WO2023116142A1 - 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法 - Google Patents

一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法 Download PDF

Info

Publication number
WO2023116142A1
WO2023116142A1 PCT/CN2022/125223 CN2022125223W WO2023116142A1 WO 2023116142 A1 WO2023116142 A1 WO 2023116142A1 CN 2022125223 W CN2022125223 W CN 2022125223W WO 2023116142 A1 WO2023116142 A1 WO 2023116142A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
polydextrose
erythritol
nanofiltration
tank
Prior art date
Application number
PCT/CN2022/125223
Other languages
English (en)
French (fr)
Inventor
吴强
杨武龙
徐伟冬
李勉
陈德水
程新平
廖承军
Original Assignee
浙江华康药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华康药业股份有限公司 filed Critical 浙江华康药业股份有限公司
Publication of WO2023116142A1 publication Critical patent/WO2023116142A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/20Preparation of compounds containing saccharide radicals produced by the action of an exo-1,4 alpha-glucosidase, e.g. dextrose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/06Glucose; Glucose-containing syrups obtained by saccharification of starch or raw materials containing starch
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/06Glucose; Glucose-containing syrups obtained by saccharification of starch or raw materials containing starch
    • C13K1/08Purifying

Definitions

  • the invention belongs to the technical field of sugar alcohol preparation, in particular to a system and method for preparing erythritol and polydextrose from cornstarch.
  • Erythritol with the molecular formula C 4 H 10 O 4 , is an ideal low-calorie sweetener that has emerged in recent years. It has the characteristics of low calorie value, good taste, no caries, and is safe for diabetic patients. It is widely used In food, beverage and other industries. Erythritol can be synthesized by chemical method, but industrially it is mainly made from glucose as raw material and fermented by bacterial strains. The industrial production of glucose is mainly based on cornstarch as raw material, which is liquefied and saccharified by enzymatic method to obtain glucose crude liquid, and the glucose crude liquid is decolorized, ion exchanged and other processes to obtain refined glucose liquid.
  • glucose liquid As raw material to prepare erythritol, due to the high content of oligosaccharides such as disaccharides and trisaccharides in the sugar liquid, the load of the subsequent separation and purification process increases and the yield decreases. Therefore, the glucose liquid is often first purified to 99% % and then used as raw material for erythritol fermentation.
  • the purification methods of glucose solution mainly include nanofiltration or simulated moving bed technology.
  • the treated glucose solution will be divided into two parts: high-purity glucose extract and low-purity glucose raffinate. It can be used as raw material for erythritol fermentation, but there are 10-20% disaccharides, trisaccharides and other oligosaccharides in the raffinate, which are usually only sold as syrup, resulting in high-value utilization of low-purity glucose solution It is relatively low and cannot maximize the added value of the raffinate.
  • the patent with the publication number CN102977156A adopts the simulated moving bed technology to process the glucose mother liquor, and the low-purity glucose raffinate is used to make maltose syrup.
  • Polydextrose as a new type of water-soluble dietary fiber, mainly uses glucose, sorbitol, and citric acid as raw materials. It is dehydrated and polycondensed at high temperature to obtain a crude polydextrose product. After decolorization, ion exchange, and drying, the polydextrose product can be obtained.
  • the reaction route is simple and the process steps are few; if low-purity glucose raffinate is used as raw material to prepare polydextrose, it can not only significantly increase the value of low-purity glucose liquid, but also reduce the processing cost of glucose mother liquor.
  • the technical problem to be solved by the present invention is to provide a system and method for preparing erythritol and polydextrose from cornstarch, use the glucose solution after nanofiltration to prepare erythritol and polydextrose, and use the high-purity glucose solution to It is used to ferment and prepare erythritol, and the low-purity glucose solution is used to prepare polydextrose, and the low-purity glucose solution is used to the greatest extent to further increase the value of the low-purity glucose solution.
  • the present invention is achieved in this way, providing a system for preparing erythritol and polydextrose from cornstarch, comprising a slurry tank, a liquefaction tank, a saccharification tank, a filter, a first ion exchange system, a nano Filtration unit, high-temperature polycondensation unit and fermentation crystallization unit.
  • the mixing tank is used to receive corn starch and mix it with water to prepare corn starch milk.
  • the liquefaction tank is used to add ⁇ -amylase to hydrolyze the corn starch milk into starch liquefaction liquid.
  • the filter and the first ion exchange system are used to remove impurities in the glucose crude liquid to obtain higher purity glucose liquid, and the nanofiltration unit is used to further purify the glucose liquid respectively
  • the permeate containing high concentration of glucose and the retentate containing low concentration of glucose are obtained, the fermentation crystallization unit is used to process the permeate to prepare crystal erythritol, and the high temperature polycondensation unit is used to process the retentate to prepare poly glucose.
  • the nanofiltration unit includes a feed tank, a feed pump, a coarse filter device, a high-pressure pump and a nanofiltration device, the feed tank receives the glucose solution, and the feed pump extracts the glucose solution from the feed tank and then delivers it to the coarse filter. device, the glucose solution filtered by the coarse filtration device is divided into permeate and retentate after nanofiltration treatment by the nanofiltration device.
  • the nanofiltration unit can also use simulated moving bed technology to purify the glucose solution, and can also obtain high-purity extract and low-purity raffinate.
  • the nanofiltration device includes a nanofiltration assembly, a flushing tank and a flushing pump
  • the nanofiltration assembly includes a nanofiltration membrane and a circulation pump
  • the glucose solution is cyclically filtered through the nanofiltration membrane under the action of the circulation pump
  • the flushing tank The cleaning water in the filter regularly flushes the nanofiltration membrane under the action of the flushing pump.
  • the fermentation and crystallization unit includes a fermenter, a filter device, a second ion exchange system and a crystallization device
  • the fermenter adopts bacterial strains to ferment and convert the glucose in the permeate into erythritol to obtain a fermented liquid
  • the filter device and The second ion exchange system is used to remove impurities in the fermentation broth
  • the crystallization device is used to concentrate, crystallize and dry the impurity-removed fermentation broth to obtain crystal erythritol products.
  • the high-temperature polycondensation unit includes a vacuum high-temperature reactor, a decolorization tank, a third ion exchange system, and a drying device
  • the vacuum high-temperature reactor is used to polycondense the glucose, disaccharide, and trisaccharide components in the retentate into crude polydextrose
  • the decolorization tank and the third ion exchange system are respectively used to decolorize and remove impurities from the crude polydextrose to obtain a refined polydextrose liquid, and finally obtain a polydextrose product after being dried by a spray drying device.
  • the present invention is achieved in this way, provides a kind of method utilizing cornstarch to prepare erythritol and polydextrose, it has used the system that utilizes cornstarch to prepare erythritol and polydextrose as described above, described method comprises the following steps :
  • Step 1 using ⁇ -amylase and glucoamylase to liquefy and saccharify the cornstarch raw material in sequence to obtain crude glucose liquid, which is filtered and ion-exchanged to obtain refined glucose liquid, the glucose liquid
  • the refractive index is 30% to 35%, and the purity is 95% to 96%.
  • step 2 the glucose solution is further purified by a nanofiltration unit to obtain a permeate solution containing high-concentration glucose and a retentate solution containing low-concentration glucose respectively.
  • the purity of glucose in the permeate solution is 99% to 99.5%, and the retentate solution contains 80% ⁇ 86% glucose and 14% ⁇ 20% disaccharide, trisaccharide oligosaccharide fraction.
  • Step 3 Transport the obtained retentate to a vacuum high-temperature reactor, use sorbitol as a plasticizer and citric acid as a catalyst, and undergo high-temperature polycondensation into crude polydextrose, which is then sequentially decolorized, separated, and spray-dried Finally, the polydextrose product is obtained, and the polydextrose purity is >90%.
  • Step 4 Transport the obtained permeate to a fermenter, use bacterial strains to ferment the glucose in the permeate into erythritol to obtain a fermentation broth, and then filter, ion exchange, and crystallize the fermentation broth to obtain crystal erythritol Erythritol product, the purity of erythritol is >99%.
  • step 1 the temperature of the refined glucose solution is 50°C-60°C, and the pH value is 4.0-5.0.
  • step 2 the process of further purifying the glucose solution is to transport the glucose solution to the feed tank first, and then pass the feed pump through the coarse filter device, high-pressure pump and nanofiltration device successively, and the glucose After the liquid is treated by nanofiltration, the permeate and the retentate are obtained respectively.
  • the operating temperature of the nanofiltration process is 40°C to 60°C, and the pressure is 15bar to 35bar.
  • Step 3 the retained liquid is subjected to a high-temperature reaction in a vacuum high-temperature reactor, the reaction temperature is 140°C to 160°C, the vacuum degree is -0.09MPa to -0.1MPa, and the reaction time is 1.0h to 2.5h. Sorbitol The addition amount is 10%-15%, and the addition amount of citric acid is 0.5%-2.0%.
  • step 4 the permeate is evaporated to 35% dry basis before fermentation.
  • the system and method for preparing erythritol and polydextrose from cornstarch of the present invention use cornstarch as a raw material to obtain glucose liquid after liquefaction and saccharification, and then obtain The permeate liquid containing high glucose concentration and the retentate liquid containing low glucose concentration are used to ferment high-purity glucose solution to prepare erythritol, and low-purity glucose solution is used to prepare polydextrose.
  • the invention can simultaneously prepare two high-value products, erythritol and polydextrose, does not have the problem of mother liquor discharge, reduces the mother liquor treatment cost, and realizes the high-value utilization of low-purity glucose liquid to the greatest extent.
  • Fig. 1 is the principle schematic diagram of the system that utilizes cornstarch to prepare erythritol and polydextrose in the present invention
  • Fig. 2 is the schematic flow sheet of the method that utilizes cornstarch to prepare erythritol and polydextrose in the present invention
  • Fig. 3 is a schematic diagram of the principle of the nanofiltration device and nanofiltration treatment in Fig. 1 .
  • the present invention utilizes cornstarch to prepare the preferred embodiment of the system of erythritol and polydextrose, what the line with arrow in the figure represents is the flowing direction of material among the present invention.
  • the system includes a slurry tank 1, a liquefaction tank 2, a saccharification tank 3, a filter 4, a first ion exchange system 5, a nanofiltration unit 6, a high temperature polycondensation unit 7 and a fermentation crystallization unit 8, which are sequentially connected through pipelines.
  • Mixing tank 1 is used to receive cornstarch A and add water to mix and prepare cornstarch milk.
  • Liquefaction tank 2 is used to add ⁇ -amylase to hydrolyze corn starch milk into starch liquefaction liquid
  • saccharification tank 3 is used to continuously saccharify the starch liquefaction liquid into glucose crude liquid.
  • the filter 4 and the first ion exchange system 5 are respectively used to remove impurities in the crude glucose solution to obtain glucose solution B with higher purity.
  • the nanofiltration unit 6 is used to further purify the glucose liquid B to obtain a permeate C with a glucose purity >99% and a retentate D with a glucose purity of 80%-87%.
  • the fermentation crystallization unit 8 is used to process the permeate C to prepare crystalline erythritol E, and the high-temperature polycondensation unit 7 is used to process the retentate D to prepare polydextrose F.
  • the nanofiltration unit 6 includes a feed tank 61 , a feed pump 62 , a coarse filter device 63 , a high pressure pump 64 and a nanofiltration device 65 .
  • the feed tank 61 receives the glucose liquid B, and the feed pump 62 extracts the glucose liquid B from the feed tank 61 and then sends it to the coarse filtration device 63 .
  • the glucose liquid B filtered by the coarse filtration device 63 is divided into permeate C and retentate D after nanofiltration treatment by the nanofiltration device 65 .
  • the nanofiltration device 65 includes a nanofiltration assembly, a flushing tank 68 and a flushing pump 69 , and the nanofiltration assembly includes a nanofiltration membrane 66 and a circulation pump 67 .
  • the glucose solution B is circulated through the nanofiltration membrane 66 under the action of the circulation pump 67 for filtration.
  • Oligosaccharides such as disaccharides and trisaccharides with larger molecular weights cannot pass through the nanofiltration membrane 66 and are stored in the retentate D, and the permeate C is rich in glucose, thereby realizing the purification of the glucose solution.
  • the cleaning water in the washing tank 68 regularly washes the nanofiltration membrane 66 under the action of the washing pump 69 .
  • the cleaned waste water G is collected through the waste water collection tank to be treated.
  • the fermentation crystallization unit 8 includes a fermenter 81 , a filter device 82 , a second ion exchange system 83 and a crystallization device 84 .
  • the fermentor 81 adopts bacterial strains to ferment the glucose in the permeate C into erythritol to obtain a fermented liquid
  • the filter device 82 and the second ion exchange system 83 are used to remove impurities in the fermented liquid respectively
  • the crystallization device 84 is used to Concentrating, crystallizing and drying the fermented liquid after removing impurities to obtain the crystal erythritol E product.
  • the high temperature polycondensation unit 7 includes a vacuum high temperature reactor 71 , a decolorization tank 72 , a third ion exchange system 73 and a drying device 74 .
  • the vacuum high-temperature reactor 71 is used to polycondense the glucose, disaccharide, and trisaccharide components in the retentate D into crude polydextrose
  • the decolorization tank 72 and the third ion exchange system 73 are used to decolorize and remove impurities from the crude polydextrose, respectively.
  • the polydextrose F product is finally obtained after being dried by a spray drying device.
  • the present invention also discloses a kind of method utilizing cornstarch to prepare erythritol and polydextrose, and it has used the system that utilizes cornstarch to prepare erythritol and polydextrose as described above, described method Including the following steps:
  • Step 1 using ⁇ -amylase and glucoamylase to liquefy and saccharify the raw material of corn starch A in sequence to obtain crude glucose liquid, which is filtered and ion exchanged to obtain refined glucose liquid B, glucose
  • the refractive index of liquid B is 30%-35%, and the purity is 95%-96%.
  • step 2 the glucose solution is further purified by a nanofiltration unit to obtain a permeate C and a retentate D respectively, the purity of glucose in the permeate C is 99% to 99.5%, and the retentate D contains 80% to 86% of glucose and 14% to 20% of disaccharides, trisaccharides and oligosaccharides.
  • Step 3 Transport the obtained retentate D to the vacuum high-temperature reactor 71, use sorbitol as a plasticizer and citric acid as a catalyst, and polydextrose crude product through high-temperature polycondensation, and the polydextrose crude product undergoes decolorization, separation, and spraying in sequence
  • the polydextrose F product is obtained after drying treatment.
  • the polydextrose F product the polydextrose purity is >90%, and the residual glucose content is ⁇ 6%.
  • Step 4 Transport the obtained permeate C to the fermenter 81, use strains to ferment the glucose in the permeate C into erythritol to obtain a fermented liquid, and then filter, ion exchange, and crystallize the fermented liquid The crystal erythritol E product is obtained, and the purity of erythritol is >99%.
  • Step 1 the temperature of the refined glucose solution B is 50°C-60°C, and the pH value is 4.0-5.0.
  • step 2 the process of further purifying the glucose solution B is to transport the glucose solution B to the feed tank 61 first, and then pass the feed pump 62 is sequentially processed by a coarse filtration device 63, a high-pressure pump 64 and a nanofiltration device 65. After the glucose solution B is processed by nanofiltration, the permeate C and the retentate D are respectively obtained.
  • the operating temperature of the nanofiltration process is 40°C to 60°C.
  • the pressure is 15bar ⁇ 35bar.
  • step three the retentate D is subjected to a high-temperature reaction in the vacuum high-temperature reactor 71, the reaction temperature is 140°C to 160°C, the vacuum degree is -0.09MPa to -0.1MPa, and the reaction time is 1.0h to 2.5h.
  • the added amount of sorbitol is 10%-15%, and the added amount of citric acid is 0.5%-2.0%.
  • Step 4 the permeate is evaporated to 35% dry basis before fermentation.
  • the first embodiment of the method utilizing cornstarch to prepare erythritol and polydextrose of the present invention comprises the steps:
  • Step 11 After mixing cornstarch A with water to make cornstarch milk, add high temperature resistant ⁇ -amylase and glucoamylase in sequence to liquefy and saccharify the cornstarch to obtain a saccharification solution.
  • the filter 4 is used to remove impurities such as macromolecular protein and fat in the saccharification liquid, and then the ion exchange resin of the first ion exchange system 5 is passed through to obtain the glucose liquid B with a conductivity of 1.696 ⁇ s/cm and a purity of 96%.
  • Step 12 Take glucose solution B with a dry weight of 1 ton and perform nanofiltration treatment to obtain permeate C with a dry weight of 0.79 tons and a glucose purity of 99.2% and a dry weight of 0.21 tons with a glucose purity of 84.0% respectively.
  • % of retentate D In the retentate D, in addition to glucose, it also contains 16% polysaccharide components such as disaccharides and trisaccharides.
  • Step 13 Transport the obtained retentate D with a dry weight of 0.21 tons to the vacuum high-temperature reactor 71, and add 24.33 kg of sorbitol and 2.03 kg of lemon according to the ratio of glucose: sorbitol: citric acid of 87:12:1. acid, reacted at -0.095MPa, 160°C for 2.0h to obtain crude polydextrose. After the crude polydextrose is dissolved, it undergoes decolorization, ion exchange, and spray drying to obtain 0.18 tons of polydextrose F product. In the polydextrose F product, the purity of polydextrose is 94.6%, the residual glucose content is 2.68%, and the residual 1,6-anhydro-D-glucose content is 1.50%.
  • Step 14 the obtained permeate C with a dry basis weight of 0.79 tons is transported to the fermenter 81, and after fermentation, membrane filtration, ion exchange, concentrated crystallization, and centrifugal drying, 0.43 tons of crystalline erythritol E product, erythritol E, is obtained.
  • the sugar alcohol purity is 99.6%, and the conversion rate of glucose to erythritol is 54.43%.
  • the utilization effect of the low-purity glucose solution is characterized by the high-value utilization rate as an index.
  • the calculation method of high value utilization rate is as follows:
  • High-value utilization ratio (glucose dry basis converted into high-value products) / (total glucose dry basis in low-purity sugar liquid)
  • the high-value utilization ratio of the low-purity glucose solution in this embodiment is 95.56%.
  • Step 21 After mixing cornstarch A with water to make cornstarch milk, add high-temperature resistant ⁇ -amylase and glucoamylase in sequence to liquefy and saccharify the cornstarch to obtain a saccharification solution.
  • the filter 4 is used to remove impurities such as macromolecular protein and fat in the saccharification liquid, and then the ion exchange resin of the first ion exchange system 5 is passed through to obtain the glucose liquid B with a conductivity of 1.914 ⁇ s/cm and a purity of 95.8%.
  • Step 22 Take glucose liquid B with a dry weight of 1 ton and perform nanofiltration to obtain permeate C with a dry weight of 0.78 tons and a glucose purity of 99.4% and a dry weight of 0.22 tons with a glucose purity of 83.1% respectively.
  • the retentate D In the retentate D, in addition to glucose, it also contains 16.9% polysaccharide components such as disaccharides and trisaccharides.
  • Step 23 transport the obtained retentate D with a dry basis weight of 0.22 tons to the vacuum high temperature reactor 71, and simultaneously add 25.22 kg of sorbitol and 2.10 kg of lemon according to the ratio of glucose: sorbitol: citric acid of 87:12:1 acid, reacted at -0.095MPa, 160°C for 2.0h to obtain crude polydextrose.
  • the crude polydextrose was dissolved, it underwent decolorization, ion exchange, and spray drying to obtain 0.19 tons of polydextrose F product.
  • the purity of polydextrose is 95.3%
  • the residual glucose content is 2.19%
  • the residual 1,6-anhydro-D-glucose content is 1.56%.
  • Step 24 the obtained permeate C with a dry basis weight of 0.78 tons is transported to the fermenter 81, and after fermentation, membrane filtration, ion exchange, concentrated crystallization, and centrifugal drying, 0.41 tons of crystalline erythritol E product, erythritol
  • the purity of sugar alcohol is 99.3%, and the conversion rate of glucose to erythritol is 52.56%.
  • the high-value utilization ratio of the low-purity glucose solution in this embodiment is 95.93%.
  • This comparative example 1 adopts the method of the present invention to process the permeate liquid C to prepare erythritol, but does not process the retentate D, does not prepare polydextrose, but recycles the retentate D in the pre-glucose nanofiltration liquid to prepare erythritol alcohol.
  • This comparative example comprises the steps:
  • Step D1 after mixing cornstarch A with water to form cornstarch milk, adding high-temperature-resistant ⁇ -amylase and glucoamylase in sequence to liquefy and saccharify cornstarch to obtain a saccharification solution; filter 4 is used to remove the saccharification solution Impurities such as macromolecular proteins and fats are then passed through an ion exchange resin to obtain glucose solution B with a conductivity of 1.472 ⁇ s/cm and a purity of 95.9%.
  • Step D2 taking glucose solution B with a dry weight of 1 ton and performing nanofiltration to obtain permeate C with a dry weight of 0.80 tons and a glucose purity of 99.0% and a dry weight of 0.20 tons with a glucose purity of 83.5% respectively.
  • the retentate D in addition to glucose, it also contains 16.5% polysaccharide components such as disaccharides and trisaccharides.
  • Step D3 the obtained permeate C with a dry weight of 0.80 tons is transported to the fermenter 81, and after fermentation, membrane filtration, ion exchange, concentrated crystallization, and centrifugal drying, 0.43 tons of crystalline erythritol E product, erythritol E, is obtained.
  • the sugar alcohol purity is 99.4%, and the conversion rate of glucose to erythritol is 53.75%.
  • Step D4 the retentate D with a dry basis weight of 0.20 tons obtained in the nanofiltration process is directly put back into the pre-glucose nanofiltration solution, and then undergoes nanofiltration, fermentation, crystallization and other processes to finally obtain 0.073 tons of crystalline erythritol F product.
  • the high-value utilization rate of low-purity glucose solution in this process is only 43.71%.
  • each embodiment uses the nanofiltration retentate D as a raw material to obtain a polydextrose F product with higher value, and utilizes the added value of the low-purity glucose solution to a greater extent.
  • the high-value utilization rate of low-purity glucose liquid is investigated, and it can be found that after adopting the process method of the present invention, the high-value utilization of low-purity glucose liquid rate has been significantly improved.
  • Table 1 shows the comparison of the high-value utilization data of the low-purity glucose solution between each embodiment and Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法,所述系统包括调浆罐、液化罐、糖化罐、过滤器、第一离子交换系统、纳滤单元、高温缩聚单元以及发酵结晶单元。以玉米淀粉为原料,经过液化和糖化处理后得到葡萄糖液,再经过纳滤单元处理后分别得到含高浓度葡萄糖的透过液和含低浓度葡萄糖的截留液,将高纯度葡萄糖液用于发酵制备赤藓糖醇,低纯度葡萄糖液用于制备聚葡萄糖。能够同时制备赤藓糖醇和聚葡萄糖两种具有高价值的产品,同时不存在母液排放问题,降低了母液处理成本,最大程度的实现了低纯度葡萄糖液的高值化利用。

Description

一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法 技术领域
本发明属于糖醇制备技术领域,特别涉及一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法。
背景技术
赤藓糖醇,分子式为C 4H 10O 4,作为近些年兴起的较为理想的低热值甜味剂,具有热值低、口感好、无龋齿性、对糖尿病患者安全等特点,广泛应用于食品、饮料等行业。赤藓糖醇可通过化学法合成,但工业上主要是以葡萄糖为原料、经菌株发酵制得。而葡萄糖的工业化生产则主要是以玉米淀粉为原料,采用酶法进行液化、糖化得到葡萄糖粗液,葡萄糖粗液经脱色、离子交换等工序得到精制葡萄糖液。以葡萄糖液为原料制备赤藓糖醇时,由于糖液中二糖、三糖等低聚糖含量较高,导致后续分离纯化工序负荷增加、收率下降,因此往往先将葡萄糖液提纯至99%以上后再作为赤藓糖醇发酵原料。
目前葡萄糖液的提纯方法主要有纳滤或者模拟移动床技术,不论是哪种方法,经过处理后的糖液会分为高纯度的葡萄糖提取液和低纯度的葡萄糖提余液两部分,提取液可以作为赤藓糖醇发酵原料,但提余液中存在10~20%的二糖、三糖等低聚糖类,通常只能作为糖浆进行售卖,导致低纯度葡萄糖液的高值化利用率较低、不能最大程度的提高提余液的附加值,如公开号为CN102977156A的专利采用模拟移动床技术处理葡萄糖母液后,低纯度的葡萄糖提余液则用来制作麦芽糖浆。
聚葡萄糖作为一种新型的水溶性膳食纤维,主要是以葡萄糖、山梨醇、柠檬酸为原料,在高温下脱水缩聚得到聚葡萄糖粗品,经脱色、离子交换、干燥后即可得到聚葡萄糖产品,其反应路线简单、工艺步骤少;若以低纯度的葡萄糖提余液为原料制备聚葡萄糖,不仅能够显著提升低纯度葡萄糖液的价值,同时还减少了葡萄糖母液的处理成本。
发明内容
本发明所要解决的技术问题在于,提供一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法,将纳滤后的葡萄糖液用于制备赤藓糖醇和聚葡萄糖,将高纯度葡萄糖液用于发酵制备赤藓糖醇,低纯度葡萄糖液用于制备聚葡萄糖,最大程度的利用低纯度葡萄糖液,进一步提高低纯度葡萄糖液的价值。
本发明是这样实现的,提供一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统,包括依次通过管路连通的调浆罐、液化罐、糖化罐、过滤器、第一离子交换系统、纳滤单元、高温缩聚单元以及发酵结晶单元,调浆罐用于接收玉米淀粉并加水混合配制成玉米淀粉乳,液化 罐用于加入α-淀粉酶将玉米淀粉乳水解为淀粉液化液,糖化罐用于将淀粉液化液连续糖化为葡萄糖粗液,过滤器和第一离子交换系统分别用于去除葡萄糖粗液内的杂质以得到纯度较高的葡萄糖液,纳滤单元用于对葡萄糖液进一步提纯分别得到含高浓度葡萄糖的透过液和含低浓度葡萄糖的截留液,发酵结晶单元用于对透过液进行处理以制备晶体赤藓糖醇,高温缩聚单元用于对截留液进行处理以制备聚葡萄糖。
进一步地,所述纳滤单元包括进料罐、进料泵、粗滤装置、高压泵以及纳滤装置,进料罐接收葡萄糖液,进料泵从进料罐抽取葡萄糖液然后输送到粗滤装置,经粗滤装置过滤后的葡萄糖液经过纳滤装置纳滤处理后被分为透过液和截留液。
所述纳滤单元还可以采用模拟移动床技术对葡萄糖液进行提纯,同样能够得到高纯度的提取液和低纯度的提余液。
进一步地,所述纳滤装置包括纳滤组件、冲洗罐和冲洗泵,纳滤组件包括纳滤膜和循环泵,葡萄糖液在循环泵的作用下被循环地通过纳滤膜进行过滤,冲洗罐中的清洗水在冲洗泵的作用下定期对纳滤膜进行冲洗。
进一步地,所述发酵结晶单元包括发酵罐、过滤装置、第二离子交换系统和结晶装置,发酵罐采用菌株将透过液中的葡萄糖发酵转化为赤藓糖醇以得到发酵液,过滤装置和第二离子交换系统分别用于除去发酵液中的杂质,结晶装置用于将除杂后的发酵液进行浓缩、结晶、干燥处理后得到晶体赤藓糖醇产品。
进一步地,所述高温缩聚单元包括真空高温反应器、脱色罐、第三离子交换系统以及干燥装置,真空高温反应器用于将截留液中的葡萄糖、二糖、三糖组分缩聚为聚葡萄糖粗品,脱色罐和第三离子交换系统分别用于对聚葡萄糖粗品进行脱色和除杂以得到精制后的聚葡萄糖液,最后经喷雾干燥装置干燥处理后得到聚葡萄糖产品。
本发明是这样实现的,提供一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的方法,其使用了如前所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统,所述方法包括如下步骤:
步骤一、采用α-淀粉酶、葡萄糖淀粉酶依次对玉米淀粉原料进行液化、糖化处理,以得到葡萄糖粗液,葡萄糖粗液经过滤、离子交换除杂后得到精制后的葡萄糖液,葡萄糖液的折光为30%~35%、纯度为95%~96%。
步骤二,采用纳滤单元将葡萄糖液进一步提纯分别得到含高浓度葡萄糖的透过液和含低浓度葡萄糖的截留液,透过液中葡萄糖纯度为99%~99.5%,截留液中包含80%~86%的葡萄糖以及14%~20%的二糖、三糖低聚糖组分。
步骤三,将得到的截留液输送至真空高温反应器,以山梨醇为增塑剂、柠檬酸为催化剂, 经高温缩聚为聚葡萄糖粗品,聚葡萄糖粗品再依次经过脱色、离交、喷雾干燥处理后得到聚葡萄糖产品,聚葡萄糖纯度>90%。
步骤四,将得到的透过液输送至发酵罐,采用菌株将透过液中的葡萄糖发酵转化为赤藓糖醇以得到发酵液,发酵液再经过过滤、离子交换、结晶处理后得到晶体赤藓糖醇产品,赤藓糖醇纯度>99%。
进一步地,在步骤一中,所述精制后的葡萄糖液温度为50℃~60℃,pH值为4.0~5.0。
进一步地,在步骤二中,所述将葡萄糖液进一步提纯的过程是将葡萄糖液先输送至进料罐中,然后再通过进料泵依次经过粗滤装置、高压泵和纳滤装置处理,葡萄糖液经纳滤处理后分别得到透过液和截留液,纳滤处理过程运行温度为40℃~60℃,压力为15bar~35bar。
进一步地,在步骤三中,截留液在真空高温反应器进行高温反应,反应温度为140℃~160℃,真空度为-0.09MPa~-0.1MPa,反应时间为1.0h~2.5h,山梨醇添加量为10%~15%,柠檬酸添加量为0.5%~2.0%。
进一步地,在步骤四中,透过液先蒸发至35%干基含量后才进行发酵处理。
与现有技术相比,本发明的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法,以玉米淀粉为原料,经过液化和糖化处理后得到葡萄糖液,再经过纳滤单元处理后分别得到含高浓度葡萄糖的透过液和含低浓度葡萄糖的截留液,将高纯度葡萄糖液用于发酵制备赤藓糖醇,低纯度葡萄糖液用于制备聚葡萄糖。本发明能够同时制备赤藓糖醇和聚葡萄糖两种具有高价值的产品,同时不存在母液排放问题,降低了母液处理成本,最大程度的实现了低纯度葡萄糖液的高值化利用。
附图说明
图1为本发明利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统的原理示意图;
图2为本发明利用玉米淀粉制备赤藓糖醇和聚葡萄糖的方法的流程示意图;
图3为图1中纳滤装置及纳滤处理的原理示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参照图1所示,本发明利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统的较佳实施例,图中的带箭头的线条表示的是本发明中物料的流动方向。该系统包括依次通过管路连通的调浆罐1、液化罐2、糖化罐3、过滤器4、第一离子交换系统5、纳滤单元6、高温缩聚单元7 以及发酵结晶单元8。
调浆罐1用于接收玉米淀粉A并加水混合配制成玉米淀粉乳。液化罐2用于加入α-淀粉酶将玉米淀粉乳水解为淀粉液化液,糖化罐3用于将淀粉液化液连续糖化为葡萄糖粗液。过滤器4和第一离子交换系统5分别用于去除葡萄糖粗液内的杂质以得到纯度较高的葡萄糖液B。纳滤单元6用于对葡萄糖液B进一步提纯分别得到葡萄糖纯度>99%的透过液C和葡萄糖纯度在80%~87%的截留液D。发酵结晶单元8用于对透过液C进行处理以制备晶体赤藓糖醇E,高温缩聚单元7用于对截留液D进行处理以制备聚葡萄糖F。
请参照图3所示,所述纳滤单元6包括进料罐61、进料泵62、粗滤装置63、高压泵64以及纳滤装置65。进料罐61接收葡萄糖液B,进料泵62从进料罐61抽取葡萄糖液B然后输送到粗滤装置63。经粗滤装置63过滤后的葡萄糖液B经过纳滤装置65纳滤处理后被分为透过液C和截留液D。
所述纳滤装置65包括纳滤组件、冲洗罐68和冲洗泵69,纳滤组件包括纳滤膜66和循环泵67。葡萄糖液B在循环泵67的作用下被循环地通过纳滤膜66进行过滤。具有更大分子量的二糖、三糖等低聚糖无法透过纳滤膜66被存留在截留液D中,透过液C中富含葡萄糖,从而实现葡萄糖液的提纯。冲洗罐68中的清洗水在冲洗泵69的作用下定期对纳滤膜66进行冲洗。清洗后的清洗废水G通过清洗废水收集槽收集待处理。
所述发酵结晶单元8包括发酵罐81、过滤装置82、第二离子交换系统83和结晶装置84。发酵罐81采用菌株将透过液C中的葡萄糖发酵转化为赤藓糖醇以得到发酵液,过滤装置82和第二离子交换系统83分别用于除去发酵液中的杂质,结晶装置84用于将除杂后的发酵液进行浓缩、结晶、干燥处理后得到晶体赤藓糖醇E产品。
所述高温缩聚单元7包括真空高温反应器71、脱色罐72、第三离子交换系统73以及干燥装置74。真空高温反应器71用于将截留液D中的葡萄糖、二糖、三糖组分缩聚为聚葡萄糖粗品,脱色罐72和第三离子交换系统73分别用于对聚葡萄糖粗品进行脱色和除杂以得到精制后的聚葡萄糖液,最后经喷雾干燥装置干燥处理后得到聚葡萄糖F产品。
请参照图2所示,本发明还公开一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的方法,其使用了如前所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统,所述方法包括如下步骤:
步骤一、采用α-淀粉酶、葡萄糖淀粉酶依次对玉米淀粉A原料进行液化、糖化处理,以得到葡萄糖粗液,葡萄糖粗液经过滤、离子交换除杂后得到精制后的葡萄糖液B,葡萄糖液B的折光为30%~35%、纯度为95%~96%。
步骤二,采用纳滤单元将葡萄糖液进一步提纯分别得到透过液C和截留液D,透过液C 中葡萄糖纯度为99%~99.5%,截留液D中包含80%~86%的葡萄糖以及14%~20%的二糖、三糖低聚糖组分。
步骤三,将得到的截留液D输送至真空高温反应器71,以山梨醇为增塑剂、柠檬酸为催化剂,经高温缩聚为聚葡萄糖粗品,聚葡萄糖粗品再依次经过脱色、离交、喷雾干燥处理后得到聚葡萄糖F产品。在聚葡萄糖F产品中,聚葡萄糖纯度>90%,残留葡萄糖含量<6%。
步骤四,将得到的透过液C输送至发酵罐81,采用菌株将透过液C中的葡萄糖发酵转化为赤藓糖醇以得到发酵液,发酵液再经过过滤、离子交换、结晶处理后得到晶体赤藓糖醇E产品,赤藓糖醇纯度>99%。
具体地,在步骤一中,所述精制后的葡萄糖液B温度为50℃~60℃,pH值为4.0~5.0。
请再同时参照图1和图3所示,具体地,在步骤二中,所述将葡萄糖液B进一步提纯的过程是将葡萄糖液B先输送至进料罐61中,然后再通过进料泵62依次经过粗滤装置63、高压泵64和纳滤装置65处理,葡萄糖液B经纳滤处理后分别得到透过液C和截留液D,纳滤处理过程运行温度为40℃~60℃,压力为15bar~35bar。
具体地,在步骤三中,截留液D在真空高温反应器71进行高温反应,反应温度为140℃~160℃,真空度为-0.09MPa~-0.1MPa,反应时间为1.0h~2.5h,山梨醇添加量为10%~15%,柠檬酸添加量为0.5%~2.0%。
具体地,在步骤四中,透过液先蒸发至35%干基含量后才进行发酵处理。
下面通过具体实施例进一步说明本发明的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法。
实施例1
本发明的第一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的方法的实施例,包括如下步骤:
步骤11、将玉米淀粉A与水混合配置成玉米淀粉乳后,依次加入耐高温α-淀粉酶、葡萄糖淀粉酶将玉米淀粉进行液化、糖化,得到糖化液。采用过滤器4除去糖化液中的大分子蛋白、脂肪等杂质,然后过第一离子交换系统5的离子交换树脂得到电导率为1.696μs/cm、纯度为96%的葡萄糖液B。
步骤12、取干基重量为1吨的葡萄糖液B进行纳滤处理,分别得到干基重量为0.79吨、葡萄糖纯度为99.2%的透过液C和干基重量为0.21吨、葡萄糖纯度为84.0%的截留液D。在截留液D中,除了葡萄糖外,还包含16%的二糖、三糖等多糖组分。
步骤13、将所得的干基重量为0.21吨的截留液D输送至真空高温反应器71,同时按照葡萄糖:山梨醇:柠檬酸为87:12:1的比例加入24.33kg山梨醇、2.03kg柠檬酸,在-0.095MPa、 160℃条件下反应2.0h,得到聚葡萄糖粗品。聚葡萄糖粗品溶解后依次经过脱色、离子交换、喷雾干燥得到0.18吨聚葡萄糖F产品。在聚葡萄糖F产品中,聚葡萄糖纯度为94.6%,残留葡萄糖含量2.68%,残留1,6-脱水-D-葡萄糖含量1.50%。
步骤14、将所得的干基重量为0.79吨的透过液C输送至发酵罐81,经发酵、膜过滤、离子交换、浓缩结晶、离心干燥得到0.43吨晶体赤藓糖醇E产品,赤藓糖醇纯度为99.6%,葡萄糖制备赤藓糖醇的转化率为54.43%。
在本发明中,以低纯度葡萄糖液的高值化利用率为指标来表征其利用效果。高值化利用率计算方法如下:
高值化利用率=(转化为高价值产品的葡萄糖干基)/(低纯度糖液中葡萄糖总干基)
按照高值化利用率计算公式,得到本实施例低纯度葡萄糖液的高值化利用率为95.56%。
实施例2
本发明的第二种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的方法的实施例,包括如下步骤:
步骤21、将玉米淀粉A与水混合配置成玉米淀粉乳后,依次加入耐高温α-淀粉酶、葡萄糖淀粉酶将玉米淀粉进行液化、糖化,得到糖化液。采用过滤器4除去糖化液中的大分子蛋白、脂肪等杂质,然后过第一离子交换系统5的离子交换树脂得到电导率为1.914μs/cm、纯度为95.8%的葡萄糖液B。
步骤22、取干基重量为1吨的葡萄糖液B进行纳滤,分别得到干基重量为0.78吨、葡萄糖纯度为99.4%的透过液C和干基重量为0.22吨、葡萄糖纯度为83.1%的截留液D。在截留液D中,除了葡萄糖外,还包含16.9%的二糖、三糖等多糖组分。
步骤23、将所得的干基重量为0.22吨的截留液D输送至真空高温反应器71,同时按照葡萄糖:山梨醇:柠檬酸为87:12:1的比例加入25.22kg山梨醇、2.10kg柠檬酸,在-0.095MPa、160℃条件下反应2.0h,得到聚葡萄糖粗品。聚葡萄糖粗品溶解后依次经过脱色、离子交换、喷雾干燥得到0.19吨聚葡萄糖F产品。在聚葡萄糖F产品中,聚葡萄糖纯度为95.3%,残留葡萄糖含量2.19%,残留1,6-脱水-D-葡萄糖含量1.56%。
步骤24、将所得的干基重量为0.78吨的透过液C输送至发酵罐81,经发酵、膜过滤、离子交换、浓缩结晶、离心干燥得到0.41吨晶体赤藓糖醇E产品,赤藓糖醇纯度为99.3%,葡萄糖制备赤藓糖醇的转化率为52.56%。
按照高值化利用率计算公式,得到本实施例低纯度葡萄糖液高值化利用率为95.93%。
对比例1
该对比例1采用本发明方法处理透过液C制备赤藓糖醇,而不处理截留液D,不制备聚 葡萄糖,只是将截留液D回流葡萄糖纳滤前液中再利用来制备赤藓糖醇。该对比例包括如下步骤:
步骤D1、将玉米淀粉A与水混合配置成玉米淀粉乳后,依次加入耐高温α-淀粉酶、葡萄糖淀粉酶将玉米淀粉进行液化、糖化,得到糖化液;采用过滤器4除去糖化液中的大分子蛋白、脂肪等杂质,然后过离子交换树脂得到电导率为1.472μs/cm、纯度为95.9%的葡萄糖液B。
步骤D2、取干基重量为1吨的葡萄糖液B进行纳滤,分别得到干基重量为0.80吨、葡萄糖纯度为99.0%的透过液C和干基重量为0.20吨、葡萄糖纯度为83.5%的截留液D。在截留液D中,除了葡萄糖外,还包含16.5%的二糖、三糖等多糖组分。
步骤D3、将所得的干基重量为0.80吨的透过液C输送至发酵罐81,经发酵、膜过滤、离子交换、浓缩结晶、离心干燥得到0.43吨晶体赤藓糖醇E产品,赤藓糖醇纯度为99.4%,葡萄糖制备赤藓糖醇转化率为53.75%。
步骤D4、纳滤过程所得的干基重量为0.20吨的截留液D直接回套至葡萄糖纳滤前液中,然后再经纳滤、发酵、结晶等工序,最终得到0.073吨晶体赤藓糖醇F产品。该过程低纯度葡萄糖液的高值化利用率仅为43.71%。
与对比例1所述工艺相比,各实施例以纳滤截留液D为原料,得到了价值更高的聚葡萄糖F产品,更大程度的利用了低纯度葡萄糖液的附加值。以低纯度葡萄糖液的高值化利用率为指标,考察各实施例与对比例1的高值化利用率效果,能够发现采用本发明所述工艺方法后,低纯度葡萄糖液的高值化利用率得到了明显提高。
各实施例与对比例1的低纯度葡萄糖液高值化利用率数据对比如表1所示。
表1 各实施例与对比例1的低纯度葡萄糖液高值化利用率实验数据对比表
类型 实施例1 实施例2 对比例1
低纯度葡萄糖液高值化利用率 95.56% 95.93% 43.71%
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统,其特征在于,包括依次通过管路连通的调浆罐、液化罐、糖化罐、过滤器、第一离子交换系统、纳滤单元、高温缩聚单元以及发酵结晶单元,调浆罐用于接收玉米淀粉并加水混合配制成玉米淀粉乳,液化罐用于加入α-淀粉酶将玉米淀粉乳水解为淀粉液化液,糖化罐用于将淀粉液化液连续糖化为葡萄糖粗液,过滤器和第一离子交换系统分别用于去除葡萄糖粗液内的杂质以得到纯度较高的葡萄糖液,纳滤单元用于对葡萄糖液进一步提纯分别得到含高浓度葡萄糖的透过液和含低浓度葡萄糖的截留液,发酵结晶单元用于对透过液进行处理以制备晶体赤藓糖醇,高温缩聚单元用于对截留液进行处理以制备聚葡萄糖。
  2. 如权利要求1所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统,其特征在于,所述纳滤单元包括进料罐、进料泵、粗滤装置、高压泵以及纳滤装置,进料罐接收葡萄糖液,进料泵从进料罐抽取葡萄糖液然后输送到粗滤装置,经粗滤装置过滤后的葡萄糖液经过纳滤装置纳滤处理后被分为透过液和截留液。
  3. 如权利要求2所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统,其特征在于,所述纳滤装置包括纳滤组件、冲洗罐和冲洗泵,纳滤组件包括纳滤膜和循环泵,葡萄糖液在循环泵的作用下被循环地通过纳滤膜进行过滤,冲洗罐中的清洗水在冲洗泵的作用下定期对纳滤膜进行冲洗。
  4. 如权利要求2所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统,其特征在于,所述发酵结晶单元包括发酵罐、过滤装置、第二离子交换系统和结晶装置,发酵罐采用菌株将透过液中的葡萄糖发酵转化为赤藓糖醇以得到发酵液,过滤装置和第二离子交换系统分别用于除去发酵液中的杂质,结晶装置用于将除杂后的发酵液进行浓缩、结晶、干燥处理后得到晶体赤藓糖醇产品。
  5. 如权利要求4所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统,其特征在于,所述高温缩聚单元包括真空高温反应器、脱色罐、第三离子交换系统以及干燥装置,真空高温反应器用于将截留液中的葡萄糖、二糖、三糖组分缩聚为聚葡萄糖粗品,脱色罐和第三离子交换系统分别用于对聚葡萄糖粗品进行脱色和除杂以得到精制后的聚葡萄糖液,最后经喷雾干燥装置干燥处理后得到聚葡萄糖产品。
  6. 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的方法,其特征在于,其使用了如权利要求5所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统,所述方法包括如下步骤:
    步骤一、采用α-淀粉酶、葡萄糖淀粉酶依次对玉米淀粉原料进行液化、糖化处理,以得到葡萄糖粗液,葡萄糖粗液经过滤、离子交换除杂后得到精制后的葡萄糖液,葡萄糖液的折光为30%~35%、纯度为95%~96%;
    步骤二,采用纳滤单元将葡萄糖液进一步提纯分别得到含高浓度葡萄糖的透过液和含低浓度葡萄糖的截留液,透过液中葡萄糖纯度为99%~99.5%,截留液中包含80%~86%的葡萄糖以及14%~20%的二糖、三糖低聚糖组分;
    步骤三,将得到的截留液输送至真空高温反应器,以山梨醇为增塑剂、柠檬酸为催化剂,经高温缩聚为聚葡萄糖粗品,聚葡萄糖粗品再依次经过脱色、离交、喷雾干燥处理后得到聚葡萄糖产品,聚葡萄糖纯度>90%;
    步骤四,将得到的透过液输送至发酵罐,采用菌株将透过液中的葡萄糖发酵转化为赤藓糖醇以得到发酵液,发酵液再经过过滤、离子交换、结晶处理后得到晶体赤藓糖醇产品,赤藓糖醇纯度>99%。
  7. 如权利要求6所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的方法,其特征在于,在步骤一中,所述精制后的葡萄糖液温度为50℃~60℃,pH值为4.0~5.0。
  8. 如权利要求6所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的方法,其特征在于,在步骤二中,所述将葡萄糖液进一步提纯的过程是将葡萄糖液先输送至进料罐中,然后再通过进料泵依次经过粗滤装置、高压泵和纳滤装置处理,葡萄糖液经纳滤处理后分别得到透过液和截留液,纳滤处理过程运行温度为40℃~60℃,压力为15bar~35bar。
  9. 如权利要求6所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的方法,其特征在于,在步骤三中,截留液在真空高温反应器进行高温反应,反应温度为140℃~160℃,真空度为-0.09MPa~-0.1MPa,反应时间为1.0h~2.5h,山梨醇添加量为10%~15%,柠檬酸添加量为0.5%~2.0%。
  10. 如权利要求6所述的利用玉米淀粉制备赤藓糖醇和聚葡萄糖的方法,其特征在于,在步骤四中,透过液先蒸发至35%干基含量后才进行发酵处理。
PCT/CN2022/125223 2021-12-26 2022-10-13 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法 WO2023116142A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111606221.X 2021-12-26
CN202111606221.XA CN114107041A (zh) 2021-12-26 2021-12-26 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法

Publications (1)

Publication Number Publication Date
WO2023116142A1 true WO2023116142A1 (zh) 2023-06-29

Family

ID=80363201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125223 WO2023116142A1 (zh) 2021-12-26 2022-10-13 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法

Country Status (2)

Country Link
CN (1) CN114107041A (zh)
WO (1) WO2023116142A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107041A (zh) * 2021-12-26 2022-03-01 浙江华康药业股份有限公司 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法
CN115976290A (zh) * 2022-12-17 2023-04-18 浙江华康药业股份有限公司 一种利用玉米芯渣联产聚葡萄糖和焦糖色素的系统及方法
CN115975067B (zh) * 2022-12-20 2024-05-28 黑龙江八一农垦大学 一种以葡萄糖母液为原料制备聚葡萄糖的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007002A1 (en) * 1988-12-16 1990-06-28 Showa Denko Kabushiki Kaisha Production of sugar compounds
CN1251109A (zh) * 1997-03-19 2000-04-19 考尔特食品科学公司 使用少量多元羧酸进行的单糖和二糖类的聚合
US20040161829A1 (en) * 2003-02-19 2004-08-19 Jei-Fu Shaw Starch-derived products
CN104356251A (zh) * 2014-10-27 2015-02-18 山东广博生物技术服务有限公司 一种以淀粉为原料生产聚葡萄糖的方法
CN106749748A (zh) * 2016-11-25 2017-05-31 保龄宝生物股份有限公司 葡萄糖液制备聚葡萄糖的方法
CN113512566A (zh) * 2021-05-25 2021-10-19 浙江华康药业股份有限公司 利用玉米淀粉联产赤藓糖醇和液体山梨糖醇的系统及方法
CN114107041A (zh) * 2021-12-26 2022-03-01 浙江华康药业股份有限公司 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法
CN217556205U (zh) * 2021-12-26 2022-10-11 浙江华康药业股份有限公司 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007002A1 (en) * 1988-12-16 1990-06-28 Showa Denko Kabushiki Kaisha Production of sugar compounds
CN1251109A (zh) * 1997-03-19 2000-04-19 考尔特食品科学公司 使用少量多元羧酸进行的单糖和二糖类的聚合
US20040161829A1 (en) * 2003-02-19 2004-08-19 Jei-Fu Shaw Starch-derived products
CN104356251A (zh) * 2014-10-27 2015-02-18 山东广博生物技术服务有限公司 一种以淀粉为原料生产聚葡萄糖的方法
CN106749748A (zh) * 2016-11-25 2017-05-31 保龄宝生物股份有限公司 葡萄糖液制备聚葡萄糖的方法
CN113512566A (zh) * 2021-05-25 2021-10-19 浙江华康药业股份有限公司 利用玉米淀粉联产赤藓糖醇和液体山梨糖醇的系统及方法
CN114107041A (zh) * 2021-12-26 2022-03-01 浙江华康药业股份有限公司 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法
CN217556205U (zh) * 2021-12-26 2022-10-11 浙江华康药业股份有限公司 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统

Also Published As

Publication number Publication date
CN114107041A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023116142A1 (zh) 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统及方法
US5177008A (en) Process for manufacturing ethanol and for recovering glycerol, succinic acid, lactic acid, betaine, potassium sulfate, and free flowing distiller&#39;s dry grain and solubles or a solid fertilizer therefrom
JP4675139B2 (ja) 高純度キシロオリゴ糖組成物
CN102676616B (zh) 一种麦芽糖糖浆的生产工艺
WO2010051676A1 (zh) 一种乳酸的清洁生产工艺
CN103045701A (zh) 一种高收率联产抗性糊精、β-环糊精及F42果葡糖浆的方法
CN101220381A (zh) 利用玉米芯或农林废弃物制备木糖醇的方法
CN106086116A (zh) 一种海藻糖制备方法
JPH06237800A (ja) 澱粉糖の製造方法
JP7454103B2 (ja) コーンスターチを用いたエリスリトール・液状ソルビトール同時生産システム及び方法
CN217556205U (zh) 一种利用玉米淀粉制备赤藓糖醇和聚葡萄糖的系统
CN108503716B (zh) 一种抗性糊精的生产方法
US20070037266A1 (en) Process for producing erythritol
CN111850069B (zh) 一种海藻糖的生产制备工艺
CN215947326U (zh) 一种利用玉米淀粉联产赤藓糖醇和液体山梨糖醇的系统
CN109369731B (zh) 一种脱除木糖生产过程中葡萄糖的方法
CN107287263B (zh) 一种高纯度麦芽糖联产β-极限糊精的制备方法
JPWO2019189651A1 (ja) 精製糖液の製造方法
CN107840782A (zh) 山梨醇的生产方法及装置
CN114573644A (zh) 一种唾液酸制备方法
CN113337547A (zh) 一种酒糟综合再利用的方法
CN110042136A (zh) 一种利用糖用型甜高粱茎秆汁液制备果葡糖浆的方法
CN113430238B (zh) 一种添加蔗糖/低聚果糖生产抗性糊精的方法
CN111394524A (zh) 一种雪莲果果寡糖及其制备方法和应用
CN206375925U (zh) 一种一次结晶制备无水葡萄糖的生产系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909460

Country of ref document: EP

Kind code of ref document: A1