WO2023116446A1 - 立体仓储系统以及用于其的货架系统和自动搬运设备 - Google Patents

立体仓储系统以及用于其的货架系统和自动搬运设备 Download PDF

Info

Publication number
WO2023116446A1
WO2023116446A1 PCT/CN2022/137438 CN2022137438W WO2023116446A1 WO 2023116446 A1 WO2023116446 A1 WO 2023116446A1 CN 2022137438 W CN2022137438 W CN 2022137438W WO 2023116446 A1 WO2023116446 A1 WO 2023116446A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
automatic handling
track
handling equipment
driving
Prior art date
Application number
PCT/CN2022/137438
Other languages
English (en)
French (fr)
Inventor
肖玉辉
王堃
李洪波
Original Assignee
北京极智嘉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202123214636.0U external-priority patent/CN216805043U/zh
Priority claimed from CN202123214615.9U external-priority patent/CN216470128U/zh
Priority claimed from CN202111586016.1A external-priority patent/CN116278546A/zh
Priority claimed from CN202123214658.7U external-priority patent/CN216996253U/zh
Priority claimed from CN202111564443.XA external-priority patent/CN116280841A/zh
Application filed by 北京极智嘉科技股份有限公司 filed Critical 北京极智嘉科技股份有限公司
Publication of WO2023116446A1 publication Critical patent/WO2023116446A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F1/00Vehicles for use both on rail and on road; Conversions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F1/00Vehicles for use both on rail and on road; Conversions therefor
    • B60F1/04Vehicles for use both on rail and on road; Conversions therefor with rail and road wheels on different axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • B62D63/04Component parts or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed

Definitions

  • the present disclosure relates to the technical field of intelligent storage, in particular, to a three-dimensional storage system, a shelf system and automatic handling equipment used therefor.
  • the existing three-dimensional storage system still has deficiencies.
  • AGVs, AMRs, and four-way vehicles are all high-cost handling equipment, and the existing AGVs and AMRs are limited to driving on the ground, while the existing four-way shuttle vehicles can only run on tracks, and need to be combined with special three-dimensional shelves system can be used. All these make the construction and use cost of the three-dimensional storage system high, and the scheduling lacks flexibility.
  • the purpose of the present disclosure is to provide a novel three-dimensional storage system, a racking system and an automatic handling device therefor, so as to at least partly solve the problems in the prior art.
  • a three-dimensional storage system includes: automatic handling equipment; a ground work area located on the ground; and an upper work area located on the upper floor, the upper work area includes at least A layer, each layer is provided with a plurality of storage positions and a road system for the automatic handling equipment to drive to the plurality of storage positions; the road system includes a platform forming a main road and a track communicating with the main road ; Wherein, the automatic handling equipment is configured to be able to travel on the road system.
  • a racking system for a three-dimensional storage system includes at least one layer arranged in the height direction, each layer is provided with a storage position and includes a platform constituting a main aisle and a A track communicating with the platform, the platform and the track configured to lead to the storage location.
  • an automatic handling device for a three-dimensional storage system including a chassis and a wheel set mounted on the chassis, and the wheel set is configured to be suitable for use on a platform including a main road and Traveling on the road system of the track that communicates with the main road, wherein at least part of the track is perpendicular to the platform, and the automatic handling equipment is configured to reverse direction by rotating on the platform, so as to achieve Switch between traveling on the platform and traveling on the track.
  • the three-dimensional storage system according to the embodiment of the present disclosure adopts automatic handling equipment that can travel on the ground and the platform as well as on the rails, which makes it possible to work between different layers of the upper work area and/or between the ground work area and the upper layer Dispatch and use automatic handling equipment between districts. On the one hand, this provides great flexibility; on the other hand, it is beneficial to reduce the construction and operation costs of the three-dimensional storage system.
  • FIG. 1 is a schematic diagram of an example of a three-dimensional storage system according to an embodiment of the present disclosure
  • Fig. 2 is a schematic perspective view of an example of a layer of the upper working area of the three-dimensional storage system according to an embodiment of the present disclosure
  • Fig. 3 schematically shows an example of goods being carried by the automatic moving equipment according to the first embodiment of the present disclosure
  • Fig. 4 and Fig. 5 show respectively the front view and the bottom view of the automatic handling equipment shown in Fig. 3;
  • Fig. 6 is a partially enlarged view, showing the cooperation relationship between the wheel set, the platform and the track of the automatic handling equipment shown in Fig. 3;
  • Fig. 7 is a partially enlarged view showing an example of a guide structure at a track entrance
  • Fig. 8 is a schematic perspective view of an automatic handling device according to Example 1 of the first embodiment of the present disclosure.
  • Fig. 9 and Fig. 10 are the bottom view and three-dimensional exploded view of the automatic handling equipment shown in Fig. 8 respectively;
  • Example 11 is a schematic perspective view of an automatic handling device according to Example 2 of the first embodiment of the present disclosure.
  • Fig. 12 is a three-dimensional exploded view of the automatic handling device shown in Fig. 11;
  • Fig. 13 is a schematic perspective view of an automatic handling device according to Example 3 of the first embodiment of the present disclosure.
  • Fig. 14 is a three-dimensional exploded view of the automatic handling device shown in Fig. 13;
  • Fig. 15 is a control method applicable to the automatic handling equipment according to the first embodiment of the present disclosure.
  • Fig. 16 is a schematic perspective view of an example of the automatic handling equipment according to the second embodiment of the present disclosure, wherein the steering wheel faces the first traveling direction;
  • Fig. 17 is a bottom view of the automatic handling device shown in Fig. 16;
  • Fig. 18 is a bottom view of the automatic handling equipment shown in Fig. 16, wherein the steering wheel faces the second driving direction;
  • Fig. 19 is a three-dimensional exploded view of the automatic handling device shown in Fig. 16;
  • Fig. 20 is a bottom view of an automatic handling device according to a third embodiment of the present disclosure.
  • Fig. 21 schematically shows the state of the automatic handling equipment running on the track of the racking system according to the third embodiment of the present disclosure
  • Fig. 22 and Fig. 23 are partial enlarged views, respectively showing the state of the driving wheel and the driven wheel of the automatic handling equipment in Example 1 of the third embodiment of the present disclosure cooperating with the track;
  • Fig. 24 schematically shows the state of the automatic handling equipment running on the track in Example 2 of the third embodiment of the present disclosure
  • Fig. 25 is a partial enlarged view showing an example of the track of the racking system according to Example 3 of the third embodiment of the present disclosure.
  • Fig. 26 is a partially enlarged view showing the state in which the wheels of the automatic transport equipment cooperate with the rails in Example 3 of the third embodiment of the present disclosure.
  • Fig. 27 is a flowchart of an example of a control method applicable to a three-dimensional storage system according to an embodiment of the present disclosure
  • Fig. 28 is a flowchart of another example of a control method that can be used in a three-dimensional storage system according to an embodiment of the present disclosure.
  • Fig. 29 is a schematic diagram of another example of a three-dimensional storage system according to an embodiment of the present disclosure.
  • Fig. 30 is a schematic diagram of another example of a three-dimensional storage system according to an embodiment of the present disclosure.
  • Fig. 31 is a schematic diagram of another example of a three-dimensional storage system according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic perspective view of a three-dimensional storage system 1 .
  • a three-dimensional storage system 1 according to an embodiment of the present disclosure includes a first automatic handling device 10, a ground work area 20 located on the ground, and an upper work area 30 located on the upper floor, wherein the upper work area 30 includes A plurality of layers 30a, 30b, 30c, each layer is provided with a plurality of storage locations S for storing goods 2.
  • the ground can include the ground of the ground floor or the ground of the upper floor in the three-dimensional storage system.
  • Fig. 2 separately shows an example of one layer of the upper working area of the three-dimensional storage system.
  • a road system TS for the first automatic handling equipment 10 is provided in the layer of the upper working area 30, and the road system TS includes a platform 31 and a track 32, wherein the platform 31 constitutes an arterial road, The track 32 communicates with the main road formed by the platform 31 .
  • platform refers to a structure on which the first automatic handling device can ride and which has a substantially continuous and flat support surface.
  • the storage bits S are preferably arranged on tracks 32 .
  • the first automatic handling device 10 can reach the storage location S via the platform 31 and the track 32 to perform access operations on the goods 2 .
  • the first automatic transport device 10 is configured to be able to travel on the ground and the platform, and also be able to travel on the rails. This will be described in more detail in conjunction with the specific embodiment of the first automatic handling device 10 hereinafter.
  • the three-dimensional storage system 1 can be configured such that at least part of the track 32 is perpendicular to the platform 31, and the first automatic handling device 10 is configured to reverse direction by rotating on the platform 31, so as to realize driving on the platform 31 and running on the track. 32. Toggle between travels.
  • Fig. 3 schematically shows an example of goods being transported by the first automatic transport device according to the first embodiment of the present disclosure.
  • goods 2 are placed on a pallet-shaped carrier C, and the first automatic transport device 10' according to the first embodiment of the present disclosure lifts the carrier C to move the goods 2 .
  • the forms of the goods 2 and the carrier C shown in the figure are only illustrative and not restrictive.
  • the carrier C may have other structures or forms.
  • carrier C may be a storage container; in other cases, carrier C may be a shelf capable of receiving a storage container.
  • the goods 2 can have different shapes, for example, regular shapes that can be stacked together; or small items that are scattered and cannot be stacked, etc., which will not be repeated here.
  • the first automatic handling device 10' is not limited to carrying the goods 2 by the carrier C, and in some cases, the first automatic handling device 10' can also directly lift and carry the goods 2.
  • Fig. 4 and Fig. 5 respectively show a front view, a side view and a bottom view of the first automatic handling device 10' shown in Fig. 3 .
  • the first automatic transfer device 10' includes a chassis 10a and a first wheel set 11 and a second wheel set 12 mounted on the chassis 10a.
  • the first wheel set 11 is used for traveling on ground and platforms
  • the second wheel set 12 is used for traveling on rails.
  • the first automatic handling device 10' also includes a driving mechanism for driving the first wheel set 11 and the second wheel set 12 (the driving mechanism will be combined with different implementations below. example for details).
  • the landing point of the first wheel set 11 of the first automatic conveying device 10' is lower than the landing point of the second wheel set 12.
  • the height of the landing point of the first wheel set 11 and the height of the landing point of the second wheel set 12 are respectively marked with reference symbols "h1" and "h2".
  • the first wheel set 11 includes a differential wheel 11 a that can be differentially driven to achieve rotation reversing.
  • the first wheel set 11 includes a pair of differential wheels formed by two first driving wheels 11a, and the following embodiments will be introduced as an example.
  • the present disclosure is not limited in this respect, and the first wheel set 11 may include a greater number of differential wheels, for example, two pairs of differential wheels, as long as it can realize driving on the ground and on the platform.
  • the first wheel set 11 further includes four first driven wheels 11b adapted to the differential wheel 11a.
  • the first driven wheel 11b is, for example, a universal wheel capable of changing direction as the differential wheel 11a is driven.
  • the first wheel set 11 may include more or less first driven wheels 11b according to support requirements. For example, in the case that the first wheel set 11 includes more than one pair of differential wheels, the first wheel set 11 may not include the first driven wheel 11b.
  • the second wheel set 12 may comprise a plurality of wheels mounted on opposite first sides L1 and second sides L2 of the first automated handling device 10'.
  • the second wheel set 12 includes at least one second driving wheel 12a (see Fig. 8, Fig. 11, Fig. 13) installed on the first side L1 and the second side L2 respectively, so as to realize Smooth ride along the track.
  • the differential wheel 11a of the first wheel set 11 includes a first driving wheel 11a installed on the first side L1 and the second side L2 of the first automatic transfer device 10', respectively.
  • the differential wheel 11a and the first driven wheel 11b of the first wheel set 11 face each other in a direction perpendicular to the first side L1 and the second side L2 of the first moving equipment 10'.
  • the second wheel set 12 is installed on the inner side. In this way, it is beneficial for the second wheel set 12 to cooperate with the track, and to prevent the first wheel set 11 from interfering with the running on the track.
  • the first automatic handling equipment 10' may also include at least one guide wheel 13 installed on the first side L1 and the second side L2 respectively, and the rotation axis of the guide wheel 13 is perpendicular to the chassis 10a, and is used to cooperate with the track to guide The first automatic handling device 10' travels on rails.
  • the automatic transfer device 10' has four guide wheels 13 installed at the four corners of the chassis 10a.
  • the height of the platform 31 is lower than that of the track 32. high.
  • the height of the rail 32 refers to the height of the rail surface 32 a of the rail 32 .
  • the height difference between the landing points of the first wheel set 11 and the second wheel set 12 is preferably equal to the height difference between the platform 31 and the track 32 .
  • the track 32 also includes a guide wall 32b vertically arranged along the outer side of the track surface 32a, and the guide wheels 13 are arranged to engage with the guide wall 32b perpendicular to the driving direction of the first automatic handling device 10', To guide the first automatic transport equipment 10' to run on the track.
  • FIG. 7 is another partial enlarged view, showing that there is a guide structure 32c at the entrance of the track 32 docked with the platform 31 .
  • the guide structure 32c includes guide pieces respectively formed at the ends of the guide walls 32b of the rails 32 on the left and right sides, and the guide pieces on the left and right sides form a larger opening than the rail 32, and the opening faces
  • the track 32 is tapered for engaging with, for example, the guide wheels 13 of the first automatic handling device 10 ′, so as to guide the first automatic handling device 10 ′ into the track 32 in a correct direction and position.
  • controlling the driving mechanism to drive the first wheel set 11 to travel and rotate on the ground working area 20 or the platform 31 includes: controlling the driving speed/acceleration on the ground or the platform to not exceed the first maximum speed/first maximum acceleration; and controlling the drive mechanism to drive the second wheel set to travel on the track includes: controlling the travel speed/acceleration on the track not to exceed the second maximum speed/second maximum acceleration.
  • the first maximum travel speed is different from the second maximum travel speed, and/or the first maximum acceleration is different from the second maximum acceleration.
  • the first automatic handling equipment 10' travels on the platform 31 and the ground working area 20 in a first operating mode, and on the track 32 in a second operating mode, the first operating mode includes a first maximum travel speed and/or The first maximum acceleration, the second operating mode includes a second maximum driving speed and/or a second maximum acceleration.
  • the first top travel speed is higher than the second top travel speed.
  • the first automatic handling equipment 10' runs on the track. Since the second wheel set includes more wheels, the friction between the track and the track is relatively large, and the corresponding acceleration can be relatively large. The first automatic handling equipment 10' runs on the platform. , because the first wheel set includes fewer wheels, the friction between the track and the track is smaller, and the corresponding acceleration is relatively small, so in another optional embodiment, the second maximum acceleration is higher than the first maximum acceleration.
  • the driving mechanism of the first automatic conveying device 10' adopts the same motor to drive at least one of the differential wheels and at least one of the second driving wheels.
  • FIG. 8 schematically shows a perspective view of the first automatic transport device 10A according to Embodiment 1, wherein in order to show the internal structure, the shell structure at the side of the first automatic transport device 10A is removed.
  • 9 and 10 respectively show a bottom view and an exploded perspective view of the first automatic handling device 10A.
  • the first automatic handling equipment 10A includes a chassis 10a and a wheel set (first wheel set 11 and second wheel set 12) and a drive mechanism thereof ( Motor 14 and transmission mechanism 16);
  • the first automatic handling device 10A may also include: guide wheels 13, sensing system (first navigation identification assembly 17a-1, positioning identification assembly 17a-2, second navigation identification assembly Assembly 17b, obstacle avoidance sensor 17c, position and posture detection device 17d), jacking mechanism 18, rotation holding mechanism 19 and bracket 10b.
  • the first wheel set 11 includes a pair of first driving wheels (differential wheels) 11a and four first driven wheels 11b, and the pair of first driving wheels 11a are respectively arranged on the first
  • the second wheel set 12 includes eight second driving wheels 12a symmetrically arranged on the first side L1 and the second side L2.
  • the second wheel set 12 is arranged outside the first wheel set 11 .
  • the driving mechanism of the first automatic handling device 10A includes a first motor 14a and a second motor 14b, and the first motor 14a is used to drive a first driving wheel 11a and four wheels located on the first side L1. There are two second driving wheels 12a, and the second motor 14b is used to drive one first driving wheel 11a and four second driving wheels 12a located on the second side L2.
  • the first motor 14a and the second motor 14b drive the corresponding differential wheel and the corresponding second drive wheel to rotate at the same wheel surface linear velocity.
  • “track linear velocity” refers to the linear velocity of the track (wheel rolling surface) of the differential wheel and the second drive wheel.
  • the drive mechanism of the first automatic transfer device 10A includes a first drive shaft 11z directly connected to the first drive wheel 11a, a second drive shaft 12z directly connected to the second drive wheel 12a, and a second drive shaft 12z connected to the first drive wheel 11a.
  • the chain/belt drive structure 6 may include a structure connected to another second drive shaft 12z via a second drive shaft 12z, as shown in FIG. 10 .
  • the chain transmission structure and the belt transmission structure can better adapt to a larger transmission distance, and compared with, for example, a gear transmission, it is more conducive to reducing the weight of the transmission mechanism, thereby reducing the self-weight of the automatic handling equipment.
  • the first motor 14a and the second motor 14b are direct drive motors, respectively directly driving the two first driving wheels 11a.
  • first motor 14a and the second motor 14b may be geared motors integrated with a gear reducer.
  • the driving mechanisms shown in FIGS. 8 to 10 are only exemplary and not limiting. According to this embodiment, other structures can also be used to drive at least one of the differential wheels and at least one of the second drive wheels by the same motor.
  • the drive mechanism may include a first transmission mechanism and a second transmission mechanism, the first transmission mechanism is connected to a motor and a corresponding differential wheel, the second transmission mechanism is connected to the same motor and a corresponding second drive wheel, and The motor synchronously outputs power to the first transmission mechanism and the second transmission mechanism.
  • the first transmission mechanism and the second transmission mechanism may have a common transmission structure.
  • the motor may be connected to the second driving wheel through at least one of a chain, a transmission belt and a gear.
  • the first automatic handling device 10A may include a first navigation identification component 17a-1, which is used to detect and identify a first navigation mark set on the platform or the ground downwards (such as shown in FIG. 2 laid on the platform 31 Navigation sign 31a) on the .
  • the first automatic transport device 10A can determine and adjust the driving direction according to the navigation identification result.
  • the first navigation identification component 17a-1 may be a radio frequency code reader, and in this case, the first navigation identification may be a radio frequency signal.
  • the first navigation identification component 17a-1 may be a camera device, and at this time, the first navigation identification may be a two-dimensional code, a bar code or an identification code with a specified shape.
  • the chassis 10a may form a first central through hole c1 corresponding to the first navigation identification component 17a-1, and the first navigation identification component 17a-1 is arranged to pass through the first central through hole c1 to Next detect and identify the first navigation mark.
  • the first automatic handling device 10A may further include a location recognition component 17a-2 for detecting and recognizing the location mark upwards.
  • the positioning mark (not shown) mainly refers to the mark provided at the bottom of the carrier C, which can be used to determine whether the carrier C and the first automatic handling device 10A are vertically aligned.
  • the positioning identification component can be used to detect and identify the positioning mark at the bottom of the carrier C, and the first automatic handling device 10A can be configured to perform Do at least one of the following:
  • the first navigation identification component 17a-1 and the positioning identification component 17a-2 are integrated on the upper and lower sides of the same substrate to form an integrated identification component 17a.
  • the first automatic handling device 10A may also include a bracket 10b on the top, the bracket 10b is formed as a tray, and the tray is formed with a second central through hole c2, which can be used for the positioning recognition component 17a-2 to pass through. Probe through it upwards.
  • the first automatic handling equipment 10A may also include a second navigation identification component 17b arranged on the side of the automatic handling equipment, for detecting the second navigation mark (not shown) arranged on the track 32 downward or sideways. Shows).
  • the first automatic transport device 10A can determine and adjust the driving direction according to the recognition result of the second navigation recognition component 17b.
  • the second navigation identification component 17b may be a radio frequency code reader, and at this time, the second navigation identification may be a radio frequency signal.
  • the second navigation identification component 17b may be a camera device, and at this time, the second navigation identification may be a two-dimensional code, a bar code or an identification code with a specified shape.
  • the second navigation identification component 17b can be installed on the upper side of the chassis 10a, and the chassis 10a can be formed with a detection through hole c3 corresponding to the second navigation identification component 17b for the second navigation identification component 17b to pass through It detects.
  • the first automatic transport device 10A When the first automatic transport device 10A is traveling on the platform 31, it will perform the first obstacle avoidance judgment according to the obstacle information of the first obstacle avoidance area collected by the obstacle avoidance sensor 17c;
  • the obstacle information in the second obstacle avoidance area is used for the second obstacle avoidance judgment.
  • the first obstacle avoidance area includes a front area and a side area;
  • the second obstacle avoidance area includes a front area.
  • “front” and "side” are relative to the current driving direction.
  • the first automatic transport equipment 10A adopts the first obstacle avoidance strategy
  • the second obstacle avoidance judgment indicates that obstacle avoidance is required
  • the first automatic transport equipment 10A adopts the second obstacle avoidance strategy.
  • the first obstacle avoidance strategy is different from the second obstacle avoidance strategy.
  • the first obstacle avoidance strategy includes a first maximum acceleration that is allowed to be used
  • the second obstacle avoidance strategy includes a second maximum acceleration that is allowed to be used.
  • the first maximum acceleration is greater than the second maximum acceleration.
  • the first automatic transfer device 10A may include a controller, and the controller is preferably configured to control the first automatic transfer device based at least in part on the pose and motion information detected by the pose detection device 17d. Travel of the device 10A.
  • the first automatic handling device 10A may further include a jacking mechanism 18 .
  • a jacking mechanism 18 may be installed on the chassis 10a, which may include at least one of a cam mechanism, a link mechanism, a screw mechanism and a hydraulic mechanism, for raising or lowering the bracket 10b relative to the chassis 10a.
  • the jacking mechanism 18 is used to raise or lower components mounted thereon, such as the bracket 10b.
  • the first automatic handling equipment 10A performs the handling work, it first moves to the bottom of the carrier C and aligns with it, and then lifts the bracket 10b through the jacking mechanism 18, so that the bracket 10b lifts the carrier C , so that the first automatic transport equipment 10A "lifts" the carrier C and can transport it to other locations.
  • the first automatic transfer device 10A may also be provided with a rotation holding mechanism 19 .
  • the rotation holding mechanism 19 is used to rotate the bracket 10b relative to the chassis 10a.
  • the controller (not shown) of the automatic transport equipment can control the rotation holding mechanism 19 to rotate in reverse, and the reverse rotation is consistent with the rotation of the vehicle body. The rotations cancel out so that the bracket 10b can remain unrotated. In this way, it is very beneficial to maintain the stability of the carrier C and/or cargo 2 placed on the bracket 10b.
  • the corners of the car body may interfere with the surrounding environment, according to the embodiment of the present disclosure, preferably, the corners of the first automatic transport device 10A have a circular arc shape.
  • the driving mechanism includes a first driving mechanism for driving the differential wheel 11a and a second driving mechanism for driving the second driving wheel 12a, and the first driving mechanism and the second driving mechanism are set independently of each other.
  • FIG. 11 schematically shows the first automatic transport device 10B in a perspective view, wherein the shell structure at the side of the first automatic transport device 10B is removed in order to show the internal structure.
  • FIG. 12 is an exploded perspective view of the first automatic transport device 10B.
  • the first automatic handling equipment 10B includes a chassis 10a and a wheel set (the first wheel set 11 and the first wheel set 11) installed on the chassis 10a
  • the first automatic handling equipment 10B can also include: guide wheels 13, sensor system (the first navigation identification assembly 17a- 1. Positioning recognition component 17a-2, second navigation recognition component 17b, obstacle avoidance sensor 17c, pose detection device 17d), jacking mechanism 18, rotation holding mechanism 19 and bracket 10b.
  • the first wheel set 11 includes a pair of first driving wheels (differential wheels) 11a and four first driven wheels 11b, and a pair of first driving wheels 11a are respectively arranged on the
  • the second wheel set 12 comprises eight second drive wheels 12a arranged symmetrically on the first side L1 and the second side L2.
  • the second wheel set 12 is arranged outside the first wheel set 11 .
  • the first drive mechanism for driving the differential wheel 11a of the first automatic transfer device 10B includes a first drive motor 14, and the second drive mechanism for driving the second drive wheel 12a includes a second drive motor. 15.
  • the first driving motor 14 comprises a first motor 14a and a second motor 14b
  • the first motor 14a is used to drive a first driving wheel 11a located at the first side L1
  • the second motor 14b is used to drive the other first drive wheel 11a located on the second side L2.
  • the first motor 14a and the second motor 14b are direct drive motors, respectively directly driving the two first driving wheels 11a.
  • the second drive wheels 12 a of the second wheel set 12 located on the first side L1 and the second side L2 of the first automatic handling device 10B form four wheel pairs, and each wheel pair It includes two second drive wheels 12a on both sides and an axle connected between the two second drive wheels 12a.
  • the second driving motor 15 outputs power to the four wheel pairs of the second driving wheels 12a through the chain transmission mechanism or the belt transmission mechanism 6 .
  • the chain/belt drive structure 6 may comprise a drive structure connected to another wheel set via one wheel set.
  • the output shaft of the first driving motor 14 is arranged parallel to the output shaft of the second driving motor 15 .
  • At least one of the first driving motor 14 and the second driving motor 15 is a reduction motor integrated with a reduction gear.
  • the first wheel set 11 and the second wheel set 12 of the first automatic transport device 10B are respectively driven by a first driving mechanism and a second driving mechanism.
  • the first automatic transport device 10B further includes a controller (not shown), the controller is configured to determine whether the first automatic transport device 10B is in the state of driving on the platform and on the track and when it is judged to be in the switching process, control the first drive mechanism and the second drive mechanism to drive the differential wheel 11a and the second drive wheel 12a to rotate at the same wheel surface linear velocity.
  • the first automatic transport device 10C has a first end and a second end opposite to each other in a direction parallel to the first side L1 and the second side L2, and the second driving wheel 12a is only arranged near the first end position.
  • FIG. 13 schematically shows the first automatic transport device 10C in a perspective view, wherein the shell structure at the side of the first automatic transport device 10C is removed in order to show the internal structure.
  • FIG. 14 is an exploded perspective view of the first automatic transport device 10C.
  • the first automatic handling device 10C includes a chassis 10a and a wheel set (the first wheel set 11 and the first wheel set 11) installed on the chassis 10a.
  • the first automatic handling equipment 10C can also include: guide wheels 13, sensor system (the first navigation identification assembly 17a- 1. Positioning recognition component 17a-2, second navigation recognition component 17b, obstacle avoidance sensor 17c, pose detection device 17d), jacking mechanism 18, rotation holding mechanism 19 and bracket 10b.
  • the first automatic conveyance device 10C according to the third embodiment has basically the same structure as the first automatic conveyance device 10B according to the second embodiment, the only difference is that the first automatic conveyance device for driving the second driving wheel 12a
  • the two drive motors 15 are only connected with the wheelsets in the second wheel set 12 at the first end (the left end shown in FIG.
  • the second driving wheel 12a at the first end also includes a second driven wheel 12b at the second end.
  • the driving design for the second wheel set according to the third embodiment is conducive to simplifying the transmission mechanism and facilitating the layout of the interior space of the car body. Reduce weight and reduce costs.
  • the first automatic transport device 10C according to the third embodiment is not limited to the situation where the first driving motor 14 and the second driving motor 15 are used to respectively drive the first wheel set 11 and the second wheel set 12 .
  • the transmission mechanism is configured to transmit the power from the first drive motor 14 (the first motor 14a and the second motor 14b) only to the The wheels of the second wheel set 12 at one end of the second end also realize the design that the second driving wheel 12a is only arranged at a position close to the first end.
  • the first automatic transport device 10C may adopt an adaptive control method.
  • the controller (not shown) of the first automatic handling device 10C is configured to execute the following control method:
  • the first end (the end where the second driving wheel 12a is located) is provided with a first obstacle avoidance sensor for detecting obstacles in the forward area, and the second end is provided with a sensor for detecting forward obstacles.
  • Second obstacle avoidance sensor for obstacles in the area and lateral areas.
  • the first automatic handling device 10C includes four guide wheels arranged at four corners, the first automatic handling device 10C may include more or less guide wheels, as long as the first automatic handling device
  • the two sides of the first end of the 10C provided with the second driving wheel 12 a ie, the first side L1 and the second side L2 ) are respectively provided with at least one guide wheel.
  • a control method can be adopted, wherein the first automatic handling device 10' is controlled to run on the ground, platform or track according to the navigation information.
  • This control method includes:
  • control drive mechanism drives the first wheel set to travel and rotate on the ground or platform
  • the driving mechanism is controlled to drive the second wheel set to run on the track.
  • the above control method may also include the following additional processing: judging whether the first automatic transport equipment enters the switching area specified in the navigation information from the platform; and if the first automatic transport equipment When the equipment enters the designated switching area from the platform, the driving mechanism is controlled to drive the first wheel set to drive towards the entrance of the track, and then switch to drive the second wheel set to drive on the track.
  • the "switching area” is the area on the platform 31 facing the entrance of the track 32 (see switching area SA in FIG. 2 ).
  • Fig. 15 shows a flow chart of a control method M10 applicable to the first automatic transfer device 10' according to the first embodiment of the present disclosure, and the control method M10 includes a specific implementation manner of the above-mentioned additional processing. It should be understood that Fig. 15 only shows part of the processing in the control method M10, and the control method M10 may further combine various control operations/processing of the first automatic handling device 10' introduced in this application.
  • control method M10 includes:
  • processes S12 and S13 are used to realize “controlling the driving mechanism to drive the first wheel set to travel towards the entrance of the track”; processes S14 and S15 are used to realize “switch to driving the second wheel set to drive on the track”.
  • control method M10 may also include:
  • control method M10 may further include: controlling the driving mechanism to drive the differential wheels of the first wheel set to perform differential rotation, and then Drive the first wheel set to travel on the platform.
  • control method M10 may also include: judging whether the first automatic transport equipment is about to enter the switching area specified in the navigation information from the track; Drive the first wheel set and the second wheel set to rotate at the same wheel speed.
  • the first automatic handling equipment 10 "according to the second embodiment of the present disclosure will be described below with reference to Figs. It's the same wheel set used when driving on the 32.
  • FIG. 16 shows a schematic perspective view of an automatic handling device 10 ′′ according to a second embodiment of the present disclosure
  • FIG. 17 is a bottom view of the automatic handling device 10 ′′ shown in FIG. 16
  • the automatic handling equipment 10 "includes a chassis 110a and a traveling wheel set and a guide wheel set mounted on the chassis 110a.
  • the chassis 110a has a substantially rectangular shape
  • the traveling wheel set It includes four steering wheels 111 arranged on the four corners of the chassis 110a.
  • the guide wheel set includes four guide wheels 113 respectively located on the four corners of the chassis 110a.
  • the rotation axes of the guide wheels 113 are perpendicular to the chassis 110a.
  • chassis 110a of the automatic handling device 10" shown in the drawings has a generally rectangular shape, it should be understood that the present disclosure is not limited thereto. In other cases where the chassis 110a does not have a rectangular shape, the four parts of the automatic handling device 10"
  • the steering wheels 111 may be arranged at four corners of a rectangle. That is to say, the four steering wheels 111 are arranged in a rectangle.
  • the driving wheel set only includes steering wheels.
  • the driving wheel set of the automatic handling equipment 10 does not include driven wheels.
  • the steering wheel 111 is configured to be rotatable around a transverse axis a-a for driving, and around a longitudinal axis b-b for changing the driving direction.
  • the longitudinal axis b-b is perpendicular to the chassis 110a
  • the transverse axis a-a is perpendicular to the longitudinal axis b-b, as shown in FIG. 19 .
  • the steering wheel 111 includes a wheel 111a and a driving motor 111b for driving the wheel 111a to rotate around the transverse axis a-a; the steering wheel 111 may also include a reversing gear 111c relatively fixed to the wheel 111a and the driving motor 111b -1.
  • the driving gear 111c-2 meshing with the reversing gear 111c-1 and the reversing driving motor 111c-3 used to drive the driving gear 111c-2 to rotate.
  • the reversing drive motor 111c-3 drives the reversing gear 111c-1 to rotate through the driving gear 111c-2, thereby driving the wheel 111a and the travel driving motor 111b to rotate around the longitudinal axis b-b to realize reversing.
  • the steering wheel 111 is configured offset relative to the longitudinal axis b-b, ie the wheel 111a of the steering wheel 111 is offset (non-centred) relative to the longitudinal axis b-b.
  • Fig. 18 is a bottom view of the automatic handling device 10" shown in Fig. 16, wherein the steering wheel faces the second traveling direction.
  • the automatic handling device according to the second embodiment of the present disclosure 10" may have a first traveling direction D1 and a second traveling direction D2 perpendicular to each other, and the first traveling direction D1 is parallel to the first side L1 and the second side L1 of the rectangle where the steering wheel 111 is located (corresponding to the chassis 110a in the illustrated example).
  • the side L2 and the second traveling direction D2 are parallel to the third side L3 and the fourth side L4 of the rectangle (corresponding to the chassis 110a in the illustrated example).
  • automated handling equipment 10 employs steering wheels that are offset relative to the longitudinal axis (as shown in Figure 19), and preferably in the configuration shown in Figures 16, 17 and 18.
  • the steering wheel 111 of the automatic transport device 10" shown in Fig. 16 and Fig. 17 is positioned towards the first traveling direction D1, so that the automatic transport device 10" can travel along the first traveling direction D1.
  • the two steering wheels 111 located on the first side L1 are offset away from the second side L1 with respect to their corresponding longitudinal axis b-b
  • the two steering wheels 111 located on the second side L2 111 is offset away from the first side L1 with respect to its corresponding longitudinal axis b-b.
  • Fig. 18 shows the situation where the steering wheels 111 of the automatic handling equipment 10" are facing the second driving direction D2.
  • the two steering wheels 111 located on the third side L3 are relatively
  • the axis b-b is offset away from the fourth side L4
  • the two steering wheels 111 located on the fourth side L4 are offset away from the third side L3 with respect to their corresponding longitudinal axis b-b.
  • the wheel 111a of the steering wheel 111 can have a direction perpendicular to the direction of travel. Larger wheelbase. The increased wheelbase can prevent the body from rolling and improve the balance performance of the automatic handling equipment 10".
  • the steering wheel 111 is offset relative to the longitudinal axis b-b, so that the wheel 111a can be closer to the outer contour of the automatic handling equipment 10", so that the track can be narrower and cost saving.
  • the automatic handling equipment 10" may include a control mechanism (not shown), such as a circuit device connected to the travel drive motor 111b and the reversing drive motor 111c-3 of the steering wheel 111 , and is configured to control all two steering wheels 111 located on the same side of the rectangle (corresponding to the chassis 110a in the illustrated example) to rotate the same angle (preferably 90 degrees) in opposite directions around their corresponding longitudinal axes b-b , so as to realize switching between the two directions of travel perpendicular to each other.
  • a control mechanism such as a circuit device connected to the travel drive motor 111b and the reversing drive motor 111c-3 of the steering wheel 111 , and is configured to control all two steering wheels 111 located on the same side of the rectangle (corresponding to the chassis 110a in the illustrated example) to rotate the same angle (preferably 90 degrees) in opposite directions around their corresponding longitudinal axes b-b , so as to realize switching between the two directions of travel perpendicular to each other.
  • the four steering wheels are respectively
  • the automatic handling equipment 10" having the above-mentioned offset steering wheel is especially suitable for the three-dimensional storage system 1 including platforms and tracks introduced above with reference to Fig. 1 and Fig. 2.
  • the automatic handling equipment 10" of the mode especially the automatic handling equipment 10" with the above-mentioned offset steering wheel, can simply run straight on the track, and the reversing is completed on the platform.
  • the platform can provide a large enough
  • the supporting surface enables the offset steering wheel of the automatic handling equipment 10" to realize rotation and reversing.
  • the automatic handling device 10" is also suitable for running on the ground.
  • the guide wheel 113 is mainly used to cooperate with the guide structure on the track to guide the automatic handling equipment 10 "to enter the track in the correct direction and position and run smoothly on the track.
  • the guide wheel 113 is shown in the figure as being able to The guides are conducted on two pairs of opposite sides of the device 10", although the present disclosure is not limited thereto.
  • the guide wheels can only be arranged on the automatic conveying equipment 10".
  • the guide wheel set is not limited to include four guide wheels arranged as shown in the figure, but may include four guide wheels installed on opposite sides of the automatic handling equipment, such as the first side and the second side, respectively. At least one guide wheel.
  • the automatic handling device 10" can have a first end and a second end opposite to each other in a direction parallel to the first side and the second side; the guide wheels 113 can be arranged at the first end or the second end corresponding to the two corners of the chassis.
  • the automatic handling device 10" may include a controller (not shown), and the controller may be configured to:
  • the automatic handling equipment drives into the track from the platform, the automatic handling equipment is controlled to drive into the track with the first end first entering the track; and when the automatic handling equipment When entering the platform from the track, control the automatic handling equipment to move out of the track in such a way that the first end leaves the track last;
  • the automatic handling equipment drives into the track from the platform, the automatic handling equipment is controlled to drive into the track with the second end first entering the track; and when the automatic handling equipment When driving into the platform from the track, control the automatic handling equipment to drive out of the track in such a way that the second end leaves the track at last.
  • FIG. 19 is an exploded perspective view of the automatic handling device 10 ′′.
  • the automatic handling equipment 10 can also include: Sensing system (first navigation recognition component 117a-1, positioning recognition component 117a-2, second navigation recognition component 117b, obstacle avoidance sensor 117c, pose detection device 117d), jacking mechanism 118 and bracket 110b.
  • the chassis 110a of the automatic handling device 10" includes a main body 110a-1 and a lifting part 110a-2, and the lifting part 110a-2 corresponds to the rectangle where the steering wheel 111 is located (corresponding to the chassis 110a in the illustrated example ) of the four corners, and form a plane that rises upwards relative to the main body 110a-1.
  • the lifting part 110a-2 corresponds to the rectangle where the steering wheel 111 is located (corresponding to the chassis 110a in the illustrated example ) of the four corners, and form a plane that rises upwards relative to the main body 110a-1.
  • a wall 10a-3 that is approximately perpendicular to the main body 110a-1 connected, thereby forming accommodating spaces for the four steering wheels 111 respectively under the four lifting parts 110a-2, and separating the accommodating spaces from the space above the chassis 110a.
  • Such a chassis structure will be used for For example, the space for installing the sensor system described above is separated from the space for installing the steering wheel, which is beneficial to protect the sensors and other equipment from damage such as obstacles on the road and dirt such as dust, thereby helping to improve the performance of the automatic handling equipment 10 " Running stability.
  • guide protrusions are formed on the track surface of the track, and according to the second embodiment of the present disclosure, the wheels of the first automatic handling equipment 10" (for example, in Fig.
  • An annular recess (not shown) extending in the circumferential direction is formed on the wheel surface of the steering wheel in the illustrated example, and is used to cooperate with the guide protrusion on the track; in another optional embodiment, the track of the track A depression is formed on the surface, and the wheels in the same wheel set cooperate with the depression.
  • the height of the platform 31 in the road system TS in the same layer of the upper working area 30 is the same as the height of the track 32 .
  • the first automatic handling equipment 10"' according to the third embodiment of the present disclosure will be described below with reference to FIGS. 20 to 26.
  • the wheels and The wheel set used when traveling on the track 32 is a combination of differential wheels and casters.
  • a first automatic handling device 10''' that can be used in the three-dimensional storage system 1 according to the embodiment of the present disclosure is proposed, that is, an amphibious handling robot 10'''.
  • the amphibious transport robot 10"' has a wheel set including a differential wheel and a caster, and can run on the ground or a similar plane as well as on a track.
  • Fig. 20 is a bottom view of the automatic handling equipment 10"' according to the third embodiment of the present disclosure.
  • the automatic handling equipment 10"' includes a vehicle body 210a and wheels mounted on the bottom of the vehicle body 210a, wherein the wheels include The left driving wheel 211a and the left driven wheel 211b on the left side of the bottom, and the right driving wheel 212a and the right driven wheel 212b on the right side of the vehicle body bottom.
  • the left drive wheel 211a and the right drive wheel 212a constitute differential wheels.
  • the left driven wheel 211b and the right driven wheel 212b are universal wheels.
  • the left driving wheel 211 a and the left driven wheel 211 b may be referred to as a left wheel set 211
  • the right driving wheel 212 a and the right driven wheel 212 b may be referred to as a right wheel set 212 .
  • the rolling direction of the left driving wheel 211a and the right driving wheel 212a is the front-rear direction (direction indicated by arrow A in FIG. 20), and the left driven wheel 211b And the right driven wheel 212b is arranged such that when its rolling direction is the front and rear direction, the left driven wheel 211b is aligned with the left driving wheel 211a, and the right driven wheel 212b is aligned with the right driving wheel 212a.
  • the left driven wheel 211b and the right driven wheel 212b can be aligned with the left driving wheel 211a and the right driving wheel 212a respectively, thereby jointly traveling along the rail 32.
  • the three-dimensional storage system 1 can be configured such that at least part of the track 32 is arranged on the side of the platform 31 perpendicular to the main road, and the automatic handling equipment 10"' is configured to rotate and reversing on the platform 31 through a differential drive, so as to realize Switching between traveling on the platform 31 and traveling on the track 32 .
  • the left driven wheel includes two driven wheels 211b, 211b arranged along the front-rear direction
  • the right driven wheel includes two driven wheels 212b, 212b arranged along the front-back direction.
  • the left driven wheel and the right driven wheel may respectively include more or less driven wheels according to the carrying capacity of the automatic handling device 10"' and the need for smooth operation.
  • the left driving wheel of the automatic handling device 10"' also includes more than two driving wheels arranged along the front and rear directions, and the right The drive wheels may include two or more drive wheels arranged along the front and rear.
  • Fig. 21 schematically shows the state of the automatic handling equipment 10"' running on the track 32 of the upper working area 30 according to the third embodiment of the present disclosure.
  • the left wheel set 211 of the automatic handling equipment 10"' and the right wheel set 212 are respectively supported/traveled on the left track and the right track of the track 32.
  • the carrier C used to support the goods 2 can rest on the corresponding supporting structure of the upper working area 30 and be located above the track 32 .
  • the top of the automatic handling equipment 10"' can have a bracket 210b that can be lifted.
  • the carrier C can be lifted by raising the bracket 210b , so that the carrier C and the goods that may be supported on the carrier C can be transported.
  • the automatic handling equipment 10"' when the automatic handling equipment 10"' has lifted the carrier C, it can travel along the track 32 to the designated storage position S (see Figure 1), and place the carrier C on the upper floor for work by lowering the bracket 210b corresponding support structure of the area 30, thereby unloading the carrier C from the automatic handling device 10"' onto said designated storage location S.
  • the track 32 includes a left track and a right track parallel to each other, and guide protrusions 32-1 ( See Figure 22, Figure 23).
  • the guide protrusion 32-1 extends along the longitudinal direction of the track, and is used to guide the automatic transport equipment 10"' to travel on the track 32.
  • the guide protrusion 32-1 may have an approximately semicircular cross-sectional shape, but the present disclosure is not limited in this respect, for example, the guide protrusion may also have a cross-sectional shape such as a triangle, trapezoid, circular arc or a combination thereof. section.
  • Fig. 22 and Fig. 23 are partial enlarged views, respectively showing the state of the driving wheel and the driven wheel of the automatic handling device 10"' cooperating with the track in Example 1 of the third embodiment of the present disclosure.
  • the left driving wheel 211a has a groove g extending circumferentially along the wheel surface, and the groove g forms a concave structure; as shown in Figure 23, the left driven wheel 211b includes two rollers, thereby forming a dumbbell shape , the gap between the two rollers forms a concave structure.
  • the concave structure of the two that is, the groove g of the left driving wheel 211a and the gap between the two rollers of the left driven wheel 211b
  • the directions are aligned for the cooperation of the guide projection 32-1 on the left rail to guide the automatic handling equipment 10"' to travel on the rail 32.
  • the right driving wheel 212a and the right driven wheel 212b of the automatic handling equipment 10"' each have the same or similar concave structures extending along the circumference of the wheel surface, and when the right driven wheel 212b is aligned with the right driving wheel 212a, both The concave structure of the first one is aligned along the front-back direction, and is used to cooperate with the guide protrusion 32-1 on the right track to guide the automatic handling equipment 10"' to travel on the track 32.
  • the guide protrusion 32-1 can be provided only on one of the left track and the right track of the track 32; correspondingly, the left wheel set 211 and/or The right wheel set 212 is provided with a concave structure for fitting with the guide protrusion 32-1.
  • the driving wheels 211a, 212a may have other forms of concave structures than grooves.
  • the drive wheels 211a, 212a may have a dumbbell structure including two rollers.
  • driven wheels 211b, 212b may have structures other than dumbbell structures.
  • the driven wheels 211b, 212b may have grooves extending circumferentially along the wheel surfaces. The present disclosure is not limited in this respect.
  • FIG. 24 schematically shows the state of the automatic transport equipment running on the track in Example 2 of the third embodiment of the present disclosure.
  • the outside of the left track and the right track is vertically provided with a guide wall 32b;
  • the guide wheel 213 of FIG. 20 wherein the rotation axis of the guide wheel 213 is arranged along the up and down direction, and is used to engage with the guide wall 32b to guide the automatic handling equipment 10"' to travel on the track 32.
  • the entrance of the track 32 communicating with the platform 31 is provided with a guide structure (see FIG. 7 ), the opening formed by the guide structure is larger than the opening of the track, and is used to engage with the guide wheels 213 to guide the automatic handling equipment 10 ”' enters the track 32.
  • the guide structure may be a guide sheet deflected outward.
  • Example 3 of the third embodiment of the present disclosure will be described with reference to FIGS. 25 and 26 .
  • Fig. 25 shows the track of the upper working area according to the third embodiment in a partially enlarged view
  • Fig. 26 shows the state of cooperation between the wheels and the track of the automatic handling equipment in the third embodiment in a partially enlarged view.
  • the inner sides of the left track and the right track of the track 32 are vertically provided with restricting walls 32 d, which can limit the wheels 211 and 212 of the automatic handling equipment from breaking away from the track 32 .
  • the left and right rails may each have a groove-shaped cross-section, for example may have an inverted trapezoidal groove-shaped cross-section.
  • the left and right rails may conveniently be formed using formed channel steel.
  • the left track and the right track may each be provided with a trumpet-shaped guide port at the entrance communicating with the platform 31 .
  • the flared guide opening may be formed by guide pieces 32e on both sides of the inlet.
  • the three-dimensional storage system 1 may also include a server 40 and at least one Lifting device 50.
  • the lifting device 50 has a carrying platform 50a configured to be able to rise and fall to carry out between the various layers (such as layers 30a, 30b, 30c) of the ground working area 20 and the upper working area 30. , or, the carrying platform is configured to be able to rise and fall to carry between different levels of the upper working area.
  • the server 40 is communicatively connected with the first automatic transport device 10 and the lifting device 50 , and it generates and issues instructions to schedule the first automatic transport device 10 and the lifting device 50 .
  • the carrying platform 50a of the lifting device 50 has a planar carrying surface, which can be directly driven in or out by the automatic conveying device 10 .
  • the carrying surface of the carrying platform 50a is substantially flush with the ground working area 20 or the platform 31 of the specified level.
  • the first automatic handling equipment 10 can enter the upper working area 30 from the ground working area 20 or enter from the upper working area 30 through the carrying of the lifting equipment 50 according to the operating instructions issued by the server 40 The ground working area 20 ; or, the first automatic transport device 10 enters another layer from one layer in the upper working area through the carrying of the lifting device 50 according to the first operation instruction issued by the server 40 .
  • Fig. 29 is a schematic diagram of another example of a three-dimensional storage system according to an embodiment of the present disclosure.
  • the ground working area 20 of the three-dimensional storage system 1 can be provided with at least one of a charging position (for charging automatic handling equipment), a storage area, a picking workstation, and a production process connection point (not shown).
  • the first automatic transport equipment 10 runs from the charging position, storage area, picking workstation or connecting point of the ground work area 20 to the upper work area 30 (such as the storage position S) according to the operation instruction of the server 40, or from the upper work area 30 (such as a storage location S) runs to a charging location in the ground working area 20, a storage area, a picking workstation or a production process connection point.
  • the three-dimensional storage system 1 can dispatch and coordinate between the ground work area 20 and the upper work area 30.
  • the first automatic handling device 10 is used. On the one hand, this obviously provides great flexibility for the scheduling of the first automatic handling equipment 10 and the work distribution of the storage system 1 .
  • the three-dimensional storage system 1 does not need to configure a kind of handling robot (such as AGV) for the ground work area, and configure another kind of handling robot (such as a four-way shuttle vehicle) for the upper work area, and ensure that two The number of configurations of these robots can meet the peak workload of the corresponding work area (this is exactly what exists in the existing three-dimensional storage system), so the construction and operation costs of the three-dimensional storage system 1 are expected to be lower than those of the existing three-dimensional storage system. Greatly reduced.
  • a kind of handling robot such as AGV
  • another kind of handling robot such as a four-way shuttle vehicle
  • Fig. 27 and Fig. 28 show two examples of control methods that can be used in the three-dimensional storage system 1, including scheduling the first automatic handling equipment 10 between different floors (including the ground).
  • FIG. 27 shows a control method M100 applicable to the three-dimensional storage system 1 .
  • the control method M100 includes:
  • S120 According to the order, generate a transport task of transporting the carrier on the first floor to the target position on the second floor;
  • S130 Search for available automatic handling equipment located on the first floor, that is, the first available handling equipment;
  • S140 Determine whether the first available automatic handling device is found.
  • the above-described processing can be performed by the server 40, for example.
  • the first layer is one of the layers of the ground work area and the upper layer of the work area
  • the second layer is another layer of the multi-layers.
  • the transport task of transporting the carrier on the first floor to the target position on the second floor is assigned to the first available automatic transport equipment, which means that the first available automatic transport equipment completes the transfer from the first
  • the overall handling work from the first floor to the second floor does not need to be connected with other automatic handling equipment or other equipment during the process. In this way, the task distribution of the storage system can be advantageously simplified, and the handling efficiency can be improved.
  • the control method M100 may turn to processing S145, wherein the system 1 or the server 40 enters a waiting state Or generate a task to dispatch automatic transport equipment to the first layer. Since the three-dimensional storage system 1 according to the embodiment of the present disclosure adopts the first automatic handling equipment 10 that can run on the ground, on the platform, and on the track, the scheduling in the above-mentioned processing S145 (especially in the ground work area and the upper floor) Scheduling between work areas) can be realized, thereby improving the efficiency of the storage system.
  • FIG. 28 shows another control method M200 applicable to the three-dimensional storage system 1 .
  • the processes S210, S220, S230, S240, and S245 included in the control method M200 are the same as the processes S110, S120, S130, S140, and S145 of the control method M100 shown in FIG. 27 , and will not be repeated here.
  • control method M200 also includes:
  • S280 Assign the first subtask and the second subtask to the first available automatic handling device and the second available automatic handling device respectively.
  • the above-described processing can be performed by the server 40, for example.
  • control method M200 may turn to processing S265, wherein the entire generated in processing S220 The handling task is assigned to the first available automatic handling device.
  • control method M200 further determines the transport task allocation method according to the available automatic transport equipment on the second floor. This provides more flexibility, which can be advantageous in some cases. For example, in the case that multiple lifting devices are equipped in the three-dimensional storage system 1 and only some of the lifting devices' carrying tables can support the direct entry and exit of the automatic handling The separate implementation of the handling equipment will allow for a more efficient use of all lifting equipment, thereby increasing the operating efficiency of the system.
  • the first available automatic handling equipment and the second available automatic handling equipment are automatic handling equipment that are available in a standby state within a predetermined period of time from now to the future .
  • FIG. 2 shows the switching area SA mentioned above, and also shows the hoisting area WA set in the layers of the upper working area 30 (such as layers 30 a , 30 b , 30 c ).
  • the lifting area WA is adjacent to the lifting device 50 and is usually set on the platform 31 .
  • the ground working area 20 of the three-dimensional storage system 1 may also be provided with an area to be lifted.
  • the server 40 of the three-dimensional storage system 1 may, in response to the received order, generate a plurality of instructions for moving the carrier corresponding to the order.
  • the plurality of instructions may include a first handling instruction, a second handling instruction, and a third handling instruction, wherein the first handling instruction indicates that the specified storage location S located in the upper working area 30 and the layer to be lifted and lowered are located at the specified storage location S.
  • the carrier C corresponding to the transport order between the areas WA; the second transport instruction indicates that the specified position in the ground work area 20 (such as the storage area of the ground work area 20, the picking workstation, the connection point of the production process) and the ground work area 20
  • the carrier C is transported between the to-be-lifted areas WA.
  • the first handling instruction and the second handling instruction are sent to the same automatic handling equipment 10, and the third handling instruction instructs the lifting equipment 50 to work with the ground in the area WA to be lifted on the floor where the designated storage location S is located.
  • the same automatic handling equipment 10 is carried between the hoisting areas WA of the zone 20 .
  • the ground work area 20 may include a track storage area or a non-track storage area, and the track storage area may include a plurality of storage locations , when the first automatic handling equipment 10 performs a handling task in the ground work area 20, the first automatic handling equipment 10 runs from the area to be lifted in the ground work area 20 to the track storage area according to the second handling instruction, and the carried vehicles Placed in the corresponding storage position; or, the first automatic handling device 10 takes out the carrier from the corresponding storage position in the track storage area according to the second handling instruction, and carries the carrier to the area to be lifted in the ground work area 20, thereby by The first automatic transport equipment 10 completes the carrier transport between the track storage area and the area to be lifted in the ground work area 20 .
  • the first automatic transport equipment 10 runs from the area to be lifted in the ground work area 20 to the non-track storage area according to the second transport instruction, and places the carrier it carries;
  • the track storage area takes out the corresponding carrier, and carries the carrier to the area to be lifted in the ground work area 20, so that the first automatic handling equipment 10 completes the loading between the non-track storage area and the area to be lifted in the ground work area 20.
  • Tool handling
  • Figure 30 is a schematic diagram of another example of a three-dimensional storage system according to an embodiment of the present disclosure.
  • the first automatic handling equipment 10 operates in the upper working area 30
  • the second automatic handling equipment 100 operates in the plane working area 20 .
  • At least one layer of the planar working area 20 and the upper working area 30 is provided with an area to be lifted, and the three-dimensional storage system also includes a second automatic handling device 100 .
  • Surface work area 20 includes non-orbital storage areas.
  • the server 40 In response to the received order, the server 40 generates a plurality of instructions for completing the order, the plurality of instructions include a first handling instruction, a second handling instruction and a third handling instruction, and the first automatic handling equipment 10 is used to
  • the first transport instruction transports the carrier corresponding to the specified storage location of the order to the waiting lift area of the floor where the specified storage location is located. Take out the carrier from the area, and transport the carrier to the area to be lifted in the ground work area 20, and the second automatic transport equipment 100 is used to take out the carrier from the area to be lifted in the ground work area 20 according to the second transport instruction, and transport the carrier to the area to be lifted in the ground work area 20.
  • the carrier is moved to the non-track storage area of the ground work area or the designated operation point to complete the off-shelf handling of the goods.
  • the server 40 generates a plurality of instructions for completing the storage task in response to the storage instruction, the plurality of instructions include a first handling instruction, a second handling instruction, and a third handling instruction, and the second automatic handling equipment 100 is used to
  • the second transport instruction takes out the carrier from the non-track storage area or the designated operation point, and transports it to the area to be lifted in the ground work area 20, and the lifting device 50 is used to take out the carrier from the area to be lifted in the ground work area 20 according to the third transport instruction.
  • the carrier and transport the carrier to the area to be lifted on the floor where the designated storage location is located, and the first automatic conveying equipment 10 is used to take out the carrier from the area to be lifted on the layer where the designated storage location is located according to the first transport instruction , and move the vehicle to the designated storage location, and complete the shelf storage of the goods.
  • the first automatic handling equipment 10 and the second automatic handling equipment 100 carry the same carrier, but the embodiment of the present disclosure is not limited, the carriers carried by the two can also be different carriers, As long as they can jointly realize the handling of the corresponding material box in an order.
  • the first automatic transport device 10 stores the storage position on which the carrier is placed, or takes out the carrier from the storage position on it for transport.
  • the non-track storage area 70 the carriers are arranged in rows and columns.
  • the carriers are shelves, dense storage or non-intensive storage of the shelves can be realized.
  • the number of rows and columns of the shelves are greater than Equal to 3, which includes obstructed shelves that are not adjacent to any aisle; in non-dense storage, at least one of the number of rows and columns of shelves is 2, and each shelf is adjacent to an aisle.
  • the non-track storage area 70 can be directly placed on the ground by the mobile carrier, or a fixed support 701 with a certain supporting effect can be set on the ground, and the empty automatic handling equipment can pass through the bottom of the fixed support, or a pallet support 702 can be used.
  • the three-dimensional storage system 1 can be configured to operate in the following manner:
  • the first automatic handling equipment 10 After the lifting equipment 50 arrives at the floor where the first automatic handling equipment 10 is located, the first automatic handling equipment 10 performs the first arrival information handshake with the lifting equipment 50 before driving into the lifting equipment 50, and after entering the lifting equipment 50 and stopping carry out a stop information handshake with the lifting device 50; and,
  • the first automatic handling device 10 and the lifting device 50 After the lifting device 50 carries the first automatic handling device 10 to the target floor, the first automatic handling device 10 and the lifting device 50 perform a second arrival information handshake, and after driving out of the lifting device 50, carry out a departure information handshake with the lifting device 50 .
  • the three-dimensional storage system 1 is configured so that the first automatic handling device 10 can directly drive into and out of the lifting device 50 without interacting with other devices in the system (such as being arranged in or near the area to be lifted, using between the automatic handling equipment and the lifting equipment or the equipment for buffering goods), so the above information handshake is directly performed between the first automatic handling equipment 10 and the lifting equipment 50, which can simplify the control and reduce the load on the server 40. Occupancy, reducing the "congestion" of the system control, is conducive to improving efficiency.
  • the three-dimensional storage system 1 can be configured to operate in the following manner:
  • the first automatic handling device receives task address information from the server
  • the first automatic handling device acquires current location information
  • the first automatic handling device calculates the navigation route information according to the current position information and the task address information; or the server calculates the navigation route information according to the current position information and the task address information obtained by the first automatic handling device, and sends the navigation route information to the first automatic handling device. handling equipment; and
  • the first automatic transport device runs to the position corresponding to the task address information according to the navigation route information.
  • the navigation route information when the current position information and the task address information are located on the same layer, the navigation route information is located on the same layer; and when the current position information and the task address information are located on different layers, the navigation route information includes The first navigation route information from the information to the position information of the lifting equipment in the first floor where the current position information is located, the second navigation route information from the first floor to the second floor where the task address information of the lifting equipment is located, and the second navigation route information from the second floor The third navigation route information from the position information of the lifting equipment to the task address information.
  • the first automatic handling device 10 can use sensing devices such as laser radar, visual sensor, ultrasonic sensor or depth sensor to obtain current environmental information, and the current environmental information is fused to the existing map information to get the updated map information.
  • the first automatic transfer device 10 can send the updated map information to the server 40 .
  • the three-dimensional storage system 1 may adopt the first automatic transfer device 10 in which the guide wheels are only provided at one end of the vehicle body.
  • the guide wheels are arranged on both sides of one end of the first automatic transport device 10 entering the track when it enters the track from the platform.
  • the guide wheels may be provided, for example, only on both sides of the front end or the rear end.
  • the first automatic conveying device 10 in the three-dimensional storage system 1 may also be provided with guide wheels at both ends thereof.
  • the server 40 of the three-dimensional storage system 1 can be configured to perform at least one of the following processes:
  • forward forward means that the front end of the first automatic transport device 10 enters the track first
  • backward means that the rear end of the first automatic transport device 10 enters the track first
  • control method operation mode, etc. It is exemplary, and the three-dimensional storage system 1 according to the embodiment of the present disclosure is not limited to implementing the above-mentioned specific method or operating according to the above-mentioned method, but can adopt other different control methods as an alternative or supplement.
  • a shelf system (corresponding to the upper working area 30 ) for the three-dimensional storage system 1 , the shelf system includes at least one layer arranged along the height direction (corresponding to A plurality of layers of the upper working area 30, such as layers 30a, 30b, 30c), each layer is provided with a storage location S and includes a platform 31 forming a main road and a track 32 communicating with the platform 31, wherein the platform 31 and the track 32 are configured as leads to storage bit S.
  • the storage position S is arranged above the track 32 .
  • the height of the platform 31 is lower than the height of the track 32 in the same layer of the above racking system.
  • the height of the platform 31 is the same as that of the track 32 in the same layer of the above-mentioned shelf system.

Abstract

一种立体仓储系统,该系统包括:自动搬运设备;地面工作区;和包括至少一个层的上层工作区,每个层设置有多个存储位以及通往存储位的道路系统,道路系统包括构成干道的平台以及与干道连通的轨道,自动搬运设备构造为能够在道路系统上行驶。这使得能够在上层工作区的不同层之间以及/或者地面工作区与上层工作区之间调度和使用自动搬运设备,提供了极大的灵活性,并有利于降低成本。

Description

立体仓储系统以及用于其的货架系统和自动搬运设备 技术领域
本公开涉及智能仓储技术领域,具体而言,涉及一种立体仓储系统以及用于其的货架系统和自动搬运设备。
背景技术
随着物流业的高速发展以及人力资源成本的不断提高,为了提高仓库的利用效率,降低成本,很多企业采用自动化立体库解决仓储问题。自动化立体仓储系统中,通常采用诸如自动导引车(Automated Guided Vehicle,AGV)或自主移动机器人(Autonomous Mobile Robot,AMR)实现对货物的自动化运输。此外,人们还设计了四向穿梭车,用于实现高密度存储下的存取及运输。
现有的立体仓储系统尚有不足之处。AGV和AMR以及四向车均属于成本较高的搬运设备,而且现有的AGV和AMR限于在地面上行驶,而现有的四向穿梭车仅能在轨道上运行,需要结合专用的立体货架系统才能使用。这些都使得立体仓储系统的建设和使用成本高,并且调度缺乏灵活性。
发明内容
本公开的目的是提供一种新型的立体仓储系统以及用于其的货架系统和自动搬运设备,以至少部分地解决现有技术中的问题。
根据本公开的一个方面,提供了一种立体仓储系统,该系统包括:自动搬运设备;位于地面的地面工作区;和位于上层的上层工作区,所述上层工作区包括沿高度方向布置的至少一个层,每个层设置有多个存储位以及供所述自动搬运设备行驶以通往所述多个存储位的道路系统;所述道路系统包括构成干道的平台以及与所述干道连通的轨道;其中,所述自动搬运设备构造为能够在所述道路系统上行驶。
根据本公开的另一个方面,提供了一种用于立体仓储系统的货架系统,该货架系统包括沿高度方向布置的至少一个层,每个层设置有存储位并且包括构成干道的平台以及与所述平台连通的轨道,所述平台和所述轨道构造为通往所述存储位。
根据本公开的又一个方面,提供了一种用于立体仓储系统的自动搬运设备,包括底盘以及安装在所述底盘上的轮组,所述轮组构造为适于在包括构成干道的平台以及与所述干道连通的轨道的道路系统上行驶,其中至少部分所述轨道与所述平台相垂直设置,并且所述自动搬运设备配置为在所述平台上通过旋转进行换向,以实现在所述平台上行驶与在所述轨道上行驶之间的切换。
根据本公开实施例的立体仓储系统采用既能在地面和平台上行驶又能在轨道上行驶的自动搬运设备,这使得能够在上层工作区的不同层之间以及/或者地面工作区与上层工作区之间调度和使用自动搬运设备。这一方面提供了极大的灵活性;另一方面,有利于降低立体仓储系统的建设和运行成本。
附图说明
通过阅读参照以下附图所作的对非限制性实施例的详细描述,本公开的其它特征、目的和优点将会变得更明显:
图1为根据本公开实施例的立体仓储系统的一个示例的示意图;
图2为根据本公开实施例的立体仓储系统的上层工作区的一个层的示例的示意性立体图;
图3示意性地示出了根据本公开第一实施方式的自动搬运设备搬运货物的一个示例;
图4和图5分别示出了图3所示自动搬运设备的正视图和仰视图;
图6为局部放大图,示出了图3所示自动搬运设备的轮组与平台及轨道之间的配合关系;
图7为局部放大图,示出了轨道入口处的引导结构的示例;
图8为根据本公开第一实施方式的实施例一的自动搬运设备的示意性立体图;
图9和图10分别为图8所示自动搬运设备的仰视图和立体分解图;
图11为根据本公开第一实施方式的实施例二的自动搬运设备的示意性立体图;
图12为图11所示自动搬运设备的立体分解图;
图13根据本公开第一实施方式的实施例三的自动搬运设备的示意性立体图;
图14为图13所示自动搬运设备的立体分解图;
图15为可用于根据本公开第一实施方式的自动搬运设备的一种控制方法;
图16为根据本公开第二实施方式的自动搬运设备的一个示例的示意性立体图,其中舵轮朝向第一行驶方向;
图17为图16所示自动搬运设备的仰视图;
图18为图16所示自动搬运设备的仰视图,其中舵轮朝向第二行驶方向;
图19为图16所示自动搬运设备的立体分解图;
图20为根据本公开第三实施方式的自动搬运设备的仰视图;
图21示意性地示出根据本公开第三实施方式的自动搬运设备行驶在货架系统的轨道上的状态;
图22和图23为局部放大图,分别示出本公开第三实施方式的实施例一中自动搬运设备的驱动轮和从动轮与轨道配合的状态;
图24示意性地示出本公开第三实施方式的实施例二中自动搬运设备行驶在轨道上的状态;
图25为局部放大图,示出根据本公开第三实施方式的实施例三的货架系统的轨道的示例;以及
图26为局部放大图,示出本公开第三实施方式的实施例三中自动搬运设备的车轮与轨道配合的状态。
图27为可用于根据本公开实施例的立体仓储系统的控制方法的一个示例的流程图;
图28为可用于根据本公开实施例的立体仓储系统的控制方法的 另一示例的流程图;以及
图29为根据本公开实施例的立体仓储系统的另一示例的示意图;
图30为根据本公开实施例的立体仓储系统的另一示例的示意图;
图31为根据本公开实施例的立体仓储系统的另一示例的示意图。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
首先,参照图1和图2介绍根据本公开实施例的立体仓储系统的一个示例。图1示出了立体仓储系统1的示意性立体图。如图1所示,根据本公开实施例的立体仓储系统1包括第一自动搬运设备10、位于地面的地面工作区20,位于上层的上层工作区30,其中上层工作区30包括沿高度方向布置的多个层30a、30b、30c,每个层设置有多个存储位S,用于存储货物2。地面可以包括地面一层的地面也可以是立体仓储系统中上层楼面的地面。
图2单独示出了立体仓储系统的上层工作区的一个层的示例。如图2中更加清晰地示出的,上层工作区30的层中设置有供第一自动搬运设备10行驶的道路系统TS,该道路系统TS包括平台31和轨道32,其中平台31构成干道,轨道32与平台31构成的干道相连通。这里,“平台”指的是可供第一自动搬运设备行驶于其上且具有基本上连续和平坦的支撑表面的结构。结合参照图1和图2,存储位S优选设置在轨道32上。第一自动搬运设备10经由平台31和轨道32可以达到存储位S,以对货物2进行存取操作。
根据本公开实施例,第一自动搬运设备10构造为既能够在地面和平台上行驶,也能够在轨道上行驶。这在下文中将结合第一自动搬运 设备10的具体实施例更加详细地介绍。
有利地,立体仓储系统1可以构造为至少部分轨道32与平台31相垂直设置,并且第一自动搬运设备10配置为在平台31上通过旋转进行换向,以实现在平台31上行驶与在轨道32上行驶之间的切换。
关于根据本公开实施例的立体仓储系统的更多内容将在以下对立体仓储系统的不同部分或其运行方法的介绍中体现。
下面将参照图3至图7简单介绍根据本公开第一实施方式的自动搬运设备。
图3示意性地示出了根据本公开第一实施方式的第一自动搬运设备搬运货物的一个示例。在图3所示示例中,货物2放置在托盘状的载具C上,根据本公开第一实施方式的第一自动搬运设备10’通过托举载具C来搬运货物2。
然而,图中所示货物2及载具C的形式都仅仅是示意性的,而非限制性的。具体而言,载具C可以具有其它的结构或形式。例如,在一些情况下,载具C可以是存储容器;在另一些情况下,载具C可以是能够接收存储容器的货架。另外,货物2可以具有不同的形态,例如具有规则形状、能够码放在一起的;或者是零散的、无法码放的小件等等,在此不再赘述。不仅如此,应该理解,第一自动搬运设备10’也并不限于通过载具C来搬运货物2,在一些情况下,第一自动搬运设备10’也可以直接托举和搬运货物2。
图4和图5分别示出了图3所示第一自动搬运设备10’的正视图、侧视图和仰视图。如图所示,第一自动搬运设备10’包括底盘10a以及安装在底盘10a上的第一轮组11和第二轮组12。根据本实施方式,第一轮组11用于在地面和平台上行驶,第二轮组12用于在轨道上行驶。尽管图3至图5未示出,但是应该理解,第一自动搬运设备10’还包括用于驱动第一轮组11和第二轮组12的驱动机构(驱动机构将在下文中结合不同的实施例进行详细介绍)。
如图4所示,第一自动搬运设备10’的第一轮组11的着地点低于第二轮组12的着地点。图4中分别以附图标记“h1”和“h2”标示了第一轮组11的着地点高度和第二轮组12的着地点高度。
如图4至图5所示,第一轮组11包括可差速驱动以实现旋转换向的差速轮11a。优选地,第一轮组11包括两个第一驱动轮11a构成的一对差速轮,并且下文中的实施例将以此为例进行介绍。但是,应该理解,本公开在此方面并不受限制,第一轮组11可以包括更多数量的差速轮,例如包括两对差速轮,只要能够实现在地面和平台上的行驶。
在图示示例中,第一轮组11还包括四个与差速轮11a适配的第一从动轮11b。第一从动轮11b例如为能够随着差速轮11a的驱动而改变方向的万向轮。此外,在其它示例中,根据支撑的需要,第一轮组11可以包括更多或者更少的第一从动轮11b。例如,在第一轮组11包括不止一对差速轮的情况下,第一轮组11也可以不包括第一从动轮11b。
如图5中更清晰地示出的,第二轮组12可以包括安装在第一自动搬运设备10’的彼此相反的第一侧L1和第二侧L2的多个车轮。如下文中结合实施例将详细介绍的,第二轮组12包括分别安装在第一侧L1和第二侧L2的至少一个第二驱动轮12a(见图8、图11、图13),从而实现沿着轨道的平稳行驶。
如图5所示,第一轮组11的差速轮11a包括分别安装在第一自动搬运设备10’的第一侧L1和第二侧L2的一个第一驱动轮11a。优选地,如图5所示,第一轮组11的差速轮11a及第一从动轮11b在垂直于自第一动搬运设备10’的第一侧L1和第二侧L2的方向上相对于第二轮组12安装在内侧。这样,有利于第二轮组12与轨道配合,避免第一轮组11对在轨道上的行驶产生干扰。
此外,第一自动搬运设备10’还可以包括分别安装在第一侧L1和第二侧L2的至少一个导向轮13,并且导向轮13的回转轴线垂直于底盘10a,用于与轨道配合以引导第一自动搬运设备10’在轨道上行驶。如图5所示,优选地,自动搬运设备10’具有安装在底盘10a的四个角部的四个导向轮13。
以上结合图3至图5介绍了第一自动搬运设备10’的轮组。下面参照图6所示局部放大图介绍第一自动搬运设备10’的轮组与平台及轨道之间的配合关系。
如图6所示,在使用根据本公开第一实施方式的第一自动搬运设备10’的立体仓储系统中,上层工作区的同一层中的道路系统中,平台31的高度低于轨道32的高度。这里轨道32的高度指的是轨道32的轨道面32a的高度。第一轮组11与第二轮组12的着地点的高度落差优选等于平台31与轨道32之间的高度落差。这样,在第一自动搬运设备10’的具有较低着地点的第一轮组11(差速轮11a和第一从动轮11b)落在平台31上时,具有较高着地点的第二轮组12可以落在轨道32的轨道面32a上,从而当第一自动搬运设备10’从平台31进入轨道32或者从轨道32进入平台时,能够实现平稳过渡。此外,如图6所示,轨道32还包括沿着轨道面32a的外侧竖直设置的引导壁32b,导向轮13设置为垂直于第一自动搬运设备10’的行驶方向与引导壁32b接合,以引导第一自动搬运设备10’在轨道上行驶。
图7为另一局部放大图,示出了轨道32的与平台31对接的入口处具有引导结构32c。在图示示例中,引导结构32c包括分别形成在左右两侧轨道32的引导壁32b的端部的引导片,左右两侧的引导片形成比轨道32更大的敞口,并且该敞口向着轨道32逐渐缩小,用于与例如第一自动搬运设备10’的导向轮13接合,从而引导第一自动搬运设备10’以正确的方向和位置进入轨道32。
上述控制方法中,控制驱动机构驱动第一轮组11以在地面工作区20或平台31上行驶和旋转包括:控制在地面或平台上的行驶速度/加速度不超过第一最大速度/第一最大加速度;并且控制驱动机构驱动第二轮组以在轨道上行驶包括:控制在轨道上的行驶速度/加速度不超过第二最大速度/第二最大加速度。根据本公开实施例,第一最高行驶速度不同于第二最高行驶速度,并且/或者第一最高加速度不同于第二最高加速度。
相应地,第一自动搬运设备10’在平台31和地面工作区20上以第一运行方式行驶,在轨道32上以第二运行方式行驶,第一运行方式包括第一最高行驶速度和/或第一最高加速度,第二运行方式包括第二最高行驶速度和/或第二最高加速度。
考虑到地面和平台对第一自动搬运设备10’的支撑更加稳定,轨道 上由于设置有存储位S而周围环境更加复杂,以及考虑到第一自动搬运设备10’在地面和平台上的行程通常要比在轨道上的行程长很多,在一个可选实施例中第一最高行驶速度高于第二最高行驶速度。第一自动搬运设备10’运行在轨道上,由于第二轮组包括的轮子较多,与轨道间的摩擦力较大,对应的加速度可以比较大,第一自动搬运设备10’运行在平台上,由于第一轮组包括的轮子较少,与轨道间的摩擦力较小,对应的加速度比较小,因此在另一个可选实施例中,第二最高加速度高于第一最高加速度。
下面将结合附图介绍根据本公开第一实施方式的不同实施例的自动搬运设备。
首先,参照图8至图10介绍根据本公开第一实施方式的实施例一的自动搬运设备。根据本实施例,第一自动搬运设备10’的驱动机构采用同一个电机驱动差速轮中的至少一个和第二驱动轮中的至少一个。
图8以立体图示意性示出了根据实施例一的第一自动搬运设备10A,其中为了显示内部的结构,去掉了第一自动搬运设备10A的侧部的壳体结构。图9和图10分别示出了第一自动搬运设备10A的仰视图和立体分解图。
如图10的立体分解图更加清楚地示出的,第一自动搬运设备10A包括底盘10a和安装在底盘10a上的轮组(第一轮组11和第二轮组12)及其驱动机构(电机14和传动机构16);可选地,第一自动搬运设备10A还可以包括:导向轮13、传感系统(第一导航识别组件17a-1、定位识别组件17a-2、第二导航识别组件17b、避障传感器17c、位姿检测装置17d)、顶升机构18、旋转保持机构19以及托架10b。
在图8至图10所示示例中,第一轮组11包括一对第一驱动轮(差速轮)11a和四个第一从动轮11b,一对第一驱动轮11a分别设置在第一自动搬运设备10A的彼此相反的第一侧L1和第二侧L2,第二轮组12包括对称地设置在第一侧L1和第二侧L2的八个第二驱动轮12a。第二轮组12设置在第一轮组11的外侧。
如图9和图10所示,第一自动搬运设备10A的驱动机构包括第一电机14a和第二电机14b,第一电机14a用于驱动位于第一侧L1的 一个第一驱动轮11a和四个第二驱动轮12a,第二电机14b用于驱动位于第二侧L2的一个第一驱动轮11a和四个第二驱动轮12a。
优选地,第一电机14a和第二电机14b驱动对应的差速轮和对应的第二驱动轮以相同的轮面线速度转动。这里,“轮面线速度”指的是差速轮和第二驱动轮的轮面(车轮滚动表面)的线速度。
在图示示例中,第一自动搬运设备10A的驱动机构包括直接连接至第一驱动轮11a的第一驱动轴11z、直接连接至第二驱动轮12a的第二驱动轴12z以及连接在第一驱动轴11z和第二驱动轴12z之间的链传动结构或带传动结构16。这样,第一电机14a和第二电机14b分别输出给两个第一驱动轮11a的动力分别经由第一侧L1和第二侧L2的第一驱动轴11z、链/带传动结构6和第二驱动轴12z被输出至第二驱动轮12a。这里,应该理解,链/带传动结构6可以包括经由一第二驱动轴12z连接至另一第二驱动轴12z的结构,如图10所示。链传动结构和带传动结构能够较好地适应较大的传动距离,并且相对于例如齿轮传动,更有利于减轻传动机构的重量,从而减小自动搬运设备的自重。
优选地,第一电机14a和第二电机14b为直驱电机,分别直接驱动两个第一驱动轮11a。
此外,优选地,第一电机14a和第二电机14b可以为集成有减速机的减速电机。
应该理解,图8至图10所示的驱动机构仅仅是示例性的,而非限制性的。根据本实施例,还可以通过其它结构来实现利用同一电机驱动差速轮中的至少一个和第二驱动轮中的至少一个。举例而言,驱动机构可以包括第一传动机构和第二传动机构,第一传动机构连接一电机和对应的差速轮,第二传动机构连接该同一个电机和对应的第二驱动轮,并且该电机同步地将动力输出至第一传动机构和第二传动机构。这种情况下,第一传动机构和第二传动机构可以具有共用的传动结构。所述电机可以通过链条、传动带、齿轮中的至少一种与所述第二驱动轮连接。
继续参照图10,第一自动搬运设备10A可以包括第一导航识别组 件17a-1,用于向下方探测和识别设置在平台或者地面上的第一导航标识(例如图2所示铺设在平台31上的导航标识31a)。第一自动搬运设备10A可以根据导航识别结果确定和调整行驶方向。第一导航识别组件17a-1可以为射频读码器,此时,第一导航标识可以为射频信号。作为替代或补充,第一导航识别组件17a-1可以为摄像装置,此时第一导航标识可以为二维码、条形码或者其他指定形状的标识码。
如图9和图10所示,底盘10a可以形成与第一导航识别组件17a-1对应的第一中心通孔c1,第一导航识别组件17a-1设置为穿过第一中心通孔c1向下探测和识别第一导航标识。
第一自动搬运设备10A还可以包括用于向上方探测和识别定位标识的定位识别组件17a-2。定位标识(未示出)主要指的是设置在载具C底部的标识,可以用于确定载具C与第一自动搬运设备10A之间是否上下对准。举例而言,当第一自动搬运设备10A移动到载具C下方时,可以通过定位识别组件探测和识别载具C底部的定位标识,并且第一自动搬运设备10A可以配置为根据定位识别结果执行如下操作中的至少一项:
(1)判断载具是否为对应的载具,得到判断结果;
(2)在判断结果指示为“是”时,校准自动搬运设备与载具的相对位置和/或角度至指定相对位置和/或角度。
在图10所示示例中,第一导航识别组件17a-1和定位识别组件17a-2被集成在同一基板的上下两侧,形成集成识别组件17a。
如图10所示,第一自动搬运设备10A还可以包括位于顶部的托架10b,该托架10b形成为托盘,并且托盘形成有第二中心通孔c2,可以供定位识别组件17a-2穿过其中向上进行探测。
返回参照图8,第一自动搬运设备10A还可以包括设置在自动搬运设备的侧部的第二导航识别组件17b,用于向下方或侧方探测设置在轨道32上的第二导航标识(未示出)。第一自动搬运设备10A可以根据第二导航识别组件17b的识别结果确定和调整行驶方向。第二导航识别组件17b可以为射频读码器,此时,第二导航标识可以为射频信号。作为替代或补充,第二导航识别组件17b可以为摄像装置, 此时第二导航标识可以为二维码、条形码或者其他指定形状的标识码。
结合参照图8和图9,第二导航识别组件17b可以安装在底盘10a上侧,底盘10a可以形成有与第二导航识别组件17b对应的探测通孔c3,供第二导航识别组件17b穿过其进行探测。
第一自动搬运设备10A在平台31上行驶时,根据避障传感器17c采集的第一避障区域的障碍信息进行第一避障判断;在轨道32上行驶时,根据避障传感器17c采集的第二避障区域的障碍信息进行第二避障判断。优选地,第一避障区域包括前方区域和侧方区域;第二避障区域包括前方区域。这里,“前方”和“侧方”是相对于当前行驶方向而言的。
进一步,如果第一避障判断指示需避障,则第一自动搬运设备10A采取第一避障策略,如果第二避障判断指示需避障,则第一自动搬运设备10A采取第二避障策略。优选地,第一避障策略与第二避障策略不同。举例而言,第一避障策略包括允许采用的第一最大加速度,第二避障策略包括允许采用的第二最大加速度,优选第一最大加速度大于第二最大加速度。
尽管在图中没有示出,但是应该理解,第一自动搬运设备10A可以包括控制器,控制器优选配置为至少部分地基于位姿检测装置17d探测到的位姿及运动信息控制第一自动搬运设备10A的行驶。
如前所述,第一自动搬运设备10A还可以包括顶升机构18。顶升机构18可以安装在底盘10a上,其可以包括凸轮机构、连杆机构、丝杠机构和液压机构中的至少一种,用于相对于底盘10a升高或降低托架10b。
顶升机构18用于升高或降低安装于其上的部件,例如托架10b。在第一自动搬运设备10A进行搬运工作时,其首先移动到例如载具C的底部并与之对准,然后通过顶升机构18升高托架10b,使得托架10b将载具C顶起,从而第一自动搬运设备10A将载具C“搬起”并可运送到其它位置。
如图10所示,第一自动搬运设备10A还可以设置有旋转保持机构19。根据本公开实施例,旋转保持机构19用于相对于底盘10a旋 转托架10b。在自动搬运设备通过例如差速轮的差速转动而发生车体旋转时,可以通过自动搬运设备的控制器(未示出)控制旋转保持机构19反向旋转,该反向旋转与车体的旋转相抵消,使得托架10b能够保持不发生旋转。这样,对于保持载置在托架10b上的载具C和/或货物2的稳定性是非常有利的。
考虑到第一自动搬运设备10A发生车体旋转时,车体的角部可能与周围环境发生干涉,根据本公开实施例,优选地第一自动搬运设备10A的角部具有圆弧形形状。
接下来,参照图11至图12介绍根据本公开第一实施方式的实施例二的第一自动搬运设备10B。根据实施例二,驱动机构包括用于驱动差速轮11a的第一驱动机构和用于驱动第二驱动轮12a的第二驱动机构,并且第一驱动机构与第二驱动机构彼此独立地设置。
图11以立体图示意性地示出了第一自动搬运设备10B,其中为了显示内部的结构,去掉了第一自动搬运设备10B的侧部的壳体结构。图12为第一自动搬运设备10B的立体分解图。
如图11至图12所示,特别是如图12的立体分解图更加清楚地示出的,第一自动搬运设备10B包括底盘10a和安装在底盘10a上的轮组(第一轮组11和第二轮组12)及其驱动机构(电机14、15和传动机构16);可选地,第一自动搬运设备10B还可以包括:导向轮13、传感系统(第一导航识别组件17a-1、定位识别组件17a-2、第二导航识别组件17b、避障传感器17c、位姿检测装置17d)、顶升机构18、旋转保持机构19以及托架10b。
在图11至图12所示示例中,第一轮组11包括一对第一驱动轮(差速轮)11a和四个第一从动轮11b,一对第一驱动轮11a分别设置在自动搬运设备10A的彼此相反的第一侧L1和第二侧L2,第二轮组12包括对称地设置在第一侧L1和第二侧L2的八个第二驱动轮12a。优选地,第二轮组12设置在第一轮组11的外侧。
如图12所示,第一自动搬运设备10B的用于驱动差速轮11a的第一驱动机构包括第一驱动电机14,用于驱动第二驱动轮12a的第二驱动机构包括第二驱动电机15。
在图11至图12所示示例中,第一驱动电机14包括第一电机14a和第二电机14b,第一电机14a用于驱动位于第一侧L1的一个第一驱动轮11a,第二电机14b用于驱动位于第二侧L2的另一个第一驱动轮11a。优选地,第一电机14a和第二电机14b为直驱电机,分别直接驱动两个第一驱动轮11a。
在图11至图12所示示例中,第二轮组12的位于第一自动搬运设备10B的第一侧L1和第二侧L2的第二驱动轮12a形成四个轮对,每个轮对包括位于两侧的两个第二驱动轮12a和连接在这两个第二驱动轮12a之间的车轴。如图所示,优选地,第二驱动电机15通过链传动机构或带传动机构6将动力输出至第二驱动轮12a的四个轮对。这里,应该理解,链/带传动结构6可以包括经由一个轮对连接至另一轮对的传动结构。
优选地,第一驱动电机14的输出轴与第二驱动电机15的输出轴平行设置。
优选地,第一驱动电机14和第二驱动电机15中的至少一者为集成有减速机的减速电机。
根据本实施例,第一自动搬运设备10B的第一轮组11和第二轮组12分别有第一驱动机构和第二驱动机构来驱动。这种情况下,优选地,第一自动搬运设备10B还包括控制器(未示出),该控制器配置为判断第一自动搬运设备10B是否处在行驶于平台上的状态和行驶于轨道上的状态之间的切换过程,并且当判断处于切换过程时,控制第一驱动机构和第二驱动机构,使之驱动差速轮11a和第二驱动轮12a以相同的轮面线速度转动。
接下来,参照图13至图14介绍根据本公开第一实施方式的实施例三的第一自动搬运设备10C。根据实施例三,第一自动搬运设备10C在平行于第一侧L1和第二侧L2的方向上具有彼此相反的第一端和第二端,第二驱动轮12a仅设置在靠近第一端的位置上。
图13以立体图示意性地示出了第一自动搬运设备10C,其中为了显示内部的结构,去掉了第一自动搬运设备10C的侧部的壳体结构。图14为第一自动搬运设备10C的立体分解图。
如图13至图14所示,特别是如图14的立体分解图更加清楚地示出的,第一自动搬运设备10C包括底盘10a和安装在底盘10a上的轮组(第一轮组11和第二轮组12)及其驱动机构(电机14、15和传动机构16);可选地,第一自动搬运设备10C还可以包括:导向轮13、传感系统(第一导航识别组件17a-1、定位识别组件17a-2、第二导航识别组件17b、避障传感器17c、位姿检测装置17d)、顶升机构18、旋转保持机构19以及托架10b。
可以看到,根据实施例三的第一自动搬运设备10C具有与根据实施例二的第一自动搬运设备10B基本上相同的结构,不同之处仅在于:用于驱动第二驱动轮12a的第二驱动电机15通过传动机构6仅与位于自动搬运设备10C的第一端(图14中所示的左端)的第二轮组12中的轮对连接,从而第二轮组12包括仅设置于第一端的第二驱动轮12a,同时还包括设置在第二端的第二从动轮12b。在仅设置于一端的第二驱动轮12a足以驱动自动搬运设备的情况下,根据实施例三的这种用于第二轮组的驱动设计有利于简化传动机构,便于车体内部空间的布局,减轻重量,并降低成本。
应该理解的是,根据实施例三的第一自动搬运设备10C并不限于采用第一驱动电机14和第二驱动电机15分别驱动第一轮组11和第二12的情形。例如,在根据实施例一的第一自动搬运设备10A中,如果传动机构构造为将来自第一驱动电机14(第一电机14a和第二电机14b)的动力仅传递给设置于第一端和第二端中的一端的第二轮组12的车轮,则同样实现第二驱动轮12a仅设置在靠近第一端的位置的设计。
在第二驱动轮12a仅设置在第一自动搬运设备10C的第一端的情况下,第一自动搬运设备10C可以采用适应性的控制方式。有利地,第一自动搬运设备10C的控制器(未示出)配置为执行以下控制方法:
(1)当第一自动搬运设备10C从平台31驶入轨道32时,控制第一自动搬运设备10C以第一端首先进入轨道32的方式驶入轨道32;并且,
(2)第一当自动搬运设备10C从轨道32驶入平台31时,控制 第一自动搬运设备10C以第一端最后离开轨道32的方式驶出轨道32。
在第一自动搬运设备10C中,优选地,第一端(第二驱动轮12a所在的一端)设置有用于探测前向区域的障碍的第一避障传感器,第二端设置有用于探测前向区域和侧向区域的障碍的第二避障传感器。
尽管附图中示出第一自动搬运设备10C包括设置于四个角部的四个导向轮,但是第一自动搬运设备10C可以包括更多或更少的导向轮,只要在第一自动搬运设备10C的设置有第二驱动轮12a的第一端的两侧(即第一侧L1和第二侧L2)分别设置有至少一个导向轮。
对于以上介绍的根据本公开第一实施方式的第一自动搬运设备10’,可以采用一种控制方法,其中根据导航信息,控制第一自动搬运设备10’在地面、平台或轨道上运行。该控制方法包括:
(1)当第一自动搬运设备位于地面或平台上时,控制驱动机构驱动第一轮组以在地面或平台上行驶和旋转;以及
(2)当第一自动搬运设备位于轨道上时,控制驱动机构驱动第二轮组以在轨道上行驶。
当第一自动搬运设备10’已经位于一切换区域时,上述控制方法还可以包括以下附加处理:判断第一自动搬运设备是否由平台驶入导航信息中指定的切换区域;以及如果第一自动搬运设备由平台驶入指定的切换区域,则控制驱动机构驱动第一轮组以朝向轨道的入口行驶,然后切换至驱动第二轮组在轨道上行驶。这里,“切换区域”为平台31上与轨道32的入口正对的区域(参见图2中的切换区域SA)。
作为示例,图15示出可用于根据本公开第一实施方式的第一自动搬运设备10’的控制方法M10的流程图,该控制方法M10包括上述附加处理的一种具体实现方式。应该理解的是,图15仅示出了控制方法M10中的部分处理,控制方法M10可以进一步结合本申请中介绍的第一自动搬运设备10’的各种控制操作/处理。
如图15所示,控制方法M10包括:
S11:判断第一自动搬运设备是否由平台驶入指定的切换区域;
S12:当处理S11判断结果为“是”,控制驱动机构驱动第一轮组的差速轮进行差速旋转,以使第一轮组的行驶方向朝向轨道的入口;
S13:驱动所述第一轮组朝向轨道的入口行驶;
S14:驱动第一轮组和第二轮组以相同的轮面线速度转动;
S15:停止驱动所述第一轮组。
上述处理S12和S13用于实现“控制驱动机构驱动第一轮组以朝向轨道的入口行驶”;处理S14和S15用于实现“切换至驱动第二轮组在轨道上行驶”。
如图15所示,控制方法M10还可以包括:
S16:当处理S11判断结果为“否”,进一步判断第一自动搬运设备是否由轨道驶入导航信息中指定的切换区域;
S17:当处理S16判断结果为“是”,停止驱动第二轮组。
对于上述处理S14、S15和S17尤其适合第一轮组和第二轮组各自独立地驱动的第一自动搬运设备10’,例如根据本公开上述实施例二的第一自动搬运设备10B。
应该理解的是,尽管没有示出,但是在处理S16的判断结果为“是”的情况下,控制方法M10还可以包括:控制驱动机构驱动第一轮组的差速轮进行差速旋转,然后驱动第一轮组在平台上行驶。
此外,尽管图中没有示出,但是控制方法M10还可以包括:判断第一自动搬运设备是否即将由轨道驶入导航信息中指定的切换区域;以及上述判断结果为“是”,则控制驱动机构驱动第一轮组和第二轮组以相同的轮面线速度转动。
下面将参照图16至图19介绍根据本公开第二实施方式的第一自动搬运设备10”。第一自动搬运设备10”在平台31和地面工作区20上行驶时使用的轮组与在轨道32上行驶时使用的轮组是同一轮组。
图16示出根据本公开第二实施方式的自动搬运设备10”的一示意性立体图,图17为图16所示自动搬运设备10”的仰视图。如图16和图17所示,自动搬运设备10”包括底盘110a以及安装在底盘110a上的行驶轮组和导向轮组。在图示示例中,底盘110a具有大致矩形的形状,并且行驶轮组包括布置在底盘110a的四个角上的四个舵轮111,导向轮组包括分别位于底盘110a的四个角上的四个导向轮113,导向轮113的回转轴线垂直于底盘110a。
尽管附图中所示自动搬运设备10”的底盘110a具有大致矩形形状,但是应该理解,本公开并不限于此。在底盘110a不具有矩形形状的其它情况下,自动搬运设备10”的四个舵轮111可以布置成位于矩形的四个角部。也就是说,四个舵轮111呈矩形布置。
优选地,自动搬运设备10”中,行驶轮组仅包括舵轮。换句话说,自动搬运设备10”的行驶轮组不包括从动轮。
舵轮111构造为能够围绕一横轴a-a旋转以实现行驶,并且能够围绕一纵轴b-b旋转以改变行驶方向。这里,纵轴b-b垂直于底盘110a,横轴a-a垂直于纵轴b-b,如图19所示。
在图19所示示例中,舵轮111包括车轮111a和用于驱动车轮111a围绕横轴a-a旋转的行驶驱动电机111b;舵轮111还可以包括与车轮111a和行驶驱动电机111b相对固定的换向齿轮111c-1、与该换向齿轮111c-1啮合的驱动齿轮111c-2以及用于驱动该驱动齿轮111c-2旋转的换向驱动电机111c-3。换向时,换向驱动电机111c-3经由驱动齿轮111c-2驱动换向齿轮111c-1旋转,从而驱动车轮111a和行驶驱动电机111b围绕纵轴b-b旋转,实现换向。
在图19所示示例中,舵轮111构造为相对于纵轴b-b是偏置,即舵轮111的车轮111a相对于纵轴b-b是偏置的(非对中的)。
图18为图16所示自动搬运设备10”的仰视图,其中舵轮朝向第二行驶方向。结合参照图16、图17和图18,可以看到,根据本公开第二实施方式的自动搬运设备10”可以具有彼此垂直的第一行驶方向D1和第二行驶方向D2,第一行驶方向D1平行于舵轮111所在的矩形(图示示例中对应于底盘110a)的第一侧边L1和第二侧边L2,第二行驶方向D2平行于所述矩形(图示示例中对应于底盘110a)的第三侧边L3和第四侧边L4。
根据本公开的优选实施例,自动搬运设备10”采用相对于纵轴偏置的舵轮(如图19所示),并且优选地采用图16、图17和图18所示的构造。
具体而言,图16和图17所示自动搬运设备10”的舵轮111朝向第一行驶方向D1定位,这样自动搬运设备10”可以沿第一行驶方向 D1行驶。此时,如图16和图17所示,位于第一侧边L1的两个舵轮111相对于其对应的纵轴b-b远离第二侧边L1偏置,位于第二侧边L2的两个舵轮111相对于其对应的纵轴b-b远离第一侧边L1偏置。
类似地,图18示出自动搬运设备10”的舵轮111朝向第二行驶方向D2的情形。此时,如图18所示,位于第三侧边L3的两个舵轮111相对于其对应的纵轴b-b远离第四侧边L4偏置,位于第四侧边L4的两个舵轮111相对于其对应的纵轴b-b远离第三侧边L3偏置。
在一定的车体外轮廓尺寸限制下,相比较于车轮111a与其纵轴b-b无偏置的结构,上述构造的自动搬运设备10”中,舵轮111的车轮111a在垂直于行驶方向的方向上能够具有更大的轮距。轮距增大能够防止车体侧倾,提高自动搬运设备10”的平衡性能。
不仅如此,舵轮111相对于纵轴b-b偏置的方式,使得车轮111a可以更接近自动搬运设备10”的外轮廓,这样轨道可以更窄,节省成本。
优选地,根据本公开第二实施方式的自动搬运设备10”可以包括控制机构(未示出),控制机构例如包括与舵轮111的行驶驱动电机111b和换向驱动电机111c-3连接的电路装置,并且构造为控制所有位于所述矩形(图示示例中对应于底盘110a)的同一侧边上的两个舵轮111围绕其对应的纵轴b-b沿相反的方向旋转相同角度(优选为90度),从而实现在彼此垂直的两个行驶方向之间的切换。为了便于理解,图17所示仰视图中,以箭头分别标示了四个舵轮从第一行驶方向D1变换到第二行驶方向D2时的旋转方式。
由于所有同侧边的舵轮111都是以相反方向旋转相同角度,所以各个舵轮111旋转时对车体所产生的扭矩或其它作用可以相互抵消,从而有效地抑制换向过程中舵轮111旋转对自动搬运设备10”的平衡性的不利影响。而且所有舵轮111同时旋转换向,提高了换向效率,从而提高了自动搬运设备的运行效率。
具有上述偏置设置的舵轮的自动搬运设备10”尤其适用于以上参照图1和图2介绍的包括平台和轨道的立体仓储系统1。在这样的立体仓储系统1中,根据本公开第二实施方式的自动搬运设备10”,特 别是具有上述偏置设置的舵轮的自动搬运设备10”,可以在轨道上单纯直线行驶,而换向在平台上完成。这种情况下,平台可以提供足够大的支撑面,使得自动搬运设备10”的偏置设置的舵轮能够实现旋转换向。同样道理,自动搬运设备10”还适于在地面上运行。
导向轮113主要用于与轨道上的引导结构配合,以引导自动搬运设备10”以正确的方向和位置进入轨道并在轨道上平稳行驶。尽管图中示出导向轮113设置为能够在自动搬运设备10”的两对相反的侧边上进行引导,但是本公开并不限于此。在自动搬运设备10”仅沿第一行驶方向D1和第二行驶方向D2中的一个(例如第一行驶方向D1)在轨道上行驶的情况下,导向轮可以仅设置在自动搬运设备10”的垂直于该行驶方向的彼此相反的两侧上,并且可以仅设置在所述两侧的首先进入轨道的一端上。因此,根据本公开第二实施方式,导向轮组不限于包括如图所示布置的四个导向轮,而是可以包括分别安装在自动搬运设备的彼此相反的例如第一侧和第二侧的至少一个导向轮。
在一些实施例中,自动搬运设备10”可以在平行于第一侧和第二侧的方向上具有彼此相对的第一端和第二端;导向轮113可以设置于第一端或第二端对应的底盘的两个角。
这种情况下,自动搬运设备10”可以包括控制器(未示出),并且控制器可以配置为:
在导向轮设置于第一端对应的底盘的两个角时,当自动搬运设备从平台驶入轨道时,控制自动搬运设备以第一端首先进入轨道的方式驶入轨道;并且当自动搬运设备从轨道驶入平台时,控制自动搬运设备以第一端最后离开轨道的方式驶出轨道;以及
在导向轮设置于第二端对应的底盘的两个角时,当自动搬运设备从平台驶入轨道时,控制自动搬运设备以第二端首先进入轨道的方式驶入轨道;并且当自动搬运设备从轨道驶入平台时,控制自动搬运设备以第二端最后离开轨道的方式驶出轨道。
接下来将进一步参照图19介绍根据本公开第二实施方式的自动搬运设备10”的其它结构。图19为自动搬运设备10”的立体分解图。
如图19所示,除了上文中已经介绍的底盘110a和安装在底盘110a 上的行驶轮组(包括舵轮111)和导向轮组(包括导向轮113),自动搬运设备10”还可以包括:传感系统(第一导航识别组件117a-1、定位识别组件117a-2、第二导航识别组件117b、避障传感器117c、位姿检测装置117d)、顶升机构118以及托架110b。
返回参照图16,优选地,自动搬运设备10”的底盘110a包括主体部110a-1和抬升部110a-2,抬升部110a-2对应于舵轮111所在的矩形(图示示例中对应于底盘110a)的四个角部设置,并且形成相对于主体部110a-1向上抬升的平面。抬升部110a-2与主体部110a-1之间通过大致垂直于主体部110a-1的围壁10a-3连接,从而在四个抬升部110a-2的下方形成分别用于四个舵轮111的容置空间,并将该容置空间与位于底盘110a上方的空间分隔开。这样的底盘构造将用于安装例如上述介绍的传感器系统的空间与安装舵轮的空间分隔开,有利于保护传感器等设备免受例如路面上障碍物的损坏以及尘埃等的沾污,从而有利于提高自动搬运设备10”的运行稳定性。
为了更好地适应在轨道上行驶,优选地,轨道的轨道面上形成有导向凸起(未示出),并且根据本公开第二实施方式的第一自动搬运设备10”的车轮(例如图示示例中的舵轮)的轮面上形成有沿周向延伸的环状凹陷部(未示出),用于与轨道上的导向凸起配合;在另一个可选实施例中,轨道的轨道面上形成有凹陷部,并且同一轮组中的车轮与所述凹陷部配合。
在采用根据本公开第二实施方式的第一自动搬运设备10”的立体仓储系统中,优选地,上层工作区30的同一层中的道路系统TS中的平台31的高度与轨道32的高度相同。
下面将参照图20至图26介绍根据本公开第三实施方式的第一自动搬运设备10”’。第一自动搬运设备10”’在平台31和地面工作区20上行驶时使用的轮组与在轨道32上行驶时使用的轮组是差速轮与万向轮的组合。
差速轮与万向轮的组合已经被使用在自动引导车辆上。然而,采用差速轮的自动引导车辆一直被认为只适用于在地面或者类似的平面上运行,而不适于在轨道上运行。一方面,这是因为差速轮在被差速 驱动以进行转弯/换向时,轨道显然不足以支撑差速轮和万向轮;另一方面,万向轮通常随着行驶方向变化而发生摆动,从而万向轮着地的位置发生改变,这造成人们产生一种技术偏见,即认为万向轮不适于在轨道上运行。
根据本公开第三实施方式提出了一种可用于根据本公开实施例的立体仓储系统1的第一自动搬运设备10”’,即两栖搬运机器人10”’。该两栖搬运机器人10”’具有包括差速轮和万向轮的车轮轮组,并且既能够运行在地面或类似的平面上,也能够运行在轨道上。
图20为根据本公开第三实施方式的自动搬运设备10”’的仰视图。如图20所示,自动搬运设备10”’包括车身210a和安装在车身210a底部的车轮,其中车轮包括位于车身底部的左侧的左驱动轮211a和左从动轮211b以及位于车身底部的右侧的右驱动轮212a和右从动轮212b。左驱动轮211a和右驱动轮212a构成差速轮。左从动轮211b和右从动轮212b为万向轮。左驱动轮211a和左从动轮211b可以称为左轮组211,右驱动轮212a和右从动轮212b可以称为右轮组212。
根据本公开第三实施方式,如图20中更加清楚地示出的,左驱动轮211a和右驱动轮212a的滚动方向为前后方向(图20中箭头A所指示的方向),左从动轮211b和右从动轮212b设置为当其滚动方向为前后方向时,左从动轮211b与左驱动轮211a对齐,右从动轮212b与右驱动轮212a对齐。这样,当自动搬运设备10”’在轨道32上沿前后方向A行驶时,左从动轮211b和右从动轮212b能够分别与左驱动轮211a和右驱动轮212a对齐,从而共同沿轨道32行驶。
有利地,立体仓储系统1可以构造为至少部分轨道32与干道相垂直地设置在平台31的侧面,并且自动搬运设备10”’配置为在平台31上通过差速驱动进行旋转换向,以实现在平台31上行驶与在轨道32上行驶之间的切换。
在图20所示示例中,左从动轮包括沿着前后方向布置的两个从动轮211b、211b,右从动轮包括沿着前后方向布置的两个从动轮212b、212b。应该理解,根据自动搬运设备10”’的承载力和运行平稳的需要,左从动轮和右从动轮分别可以包括更多或更少的从动轮。
此外,应该理解,在本公开的一些实施例中,根据驱动力和承载力等方面的需要,自动搬运设备10”’的左驱动轮也包括沿着前后方向布置的两个以上驱动轮,右驱动轮可以包括沿着前后布置的两个以上驱动轮。
图21示意性地示出根据本公开第三实施方式的自动搬运设备10”’行驶在上层工作区30的轨道32上的状态。如图21所示,自动搬运设备10”’的左轮组211和右轮组212分别支撑/行驶在轨道32的左轨道和右轨道上。
图21所示示例中,用于承托货物2(见图1)的载具C可以搁置在上层工作区30的相应支撑结构上,并位于轨道32的上方。自动搬运设备10”’的顶部可以具有能够升降的托架210b。当自动搬运设备10”’沿轨道32行驶到载具C的下方后,通过升高托架210b可以将载具C托举起来,从而可以对载具C以及载具C上可能承托的货物进行搬运。反之,自动搬运设备10”’在已经托举载具C的情况下,可以沿轨道32行驶到指定的存储位S(见图1),并通过降低托架210b将载具C放置到上层工作区30的相应支撑结构上,从而将载具C从自动搬运设备10”’卸载到所述指定存储位S上。
根据本公开第三实施方式的实施例一的上层工作区30的轨道的一个示例中,轨道32包括彼此平行的左轨道和右轨道,左轨道和右轨道上形成有引导凸起32-1(见图22、图23)。引导凸起32-1沿轨道的纵长方向延伸,用于引导自动搬运设备10”’在轨道32上的行驶。
引导凸起32-1可以具有近似半圆形的横截面形状,但是本公开在此方面不受限制,例如引导凸起也可以具有例如三角形、梯形、圆弧形或其组合构成的形状的横截面。
图22和图23为局部放大图,分别示出本公开第三实施方式的实施例一中自动搬运设备10”’的驱动轮和从动轮与轨道配合的状态。
如图22所示,左驱动轮211a具有沿轮面周向延伸的凹槽g,该凹槽g构成凹陷结构;如图23所示,左从动轮211b包括两个滚轮,从而形成为哑铃状,所述两个滚轮之间的间隙形成凹陷结构。根据本实施例,当左从动轮211b与左驱动轮211a对齐时,两者的凹陷结构 (即左驱动轮211a的凹槽g和左从动轮211b的两个滚轮之间的间隙)沿着前后方向对齐,用于左轨道上的引导凸起32-1配合,以引导自动搬运设备10”’在轨道32上的行驶。
类似地,自动搬运设备10”’的右驱动轮212a和右从动轮212b各自具有沿轮面周向延伸的相同或类似的凹陷结构,并且当右从动轮212b与右驱动轮212a对齐时,两者的凹陷结构沿着前后方向对齐,用于与右轨道上的引导凸起32-1配合,以引导自动搬运设备10”’在轨道32上的行驶。
在本实施例的一些变型例中,可以仅在轨道32的左轨道和右轨道中的一者上设置引导凸起32-1;相应地,自动搬运设备10”’的左轮组211及/或右轮组212上设置有用于引导凸起32-1配合的凹陷结构。
此外,应该理解,在其它变型例中,驱动轮211a、212a可以具有凹槽以外的其它形式的凹陷结构。例如,驱动轮211a、212a可以具有包括两个滚轮的哑铃结构。类似地,从动轮211b、212b可以具有哑铃结构以外的结构。例如,从动轮211b、212b可以具有沿轮面周向延伸的凹槽。本公开在此方面不受限制。
接下来,参照图24介绍本公开第三实施方式的实施例二。图24示意性地示出本公开第三实施方式的实施例二中自动搬运设备行驶在轨道上的状态。根据实施例二,如图24所示,左轨道和右轨道的外侧竖直设置有引导壁32b;并且自动搬运设备10”’还包括安装在其车身210a的左侧L和右侧R(见图20)的导向轮213,其中导向轮213的回转轴线沿上下方向设置,用于与引导壁32b接合,以引导自动搬运设备10”’在轨道32上的行驶。
优选地,轨道32的与平台31相通的入口处设置有引导结构(参见图7),引导结构形成的敞口比轨道的敞口大,用于与导向轮213接合,以引导自动搬运设备10”’进入轨道32。引导结构可以为向外偏折的引导片。
最后,参照图25和图26介绍本公开第三实施方式的实施例三。为了清楚起见,图25以局部放大图示出了根据实施例三的上层工作区的轨道,图26以局部放大图示出了实施例三中自动搬运设备的车轮与 轨道配合的状态。根据实施例三,如图25所示,轨道32的左轨道和右轨道的内侧竖直设置有限制壁32d,可以限制自动搬运设备的轮组211、212脱离轨道32。
有利地,左轨道和右轨道可以各自具有凹槽形横截面,例如可以具有倒梯形的凹槽形横截面。这种情况下,左轨道和右轨道可以便利地利用成型的槽钢形成。
优选地,左轨道和右轨道在与平台31相通的入口处可以各自设置有喇叭形引导口。在图25所示示例中,该喇叭形引导口可以由入口两侧的引导片32e形成。
以上结合图3至图26介绍了根据本公开不同实施方式的自动搬运设备。下面将介绍采用上述介绍的自动搬运设备的根据本公开实施例的立体仓储系统1的更多的特点和方案。
返回参照图1,除了上文中介绍的立体仓储系统1包括第一自动搬运设备10、位于地面工作区20和位于上层的上层工作区30以外,立体仓储系统1还可以包括服务器40和至少一台升降设备50。如图1所示,升降设备50具有载运台50a,载运台50a配置为能够上升和下降以在地面工作区20以及上层工作区30的各个层(例如层30a、30b、30c)之间进行载运,或者,所述载运台配置为能够上升和下降以在所述上层工作区的不同层之间进行载运。服务器40与第一自动搬运设备10和升降设备50通信连接,其生成并发出指令,从而对第一自动搬运设备10和升降设备50进行调度。
优选地,如图1所示,升降设备50的载运台50a具有平面形式的承载面,可供自动搬运设备10直接驶入或驶出。有利地,当升降设备50的载运台50a到达地面或上层工作区中的指定层时,载运台50a的承载面与地面工作区20或该指定层的平台31基本上齐平。
继续参照图1,在立体仓储系统1中,第一自动搬运设备10可以根据服务器40发出的运行指令而通过升降设备50的载运从地面工作区20进入上层工作区30或者从上层工作区30进入地面工作区20;或者,第一自动搬运设备10根据服务器40发出的第一运行指令而通过升降设备50的载运从上层工作区中的一层进入另一层。
图29为根据本公开实施例的立体仓储系统的另一个示例的示意图,如图29所示,在上层工作区30运行的自动搬运设备和在地面工作区20运行的自动搬运设备均为第一自动搬运设备10。
在有利的实现方式中,立体仓储系统1的地面工作区20可以设置有充电位(供自动搬运设备充电)、存储区、拣选工作站、生产流程接驳点(未示出)中的至少一种,并且第一自动搬运设备10根据服务器40的运行指令从地面工作区20的充电位、存储区、拣选工作站或接驳点运行到上层工作区30(例如存储位S),或者从上层工作区30(例如存储位S)运行到地面工作区20的充电位、存储区、拣选工作站或生产流程接驳点。
由于采用既能在地面和平台上行驶又能在轨道上行驶的第一自动搬运设备10,所以根据本公开实施例的立体仓储系统1能够在地面工作区20与上层工作区30之间调度和使用第一自动搬运设备10。一方面,这显然为第一自动搬运设备10的调度和仓储系统1的工作分配提供了极大的灵活性。另一方面,根据本公开实施例的立体仓储系统1无需为地面工作区配置一种搬运机器人(例如AGV),为上层工作区配置另一种搬运机器人(例如四向穿梭车),并保证两种机器人的配置数量均能满足对应工作区的峰值工作负荷(这正是现有的立体仓储系统中存在的情况),所以立体仓储系统1的建设和运行成本有望相对于现有的立体仓储系统大大降低。
图27和图28示出了可用于立体仓储系统1的控制方法的两个示例,其中包括在不同的层(包括地面)之间调度第一自动搬运设备10。
图27示出了可用于立体仓储系统1的控制方法M100。如图28所示,控制方法M100包括:
S110:接收订单;
S120:根据订单,生成将位于第一层的载具搬运到第二层的目标位置的搬运任务;
S130:搜索位于第一层的可用的自动搬运设备,即第一可用搬运设备;
S140:判断是否搜索到第一可用自动搬运设备;以及
S150:当处理S140中判断结果为“是”,则将搬运任务分配给搜索到的第一可用自动搬运设备。
上述处理可以由例如服务器40执行。
处理S120中,第一层为由地面工作区和上层工作区的各个层构成的多层中的一个层,第二层为所述多层中的另一个层。
控制方法M100中,将位于第一层的载具搬运到第二层的目标位置的搬运任务被分配给第一可用自动搬运设备,在这里意味着由该第一可用自动搬运设备完成从第一层到第二层的整体搬运工作,在此过程中无需与其它自动搬运设备或者其它设备接驳。这样,可以有利地简化仓储系统的任务分配,并提高搬运效率。
继续参照图27,当处理S140中判断结果为“否”,即没有搜索到位于第一层的第一可用自动搬运设备,则控制方法M100可以转向处理S145,其中系统1或服务器40进入等待状态或者生成向第一层调度自动搬运设备的任务。由于根据本公开实施例的立体仓储系统1采用既能在地面、平台上运行又能在轨道上运行的第一自动搬运设备10,所以上述处理S145中的调度(特别是在地面工作区与上层工作区之间的调度)得以实现,从而提高仓储系统的效率。
类似地,图28示出了可用于立体仓储系统1的另一控制方法M200。
控制方法M200包括的处理S210、S220、S230、S240和S245与图27所示控制方法M100的处理S110、S120、S130、S140和S145相同,在此不再赘述。
如图28所示,控制方法M200还包括:
S250:当处理S240中判断结果为“是”,搜索位于第二层的可用的自动搬运设备,即第二可用自动搬运设备;
S260:判断是否搜索到第二可用自动搬运设备;
S270:当处理S260中判断结果为“是”,从搬运任务中至少拆分出由第一可用自动搬运设备在第一层完成的第一子任务和由第二可用自动搬运设备在第二层完成的第二子任务;以及
S280:将第一子任务和第二子任务分别分配给第一可用自动搬运 设备和第二可用自动搬运设备。
上述处理可以由例如服务器40执行。
继续参照图27,当处理S260中判断结果为“否”,即没有搜索到位于第二层的第二可用自动搬运设备,则控制方法M200可以转向处理S265,其中将在处理S220中生成的整个搬运任务分配给第一可用自动搬运设备。
作为图27所示控制方法M100的替代或补充,控制方法M200进一步根据位于第二层的可用的自动搬运设备的情况确定搬运任务分配方式。这提供了更多的灵活性,在有些情况下是有利的。例如,在立体仓储系统1中配备了多个升降设备并且仅部分升降设备的载运台能够支持自动搬运设备直接驶入和驶出的情况下,将部分搬运任务拆分为由位于不同层的自动搬运设备分别执行将允许更加有效地利用所有升降设备,从而提高系统的运行效率。
对于上述参照图27和图28介绍的控制方法,优选地,第一可用自动搬运设备和第二可用自动搬运设备为在从当前到未来的预定时间段内可获得的处于待命状态的自动搬运设备。
返回参照图2,图2示出了上文中提到的切换区域SA,还示出了上层工作区30的层(例如层30a、30b、30c)中设置的待升降区域WA。待升降区域WA临近升降设备50,通常设置在平台31上。尽管图中没有示出,但是立体仓储系统1的地面工作区20也可以设置有待升降区域。
立体仓储系统1的服务器40可以响应于所接收到的订单,生成用于搬运订单对应的载具的多个指令。所述多个指令可以包括第一搬运指令、第二搬运指令和第三搬运指令,其中第一搬运指令指示在位于上层工作区30的指定存储位S与指定存储位S所在的层的待升降区域WA之间搬运订单对应的载具C;第二搬运指令指示在位于地面工作区20的指定位置(例如地面工作区20的存储区、拣选工作站、生产流程接驳点)与地面工作区20的待升降区域WA之间搬运所述载具C。在有利的实现方式中,第一搬运指令和第二搬运指令被发送给同一自动搬运设备10,并且第三搬运指令指示升降设备50在指定存 储位S所在的层的待升降区域WA与地面工作区20的待升降区域WA之间载运所述同一自动搬运设备10。
在上述第一搬运指令和第二搬运指令由同一自动搬运设备10执行的实施例中,地面工作区20可以包括轨道存储区也可以包括非轨道存储区,该轨道存储区可以包括多个存储位,在第一自动搬运设备10在地面工作区20执行搬运任务时,第一自动搬运设备10根据第二搬运指令从地面工作区20的待升降区域运行至轨道存储区,并将携带的载具放置于对应的存储位;或者,第一自动搬运设备10根据第二搬运指令从轨道存储区的对应存储位取出载具,并携带该载具运行至地面工作区20的待升降区域,从而由第一自动搬运设备10完成轨道存储区与地面工作区20的待升降区域之间的载具搬运。第一自动搬运设备10根据第二搬运指令从地面工作区20的待升降区域运行至非轨道存储区,并放置其携带的载具;或者,第一自动搬运设备10根据第二搬运指令从非轨道存储区取出对应载具,并携带该载具运行至地面工作区20的待升降区域,从而由第一自动搬运设备10完成非轨道存储区与地面工作区20的待升降区域之间的载具搬运。
图30为根据本公开实施例的立体仓储系统的另一个示例的示意图,如图30所示,在上层工作区30运行的自动搬运设备和在平面工作区20运行的自动搬运设备为不同的自动搬运设备,在上层工作区30运行的是第一自动搬运设备10,在平面工作区20运行的是第二自动搬运设备100。平面工作区20和上层工作区30的至少一个层设置有待升降区域,立体仓储系统还包括第二自动搬运设备100。地面工作区20包括非轨道存储区。服务器40响应于所接收到的订单,生成用于完成订单的多个指令,该多个指令包括第一搬运指令、第二搬运指令和第三搬运指令,第一自动搬运设备10用于根据所述第一搬运指令将与订单对应的指定存储位的载具搬运至与指定存储位所在的层的待升降区域,升降设备50用于根据第三搬运指令从指定存储位所在的层的待升降区域取出载具,并将该载具搬运至地面工作区20的待升降区域,第二自动搬运设备100用于根据第二搬运指令从地面工作区20的待升降区域取出载具,并将该载具搬运至地面工作区的非轨道存储 区或指定操作点,以完成货物的下架搬运。或者,服务器40响应于存储指令,生成用于完成存储任务的多个指令,所述多个指令包括第一搬运指令、第二搬运指令和第三搬运指令,第二自动搬运设备100用于根据第二搬运指令从非轨道存储区或指定操作点取出载具,并搬运至地面工作区20的待升降区域,升降设备50用于根据第三搬运指令从地面工作区20的待升降区域取出该载具,并将该载具搬运至指定存储位所在的层的待升降区域,第一自动搬运设备10用于根据第一搬运指令从所述指定存储位所在的层的待升降区域取出载具,并将该载具搬运至指定存储位,已完成货物上架存储。
如图30所示,第一自动搬运设备10和第二自动搬运设备100搬运的是相同的载具,但本公开实施例并不限于,两者搬运的载具也可以是不同的载具,只要能共同实现一个订单中对应料箱的搬运即可。
关于地面工作区20的设置方式,如图31所示,可以包括轨道存储区60,还可以包括非轨道存储区70。通过轨道存储区60,第一自动搬运设备10将载具放置于其上的存储位进行存储,或者从其上的存储位取出载具进行搬运。在非轨道存储区70中,载具以行列方式排列,在载具为货架的情况下,可以实现货架的密集存储或者非密集存储,其中,密集存储中,货架的行数和列数均大于等于3,其包括不与任何通道相邻的受阻货架;在非密集存储中,货架的行数和列数中的至少一项为2,其各个货架均与通道相邻。非轨道存储区70,可以是移动载具直接置于地面,或在地面设置具有一定支撑作用的固定支架701,空载自动搬运设备可以在固定支架底部穿行,或采用托盘支架702。
上述实现方式中,有利地,立体仓储系统1可以配置为以如下方式运行:
升降设备50到达第一自动搬运设备10所在的层之后,第一自动搬运设备10在驶入升降设备50之前与升降设备50进行第一次到达信息握手,并在驶入升降设备50并停止后与升降设备50进行停止信息握手;并且,
升降设备50载运第一自动搬运设备10到达目标层之后,第一自 动搬运设备10与升降设备50进行第二次到达信息握手,并在驶出升降设备50后与升降设备50进行驶出信息握手。
由于根据本公开实施例的立体仓储系统1构造为使得第一自动搬运设备10能够直接驶入和驶出升降设备50而无需与系统中的其它设备(例如设置在待升降区域中或附近、用于在自动搬运设备和升降设备之间进行搬运或者用于缓存货物的设备),所以上述信息握手在第一自动搬运设备10和升降设备50之间直接进行,可以简化控制,降低对服务器40的占用,降低系统控制的“拥堵”,有利于提高效率。
在导航方面,根据本公开实施例的立体仓储系统1可以配置为按照以下方式运行:
第一自动搬运设备从服务器接收任务地址信息;
第一自动搬运设备获取当前位置信息;
第一自动搬运设备根据当前位置信息和任务地址信息计算导航路线信息;或者服务器根据第一自动搬运设备获取的当前位置信息和任务地址信息计算导航路线信息,并将导航路线信息发送至第一自动搬运设备;以及
第一自动搬运设备根据导航路线信息运行至任务地址信息对应的位置。
在上述运行方式中,优选地,在当前位置信息与任务地址信息位于同一层时,导航路线信息位于同一层;并且在当前位置信息与任务地址信息位于不同层时,导航路线信息包括由当前位置信息至当前位置信息所在的第一层中的升降设备的位置信息的第一导航路线信息、升降设备由第一层至任务地址信息所在的第二层的第二导航路线信息以及由第二层中升降设备的位置信息至任务地址信息的第三导航路线信息。
在有利的实现方式中,立体仓储系统1中,第一自动搬运设备10可以利用激光雷达、视觉传感器、超声传感器或者深度传感器等传感设备获取当前环境信息,并且该当前环境信息融合至已有的地图信息,得到更新后的地图信息。第一自动搬运设备10可以将更新后的地图信息发送至服务器40。
此外,根据本公开实施例的立体仓储系统1可以采用其中导向轮仅设置在车体的一端的第一自动搬运设备10。具体而言,导向轮设置在第一自动搬运设备10从平台进入到轨道时首先进入轨道的一端的两侧。在第一自动搬运设备10具有前端和后端的情况下,导向轮例如可以仅设置在前端或后端的两侧上。作为替代或补充,立体仓储系统1中的第一自动搬运设备10也可以在其两端均设置有导向轮。
相应地,立体仓储系统1的服务器40可以配置为进行以下处理中的至少一种:
确认第一自动搬运设备10的前端的两侧设置有导向轮,并指令第一自动搬运设备10以正进的方式进入轨道;以及
确认第一自动搬运设备10的后端的两侧设置有导向轮,并指令第一自动搬运设备10以倒进的方式进入轨道。
这里,“正进”指的是第一自动搬运设备10的前端首先进入轨道,“倒进”指的是第一自动搬运设备10的后端首先进入轨道。
应该理解,在介绍根据本公开不同实施方式的自动搬运设备时所介绍的有关的控制方法、运行方式等等自然地也属于根据本公开实施例的立体仓储系统1的一部分,在此不再赘述。
此外,应该理解的,附图所示以及以上详细介绍的第一自动搬运设备10(包括自动搬运设备10’、10”、10”’)或立体仓储系统1的控制方法、运行方式等等仅仅是示例性的,根据本公开实施例的立体仓储系统1并不限于执行上述特定的方法或者按照上述方法运行,而是可以采用其它不同的控制方法来作为替代或补充。
返回参照图1,根据本公开的其它实施例,还提供一种用于立体仓储系统1的货架系统(对应于上层工作区30),该货架系统包括沿高度方向布置的至少一个层(对应于上层工作区30的多个层,例如层30a、30b、30c),每个层设置有存储位S并且包括构成干道的平台31以及与平台31连通的轨道32,其中平台31和轨道32构造为通往存储位S。
优选地,上述货架系统中,存储位S设置在轨道32的上方。
在本公开的第一实施方式中,优选地,上述货架系统的同一层中, 平台31的高度低于轨道32的高度。
在本公开的第二和第三实施方式中,优选地,上述货架系统的同一层中,平台31的高度与轨道32的高度相同。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (32)

  1. 一种立体仓储系统,包括:
    自动搬运设备;
    位于地面的地面工作区;和
    位于上层的上层工作区,所述上层工作区包括沿高度方向布置的至少一个层,每个层设置有多个存储位以及供所述自动搬运设备行驶以通往所述多个存储位的道路系统;所述道路系统包括构成干道的平台以及与所述干道连通的轨道;
    其中,所述自动搬运设备构造为能够在所述道路系统上行驶。
  2. 如权利要求1所述的立体仓储系统,其中,至少部分所述轨道与所述平台相垂直设置,并且所述自动搬运设备配置为在所述平台上通过旋转进行换向,以实现在所述平台上行驶与在所述轨道上行驶之间的切换。
  3. 如权利要求2所述的立体仓储系统,其中,所述自动搬运设备在所述平台上行驶时使用的轮组与在轨道上行驶时使用的轮组是同一轮组。
  4. 如权利要求3所述的立体仓储系统,其中,所述轨道的轨道面上形成有导向凸起,并且所述同一轮组中的车轮的轮面上形成有沿周向延伸的环状凹陷部,用于与所述导向凸起配合;或者,
    所述轨道的轨道面上形成有凹陷部,并且所述同一轮组中的车轮与所述凹陷部配合。
  5. 如权利要求2所述的立体仓储系统,其中,所述自动搬运设备具有用于在平台上行驶的第一轮组以及用于在轨道上行驶的第二轮组。
  6. 如权利要求5所述的立体仓储系统,其中,所述第一轮组包括可差速驱动的差速轮以及与所述差速轮适配的从动轮。
  7. 如权利要求5所述的立体仓储系统,其中,所述第一轮组的着地点低于所述第二轮组的着地点。
  8. 如权利要求1或5所述的立体仓储系统,其中,所述上层工作 区的同一层中的所述道路系统中,所述平台的高度低于所述轨道的高度。
  9. 如权利要求1所述的立体仓储系统,还包括服务器和至少一台升降设备,所述升降设备具有载运台,所述载运台配置为能够上升和下降以在所述地面工作区以及所述上层工作区的所述至少一个层之间进行载运,或者,所述载运台配置为能够上升和下降以在所述上层工作区的不同层之间进行载运;
    所述服务器与所述自动搬运设备和所述升降设备通信连接,其生成并发出指令,以对所述自动搬运设备和所述升降设备进行调度;并且
    根据所述服务器发出的运行指令,所述自动搬运设备通过所述升降设备的载运在所述地面工作区与所述上层工作区之间以及/或者在所述上层工作区中的不同层之间运行。
  10. 如权利要求9所述的立体仓储系统,其中,所述升降设备中的至少一台的所述载运台具有平面形式的承载面,可供所述自动搬运设备直接驶入或驶出。
  11. 如权利要求9所述的立体仓储系统,其中,所述地面工作区和所述上层工作区的所述至少一个层设置有待升降区域,
    所述服务器响应于所接收到的订单,生成用于完成订单的多个指令,所述多个指令包括第一搬运指令、第二搬运指令和第三搬运指令,其中第一搬运指令指示在位于所述上层工作区的指定存储位与所述指定存储位所在的层的待升降区域之间搬运所述订单对应的载具;所述第二搬运指令指示在位于所述地面工作区的指定位置与所述地面工作区的待升降区域之间搬运所述载具;所述第一搬运指令和所述第二搬运指令被发送给同一所述自动搬运设备,并且所述第三搬运指令指示所述升降设备在所述指定存储位所在的层的待升降区域与所述地面工作区的待升降区域之间载运所述同一自动搬运设备。
  12. 如权利要求11所述的立体仓储系统,其中,所述地面工作区包括轨道存储区、非轨道存储区、拣选工作站、生产流程接驳点中的至少一者。
  13. 如权利要求9所述的立体仓储系统,其中,所述服务器响应于所接收到的订单,生成将位于第一层的载具搬运到第二层的目标位置的搬运任务,所述第一层为由所述地面和所述上层工作区的所述至少一个层构成的多层中的一个层,所述第二层为所述多层中的另一个层;并且
    所述服务器配置为进行以下处理中的至少一种:
    (1)搜索位于所述第一层的可用的自动搬运设备,即第一可用搬运设备,并且如果搜索到所述第一可用自动搬运设备,则将所述搬运任务分配给该第一可用自动搬运设备;如果没有搜索到所述第一可用自动搬运设备,则等待或生成向所述第一层调度自动搬运设备的任务;
    (2)搜索位于所述第一层的可用的自动搬运设备,即第一可用自动搬运设备,以及搜索位于所述第二层的可用的自动搬运设备,即第二可用自动搬运设备,并且如果搜索到所述第一可用自动搬运设备和所述第二可用自动搬运设备,则从所述搬运任务中至少拆分出由所述第一可用自动搬运设备在所述第一层完成的第一子任务和由所述第二可用自动搬运设备在所述第二层完成的第二子任务;如果搜索到所述第一可用自动搬运设备而没有搜索到所述第二可用自动搬运设备,则将所述搬运任务分配给所述第一可用自动搬运设备;如果没有搜索到所述第一可用自动搬运设备,则等待或生成向所述第一层调度自动搬运设备的任务。
  14. 如权利要求1所述的立体仓储系统,其中,所述自动搬运设备包括第一导航识别组件和第二导航识别组件,所述第一导航识别组件用于向下方探测和识别设置在所述平台或者地面上的第一导航标识;所述第二导航识别组件设置在所述自动搬运设备的侧部,用于向下方或侧方探测设置在所述轨道上的第二导航标识。
  15. 如权利要求1所述的立体仓储系统,其中,所述自动搬运设备还包括导向轮,所述导向轮至少设置在所述自动搬运设备从所述平台进入到所述轨道时首先进入所述轨道的一端的两侧;并且所述轨道的与所述平台对接的入口处设置有引导结构,所述引导结构的敞口比所述轨道的敞口大。
  16. 一种用于立体仓储系统的货架系统,包括沿高度方向布置的至少一个层,每个层设置有存储位并且包括构成干道的平台以及与所述平台连通的轨道,所述平台和所述轨道构造为通往所述存储位。
  17. 如权利要求16所述的货架系统,其中,同一层中的所述平台的高度低于所述轨道的高度。
  18. 如权利要求16所述的货架系统,其中,所述轨道包括彼此平行的第一轨道和第二轨道,所述第一轨道和所述第二轨道的内侧竖直设置有限制壁。
  19. 一种用于立体仓储系统的自动搬运设备,包括底盘以及安装在所述底盘上的轮组,所述轮组构造为适于在包括构成干道的平台以及与所述干道连通的轨道的道路系统上行驶,其中
    至少部分所述轨道与所述平台相垂直设置,并且所述自动搬运设备配置为在所述平台上通过旋转进行换向,以实现在所述平台上行驶与在所述轨道上行驶之间的切换。
  20. 如权利要求19所述的自动搬运设备,其中,所述轮组包括用于在平台上行驶的第一轮组以及用于在轨道上行驶的第二轮组,所述自动搬运设备还包括用于驱动所述第一轮组和所述第二轮组的驱动机构,
    其中所述第一轮组包括可差速驱动以实现旋转的差速轮,所述第二轮组包括分别安装在所述自动搬运设备的彼此相反的第一侧和第二侧的至少一个第二驱动轮。
  21. 如权利要求20所述的自动搬运设备,其中,所述第一轮组的着地点低于所述第二轮组的着地点。
  22. 如权利要求20所述的自动搬运设备,其中,所述第一轮组的所述差速轮包括安装在所述自动搬运设备的所述第一侧的至少一个第一驱动轮和安装在所述第二侧的至少一个第一驱动轮;所述第一轮组还包括至少一个第一从动轮;
    所述第二轮组还包括分别安装在所述自动搬运设备的所述第一侧和所述第二侧的至少一个第二从动轮;并且
    所述第一轮组在垂直于所述自动搬运设备的所述第一侧和所述第 二侧的方向上相对于所述第二轮组安装在内侧。
  23. 如权利要求20所述的自动搬运设备,其中,所述驱动机构采用同一个电机驱动所述差速轮中的至少一个和所述第二驱动轮中的至少一个。
  24. 如权利要求23所述的自动搬运设备,其中,所述同一个电机驱动对应的差速轮和对应的第二驱动轮以相同的轮面线速度转动。
  25. 如权利要求20所述的自动搬运设备,其中,所述驱动机构包括用于驱动所述差速轮的第一驱动机构和用于驱动所述第二驱动轮的第二驱动机构,所述第一驱动机构与所述第二驱动机构彼此独立地设置;并且
    所述自动搬运设备还包括控制器,所述控制器配置为判断所述自动搬运设备是否处在行驶于平台上的状态和行驶于轨道上的状态之间的切换过程,并且当判断处于所述切换过程时,控制所述第一驱动机构和所述第二驱动机构,使之驱动所述差速轮和所述第二驱动轮以相同的轮面线速度转动。
  26. 如权利要求20所述的自动搬运设备,其中,所述自动搬运设备在平行于所述第一侧和所述第二侧的方向上具有彼此相反的第一端和第二端,所述第二驱动轮仅设置在靠近所述第一端的位置上;并且
    所述自动搬运设备还包括控制器,所述控制器配置为:当所述自动搬运设备从平台驶入轨道时,控制所述自动搬运设备以所述第一端首先进入轨道的方式驶入轨道;并且当所述自动搬运设备从轨道驶入平台时,控制所述自动搬运设备以所述第一端最后离开轨道的方式驶出轨道。
  27. 如权利要求19所述的自动搬运设备,其中,所述轮组包括行驶轮组和导向轮组,其中,
    所述行驶轮组包括布置成位于矩形的四个角部上的四个舵轮,每一个所述舵轮构造为围绕一横轴旋转以实现行驶,以及围绕一纵轴旋转以改变行驶方向,其中所述纵轴垂直于所述底盘,所述横轴垂直于所述纵轴;并且
    所述导向轮组包括分别安装在所述自动搬运设备的彼此相反的第 一侧和第二侧的至少一个导向轮,所述导向轮的回转轴线垂直于所述底盘。
  28. 如权利要求27所述的自动搬运设备,其中,还包括控制机构,所述控制机构构造为控制所有位于所述矩形的同一侧边上的两个舵轮围绕其对应的纵轴沿相反的方向旋转相同角度,从而实现在彼此垂直的两个行驶方向之间的切换。
  29. 如权利要求27或28所述的自动搬运设备,其中,所述舵轮相对于所述纵轴是偏置的。
  30. 如权利要求29所述的自动搬运设备,其中,所述舵轮在垂直于所述自动搬运设备的行驶方向的方向上彼此远离地偏置。
  31. 如权利要求19所述的自动搬运设备,其中,所述轮组包括位于所述底盘的左侧的左驱动轮和左从动轮以及位于所述底部的右侧的右驱动轮和右从动轮,所述左驱动轮和所述右驱动轮构成差速轮,所述左从动轮和所述右从动轮为万向轮,
    其中,所述左驱动轮和所述右驱动轮的滚动方向为前后方向,所述左从动轮和所述右从动轮设置为当其滚动方向为前后方向时,所述左从动轮和所述右从动轮分别与所述左驱动轮和所述右驱动轮对齐。
  32. 如权利要求31所述的两栖搬运机器人,其中,所述第一驱动轮和所述第一从动轮各自具有沿轮面周向延伸的凹陷结构,并且当所述第一从动轮与所述第一驱动轮对齐时,两者的所述凹陷结构沿着前后方向对齐;并且/或者
    所述第二驱动轮和所述第二从动轮的轮面各自具有沿轮面周向延伸的凹陷结构,并且当所述第二从动轮与所述第二驱动轮对齐时,两者的所述凹陷结构沿着前后方向对齐。
PCT/CN2022/137438 2021-12-20 2022-12-08 立体仓储系统以及用于其的货架系统和自动搬运设备 WO2023116446A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202123214636.0 2021-12-20
CN202123214636.0U CN216805043U (zh) 2021-12-20 2021-12-20 自动搬运设备
CN202123214615.9U CN216470128U (zh) 2021-12-20 2021-12-20 两栖搬运机器人、立体仓储系统及货架系统
CN202111564443.X 2021-12-20
CN202111586016.1A CN116278546A (zh) 2021-12-20 2021-12-20 自动搬运设备及其控制方法
CN202123214658.7 2021-12-20
CN202111586016.1 2021-12-20
CN202123214615.9 2021-12-20
CN202123214658.7U CN216996253U (zh) 2021-12-20 2021-12-20 一种自动搬运设备
CN202111564443.XA CN116280841A (zh) 2021-12-20 2021-12-20 立体仓储系统以及用于其的货架系统

Publications (1)

Publication Number Publication Date
WO2023116446A1 true WO2023116446A1 (zh) 2023-06-29

Family

ID=86901277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137438 WO2023116446A1 (zh) 2021-12-20 2022-12-08 立体仓储系统以及用于其的货架系统和自动搬运设备

Country Status (2)

Country Link
TW (1) TW202337792A (zh)
WO (1) WO2023116446A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087020A (ja) * 1996-09-10 1998-04-07 Daifuku Co Ltd 収納棚用の搬出入設備
CN102602643A (zh) * 2012-03-02 2012-07-25 无锡普智联科高新技术有限公司 一种高密度自动立体仓储系统
EP3243769A1 (de) * 2016-05-14 2017-11-15 Jörg Föller Verfahren und vorrichtung zum lagern von stückgut mit überbrückbaren regalreihen
CN107472787A (zh) * 2017-08-14 2017-12-15 北京物资学院 智能物流拣选存储系统及方法
CN107878989A (zh) * 2017-11-30 2018-04-06 上海诺力智能科技有限公司 一种仓储自动取料机
CN108146948A (zh) * 2016-12-01 2018-06-12 Wrh沃尔特·赖特控股有限公司 用于存入和取出物体的方法以及用于执行该方法的仓储系统
CN108290685A (zh) * 2015-06-02 2018-07-17 阿勒特创新股份有限公司 存取系统
CN209796485U (zh) * 2018-10-26 2019-12-17 杭州易博特科技有限公司 一种智能搬运机器人运行系统
CN113120495A (zh) * 2021-04-30 2021-07-16 安徽哥伦布智能科技有限公司 用于立体仓库的货物接驳系统和用于该系统的接驳搬运车
CN216470128U (zh) * 2021-12-20 2022-05-10 苏州极智嘉机器人有限公司 两栖搬运机器人、立体仓储系统及货架系统
CN216805043U (zh) * 2021-12-20 2022-06-24 北京极智嘉科技股份有限公司 自动搬运设备
CN216996253U (zh) * 2021-12-20 2022-07-19 北京极智嘉科技股份有限公司 一种自动搬运设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087020A (ja) * 1996-09-10 1998-04-07 Daifuku Co Ltd 収納棚用の搬出入設備
CN102602643A (zh) * 2012-03-02 2012-07-25 无锡普智联科高新技术有限公司 一种高密度自动立体仓储系统
CN108290685A (zh) * 2015-06-02 2018-07-17 阿勒特创新股份有限公司 存取系统
EP3243769A1 (de) * 2016-05-14 2017-11-15 Jörg Föller Verfahren und vorrichtung zum lagern von stückgut mit überbrückbaren regalreihen
CN108146948A (zh) * 2016-12-01 2018-06-12 Wrh沃尔特·赖特控股有限公司 用于存入和取出物体的方法以及用于执行该方法的仓储系统
CN107472787A (zh) * 2017-08-14 2017-12-15 北京物资学院 智能物流拣选存储系统及方法
CN107878989A (zh) * 2017-11-30 2018-04-06 上海诺力智能科技有限公司 一种仓储自动取料机
CN209796485U (zh) * 2018-10-26 2019-12-17 杭州易博特科技有限公司 一种智能搬运机器人运行系统
CN113120495A (zh) * 2021-04-30 2021-07-16 安徽哥伦布智能科技有限公司 用于立体仓库的货物接驳系统和用于该系统的接驳搬运车
CN216470128U (zh) * 2021-12-20 2022-05-10 苏州极智嘉机器人有限公司 两栖搬运机器人、立体仓储系统及货架系统
CN216805043U (zh) * 2021-12-20 2022-06-24 北京极智嘉科技股份有限公司 自动搬运设备
CN216996253U (zh) * 2021-12-20 2022-07-19 北京极智嘉科技股份有限公司 一种自动搬运设备

Also Published As

Publication number Publication date
TW202337792A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
CN109987366B (zh) 一种无人化仓储系统及出入库方法
TWI804513B (zh) 儲存及提取系統
CN109573443B (zh) 一种仓储分拣系统
CN210162597U (zh) 一种无人化仓储系统
CN210162598U (zh) 一种仓储分拣系统
CA2795022A1 (en) System for storing and transporting transporting containers
WO2016178347A1 (ja) 自動倉庫及び懸垂式スタッカクレーン
KR20160132352A (ko) 컨테이너 터미널 시스템
CN105712249A (zh) 采用丝杠顶升的智能搬运车系统
JP2021094966A (ja) 全方位台車搬送機構
CN113692559A (zh) 基于地面的无人运输车辆和用于运输物品的方法
KR20220067668A (ko) 스마트 물류 이송 셔틀
CN216470128U (zh) 两栖搬运机器人、立体仓储系统及货架系统
CN216805043U (zh) 自动搬运设备
JP5288167B2 (ja) 物品収納設備
WO2023116446A1 (zh) 立体仓储系统以及用于其的货架系统和自动搬运设备
JPS61217404A (ja) 自動倉庫システム
TW201815653A (zh) 懸垂式塔式起重機
JP6531626B2 (ja) 自動倉庫システム
WO2023104088A1 (zh) 一种装卸方法及潜伏agv、复合四脚托盘和叉车agv
CN216996253U (zh) 一种自动搬运设备
CN114890029A (zh) 一种穿梭式货架系统
CN112046982B (zh) 一种自动导引搬运装置及其作业方法
CN214326137U (zh) 一种车辆存取装置
CN116280841A (zh) 立体仓储系统以及用于其的货架系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909761

Country of ref document: EP

Kind code of ref document: A1