR回折格子(第2の回折格子)121とヒータ14とを備える。
 導波路領域16は、ヒータ14による昇温時のDBR領域12からDFB領域11への熱伝導を抑制する。
 導波路領域16を有さない構成では、ヒータ14による昇温時に、DBR領域12からDFB領域11に熱が伝導してDFB領域11の温度が増加するので、DFB回折格子(第1の回折格子)111のピーク波長が長波長側にシフトするとともに、MQW活性層113の利得ピークが長波長側にシフトして強度が減少する。
 その結果、DFB回折格子111の長波長側の発光波長と一致させるために必要なDBR回折格子121のピーク波長のシフト量が増加するので、ヒータの消費電力が増加する。
 また、MQW活性層113の利得ピークの強度が減少するので、半導体レーザの出力が低下する。
 一方、本変形例に係る半導体レーザ10_2では、DBR領域12からDFB領域11への熱伝導が抑制されるので、DFB領域11の温度増加が抑制され、DFB回折格子111のピーク波長のシフトと、MQW活性層113の利得ピーク波長のシフトと強度の減少が抑制される。その結果、ヒータの消費電力の増加と半導体レーザの出力の低下が抑制される。
 本変形例に係る半導体レーザによれば、高温時のヒータの昇温によるDFB領域11への影響を抑制でき、良好な高温動作特性を実現できる。
 本変形例では、回折格子とヒータを備えない導波路領域を備える一例を示したが、これに限らない。回折格子とヒータを備えない導波路領域(InP)が、DFB領域からDBR領域に向けて細くなるテーパ形状を有し、導波路領域(InP)下方のSiO101内に導波路領域(InP)と光結合するSi導波路を備え、Si導波路が回折格子とヒータを有する構成であってもよい。
<第2の実施の形態>
 本発明の第2の実施の形態に係る半導体レーザについて、図4~図8Bを参照して説明する。
<半導体レーザの構成>
 本実施の形態に係る半導体レーザ20は、図4に示すように、SiO101上に、DFB領域11とDBR領域22とから構成される。
 DBR領域22は、一のDBR回折格子(第2の回折格子)221_1と、これに導波方向(図中、Y方向)に光学的に結合する他のDBR回折格子(第3の回折格子)221_2とを有する。その他の構成は、第1の実施の形態と同様である。
 ここで、導波方向に、順に、第1の回折格子111と、一のDBR回折格子(第2の回折格子)221_1と、他のDBR回折格子(第3の回折格子)221_2とが配置される。また、導波方向に、順に、第1の回折格子111と、他のDBR回折格子(第3の回折格子)221_2と、一のDBR回折格子(第2の回折格子)221_1とが配置されてもよい。
 また、第1の回折格子111と、一のDBR回折格子(第2の回折格子)221_1と、他のDBR回折格子(第3の回折格子)221_2とは接して配置されても、間隔を介して配置されてもよく、光学的に結合するように配置されればよい。
 また、第1の回折格子111と、第2の回折格子221_1と、第3の回折格子221_2との長さは、例えば、それぞれ75μm、50μm、50μmである。
 また、ヒータ14が、SiOクラッド123の表面に、第2の回折格子221_1と第3の回折格子221_2との近傍のInP導波路層122を昇温できる位置に配置される。ここで、ヒータ14をSiOクラッド123の表面に配置する例を示したが、これに限らず、SiOクラッド123内に埋め込んでもよく、InP導波路層122の温度を変化させることができる構成であればよい。
 DBR領域22において、第3の回折格子221_2のブラッグ波長が、第2の回折格子221_1のブラッグ波長より長波長側になるように、それぞれの回折格子のピッチ(周期)が設定される。
 また、第2の回折格子221_1のブラッグ波長が、ヒータ14がオフの状態で、DFB回折格子(第1の回折格子)111の短波長側の発光波長よりも短波長側に設定される。ここで、第2の回折格子221_1のブラッグ波長は、後述のように、ヒータ14がオンの状態で、DFB回折格子111の短波長側の発光波長と一致する程度に設定されればよい。
 これにより、半導体レーザ20は、室温で、ヒータ14がオンの状態で、DFB回折格子111の短波長側の発光波長で発振する。ここで、この発光波長は、MQW利得ピーク波長と同程度である。
<半導体レーザの動作>
 本実施の形態に係る半導体レーザ20の動作において、室温時にヒータ14をオンにし、高温時にヒータ14をオフにする点で、第1の実施の形態と異なる、以下に、詳細を説明する。
 図5に、半導体レーザ20における、DFB回折格子(第1の回折格子)111の反射スペクトルS11と、一のDBR回折格子(第2の回折格子)221_1の反射スペクトルS22_1と、他のDBR回折格子(第3の回折格子)221_2の反射スペクトルS22_2と、MQW活性層113の利得スペクトルS113とを示す。図中、室温時の各スペクトル(2_1)と、高温時の各スペクトル(2_2)とを示す。
 室温において、ヒータ14をオンにする状態で、第2の回折格子221_1のブラッグ波長とDFB回折格子111の短波長側の発光波長とが一致して(波長λ2_1)、発振する(図中、2_1)。
 高温において、第1の実施の形態と同様に、MQW活性層の利得ピークS113が、DFB回折格子とDBR回折格子による発振波長S11よりも大きく長波側へシフトするため、DRレーザの高温時の特性は劣化する。
 このとき、ヒータ14をオフにすることで、DFB回折格子111の長波長側の発光波長が、第3の回折格子221_2のブラッグ波長と一致して、MQW活性層113の利得ピークの波長と同程度の波長λ2_2で発振する(図中、2_2)。
 したがって、半導体レーザ20では、ヒータ14を室温時にオンにして高温時にオフにすることにより、高温時の出力の低下が抑制され、良好な高温動作特性が得られる。
 このように、半導体レーザ20の動作において、室温でDFBレーザへの注入電流が低いときにヒータ14をオンにして、高温でDFBへの注入電流が高いときにヒータ14をオフにできるので、室温から高温での消費電力を均一化でき、トータルで消費電力を低減できる。
 本実施の形態に係る半導体レーザによれば、高温時の出力の低下が抑制され、良好な高温動作特性が得られるとともに、低消費電力化を実現できる。
 本実施の形態に係る半導体レーザ20の動作の一例を、以下に説明する。
 図6A、Bに、DFBレーザにおける発振ピーク波長と利得ピーク波長との温度依存性の計算結果を示す。
 計算では、利得の温度特性と発振波長の温度依存性に、DFBレーザで得られた実験データを用い、それぞれ0.4nm/K、0.085nm/Kとした。
 図6Aに示すように、DFBレーザにおける1つの発振波長2_30を利得ピーク波長2_4と室温で一致させ温度を増加するとき、発振波長2_30と利得ピーク波長2_4ともに長波長側にシフトする。
 ここで、利得ピーク波長2_4のシフト量が発振波長2_30のシフト量よりも大きく、その差は80℃において18.9nmである(図中、矢印)。このとき、通常のMQW活性層113の利得スペクトルの半値全幅は40nm程度なので、利得が半分程度まで低下すると推定される。
 図6Bに、DFBレーザにおける2つの発振波長2_31、2_32の温度依存性と、利得ピーク波長2_4の温度依存性との関係の一例を示す。
 ここで、2つの発振波長2_31、2_32の差すなわちストップバンド幅(波長スイッチング幅)を9nmとする。この場合、55℃で発振波長を切り替えれば、発振波長2_31、2_32と利得波長2_4との差は、室温(25℃)、55℃、80℃それぞれで5nm程度である(図中、矢印)。
 このように、2つのDFBレーザの発振波長を用いれば、1つのDFBレーザの発振波長でカバーする温度範囲が半分になり、9nmの波長スイッチング幅のDFBレーザを用いれば、利得波長と発振波長とのずれは5nm以下に低減できる。
 次に、DFBレーザにおいて、9nmの波長スイッチング幅を実現する回折格子の構成を説明する。
 図7Aに、1.55μm波長帯においてDFBの回折格子の結合係数を変化させたときの反射スペクトルを示す。ここで、活性層領域の等価屈折率は、1.55μm波長帯について2.7、1.31μm波長帯について2.9とした。また、回折格子結合係数κと活性層長Lの積(κ・L)=5となるように活性層長を変化させて計算した。それぞれのスペクトルで2つの最大ピークが観測され、このピーク間隔すなわちストップバンド幅が結合係数の増加に伴い増加する。
 図7Bに、1.55μm波長帯におけるDFBの回折格子のストップバンド幅の結合係数依存性を示す。これより、9nmの波長スイッチング幅を得るためには、400cm-1程度の結合係数が必要であることがわかる。
 また、図8Aに示すように、1.31μm波長帯においても同様に、ストップバンド幅が結合係数の増加に伴い増加する。
 図8Bより、1.31μm波長帯において、9nmの波長スイッチング幅を得るためには、600cm-1程度の結合係数が必要であることがわかる。
 通常のInP系DFBレーザでは、InPとInGaAsPとの間に回折格子が形成される。したがって、結合係数はInPとInGaAsPとの屈折率差に依存するので、結合係数を100cm-1以上、ストップバンド幅を2~3nm以上に設定することは困難である。
 一方、本実施の形態に係る半導体レーザ20は、空気などの低屈折率な媒質に囲まれた薄膜構造を有するメンブレン型レーザなので、InPとSiO又は空気等の低屈折率な媒質との間に回折格子が形成される。したがって、結合係数はInPとSiO又は空気等との屈折率差に依存するので、結合係数を900cm-1程度に設定でき、ストップバンド幅を10~20nm程度にできる。
 そこで、本実施の形態に係る半導体レーザを用いれば、DFB回折格子に400cm-1や600cm-1の結合係数を設定でき、DFB波長のストップバンド幅を9nm程度にできる。したがって、利得波長と発振波長とのずれを5nm以下に低減でき、高温時の出力の低下を抑制できる。
 本実施の形態では、第2の回折格子221_1と第3の回折格子221_2とを昇温できる位置にヒータ14を配置する例を示したが、第2の回折格子221_1のみを昇温できる位置にヒータ14を配置してもよい。
 本実施の形態では、DBR領域に2つのDBR回折格子を配置する例を示したが、これに限らない。3つ以上の複数のDBR回折格子を配置してもよい。また、DBR領域に、変調回折格子やサンプルド回折格子を配置してもよい。
 本発明の実施の形態では、ヒータによりDBR領域の波長をシフトさせる例を示したが、これに限らない。電源に接続される電極をDBR領域の導波路層に配置して逆バイアスを印加してキャリアを引き抜いて、屈折率を変化させて、DBR領域の波長をシフトさせてもよい。このように、DBR領域の屈折率を変化させる構成(以下、「屈折率制御部」という。)を備えればよい。
 ここで、屈折率制御部がヒータである場合には、ヒータをオンにしてDBR領域の温度を増加して、屈折率を増加できる。また、屈折率制御部をオンにしてDBR領域に逆バイアスを印加してキャリアを引き抜いて、屈折率を増加できる。このように、屈折率制御部がオンの状態で、DBR領域の屈折率を増加させ、DBR領域の波長を長波長側にシフトできる。
 本発明の実施の形態では、DFB回折格子の発光波長とDBR回折格子のブラッグ波長等が一致する状態とは、例えば、図2Aに示すように、DFB回折格子の発光スペクトルにおける発光ピークと、DBR回折格子の反射スペクトルにおけるブロードなピークが重なる状態をいう。このとき、DFB回折格子の一方のストップバンド発光(例えば、短波長側)のみがDBR回折格子による帰還を受けるため、DFB回折格子において、短波長側ストップバンドからの発光を取り出すことができる。
 本発明の実施の形態では、リング共振器、DBR領域が利得領域と光学的に結合する例を示したが、この場合、リング共振器、DBR領域における導波路が、利得領域の活性層とが光学的に結合すればよい。
 本発明の実施の形態では、1.55μmと1.31μmとの波長帯の半導体レーザの構成の一例を示したが、他の波長帯であってもよい。また、活性層、導波路層、p型およびn型半導体層などの半導体レーザの層構成として、InP系の化合物半導体を用いる構成の一例を示したが、他のInP系の化合物半導体を用いてもよく、GaAs系、Si系などの他の半導体を用いてもよく、半導体レーザを構成できる材料を用いればよい。
 本発明の実施の形態では、半導体レーザの構成、などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。半導体レーザの機能を発揮し効果を奏するものであればよい。
  本発明は、インターネット通信システムやコンピュータシステム等における発光デバイスに適用することができる。
10 半導体レーザ
111 第1の回折格子
112 第1の半導体層
113 活性層
114 第2の半導体層
115_1 p型半導体層
115_2 n型半導体層
121 第2の回折格子
122 導波路層
14 屈折率制御部
 

Claims (7)

  1.  順に、第1の半導体層と、活性層と、第2の半導体層とを備える導波路構造と、
     前記活性層の一方の側面に接して配置されるp型半導体層と、
     前記活性層の他方の側面に接して配置されるn型半導体層と、
     前記活性層の導波方向に光学的に結合される導波路層と、
     前記第1の半導体層の下面と、前記第2の半導体層の上面と、前記活性層の側面とのいずれか一方に配置される第1の回折格子と、
     前記導波路層の下面と上面とのいずれか一方に配置される第2の回折格子と、
     前記導波路層の屈折率を変化させる屈折率制御部と
     を備える半導体レーザ。
  2.  前記第1の回折格子が2つのストップバンド端発光波長を有し、
     前記屈折率制御部がオフの状態で、前記第1の回折格子の短波長側の前記ストップバンド端発光波長が、前記第2の回折格子により選択され発振し、
     前記屈折率制御部がオンの状態で、前記第1の回折格子の長波長側の前記ストップバンド端発光波長が、前記第2の回折格子により選択され発振する
     ことを特徴とする請求項1に記載の半導体レーザ。
  3.  前記第2の回折格子と導波方向で光学的に結合する第3の回折格子を備え、
     前記第3の回折格子のブラッグ波長が、前記第2の回折格子のブラッグ波長より長く、
     前記第2の回折格子のブラッグ波長が、前記短波長側の前記ストップバンド端発光波長より短い
     ことを特徴とする請求項2に記載の半導体レーザ。
  4.  前記第1の回折格子が2つのストップバンド端発光波長を有し、
     前記屈折率制御部がオンの状態で、前記第1の回折格子の短波長側の前記ストップバンド端発光波長が、前記第2の回折格子により選択され発振し、
     前記屈折率制御部がオフの状態で、前記第1の回折格子の長波長側の前記ストップバンド端発光波長が、前記第3の回折格子のピーク波長により選択され発振する
     ことを特徴とする請求項3に記載の半導体レーザ。
  5.  前記導波路層が、前記活性層と所定の間隔を介して、前記第2の回折格子と前記屈折率制御部を備える
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の半導体レーザ。
  6.  前記屈折率制御部が、ヒータである
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の半導体レーザ。
  7.  前記屈折率制御部が、電源に接続され、前記導波路層に配置される電極であって、前記電極にバイアスを印加して、前記導波路層のキャリア密度を変化させる
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の半導体レーザ。
PCT/JP2021/047032 2021-12-20 2021-12-20 半導体レーザ WO2023119367A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047032 WO2023119367A1 (ja) 2021-12-20 2021-12-20 半導体レーザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047032 WO2023119367A1 (ja) 2021-12-20 2021-12-20 半導体レーザ

Publications (1)

Publication Number Publication Date
WO2023119367A1 true WO2023119367A1 (ja) 2023-06-29

Family

ID=86901599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047032 WO2023119367A1 (ja) 2021-12-20 2021-12-20 半導体レーザ

Country Status (1)

Country Link
WO (1) WO2023119367A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295103A (ja) * 2005-03-17 2006-10-26 Fujitsu Ltd 波長可変レーザ
US20100260220A1 (en) * 2009-03-26 2010-10-14 Gideon Yoffe Semiconductor laser device and circuit for and method of driving same
JP2016152360A (ja) * 2015-02-18 2016-08-22 富士通株式会社 光半導体装置
JP2017204601A (ja) * 2016-05-13 2017-11-16 日本電信電話株式会社 半導体レーザ
JP2018006440A (ja) * 2016-06-29 2018-01-11 日本電信電話株式会社 半導体レーザ
WO2018070432A1 (ja) * 2016-10-12 2018-04-19 古河電気工業株式会社 半導体レーザ素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295103A (ja) * 2005-03-17 2006-10-26 Fujitsu Ltd 波長可変レーザ
US20100260220A1 (en) * 2009-03-26 2010-10-14 Gideon Yoffe Semiconductor laser device and circuit for and method of driving same
JP2016152360A (ja) * 2015-02-18 2016-08-22 富士通株式会社 光半導体装置
JP2017204601A (ja) * 2016-05-13 2017-11-16 日本電信電話株式会社 半導体レーザ
JP2018006440A (ja) * 2016-06-29 2018-01-11 日本電信電話株式会社 半導体レーザ
WO2018070432A1 (ja) * 2016-10-12 2018-04-19 古河電気工業株式会社 半導体レーザ素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AIHARA TAKUMA; HIRAKI TATSUROU; FUJII TAKURO; TAKEDA KOJI; KAKITSUKA TAKAAKI; TSUCHIZAWA TAI; MATSUO SHINJI: "Membrane III-V/Si DFB Laser Using Uniform Grating and Width-Modulated Si Waveguide", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 38, no. 11, 9 March 2020 (2020-03-09), USA, pages 2961 - 2967, XP011790448, ISSN: 0733-8724, DOI: 10.1109/JLT.2020.2978808 *

Similar Documents

Publication Publication Date Title
US9318868B2 (en) Tunable hybrid laser with carrier-induced phase control
EP0627798B1 (fr) Composant intégré monolithique laser-modulateur à structure multi-puits quantiques
US8787420B2 (en) Integrated semiconductor laser element
US5253314A (en) Tunable optical waveguide coupler
JP5882287B2 (ja) 波長可変フィルタ及び波長可変レーザモジュール
US20150155428A1 (en) Superluminescent diode, method of manufacturing the same, and wavelength-tunable external cavity laser including the same
US7949028B2 (en) Method of tuning a semiconductor laser device having coupled cavities
JP2009076942A (ja) 分布帰還型半導体レーザ、分布帰還型半導体レーザアレイ及び光モジュール
JP4954992B2 (ja) 半導体光反射素子及び該半導体光反射素子を用いる半導体レーザ及び該半導体レーザを用いる光トランスポンダ
US20090296753A1 (en) Semiconductor laser and optical integrated semiconductor device
JP5698267B2 (ja) 半導体デバイス
US8576472B2 (en) Optoelectronic device with controlled temperature dependence of the emission wavelength and method of making same
JP6483521B2 (ja) 半導体レーザ
JP6939411B2 (ja) 半導体光素子
JP2008147290A (ja) 量子構造及びそれを含む光増幅器、波長可変レーザ
WO2023119367A1 (ja) 半導体レーザ
JP2006203100A (ja) 半導体レーザおよび光送信器モジュール
US20050226283A1 (en) Single-mode semiconductor laser with integrated optical waveguide filter
WO2000065700A2 (en) Postgrowth adjustment of cavity spectrum for semiconductor lasers and detectors
US7852897B2 (en) Semiconductor laser optical integrated semiconductor device
WO2023119366A1 (ja) 半導体レーザ
WO2021117263A1 (ja) 直接変調レーザ
JP6452089B2 (ja) 半導体レーザ装置
Engelstaedter et al. Wavelength tunable laser using an interleaved rear reflector
KR100693632B1 (ko) 광대역 이득을 갖는 양자우물 레이저 다이오드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968805

Country of ref document: EP

Kind code of ref document: A1