WO2023115985A1 - 一种新型的汽车逆变器用高压陶瓷母线支撑电容 - Google Patents

一种新型的汽车逆变器用高压陶瓷母线支撑电容 Download PDF

Info

Publication number
WO2023115985A1
WO2023115985A1 PCT/CN2022/111836 CN2022111836W WO2023115985A1 WO 2023115985 A1 WO2023115985 A1 WO 2023115985A1 CN 2022111836 W CN2022111836 W CN 2022111836W WO 2023115985 A1 WO2023115985 A1 WO 2023115985A1
Authority
WO
WIPO (PCT)
Prior art keywords
busbar
positive
negative
voltage ceramic
capacitor
Prior art date
Application number
PCT/CN2022/111836
Other languages
English (en)
French (fr)
Inventor
修贵东
沈金亮
华旸
刘朝辉
杨良会
原诚寅
Original Assignee
北京国家新能源汽车技术创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京国家新能源汽车技术创新中心有限公司 filed Critical 北京国家新能源汽车技术创新中心有限公司
Publication of WO2023115985A1 publication Critical patent/WO2023115985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal

Definitions

  • the invention relates to the field of high-voltage ceramic capacitors, in particular to a novel high-voltage ceramic busbar support capacitor for automotive inverters.
  • silicon carbide power devices are mostly used in new energy vehicle inverters to increase switching frequency and power density, but silicon carbide power devices are easily limited by the power density of bus capacitors.
  • high-voltage ceramic capacitors are gradually used in existing SiC inverters to replace conventional metal film capacitors. High-voltage ceramic capacitors have many advantages such as small size, small internal resistance, and long life. It is bound to occupy a dominant position in automotive inverters.
  • the existing high-voltage ceramic capacitors generally use a thick copper PCB as the BUS busbar of the busbar capacitor. Both the top and bottom layers of the PCB are designed with positive and negative networks of the DC busbar, and multiple pads are opened on the positive and negative busbar networks to facilitate the capacitance of the capacitor. Solder assembly with PCB. However, the high-voltage ceramic capacitor still has the following disadvantages:
  • busbar positive and negative networks are integrated on the top and bottom layers of the PCB, it is necessary to fully evaluate the safety gap and creepage distance between the pads in the design, resulting in a waste of space;
  • the present invention designs a new type of high-voltage ceramic bus support capacitor for automotive inverters.
  • the invention provides a novel high-voltage ceramic bus bar supporting capacitor for an automobile inverter, which can effectively increase space utilization without considering the safety gap and creepage distance between pads.
  • the present invention provides the following technical solutions: a new type of high-voltage ceramic busbar support capacitor for automotive inverters, the busbar support capacitor includes a positive busbar, a negative busbar and several high-voltage ceramic chip capacitors.
  • the positive busbar is integrated with the busbar positive network, and there are several positive busbar interface ports on one side of the positive busbar;
  • the busbar negative network is integrated on the negative busbar, and there are several negative busbar interface terminals on one side of the negative busbar; the negative busbar interface terminals and the positive busbar interface terminals are interlaced, and both are used to connect the half-bridge SiC module Or multi-layer composite busbar;
  • Each high-voltage ceramic capacitor is evenly spaced between the positive busbar and the negative busbar, and the positive terminal of the high-voltage ceramic capacitor is connected to the positive busbar and connected to the positive network of the busbar, and its negative terminal is connected to the negative busbar And connected to the negative network of the busbar; there is a cooling fluid between adjacent high-voltage ceramic capacitors.
  • the distance between the aforementioned adjacent high-voltage ceramic chip capacitors is 2mm.
  • the aforementioned positive busbar is a soft copper bar
  • the negative busbar is a PCB
  • the positive busbar uses soft copper bars instead of PCB, which can further reduce the overall stray inductance of the busbar support capacitor.
  • the aforementioned PCB is made of an aluminum substrate.
  • the aluminum substrate can speed up the heat dissipation and facilitate multi-dimensional heat conduction to the high-voltage ceramic capacitor.
  • cooling fluid dissipates heat in a clockwise direction on the negative busbar.
  • the cooling fluid can effectively disperse the heat generated when the high-voltage ceramic chip capacitor works.
  • cooling fluid is air or silicone oil.
  • the air or silicone oil can actively enhance heat dissipation, so as to quickly reduce the temperature of the bus support capacitor.
  • a novel high-voltage ceramic busbar support capacitor for automotive inverters provided by the present invention has the following beneficial effects:
  • the present invention fixes the high-voltage ceramic capacitor between the positive and negative busbars by means of a double-layer sandwich capacitor.
  • the fixing method of the high-voltage ceramic capacitor is reliable and not easy to fall off;
  • Fig. 1 is the structure schematic diagram of bus support capacitor of the present invention
  • Fig. 2 is a schematic diagram of the heat dissipation of the bus support capacitor of the present invention.
  • the present invention provides a new type of high-voltage ceramic busbar support capacitor for automotive inverters.
  • the busbar support capacitor includes a positive busbar 1, a negative busbar 2 and a plurality of high-voltage ceramic chip capacitors 3.
  • the busbar positive network is integrated on the positive busbar 1, and six positive busbar interface terminals 11 are installed on one side of the positive busbar 1;
  • the busbar negative network is integrated on the negative busbar 2, and six negative busbar interface terminals 21 are installed on one side of the negative busbar 2; the negative busbar interface terminals 21 and the positive busbar interface terminals 11 are interlaced, and all Connect half-bridge SiC modules or multi-layer composite busbars;
  • Each high-voltage ceramic capacitor 3 is evenly distributed between the positive busbar 1 and the negative busbar 2, and the positive terminal of the high-voltage ceramic capacitor 3 is welded to the positive busbar 1 and connected to the positive network of the busbar, and its negative terminal It is welded to the negative busbar 2 and connected to the busbar negative network; there is a cooling fluid between adjacent high-voltage ceramic capacitors 3 .
  • the size and design of the positive and negative busbars 1 and 2 are exactly the same, and the minimum safe distance of the overall capacitor assembly is the capacitor body; in this way, there is no space waste in the distribution of the capacitors on the supporting capacitors of the busbar, and there is no safety regulation short board.
  • the positive and negative busbars 1 and 2 are both PCBs; thus, the top and bottom of the high-voltage ceramic chip capacitor 3 are wrapped with PCBs, which makes the integration of the busbar support capacitor with other electrical components easier and safer; or the positive busbar 1 is a soft copper bar, and the negative bus bar 2 is a PCB; in this way, the positive bus bar is replaced by a soft copper bar, which can further reduce the overall stray inductance of the bus support capacitor.
  • the positive and negative busbars 1 and 2 are both PCBs, and the PCB size is 179mm*64mm*10mm as an example, and the distance between adjacent high-voltage ceramic capacitors is 2mm.
  • the material of the PCB is an aluminum substrate; in this way, the aluminum substrate can speed up the heat dissipation and facilitate multi-dimensional heat conduction to the capacitor.
  • the cooling fluid dissipates heat in a clockwise direction on the negative busbar 2 ; thus, the cooling fluid can effectively disperse the heat generated when the high-voltage ceramic capacitor 3 works.
  • the heat dissipation fluid is air or organic silicon oil; thus, the air or organic silicon oil can actively enhance heat dissipation to quickly reduce the temperature of the bus support capacitor.
  • the radiating fluid is organic silicon oil as an example.
  • the present invention provides a novel high-voltage ceramic bus support capacitor for automotive inverters, and its specific production process is as follows:
  • a novel high-voltage ceramic bus support capacitor for automotive inverters provided by the present invention has the following beneficial effects:
  • the present invention fixes the high-voltage ceramic capacitor 3 between the positive and negative busbars 1 and 2 by means of a double-layer sandwich capacitor.
  • the fixing method of the high-voltage ceramic capacitor 3 is reliable and not easy to fall off;

Abstract

本发明涉及高压陶瓷电容领域,公开了一种新型的汽车逆变器用高压陶瓷母线支撑电容,该母线支撑电容包括正母排、负母排和若干个高压瓷片电容;正母排上集成有母排正网络,且正母排一侧设有若干个正母排接口端;负母排上集成有母排负网络,且负母排一侧设有若干个负母排接口端;负母排接口端与正母排接口端相互交错,且均用于连接半桥SiC模块或者多层复合母排;各高压瓷片电容均匀等间距设于在正母排和负母排之间,且高压瓷片电容的正极端与正母排连接并接入母排正网络,其负极端与负母排连接并接入母排负网络;相邻高压瓷片电容之间具有散热流体。本发明能够有效增加空间利用率,无需考虑焊盘与焊盘间的安全间隙和爬电距离。

Description

一种新型的汽车逆变器用高压陶瓷母线支撑电容 技术领域
本发明涉及高压陶瓷电容领域,具体涉及一种新型的汽车逆变器用高压陶瓷母线支撑电容。
背景技术
目前,新能源汽车逆变器中大多使用碳化硅功率器件,以提升开关频率和功率密度,但碳化硅功率器件容易受到母线电容功率密度的限制。为了解除电容功率密度的限制,现有的SiC逆变器中逐渐开始使用高压陶瓷电容代替常规的金属膜电容,高压陶瓷电容具有体积小、内阻小和寿命长等诸多优势,未来在新能源汽车车用逆变器中必将占据主导地位。
现有的高压陶瓷电容一般以厚铜PCB作为母线电容的BUS母排,PCB的顶层和底层均设计有直流母线的正负网络,且正负母线网络上开窗多个焊盘,以便于电容与PCB进行焊接组装。然而该高压陶瓷电容仍存在以下缺点:
1、由于PCB的顶层和底层均集成有母排正负网络,因此,设计上要充分评估焊盘与焊盘间的安全间隙和爬电距离,造成一定空间的浪费;
2、多个电容的端子均焊接在PCB的同一侧,导致所有电容的母线正网络(或负网络)在汇流前均需要过孔换层到PCB的另一侧,而换层过孔容易成为限制电流的主要因素;
3、电容焊盘间以及与功率模块链接的功率端子间具有较小的间隙,限制了电容的使用环境(湿度、污染物等)
4、母排PCB因电容安装、裸露焊盘及换层过孔的存在,限制了其散热方式,导致电容很难进行有效的散热;
综上,为了克服以上缺陷,本发明设计了一种新型的汽车逆变器用高压陶瓷母线支撑电容。
发明内容
(一)解决的技术问题
本发明提供了一种新型的汽车逆变器用高压陶瓷母线支撑电容,能够有效增加空间利用率,无需考虑焊盘与焊盘间的安全间隙和爬电距离。
(二)技术方案
为解决上述技术问题,本发明提供如下技术方案:一种新型的汽车逆变器用高压陶瓷母线支撑电容,该母线支撑电容包括正母排、负母排和若干个高压瓷片电容。
正母排上集成有母排正网络,且正母排一侧设有若干个正母排接口端;
负母排上集成有母排负网络,且负母排一侧设有若干个负母排接口端;负母排接口端与正母排接口端相互交错,且均用于连接半桥SiC模块或者多层复合母排;
各高压瓷片电容均匀等间距设于在正母排和负母排之间,且高压瓷片电容的正极端与正母排连接并接入母排正网络,其负极端与负母排连接并接入母排负网络;相邻高压瓷片电容之间具有散热流体。
进一步设置,前述的正、负母排的尺寸及设计完全一致,且整体电容总成的最小安全间距为电容本体。
如此设置,该母线支撑电容上电容的分布没有空间浪费,没有安规短板。
进一步设置,前述的相邻所述高压瓷片电容的间距为2mm。
进一步设置,前述的正、负母排均为PCB。
如此设置,高压瓷片电容的顶部和底部均有PCB包裹,使得该母线支撑电容与其它电器件的集成更容易,也更安全。
进一步设置,前述的正母排为软铜排,负母排为PCB。
如此设置,正母线采用软铜排替代PCB,能够进一步降低该母线支撑电容的总体杂散电感。
进一步设置,前述的PCB的材质为铝基板。
如此设置,铝基板能够加快散热速度,便于多维度对高压瓷片电容进行热传导。
进一步设置,前述的散热流体在负母排上沿顺时针方向散热。
如此设置,散热流体能够有效分散高压瓷片电容工作时产生的热量。
进一步设置,前述的散热流体为空气或有机硅油。
如此设置,空气或有机硅油能够主动加强散热,以快速降低该母线支撑电容的温度。
(三)有益效果
与现有技术相比,本发明提供的一种新型的汽车逆变器用高压陶瓷母线支撑电容,具备以下有益效果:
1、本发明通过双层夹心电容的方式将高压瓷片电容固定于正、负母排之间,高压瓷片电容的固定方式可靠,且不易脱落;
2、正、负母排上均只集成有单一网络,即所有焊盘均在同一网络,所以器件间没有安规要求,只有安装最小间隙需求,如此,无需考虑焊盘与焊盘间的安全间隙和爬电距离,能够有效增加空间利用率,有效增大能布置的电容密度,电容分布更安全合理;
而且因为没有不同网络需要在同一PCB上换层,即正、负母排上均没有走线过孔,如此,能够有效减小该母线支撑电容的总导线阻抗;
3、通过完全重合的正、负母排和交错的正、负母排接口端,有效减小该母线支撑电容的总体杂散电感。
4、通过散热流体主动加强散热,以快速降低该母线支撑电容的温度。
附图说明
图1为本发明所述母线支撑电容的结构示意图;
图2为本发明所述母线支撑电容的散热示意图。
附图标号:1、正母排;11、正母排接口端;2、负母排;21、负母排接 口端;3、高压瓷片电容。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-2所示,本发明提供的一种新型的汽车逆变器用高压陶瓷母线支撑电容,该母线支撑电容包括正母排1、负母排2和多个高压瓷片电容3。
正母排1上集成有母排正网络,且正母排1一侧安装有六个正母排接口端11;
负母排2上集成有母排负网络,且负母排2一侧安装有六个负母排接口端21;负母排接口端21与正母排接口端11相互交错,且均用于连接半桥SiC模块或者多层复合母排;
各高压瓷片电容3均匀等间距分布于在正母排1和负母排2之间,且高压瓷片电容3的正极端与正母排1焊接并接入母排正网络,其负极端与负母排2焊接并接入母排负网络;相邻高压瓷片电容3之间具有散热流体。
正、负母排1、2的尺寸及设计完全一致,且整体电容总成的最小安全间距为电容本体;如此,该母线支撑电容上电容的分布没有空间浪费,没有安规短板。
正、负母排1、2均为PCB;如此,高压瓷片电容3的顶部和底部均有PCB包裹,使得该母线支撑电容与其它电器件的集成更容易,也更安全;或者正母排1为软铜排,负母排2为PCB;如此,正母线采用软铜排替代PCB,能够进一步降低该母线支撑电容的总体杂散电感。
本发明以正、负母排1、2均为PCB,且PCB尺寸为179mm*64mm*10mm为例,相邻高压瓷片电容的间距为2mm。
PCB的材质为铝基板;如此,铝基板能够加快散热速度,便于多维度对电容进行热传导。
如图2所示,散热流体在负母排2上沿顺时针方向散热;如此,散热流体能够有效分散高压瓷片电容3工作时产生的热量。
散热流体为空气或有机硅油;如此,空气或有机硅油能够主动加强散热,以快速降低该母线支撑电容的温度。本发明以散热流体为有机硅油为例。
本发明提供的一种新型的汽车逆变器用高压陶瓷母线支撑电容,其具体的制作流程为:
首先在负母排2的PCB上刷焊锡膏,再将32pcs型号为FA10的高压瓷片电容3均匀等间距贴在负母排2的PCB上,相邻高压瓷片电容3的间距为2mm;然后在负母排2的PCB的底侧贴上负母排接口端21,接着回流焊;
然后在正母排1的PCB上刷焊锡膏,再将正母排1的PCB盖在高压瓷片电容3上,使正、负母排1、2的PCB重合,完成正母排1与负母排2总装,再总成回流焊,最后在正母排1的底侧焊接正母排接口端11。
相较于现有的电容总成,本发明提供的一种新型的汽车逆变器用高压陶瓷母线支撑电容具有以下有益效果:
一、本发明通过双层夹心电容的方式将高压瓷片电容3固定于正、负母排1、2之间,高压瓷片电容3的固定方式可靠,且不易脱落;
二、正、负母排1、2上均只集成有单一网络,即所有焊盘均在同一网络,所以器件间没有安规要求,只有安装最小间隙需求,如此,无需考虑焊盘与焊盘间的安全间隙和爬电距离,能够有效增加空间利用率,有效增大能布置的电容密度,电容分布更安全合理;
而且因为没有不同网络需要在同一PCB上换层,即正、负母排1、2上均没有走线过孔,如此,能够有效减小该母线支撑电容的总导线阻抗;
三、通过完全重合的正、负母排1、2和交错的正、负母排接口端21,有 效减小该母线支撑电容的总体杂散电感;
四、通过散热流体主动加强散热,以快速降低该母线支撑电容的温度。
五、针对高压瓷片电容3的多种主动散热方式,主动有机硅油流道的设计导入;
六、柔性铜排的引入,能够进一步降低杂散电感。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种汽车逆变器用高压陶瓷母线支撑电容,其特征在于,该母线支撑电容包括正母排、负母排和若干个高压瓷片电容;
    正母排上集成有母排正网络,且正母排一侧设有若干个正母排接口端;
    负母排上集成有母排负网络,且负母排一侧设有若干个负母排接口端;负母排接口端与正母排接口端相互交错,且均用于连接半桥SiC模块或者多层复合母排;
    各高压瓷片电容均匀等间距设于正母排和负母排之间,且高压瓷片电容的正极端与正母排连接并接入母排正网络,其负极端与负母排连接并接入母排负网络;相邻高压瓷片电容之间具有散热流体。
  2. 根据权利要求1所述的汽车逆变器用高压陶瓷母线支撑电容,其特征在于,所述正母排和负母排的尺寸及设计完全一致,且整体电容总成的最小安全间距为电容本体。
  3. 根据权利要求2所述的汽车逆变器用高压陶瓷母线支撑电容,其特征在于,相邻所述高压瓷片电容的间距为2mm。
  4. 根据权利要求2所述的汽车逆变器用高压陶瓷母线支撑电容,其特征在于,所述正母排和负母排均为PCB。
  5. 根据权利要求2所述的汽车逆变器用高压陶瓷母线支撑电容,其特征在于,所述正母排为软铜排,负母排为PCB。
  6. 根据权利要求4或5所述的汽车逆变器用高压陶瓷母线支撑电容,其特征在于,所述PCB的材质为铝基板。
  7. 根据权利要求4或5所述的汽车逆变器用高压陶瓷母线支撑电容,其特征在于,所述散热流体在所述负母排上沿顺时针方向散热。
  8. 根据权利要求7所述的汽车逆变器用高压陶瓷母线支撑电容,其特征在于,所述散热流体为空气或有机硅油。
PCT/CN2022/111836 2021-12-22 2022-08-11 一种新型的汽车逆变器用高压陶瓷母线支撑电容 WO2023115985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111578213.9A CN114255996A (zh) 2021-12-22 2021-12-22 一种新型的汽车逆变器用高压陶瓷母线支撑电容
CN202111578213.9 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023115985A1 true WO2023115985A1 (zh) 2023-06-29

Family

ID=80794097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111836 WO2023115985A1 (zh) 2021-12-22 2022-08-11 一种新型的汽车逆变器用高压陶瓷母线支撑电容

Country Status (2)

Country Link
CN (1) CN114255996A (zh)
WO (1) WO2023115985A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114255996A (zh) * 2021-12-22 2022-03-29 北京国家新能源汽车技术创新中心有限公司 一种新型的汽车逆变器用高压陶瓷母线支撑电容

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209593307U (zh) * 2019-04-12 2019-11-05 东风汽车集团有限公司 新能源汽车用母线电容
CN112260608A (zh) * 2020-10-28 2021-01-22 上海大郡动力控制技术有限公司 三相交流电机驱动系统中薄膜电容
CN212990933U (zh) * 2020-07-20 2021-04-16 联合汽车电子有限公司 车用母线电容模块及逆变器
CN114255996A (zh) * 2021-12-22 2022-03-29 北京国家新能源汽车技术创新中心有限公司 一种新型的汽车逆变器用高压陶瓷母线支撑电容

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202616047U (zh) * 2012-04-26 2012-12-19 北京科佳信电容器研究所 电容器单元
CN209216782U (zh) * 2018-11-14 2019-08-06 天津瑞能电气有限公司 具有散热机构的电容装置
US10765042B1 (en) * 2019-02-22 2020-09-01 Ford Global Technologies, Llc Integrated power module and capacitor module thermal and packaging design
CN210516484U (zh) * 2019-09-17 2020-05-12 浙江宏发五峰电容器有限公司 一种新型的电容器母排结构及汽车电容器
CN111130361B (zh) * 2020-01-10 2021-01-08 全球能源互联网研究院有限公司 基于碳化硅器件中点箝位型三电平单相桥臂的叠层母排
CN111640576A (zh) * 2020-07-02 2020-09-08 深圳市汇北川电子技术有限公司 一种耐大纹波电流的直流支撑薄膜电容器
CN113314345A (zh) * 2021-04-08 2021-08-27 深圳市奕通功率电子有限公司 一种新型电极电容及功率模组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209593307U (zh) * 2019-04-12 2019-11-05 东风汽车集团有限公司 新能源汽车用母线电容
CN212990933U (zh) * 2020-07-20 2021-04-16 联合汽车电子有限公司 车用母线电容模块及逆变器
CN112260608A (zh) * 2020-10-28 2021-01-22 上海大郡动力控制技术有限公司 三相交流电机驱动系统中薄膜电容
CN114255996A (zh) * 2021-12-22 2022-03-29 北京国家新能源汽车技术创新中心有限公司 一种新型的汽车逆变器用高压陶瓷母线支撑电容

Also Published As

Publication number Publication date
CN114255996A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
US9019731B2 (en) High-power medium-voltage drive power cell having power elements disposed on both sides of base plate
EP3451520B1 (en) Component structure, power module and power module assembly structure
US20110221268A1 (en) Power Converter and In-Car Electrical System
US8547698B2 (en) Cooling structure of capacitor and inverter device
CN102664177B (zh) 一种双面冷却的功率半导体模块
US20190067151A1 (en) Three-dimensional packaging structure and packaging method of power devices
CN101510727B (zh) 带有到基片的直接dc连接件的电容器
US20100195301A1 (en) Layered Structure Connection and Assembly
JP2013222950A (ja) パワー半導体モジュール
WO2023115985A1 (zh) 一种新型的汽车逆变器用高压陶瓷母线支撑电容
US20190245433A1 (en) Water-cooling power supply module
JP6326038B2 (ja) 電気回路装置
WO2022222461A1 (zh) 一种分立器件及功率模组封装
CN108461616B (zh) 一种大功率led用热电分离散热结构的封装方法
JP5803684B2 (ja) 電力変換装置
CN209472561U (zh) 叠层铜排及三相大功率逆变器
WO2024048066A1 (ja) 電力変換装置
CN212305749U (zh) 一种led双层电路板模组
CN219999671U (zh) 一种金属基板结构
CN220711877U (zh) 一种igbt制氢电源单元结构
CN214756105U (zh) 逆变器模块及逆变器
WO2022102412A1 (ja) 電力変換装置
CN215871952U (zh) 电机驱动器模组及其pcb板
CN219591680U (zh) 一种新型电动车控制器结构
CN203554796U (zh) 一种基于pcb安装的igbt功率模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022909314

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022909314

Country of ref document: EP

Effective date: 20240325