WO2023115787A1 - 一种太阳能电池的窗口层、太阳能电池及其制备方法 - Google Patents
一种太阳能电池的窗口层、太阳能电池及其制备方法 Download PDFInfo
- Publication number
- WO2023115787A1 WO2023115787A1 PCT/CN2022/092267 CN2022092267W WO2023115787A1 WO 2023115787 A1 WO2023115787 A1 WO 2023115787A1 CN 2022092267 W CN2022092267 W CN 2022092267W WO 2023115787 A1 WO2023115787 A1 WO 2023115787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- layer
- window layer
- type
- substrate
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 95
- 239000010408 film Substances 0.000 claims description 91
- 239000000758 substrate Substances 0.000 claims description 75
- 150000003376 silicon Chemical class 0.000 claims description 64
- 239000007789 gas Substances 0.000 claims description 56
- 238000002161 passivation Methods 0.000 claims description 32
- 239000010409 thin film Substances 0.000 claims description 30
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 26
- 238000004050 hot filament vapor deposition Methods 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 24
- 239000010703 silicon Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 12
- 239000002243 precursor Substances 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 abstract description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000002425 crystallisation Methods 0.000 abstract description 4
- 230000008025 crystallization Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000011159 matrix material Substances 0.000 description 18
- 238000000151 deposition Methods 0.000 description 12
- 230000009286 beneficial effect Effects 0.000 description 11
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 229910021423 nanocrystalline silicon Inorganic materials 0.000 description 7
- 125000004430 oxygen atom Chemical group O* 0.000 description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000010494 dissociation reaction Methods 0.000 description 4
- 230000005593 dissociations Effects 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910008045 Si-Si Inorganic materials 0.000 description 2
- 229910004012 SiCx Inorganic materials 0.000 description 2
- 229910006411 Si—Si Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- NCZAACDHEJVCBX-UHFFFAOYSA-N [Si]=O.[C] Chemical class [Si]=O.[C] NCZAACDHEJVCBX-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0745—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0745—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
- H01L31/0747—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
- H01L31/1812—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to the technical field of solar cell manufacturing, in particular to a window layer of a solar cell, a solar cell and a preparation method thereof.
- nanocrystalline silicon has been widely used in solar cells due to its excellent optoelectronic properties, such as high conductivity, adjustable optical band gap, and good stability.
- the hydrogenated nanocrystalline silicon film formed by doping O atoms or C atoms in various nanocrystalline silicon films is a promising material for building the window layer of solar cells.
- silicon heterojunction solar cells mainly prepare phosphorus-doped N-type nc-SiO x :H thin films as window layers by introducing SiH 4 , H 2 , CO 2 , and PH 3 into the process chamber. Since the SiO x matrix has The higher barrier height makes the nc-SiO x :H film have higher resistivity, which is not conducive to the collection of carriers in solar cells and has poor conductivity. The nc-SiC x :H thin film is used as the window layer.
- the SiC x matrix Compared with the SiO x matrix, the SiC x matrix has higher carrier mobility, but the length and polarity of the Si-Si bonds in the SiC x matrix are lower, so that The phase separation and accumulation of nanocrystalline silicon in the SiCx matrix is difficult, and the crystallinity is not good.
- the object of the present invention is to provide a window layer of a solar cell, a solar cell and a preparation method thereof, so as to improve the conductivity and crystallization stability of the film.
- the present invention provides a window layer of a solar cell, the window layer is an N-type hydrogenated silicon oxycarbide film, and the chemical formula of the N-type hydrogenated silicon oxycarbide film is nc-SiO x Cy :H, which is in a nanocrystalline state , wherein the non-stoichiometric ratio x ranges from 0.1 to 0.5, and the non-stoichiometric ratio y ranges from 0.25 to 1.
- the window layer of the solar cell is a nanocrystalline N-type hydrogenated silicon oxycarbide film formed by doping oxygen atoms and carbon atoms in the nanocrystalline silicon film at the same time, and the nanocrystalline N-type hydrogenated carbon Silicon oxide film combines the advantages of SiO x matrix and SiC y matrix, among which SiO x matrix can achieve the best thermodynamic phase separation and has high amorphous phase stability at high temperature; SiC y matrix has higher current carrying capacity ion mobility and high conductivity. Therefore, the nanocrystalline N-type hydrogenated silicon oxycarbide film has better crystallinity and conductivity, and at the same time has a wide optical band gap, which can better improve the photoelectric conversion efficiency as a window layer of a solar cell.
- the present invention also provides a method for preparing a window layer of a solar cell, comprising:
- N-type hydrogenated silicon oxycarbide film is deposited on the first surface of the substrate by means of hot wire chemical vapor deposition (HWCVD), and the N-type hydrogenated silicon oxycarbide film forms the above-mentioned window layer.
- HWCVD hot wire chemical vapor deposition
- an N-type hydrogenated silicon oxycarbide film is deposited on the first surface of the substrate by a hot wire chemical vapor deposition method to form a window layer of a solar cell.
- the hot wire chemical vapor deposition method uses a hot wire high-temperature catalytic process, Make the gas form free radicals to form a film on the substrate.
- PECVD plasma-enhanced chemical vapor deposition
- the hot wire chemical vapor deposition method will not cause damage to the substrate during the coating process; and the hot wire chemical vapor deposition method has a high dissociation efficiency for the process gas, and can easily dissociate the gas containing carbon atoms.
- the N-type hydrogenated silicon oxycarbide film has a high crystallization rate, does not require a large amount of H 2 , and has a low cost; the process of the hot wire chemical vapor deposition method is simple, the film doping efficiency is high, and no additional heat treatment process is required.
- the precursor gases for forming the N-type hydrogenated silicon oxycarbide film include silicon source gas, hydrogen source gas, oxygen source gas, carbon source gas and nitrogen source gas.
- the N-type hydrogenated silicon oxycarbide film can be prepared in one step through the precursor gas containing silicon atoms, hydrogen atoms, oxygen atoms, carbon atoms and nitrogen atoms, thereby obtaining high conductivity.
- the oxygen source gas includes N 2 O.
- N 2 O in the precursor gas can provide not only oxygen atoms, but also nitrogen atoms at the same time, reducing the types of gases, thereby reducing the storage cost of the gases.
- the nitrogen source gas includes N 2 .
- N 2 is used to provide nitrogen atoms and N 2 is doped, because the process chamber itself contains a small amount of N 2 , and the high temperature of the hot wire can also completely catalyze the dissociation of N 2 .
- N 2 It has the same doping effect, so the introduction of additional impurity gases is avoided, and N 2 has a wide source, non-toxic, harmless and pollution-free.
- a step is further included: forming a layer of amorphous silicon film on at least one surface of the substrate.
- Such setting is beneficial to improve the passivation effect of the substrate.
- a further step is included: using silicon source gas and hydrogen source gas to form a seed on the first surface of the substrate by hot wire chemical vapor deposition layer.
- a seed layer is first deposited on the substrate. By setting the seed layer, the nucleation points on the substrate are increased, which is beneficial to the deposition and growth of the N-type hydrogenated silicon oxycarbide film.
- the present invention also provides a method for preparing a solar cell, including the method for preparing a window layer according to any one of the above.
- the preparation method of the solar cell adopts the preparation method of the window layer in the present application, it has the same beneficial effect as the preparation method of the thin film, and will not be repeated here.
- the substrate is N-type, and further includes the steps of:
- a transparent conductive layer is formed on the surfaces of both the N-type hydrogenated silicon oxycarbide film and the P-type emitter layer;
- Metal electrodes are formed on the surfaces of the transparent conductive layer located on the first surface and the second surface.
- the N-type hydrogenated silicon oxycarbide film is used as the window layer of the solar cell, which has high conductivity and wide optical band gap, and improves the performance of the solar cell.
- the present invention also provides a solar cell, comprising:
- the N-type hydrogenated silicon oxycarbide film formed on the first surface of the substrate is used as the window layer, and the N-type hydrogenated silicon oxycarbide film is the above-mentioned film.
- the N-type hydrogenated silicon oxycarbide film of the solar cell adopts the nanocrystalline hydrogenated silicon oxycarbide film in the present application as the window layer of the solar cell, it has the same properties as the hydrogenated silicon oxycarbide film. The beneficial effects will not be repeated here.
- the above solar cell it also includes:
- a p-type emitter layer formed on the second surface of the substrate
- Metal electrodes formed on the transparent conductive layer are formed on the transparent conductive layer.
- the solar cell is a silicon heterojunction cell.
- the above solar cell there is a passivation layer between the first surface of the substrate and the N-type hydrogenated silicon oxycarbide film, and/or there is a passivation layer between the second surface of the substrate and the P-type emitter layer. passivation layer.
- the generation of interface defects of the substrate is reduced through the passivation layer, thereby reducing the recombination of carriers caused by the defects, and improving the photoelectric conversion efficiency.
- the passivation layer is an intrinsic amorphous silicon layer. Such setting is beneficial to improve the passivation effect of the substrate.
- Fig. 1 is a schematic structural diagram of a solar cell provided by an embodiment of the present invention.
- Fig. 2 is a schematic flow chart of a method for preparing a thin film of a solar cell provided by an embodiment of the present invention
- FIG. 3 is a schematic flowchart of step S200 of a method for preparing a thin film of a solar cell provided by an embodiment of the present invention
- Fig. 4 is a schematic flow chart of another method for preparing a thin film of a solar cell provided by an embodiment of the present invention.
- FIG. 5 is a schematic flowchart of a method for preparing a solar cell provided by an embodiment of the present invention.
- first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
- plurality means two or more, unless otherwise specifically defined. "Several” means one or more than one, unless otherwise clearly and specifically defined.
- connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection.
- Connection, or integral connection can be mechanical connection or electrical connection; can be direct connection or indirect connection through an intermediary, and can be the internal communication of two elements or the interaction relationship between two elements.
- silicon heterojunction solar cells are mainly prepared by introducing SiH 4 , H 2 , CO 2 , and PH 3 into the process chamber to prepare boron-doped N-type nc-SiO x :H thin films as the window layer. Since the SiO x matrix has The higher barrier height makes the nc-SiO x :H film have higher resistivity, which is not conducive to the collection of carriers in solar cells and has poor conductivity. The nc-SiC x :H thin film is used as the window layer.
- the SiC x matrix Compared with the SiO x matrix, the SiC x matrix has higher carrier mobility, but the length and polarity of the Si-Si bonds in the SiC x matrix are lower, so that The phase separation and accumulation of nanocrystalline silicon in the SiCx matrix is difficult, and the crystallinity is not good.
- the present invention provides a window layer of a solar cell, the window layer is an N-type hydrogenated silicon oxycarbide film, and the chemical formula of the N-type hydrogenated silicon oxycarbide film is nc-SiO x Cy :H, which is nanometer Crystalline state, hereinafter referred to as nc-SiO x C y :H film, wherein the non-stoichiometric ratio x ranges from 0.1 to 0.5, the non-stoichiometric ratio y ranges from 0.25 to 1, and the non-stoichiometric ratio x and y both represent The percentage of the flow rate of the gas containing the dopant element to the flow rate of the entire gas flowing into the process chamber.
- the window layer of the solar cell is an nc-SiO x C y : H film formed after doping oxygen atoms and carbon atoms into the nanocrystalline silicon film at the same time, and the nc- SiO x C y : H film is fused
- SiO x matrix can realize the best thermodynamic phase separation, and has high amorphous phase stability at high temperature; SiC y matrix has higher carrier mobility, Has high conductivity.
- the nc-SiO x C y :H thin film has better crystallinity and conductivity, and at the same time has a wide optical bandgap, as the window layer of the solar cell, the window layer refers to the place where the solar cell passes light first, due to the nc- SiO x C y : H thin film has good electrical conductivity and wide optical band gap, which can better improve the photoelectric conversion efficiency.
- the nc-SiO x C y :H film When used as the window layer of solar cells, it can be applied to a variety of solar cells, such as silicon heterojunction cells, tunnel oxide passivated contact (TunnelOxidePassivatedContact, can be abbreviated as TOPCon) cells, stacked layer battery etc. Since the nc-SiO x C y : H thin film belongs to the thin film prepared under the low temperature process, and the silicon heterojunction solar cell also belongs to the solar cell under the low temperature process, therefore, the nc-SiO x C y : H thin film is a silicon heterojunction solar cell A better choice for the window layer.
- silicon heterojunction cells Tunnel oxide passivated contact (TunnelOxidePassivatedContact, can be abbreviated as TOPCon) cells, stacked layer battery etc. Since the nc-SiO x C y : H thin film belongs to the thin film prepared under the low temperature process, and the silicon heterojun
- nc-SiO x C y :H thin film As the window layer of other solar cells, it is necessary to consider the temperature control in the preparation process.
- a high temperature process is performed first, and then the nc-SiO x C y : H thin film is fabricated to avoid damage to the nc-SiO x C y : H thin film by high temperature.
- an embodiment of the present invention also provides a method for preparing a window layer of a solar cell, including the following steps:
- a base 10 is provided, and the base 10 is placed on a carrier; generally, the base 10 is made of a silicon substrate, and the light-incident surface of the silicon substrate has a textured structure.
- an N-type hydrogenated silicon oxycarbide thin film 20 is formed on the first surface (light incident surface) of the substrate by using a hot wire chemical vapor deposition method (Hotwire chemical vapor deposition, English abbreviation HWCVD) as a window layer.
- the window layer is The window layer described in the above embodiments is the nc-SiO x C y :H thin film.
- the N-type hydrogenated silicon oxycarbide film 20 is deposited on the first surface of the substrate 10 through the HWCVD process.
- the HWCVD process uses a hot filament high-temperature catalytic process to make the gas form free radicals to deposit and form a film on the substrate.
- the prepared N-type hydrogenated silicon oxycarbide thin film has a high crystallization rate and does not require a large amount of H 2 , the cost is very low; the process of the HWCVD method is simple, the film doping efficiency is high, and no additional heat treatment process is required.
- the precursor gases for forming the N-type hydrogenated silicon oxycarbide film 20 include silicon source gas, hydrogen source gas, oxygen source gas, carbon source gas and nitrogen source gas.
- the N-type hydrogenated silicon oxycarbide film 20 can be prepared in one step through the precursor gas containing silicon atoms, hydrogen atoms, oxygen atoms, carbon atoms and nitrogen atoms, thereby obtaining high conductivity.
- the silicon source gas can be SiH 4
- the hydrogen source gas can be SiH 4 , H 2 and/or CH 4
- the oxygen source gas can be N 2 O
- the carbon source gas can be CH 4
- the nitrogen source gas can be N 2 O and/or N 2 .
- N 2 O in the precursor gas can provide not only oxygen atoms, but also nitrogen atoms at the same time, reducing the types of gases, thereby reducing the storage cost of the gases.
- N 2 Nitrogen atoms are provided by N 2 and N 2 is doped because the process chamber itself contains a small amount of N 2 .
- the high temperature of the hot wire can also catalyze the dissociation of N 2 .
- N 2 has the same doping effect. , so the introduction of additional impurity gases is avoided, and the source of N 2 is wide, non-toxic, harmless and pollution-free.
- the N-type hydrogenated silicon oxycarbide film 20 is formed on the first surface by HWCVD deposition, which specifically includes the following steps:
- Step S201 placing the substrate 10 in the process chamber, and evacuating the process chamber;
- Step S202 introducing a precursor gas into the process chamber, where the precursor gas includes SiH 4 , H 2 , N 2 O, CH 4 and N 2 ;
- Step S203 heating with a hot wire, so that the precursor gas is HWCVD-deposited on the first surface of the substrate 10 to form an N-type hydrogenated silicon oxycarbide film 20, that is, an nc- SiOxCy :H film, and the heating time is maintained for 200s-500s.
- the process conditions are as follows: the flow rate of SiH 4 can be 10sccm ⁇ 50sccm (standard cubic centimeter per minute, the unit of volume flow rate, representing the standard cubic centimeter per minute), the flow rate of H 2 can be 300sccm ⁇ 1000sccm, and the flow rate of N 2 O can be 5sccm ⁇ 30sccm, the flow rate of CH 4 can be 5sccm ⁇ 30sccm, the flow rate of N 2 can be 10sccm ⁇ 50sccm, the process pressure can be 1pa ⁇ 10pa, the process temperature can be 200°C ⁇ 300°C, and the temperature of the hot wire can be 1600°C ⁇ 1950°C.
- the process chamber is evacuated to ensure that the process environment is not polluted and the quality of the deposited coating is improved.
- the pressure in the process chamber after vacuuming is 4.0 ⁇ 10 -4 Pa ⁇ 6.0 ⁇ 10 -6 Pa.
- the pressure of the process chamber after vacuuming can be 4.0 ⁇ 10 -4 Pa, 5.0 ⁇ 10 -6 Pa, 6.0 ⁇ 10 -6 Pa, etc., which can be selected according to the requirement of vacuum degree, and is not limited to this The pressure values listed in the examples.
- step S100 before placing the substrate 10 in the process chamber in step S100, the following steps are further included:
- Step S090 vacuumize the process chamber; specifically, the pressure of the process chamber after vacuuming is 4.0 ⁇ 10 -4 Pa ⁇ 6.0 ⁇ 10 -6 Pa.
- Step S091 putting the carrier plate for carrying the substrate 10 into the process chamber.
- step S092 SiH 4 is introduced into the process chamber, heated by a hot wire, and a layer of amorphous silicon film is chemically vapor deposited on the carrier plate and the inner wall of the process chamber by the hot wire.
- the flow rate of SiH 4 can be 100sccm-500sccm
- the process pressure can be 2pa-10pa
- the process temperature can be 200°C-300°C
- the heating wire can be 1400°C-1600°C;
- Step S093 preheating the carrier board. Specifically, the carrier plate is introduced into the HWCVD preheating chamber, kept for 3 minutes to 10 minutes, and then passed out of the HWCVD preheating chamber.
- step S100 Before the substrate 10 is put into the process chamber in step S100, a layer of amorphous silicon film is deposited on the surface of the carrier plate and the process chamber, so that the impurities on the surface of the carrier plate and the process chamber are eliminated.
- the crystalline silicon film is covered, thereby protecting the subsequent substrate 10 from being polluted during deposition, and improving the molding quality of the N-type hydrogenated silicon oxycarbide film 20 .
- the carrier is preheated first, and then the substrate 10 is placed on the carrier to heat the surface of the substrate 10 covered by the carrier to avoid subsequent uneven heating of the substrate 10 and affect the deposition effect. .
- a step is further included: forming a layer of amorphous silicon film on at least one surface of the substrate. Such setting is beneficial to improve the passivation effect of the substrate.
- a step is further included: forming a seed layer on the first surface of the substrate by using silicon source gas and hydrogen source gas by hot wire chemical vapor deposition.
- step S100 after the substrate 10 is placed in the process chamber in step S100, after the process chamber is evacuated, and before the precursor gas is introduced into the process chamber in step S200, the step of :
- Step S101 turn on the heating wire to preheat, specifically, preheat for 30s-60s.
- Step S102 inject SiH 4 and H 2 into the process chamber, and form a seed layer by hot-wire chemical vapor deposition on the first surface of the substrate 10 .
- the flow rate of SiH 4 can be 10sccm-50sccm
- the flow rate of H 2 can be 300sccm-1000sccm
- the process pressure can be 1pa-10pa
- the process temperature can be 200°C-300°C
- the temperature of the filament can be 1600°C-1950°C.
- a seed layer is first deposited on the substrate 10 to form a seed layer.
- the seed layer is microcrystalline and has more nucleation points, which is beneficial to the deposition and growth of the subsequent nanocrystalline N-type hydrogenated silicon oxycarbide film 20 .
- an embodiment of the present invention also provides a method for preparing a solar cell, including the method for preparing a window layer as described in any of the above embodiments. That is, when preparing the window layer of the solar cell, the N-type nc-SiO x C y :H thin film described in any of the above embodiments is used as the preparation method of the window layer.
- the preparation method of the solar cell adopts the preparation method of the window layer in the present application, it has the same beneficial effect as that of the preparation method of the window layer, and will not be repeated here.
- the substrate is an N-type substrate, specifically an N-type silicon substrate.
- the hot wire is used to heat the precursor gas on the substrate 10. After forming the N-type hydrogenated silicon oxycarbide film 20 on the first surface by hot wire chemical vapor deposition, further steps are included:
- step S300 a P-type emitter layer 50 is formed on the side of the second surface (backlight surface) of the substrate 10 .
- step S400 a transparent conductive layer is formed on both the surface of the N-type hydrogenated silicon oxycarbide film 20 and the surface of the P-type emitter layer 50 .
- step S500 metal electrodes are respectively formed on the surfaces of the transparent conductive layer located on the first surface and the second surface.
- Step S200 depositing and forming an N-type nc- SiOxCy :H thin film on the light-incident side of the N-type substrate 10;
- Step S300 depositing a P-type emitter layer 50 on the backlight side of the N-type substrate 10 by PECVD, and the P-type emitter layer 50 is a P-type doped layer;
- Step S400 depositing the first transparent conductive layer 30 on the N-type nc-SiO x Cy :H thin film, depositing the second transparent conductive layer 60 on the P-type emitter layer 50, the first transparent conductive layer 30 and the second
- the material of the transparent conductive layer 60 can be one of indium tin oxide (ITO), tungsten-doped indium oxide (In 2 O 3 :W, abbreviated as IWO), indium zinc oxide (IZO), and titanium-doped indium oxide (ITiO). or more, but not limited to.
- the materials of the first transparent conductive layer 30 and the second transparent conductive layer 60 can be the same or different;
- the first metal electrode 40 is formed on the first transparent conductive layer 30, and the second metal electrode 70 is formed on the second transparent conductive layer 60;
- the materials of the first metal electrode 40 and the second metal electrode 70 can be Ag, One or more of Al, Cu, W, but not limited thereto.
- the materials of the first metal electrode 40 and the second metal electrode 70 may be the same or different.
- the N-type hydrogenated silicon oxycarbide film 20 is used as the window layer of the solar cell, which has high conductivity and wide optical band gap, which improves the performance of the solar cell.
- the embodiment of the present invention also provides a solar cell, including an N-type substrate 10 and a window layer, wherein the window layer is an N-type hydrogenated silicon oxycarbide film 20, and the N-type hydrogenated silicon oxycarbide film 20 Formed on the first surface of the substrate 10, the N-type hydrogenated silicon oxycarbide film 20 is the above-mentioned film , that is, an N-type nc- SiOxCy :H film.
- the N-type hydrogenated silicon oxycarbide film 20 of the solar cell adopts the nanocrystalline hydrogenated silicon oxycarbide film in the present application, as the window layer of the solar cell, therefore, it has the same properties as the hydrogenated silicon oxycarbide film. The same beneficial effects will not be repeated here.
- the solar cell in addition to the N-type substrate 10 and the N-type hydrogenated silicon oxycarbide film 20 formed on the first surface of the substrate 10, the solar cell also includes:
- Metal electrodes formed on the transparent conductive layer are formed on the transparent conductive layer.
- the solar cell is a silicon heterojunction cell.
- the first transparent conductive layer 30 is deposited on the N-type nc-SiO x Cy :H film, and the second transparent conductive layer is deposited on the P-type emitter layer 50.
- Layer 60 The first metal electrode 40 is formed on the first transparent conductive layer 30
- the second metal electrode 70 is formed on the second transparent conductive layer 60 .
- the solar cell in addition to the N-type substrate 10 and the N-type hydrogenated silicon oxycarbide thin film 20 formed on the light-incident surface side of the substrate, the solar cell also includes:
- Metal electrodes formed on the passivation layer on the light incident surface and the backlight surface are Metal electrodes formed on the passivation layer on the light incident surface and the backlight surface.
- the solar cell is a TOPCon cell
- the passivation contact layer is a tunneling oxide layer and a doped silicon layer sequentially formed on the backlight surface of the substrate; it is deposited on an N-type nc-SiO x C y :H thin film
- a first passivation layer, and a second passivation layer is deposited on the doped silicon layer.
- a first metal electrode is formed on the first passivation layer, and a second metal electrode is formed on the second passivation layer.
- the thickness of the N-type hydrogenated silicon oxycarbide film 20 in the solar cell is 15 nm ⁇ 30 nm. Specifically, it can be 15nm, 16nm, 17nm, 20nm, 22nm, 25nm, 28nm, 30nm, etc. The thickness should not be too thin, otherwise the series resistance may be too high, thereby reducing the fill factor FF of the battery and the electrical conductivity.
- the base 10 includes an N-type single crystal silicon chip 100 and a passivation layer, wherein the surface of the N-type single crystal silicon chip 100 has a textured structure; the N-type single crystal silicon chip 100 Both the light-incident surface and the backlight surface have passivation layers, specifically, the light-incident surface is the first passivation layer 101 , and the backlight surface is the second passivation layer 102 .
- the N-type single crystal silicon wafer 100 with a textured surface has a better light trapping effect and can improve the light absorption effect.
- the generation of interface defects of the N-type single crystal silicon wafer 100 is reduced through the passivation layer, thereby reducing the recombination of carriers caused by the defects, and improving the photoelectric conversion efficiency.
- the passivation layer is an intrinsic amorphous silicon layer, which is beneficial to improve the passivation effect of the N-type single crystal silicon wafer 100, and of course other intrinsic silicon layers can also be used .
- the P-type back emitter layer 50 is a P-type amorphous silicon layer or a P-type microcrystalline silicon layer. Such an arrangement is favorable for forming the P-type back emitter layer 50 in a low-temperature environment.
- this embodiment lists a preparation process of a solar cell:
- Step 1 N-type monocrystalline silicon wafer 100 textured
- Step 2 Deposit an 8nm intrinsic amorphous silicon layer on both sides of the N-type monocrystalline silicon wafer 100 by PECVD as a passivation layer to form an N-type substrate 10;
- the third step using HWCVD to deposit an N-type nc-SiO x C y : H thin film on the light incident surface of the substrate 10 as a window layer of a silicon heterojunction cell;
- the specific steps of the third step are:
- the silicon wafer plated with N-type nc-SiO x C y :H film is sent out of the process chamber.
- the fourth step use the PECVD method to plate P-type amorphous silicon or P-type microcrystalline silicon on the backlight surface, as the P-type back emitter layer 50 of the silicon heterojunction cell;
- Step 5 Use physical vapor deposition (PVD) to plate TCO transparent conductive layers on both sides of the battery as an anti-reflection film to collect current;
- PVD physical vapor deposition
- Step 6 Print metal grid lines on the upper and lower sides of the TCO transparent conductive layer as the metal electrodes of the battery to complete the production of solar cells.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开一种太阳能电池的窗口层、太阳能电池及其制备方法。涉及太阳能电池制造领域,解决了窗口层导电性和结晶稳定性不佳的问题。太阳能电池的窗口层为N型氢化碳氧化硅薄膜,N型氢化碳氧化硅薄膜的化学式为nc-SiOxCy:H,其为纳米晶态,其中,非化学计量比x的范围为0.1~0.5,非化学计量比y的范围为0.25~1。该纳米晶态的N型氢化碳氧化硅薄膜具有更好的结晶度和导电性,同时具有宽的光学带隙。该太阳能电池的窗口层能够提高光电转换效率。太阳能电池的窗口层制备方法用于制备该窗口层,太阳能电池的制备方法用于制备太阳能电池。
Description
相关申请的交叉引用
本公开要求在2021年12月24日提交中国专利局、申请号为202111598245.5、名称为“一种太阳能电池的窗口层、太阳能电池及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本发明涉及太阳能电池制造技术领域,尤其涉及一种太阳能电池的窗口层、太阳能电池及其制备方法。
在过去十几年里,纳米晶硅由于优异的光电特性,如高导电性、可调控光学带隙、良好的稳定性被广泛应用于太阳能电池。其中,在各种纳米晶硅薄膜中掺入O原子或C原子形成的氢化纳米晶硅薄膜,是构建太阳能电池的窗口层很有前景的材料。
目前硅异质结太阳能电池主要通过在工艺腔内通入SiH
4、H
2、CO
2、PH
3来制备磷掺杂的N型nc-SiO
x:H薄膜作为窗口层,由于SiO
x基体具有较高的势垒高度,使nc-SiO
x:H薄膜具有较高的电阻率,不利于太阳能电池中载流子的收集,导电性差。nc-SiC
x:H薄膜作为窗口层,与SiO
x基体相比,SiC
x基体虽然具有较高的载流子迁移率,但是SiC
x基体中Si-Si键的长度和极性较低,使纳米晶硅在SiC
x基体中的相分离和积累困难,结晶度不好。
发明内容
本发明的目的在于提供一种太阳能电池的窗口层、太阳能电池及其制备方法,以提高薄膜的导电性和结晶稳定性。
第一方面,本发明提供一种太阳能电池的窗口层,窗口层为N型氢化碳氧化硅薄膜,N型氢化碳氧化硅薄膜的化学式为nc-SiO
xC
y:H,其为纳米晶态,其中,非化学计量比x的范围为0.1~0.5,非化学计量比y的范围为0.25~1。
采用上述技术方案时,太阳能电池的窗口层为纳米晶硅薄膜中同时掺入 了氧原子和碳原子后形成的纳米晶态的N型氢化碳氧化硅薄膜,该纳米晶态的N型氢化碳氧化硅薄膜融合了SiO
x基体和SiC
y基体的优点,其中,SiO
x基体可以实现最佳的热力学相分离,在高温下具有高的非晶相稳定性;SiC
y基体具有较高的载流子迁移率,具有高导电性。因此,纳米晶态的N型氢化碳氧化硅薄膜具有更好的结晶度和导电性,同时具有宽的光学带隙,作为太阳能电池的窗口层能够更好地提高光电转换效率。
第二方面,本发明还提供一种太阳能电池的窗口层制备方法,包括:
提供一基底;
在基底的第一表面利用热丝化学气相沉积(HWCVD)方法沉积形成N型氢化碳氧化硅薄膜,N型氢化碳氧化硅薄膜形成上述的窗口层。
采用上述技术方案时,通过热丝化学气相沉积方法在基底的第一表面沉积形成N型氢化碳氧化硅薄膜,形成太阳能电池的窗口层,热丝化学气相沉积方法是利用热丝高温催化工艺,使气体形成自由基在基底成膜,相较于现有的通过等离子增强化学气相沉积(PECVD)方法在基底上镀膜,基底在等离子体的轰击作用下容易损伤造成缺陷,使得电池性能下降,而采用热丝化学气相沉积方法在镀膜过程中不会对基底造成损伤;且热丝化学气相沉积方法对工艺气体的解离效率较高,能够较为容易地使含碳原子的气体解离,所制备的N型氢化碳氧化硅薄膜晶化率较高,且不需要大量的H
2,成本很低;热丝化学气相沉积方法的工艺简单,薄膜掺杂效率较高,不需要额外的热处理过程。
可选地,在上述的窗口层制备方法中,形成N型氢化碳氧化硅薄膜的前驱气体包括硅源气体、氢源气体、氧源气体、碳源气体和氮源气体。如此设置,通过含硅原子、氢原子、氧原子、碳原子和氮原子的前驱气体实现一步制备N型氢化碳氧化硅薄膜,进而获得高电导率。
可选地,在上述的窗口层制备方法中,氧源气体包括N
2O。如此设置,前驱气体中通过N
2O不仅可以提供氧原子,还可以同时提供氮原子,减少气体的种类,从而降低气体的储存成本。
可选地,在上述的薄膜制备方法中,氮源气体包括N
2。
采用上述技术方案时,通过N
2提供氮原子,掺杂N
2,是由于工艺腔室中本身含有微量N
2,热丝高温同样完全可以将N
2催化解离,N
2和磷烷相比具 有同样的掺杂效果,所以避免了额外杂质气体的引入,且N
2来源广,无毒无害无污染。
可选地,在上述的窗口层制备方法中,形成N型氢化碳氧化硅薄膜之前,还包括步骤:在基底的至少一表面上形成一层非晶硅薄膜。如此设置,有利于提高基底的钝化效果。
可选地,在上述的窗口层制备方法中,形成N型氢化碳氧化硅薄膜之前,还包括步骤:利用硅源气体和氢源气体通过热丝化学气相沉积方法在基底的第一表面形成种子层。采用上述技术方案时,在制备N型氢化碳氧化硅薄膜之前,先在基底上沉积形成种子层。通过设置种子层,增加基底上的形核点,有利于沉积生长N型氢化碳氧化硅薄膜。
第三方面,本发明还提供一种太阳能电池的制备方法,包括如以上任一项的窗口层制备方法。
该太阳能电池的制备方法由于采用了本申请中的窗口层制备方法,因此,具有与薄膜制备方法相同的有益效果,在此不再赘述。
可选地,在上述的太阳能电池的制备方法中,基底为N型,且还包括步骤:
在基底的第二表面形成P型发射极层;
在N型氢化碳氧化硅薄膜和P型发射极层的表面均形成透明导电层;以及
在位于第一表面和第二表面的透明导电层的表面形成金属电极。
采用上述技术方案时,N型氢化碳氧化硅薄膜作为太阳能电池的窗口层,具有较高导电性和较宽的光学带隙,提高了太阳能电池性能。
第四方面,本发明还提供一种太阳能电池,包括:
N型的基底;以及
形成于基底的第一表面的N型氢化碳氧化硅薄膜,作为窗口层,N型氢化碳氧化硅薄膜为上述的薄膜。
采用上述技术方案时,由于太阳能电池的N型氢化碳氧化硅薄膜采用了本申请中的纳米晶态的氢化碳氧化硅薄膜,作为太阳能电池的窗口层,因此,具有与氢化碳氧化硅薄膜相同的有益效果,在此不再赘述。
可选地,在上述的太阳能电池中,还包括:
形成于基底的第二表面的P型发射极层;
分别形成于N型氢化碳氧化硅薄膜和P型发射极层上的透明导电层;以及
形成于透明导电层上的金属电极。
采用上述技术方案时,太阳能电池为硅异质结电池。
可选地,在上述的太阳能电池中,基底的第一表面与N型氢化碳氧化硅薄膜之间具有钝化层,和/或所述基底的第二表面与P型发射极层之间具有钝化层。
采用上述技术方案时,通过钝化层减少基底的界面缺陷的产生,进而减少由于缺陷导致的载流子的复合,提高光电转换效率。
可选地,在上述的太阳能电池中,钝化层为本征非晶硅层。如此设置,有利于提高基底的钝化效果。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的一种太阳能电池的结构示意图;
图2为本发明实施例提供的一种太阳能电池的薄膜制备方法的流程示意图;
图3为本发明实施例提供的一种太阳能电池的薄膜制备方法的步骤S200的流程示意图;
图4为本发明实施例提供的另一种太阳能电池的薄膜制备方法的流程示 意图;
图5为本发明实施例提供的一种太阳能电池的制备方法的流程示意图。
附图标记:10-基底、100-N型单晶硅片、101-第一钝化层、102-第二钝化层、20-N型氢化碳氧化硅薄膜、30-第一透明导电层、40-第一金属电极、50-P型背发射极层、60-第二透明导电层、70-第二金属电极。
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
目前硅异质结太阳能电池主要通过在工艺腔内通入SiH
4、H
2、CO
2、PH
3来制备硼掺杂的N型nc-SiO
x:H薄膜作为窗口层,由于SiO
x基体具有较高的 势垒高度,使nc-SiO
x:H薄膜具有较高的电阻率,不利于太阳能电池中载流子的收集,导电性差。nc-SiC
x:H薄膜作为窗口层,与SiO
x基体相比,SiC
x基体虽然具有较高的载流子迁移率,但是SiC
x基体中Si-Si键的长度和极性较低,使纳米晶硅在SiC
x基体中的相分离和积累困难,结晶度不好。
为解决上述问题,本发明提供一种太阳能电池的窗口层,该窗口层为N型氢化碳氧化硅薄膜,N型氢化碳氧化硅薄膜的化学式为nc-SiO
xC
y:H,其为纳米晶态,以下简称nc-SiO
xC
y:H薄膜,其中,非化学计量比x的范围为0.1~0.5,非化学计量比y的范围为0.25~1,非化学计量比x和y均表示含掺杂元素的气体的流量占整个通入工艺腔内的气体的流量的百分比。
采用上述技术方案时,太阳能电池的窗口层为纳米晶硅薄膜中同时掺入了氧原子和碳原子后形成的nc-SiO
xC
y:H薄膜,该nc-SiO
xC
y:H薄膜融合了SiO
x基体和SiC
y基体的优点,其中,SiO
x基体可以实现最佳的热力学相分离,在高温下具有高的非晶相稳定性;SiC
y基体具有较高的载流子迁移率,具有高导电性。因此,nc-SiO
xC
y:H薄膜具有更好的结晶度和导电性,同时具有宽的光学带隙,作为太阳能电池的窗口层,窗口层指太阳能电池首先通过光的地方,由于nc-SiO
xC
y:H薄膜具有较好的导电性和宽的光学带隙,能够更好地提高光电转换效率。
当nc-SiO
xC
y:H薄膜作为太阳能电池的窗口层时,能够适用于多种太阳能电池,如硅异质结电池、隧穿氧化钝化接触(TunnelOxidePassivatedContact,可缩写为TOPCon)电池、叠层电池等。由于nc-SiO
xC
y:H薄膜属于低温工艺下制备的薄膜,且硅异质结电池也属于低温工艺下的太阳能电池,因此,nc-SiO
xC
y:H薄膜是硅异质结电池窗口层的较佳的选择。当然,在制作nc-SiO
xC
y:H薄膜作为其他各太阳能电池的窗口层时,需要考虑制备过程中的温度控制,对于存在高温工艺的太阳能电池,如TOPCON电池,则需要在制备nc-SiO
xC
y:H薄膜窗口层之前,先进行高温工艺,再制作nc-SiO
xC
y:H薄膜,避免高温对nc-SiO
xC
y:H薄膜的破坏。
如图1和图2所示,本发明实施例还提供一种太阳能电池的窗口层制备方法,包括以下步骤:
步骤S100,提供一基底10,将基底10放置于载板;通常,基底10由硅衬底构成,硅衬底的入光面具有绒面结构。
步骤S200,在基底的第一表面(入光面)利用热丝化学气相沉积方法(Hotwire chemical vapor deposition,英文缩写HWCVD)沉积形成N型氢化碳氧化硅薄膜20,作为窗口层,该窗口层为以上实施例中所描述的窗口层,即nc-SiO
xC
y:H薄膜。
通过HWCVD工艺在基底10的第一表面沉积形成N型氢化碳氧化硅薄膜20,HWCVD工艺是利用热丝高温催化工艺,使气体形成自由基在基底沉积成膜,相较于现有的通过等离子增强化学气相沉积(Plasma enhanced chemical vapor deposition,英文缩写PECVD)在基底上镀膜,基底在等离子体的轰击作用下容易损伤造成缺陷,使得电池性能下降,而采用HWCVD工艺在镀膜过程中不会对基底造成损伤;且HWCVD对工艺气体的解离效率较高,能够较为容易地使含碳原子的气体解离,所制备的N型氢化碳氧化硅薄20膜晶化率较高,且不需要大量的H
2,成本很低;HWCVD方法的工艺简单,薄膜掺杂效率较高,不需要额外的热处理过程。
进一步地,在本实施例中,形成N型氢化碳氧化硅薄膜20的前驱气体包括硅源气体、氢源气体、氧源气体、碳源气体和氮源气体。如此设置,通过含硅原子、氢原子、氧原子、碳原子和氮原子的前驱气体实现一步制备N型氢化碳氧化硅薄膜20,进而获得高电导率。
具体地,硅源气体可以为SiH
4,氢源气体可以为SiH
4、H
2和/或CH
4,氧源气体可以为N
2O,碳源气体可以为CH
4,氮源气体可以为N
2O和/或N
2。如此设置,前驱气体中通过N
2O不仅可以提供氧原子,还可以同时提供氮原子,减少气体的种类,从而降低气体的储存成本。
通过N
2提供氮原子,掺杂N
2,是由于工艺腔室中本身含有微量N
2,热丝高温同样完全可以将N
2催化解离,N
2和磷烷相比具有同样的掺杂效果,所以避免了额外杂质气体的引入,且N
2来源广,无毒无害无污染。
如图3所示,在第一表面利用HWCVD沉积形成N型氢化碳氧化硅薄膜20,具体包括以下步骤:
步骤S201,将基底10置于工艺腔室内,对工艺腔室抽真空;
步骤S202,向工艺腔室内通入前驱气体,前驱气体包括SiH
4、H
2、N
2O、CH
4和N
2;
步骤S203,利用热丝加热,使得前驱气体在基底10的第一表面HWCVD 沉积形成N型氢化碳氧化硅薄膜20,即nc-SiO
xC
y:H薄膜,维持加热时间200S~500s。
示例性的,工艺条件如下:SiH
4流量可以10sccm~50sccm(standard cubic centimeter per minute,体积流量单位,表示标况毫升每分),H
2流量可以为300sccm~1000sccm,N
2O流量可以为5sccm~30sccm,CH
4流量可以为5sccm~30sccm,N
2流量可以为10sccm~50sccm,工艺压强可以为1pa~10pa,工艺温度可以为200℃~300℃,热丝温度可以为1600℃~1950℃。
可见,在进行HWCVD沉积之前,先将工艺腔室抽真空,保证了工艺环境不受污染,提高沉积镀膜的质量。
作为优化,工艺腔室内抽真空后的压力为4.0×10
-4pa~6.0×10
-6pa。抽真空后的压力越低越有利于工艺环境的净化以及掺杂原子的碰撞,提高成膜质量和沉积效率。
示例性的,工艺腔室抽真空后的压力可以为4.0×10
-4pa、5.0×10
-6pa、6.0×10
-6pa等,具体可以根据真空度的需要选择,并不局限于本实施例所列举的压力值。
如图4所示,在本实施例中,在步骤S100中的将基底10置于工艺腔室内之前,还包括以下步骤:
步骤S090,将工艺腔室抽真空;具体地,工艺腔室抽真空后的压力为4.0×10
-4pa~6.0×10
-6pa。
步骤S091,将用于承载基底10的载板放入工艺腔室内。
步骤S092,向工艺腔室内通入SiH
4,利用热丝加热,在载板及工艺腔室的内壁热丝化学气相沉积一层非晶硅薄膜。具体地,SiH
4流量可以为100sccm~500sccm,工艺压强可以为2pa~10pa,工艺温度可以为200℃~300℃,热丝可以为1400℃~1600℃;
步骤S093,预热载板。具体地,将载板传入HWCVD预热腔内,保持3min~10min,之后传出HWCVD预热腔。
通过上述步骤可知,在步骤S100中的将基底10放入工艺腔室之前,先将载板和工艺腔室的表面沉积一层非晶硅薄膜,使得载板和工艺腔室表面的杂质被非晶硅薄膜覆盖,从而保护后续基底10进行沉积时不被污染,提高了N型氢化碳氧化硅薄膜20的成型质量。且完成载板的镀膜后,先预热载板, 之后,将基底10放置于载板上,可以对基底10被载板覆盖的表面也进行加热,避免基底10后续受热不均,影响沉积效果。
在本实施例中,形成N型氢化碳氧化硅薄膜20之前,还包括步骤:在基底的至少一表面上形成一层非晶硅薄膜。如此设置,有利于提高基底的钝化效果。
进一步地,在本实施例中,形成N型氢化碳氧化硅薄膜20之前,还包括步骤:利用硅源气体和氢源气体通过热丝化学气相沉积方法在基底的第一表面形成种子层。
具体地,在本实施例中,在步骤S100中的将基底10置于工艺腔室内,对工艺腔室抽真空之后,且在步骤S200中的向工艺腔室内通入前驱气体之前,还包括步骤:
步骤S101,开启热丝预热,具体得,预热30s~60s。
步骤S102,向工艺腔室内通入SiH
4和H
2,在基底10的第一表面热丝化学气相沉积形成种子层。具体地,SiH
4流量可以为10sccm~50sccm,H
2流量300sccm~1000sccm,工艺压强可以为1pa~10pa,工艺温度可以为200℃~300℃,热丝温度可以为1600℃~1950℃。
由于直接在基底10的入光面沉积形成纳米晶态的N型氢化碳氧化硅薄膜20并不容易,因此,在制备N型氢化碳氧化硅薄膜20之前,先在基底10上沉积形成种子层,种子层呈微晶态,具有较多的形核点,有利于后续的纳米晶态的N型氢化碳氧化硅薄膜20的沉积生长。
如图5所示,本发明实施例还提供一种太阳能电池的制备方法,包括如以上任一实施例所描述的窗口层制备方法。即太阳能电池在制备窗口层时,采用以上任一实施例所描述的N型的nc-SiO
xC
y:H薄膜作为窗口层的制备方法。
该太阳能电池的制备方法由于采用了本申请中的窗口层制备方法,因此,具有与窗口层制备方法相同的有益效果,在此不再赘述。
如图1和图5所示,进一步地,在本实施例中,基底为N型的基底,具体为N型硅衬底,在步骤S200中的利用热丝加热,使得前驱气体在基底10的第一表面热丝化学气相沉积形成N型氢化碳氧化硅薄膜20之后,还包括步骤:
步骤S300,位于基底10的第二表面(背光面)一侧形成P型发射极层 50。
步骤S400,在N型氢化碳氧化硅薄膜20和P型发射极层50的表面均形成透明导电层。
步骤S500,在位于第一表面和第二表面的透明导电层的表面分别形成金属电极。
示例性的,以硅异质结电池为例进行说明:
步骤S200,在N型的基底10的入光面一侧沉积形成N型的nc-SiO
xC
y:H薄膜;
步骤S300,在N型的基底10的背光面一侧通过PECVD沉积P型发射极层50,P型发射极层50为P型掺杂层;
步骤S400,在N型的nc-SiO
xC
y:H薄膜上沉积第一透明导电层30,在P型发射极层50上沉积第二透明导电层60,第一透明导电层30和第二透明导电层60的材质可以为氧化铟锡(ITO)、掺钨氧化铟(In
2O
3:W,缩写为IWO)、氧化铟锌(IZO)、掺钛氧化铟(ITiO)中的一种或多种,但不仅限于此。第一透明导电层30和第二透明导电层60的材质可以相同,也可以不同;
步骤S500,在第一透明导电层30上形成第一金属电极40,在第二透明导电层60上形成第二金属电极70;第一金属电极40和第二金属电极70的材质可以为Ag、Al、Cu、W中的一种或多种,但不仅限于此。第一金属电极40和第二金属电极70的材质可以相同,也可以不同。
采用上述技术方案时,N型氢化碳氧化硅薄膜20作为太阳能电池的窗口层,具有较高导电性和较宽的光学带隙,提高了太阳能电池性能。
如图1所示,本发明实施例还提供了一种太阳能电池,包括N型的基底10和窗口层,其中,窗口层为N型氢化碳氧化硅薄膜20,N型氢化碳氧化硅薄膜20形成于基底10的第一表面,N型氢化碳氧化硅薄膜20为上述的薄膜,即N型的nc-SiO
xC
y:H薄膜。
采用上述技术方案时,由于太阳能电池的N型氢化碳氧化硅薄膜20采用了本申请中的纳米晶态的氢化碳氧化硅薄膜,作为太阳能电池的窗口层,因此,具有与氢化碳氧化硅薄膜相同的有益效果,在此不再赘述。
在一些可能的实施例中,太阳能电池除了包括N型的基底10、形成于基底10的第一表面的N型氢化碳氧化硅薄膜20外,还包括:
形成于基底10的第二表面的P型发射极层50;
分别形成于N型氢化碳氧化硅薄膜20和P背发射极层50上的透明导电层;
形成于透明导电层上的金属电极。
如此,该太阳能电池为硅异质结电池,具体地,在N型的nc-SiO
xC
y:H薄膜上沉积第一透明导电层30,在P型发射极层50上沉积第二透明导电层60。在第一透明导电层30上形成第一金属电极40,在第二透明导电层60上形成第二金属电极70。
当然,示例性的,太阳能电池除了包括N型的基底10、形成于基底的入光面一侧的N型氢化碳氧化硅薄膜20外,还包括:
形成于基底的背光面一侧的钝化接触层;
形成于N型氢化碳氧化硅薄膜和钝化接触层的表面的钝化层;
形成于入光面和背光面的钝化层上的金属电极。
如此,该太阳能电池为TOPCon电池,具体地,钝化接触层为依次形成于基底的背光面的遂穿氧化层和掺杂硅层;在N型的nc-SiO
xC
y:H薄膜上沉积第一钝化层,在掺杂硅层上沉积第二钝化层。在第一钝化层上形成第一金属电极,在第二钝化层上形成第二金属电极。
进一步地,在本实施例中,太阳能电池中的N型氢化碳氧化硅薄膜20的厚度为15nm~30nm。具体可以为15nm、16nm、17nm、20nm、22nm、25nm、28nm、30nm等。厚度不能太薄,否则可能导致串阻过高,从而使电池的填充因子FF降低,使导电性降低,厚度不能太厚,否则N型氢化碳氧化硅薄膜20吸光增多,不利于透光。
如图1所示,在本实施例中,基底10包括N型单晶硅片100和钝化层,其中,N型单晶硅片100的表面具有绒面结构;N型单晶硅片100的入光面和背光面均具有钝化层,具体地,入光面为第一钝化层101,背光面为第二钝化层102。
采用上述技术方案时,表面具有绒面结构的N型单晶硅片100具有较好的陷光效应,能够提高光线吸收效果。通过钝化层减少N型单晶硅片100的界面缺陷的产生,进而减少由于缺陷导致的载流子的复合,提高光电转换效率。
进一步地,在本实施例中,钝化层为本征非晶硅层,本征非晶硅层有利于提高N型单晶硅片100的钝化效果,当然也可以采用其他本征硅层。
进一步地,在本实施例中,P型背发射极层50为P型非晶硅层或P型微晶硅层。如此设置,有利于低温环境下形成P型背发射极层50。
如图1-图5所示,示例性的,本实施例列举了一种太阳能电池的制备过程:
第一步:N型单晶硅片100制绒;
第二步:N型单晶硅片100的双面通过PECVD方法沉积8nm的本征非晶硅层,作为钝化层,形成N型的基底10;
第三步:在基底10的入光面使用HWCVD沉积N型nc-SiO
xC
y:H薄膜,作为硅异质结电池的窗口层;
其中,第三步的具体步骤为:
a、沉积前先将工艺腔室抽真空,压力抽至5.0×10
-4pa;
b、将载板传进工艺腔室,通入流量为300sccm的SiH
4并开启热丝,热丝温度为1500℃,保持工艺腔室内的工艺温度为250℃,在载板及工艺腔室内壁先沉积一层非晶硅薄膜,用来保护后续工艺不被污染;
c、将载板传入预热腔室,保持8min,然后传出;
d、将带有双面钝化层的N型单晶硅片100放在载板上并传入工艺腔室内;
e、工艺腔室抽真空至5.0×10
-6pa;
f、开启热丝预热50s;
g、然后向工艺腔室通入流量为30sccm的SiH
4和流量为800sccm的H
2,开启热丝,热丝温度为1900℃,工艺温度为250℃,维持30s,在基底10上形成种子层,厚度大约2nm;
h、接着向工艺腔室通入流量为30sccm的SiH
4、流量为800sccm的H
2、流量为15sccm的N
2O、流量为20sccm的CH
4、流量为35sccm的N
2,开启热丝,热丝温度为1900℃,工艺温度为250℃,对带有双面钝化层的N型单晶硅片100的一面沉积N型nc-SiO
xC
y:H薄膜,维持时间300s,N型nc-SiO
xC
y:H薄膜的厚度约20nm;
i、完成后将镀好N型nc-SiO
xC
y:H薄膜的硅片传出工艺腔。
第四步:使用PECVD方法在背光面镀上P型非晶硅或P型微晶硅,作为 硅异质结电池的P型背发射极层50;
第五步:使用物理气相沉积方法(PVD)在电池两面镀上TCO透明导电层,作为减反膜,收集电流;
第六步:在上下两面的TCO透明导电层上都印刷金属栅线,作为电池的金属电极,完成太阳能电池的制作。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (13)
- 一种太阳能电池的窗口层,其特征在于,所述窗口层为N型氢化碳氧化硅薄膜,所述N型氢化碳氧化硅薄膜的化学式为nc-SiO xC y:H,其为纳米晶态,其中,非化学计量比x的范围为0.1~0.5,非化学计量比y的范围为0.25~1。
- 一种太阳能电池的窗口层制备方法,其特征在于,包括:提供一基底;在所述基底的第一表面利用热丝化学气相沉积(HWCVD)方法沉积形成N型氢化碳氧化硅薄膜,所述N型氢化碳氧化硅薄膜形成如权利要求1所述的窗口层。
- 根据权利要求2所述的窗口层制备方法,其特征在于,形成所述N型氢化碳氧化硅薄膜的前驱气体包括硅源气体、氢源气体、氧源气体、碳源气体和氮源气体。
- 根据权利要求3所述的窗口层制备方法,其特征在于,所述氧源气体包括N 2O。
- 根据权利要求3所述的窗口层制备方法,其特征在于,所述氮源气体包括N 2。
- 根据权利要求2所述的窗口层制备方法,其特征在于,形成所述N型氢化碳氧化硅薄膜之前,还包括步骤:在所述基底的至少一表面上形成一层非晶硅薄膜。
- 根据权利要求2所述的窗口层制备方法,其特征在于,形成所述N型氢化碳氧化硅薄膜之前,还包括步骤:利用硅源气体和氢源气体通过热丝化学气相沉积方法在所述基底的第一表面形成种子层。
- 一种太阳能电池的制备方法,其特征在于,包括如权利要求2-7任一项所述的窗口层制备方法。
- 根据权利要求8所述的太阳能电池的制备方法,其特征在于,所述基底为N型,且还包括步骤:在所述基底的第二表面形成P型发射极层;在所述N型氢化碳氧化硅薄膜和所述P型发射极层的表面均形成透明导电层;以及在位于所述第一表面和所述第二表面的所述透明导电层的表面形成金 属电极。
- 一种太阳能电池,其特征在于,包括:N型的基底;以及形成于所述基底的第一表面的N型氢化碳氧化硅薄膜,作为窗口层,所述窗口层为如权利要求1所述的窗口层。
- 根据权利要求10所述的太阳能电池,其特征在于,还包括:形成于所述基底的第二表面的P型发射极层;分别形成于所述N型氢化碳氧化硅薄膜和P型发射极层上的透明导电层;以及形成于所述透明导电层上的金属电极。
- 根据权利要求11所述的太阳能电池,其特征在于,所述基底的第一表面与所述N型氢化碳氧化硅薄膜之间具有钝化层,和/或,所述基底的第二表面与所述P型发射极层之间具有钝化层。
- 根据权利要求12所述的太阳能电池,其特征在于,所述钝化层为本征非晶硅层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111598245.5 | 2021-12-24 | ||
CN202111598245.5A CN116344630A (zh) | 2021-12-24 | 2021-12-24 | 一种太阳能电池的窗口层、太阳能电池及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023115787A1 true WO2023115787A1 (zh) | 2023-06-29 |
Family
ID=86879414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/092267 WO2023115787A1 (zh) | 2021-12-24 | 2022-05-11 | 一种太阳能电池的窗口层、太阳能电池及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116344630A (zh) |
WO (1) | WO2023115787A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102956756A (zh) * | 2012-11-21 | 2013-03-06 | 浙江正泰太阳能科技有限公司 | 太阳能电池的制造方法及其结构 |
JP2014175441A (ja) * | 2013-03-08 | 2014-09-22 | Kaneka Corp | 結晶シリコン系太陽電池およびその製造方法 |
US20180148833A1 (en) * | 2016-11-25 | 2018-05-31 | Applied Materials, Inc. | Methods for depositing flowable silicon containing films using hot wire chemical vapor deposition |
CN109314150A (zh) * | 2016-04-18 | 2019-02-05 | 洛桑联邦理工学院 | 太阳能光伏组件 |
CN112736151A (zh) * | 2021-01-08 | 2021-04-30 | 上海交通大学 | 基于宽带隙窗口层的背结硅异质结太阳电池 |
CN112802910A (zh) * | 2021-02-09 | 2021-05-14 | 通威太阳能(成都)有限公司 | 一种高效硅异质结太阳能电池及其制备方法 |
-
2021
- 2021-12-24 CN CN202111598245.5A patent/CN116344630A/zh active Pending
-
2022
- 2022-05-11 WO PCT/CN2022/092267 patent/WO2023115787A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102956756A (zh) * | 2012-11-21 | 2013-03-06 | 浙江正泰太阳能科技有限公司 | 太阳能电池的制造方法及其结构 |
JP2014175441A (ja) * | 2013-03-08 | 2014-09-22 | Kaneka Corp | 結晶シリコン系太陽電池およびその製造方法 |
CN109314150A (zh) * | 2016-04-18 | 2019-02-05 | 洛桑联邦理工学院 | 太阳能光伏组件 |
US20180148833A1 (en) * | 2016-11-25 | 2018-05-31 | Applied Materials, Inc. | Methods for depositing flowable silicon containing films using hot wire chemical vapor deposition |
CN112736151A (zh) * | 2021-01-08 | 2021-04-30 | 上海交通大学 | 基于宽带隙窗口层的背结硅异质结太阳电池 |
CN112802910A (zh) * | 2021-02-09 | 2021-05-14 | 通威太阳能(成都)有限公司 | 一种高效硅异质结太阳能电池及其制备方法 |
Non-Patent Citations (1)
Title |
---|
SHYAM SUKALYAN; DAS DEBAJYOTI: "Phosphorus-doped nanocrystalline silicon-oxycarbide thin films", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 876, 24 April 2021 (2021-04-24), CH , pages 1 - 11, XP086586072, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2021.160094 * |
Also Published As
Publication number | Publication date |
---|---|
CN116344630A (zh) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2021404856B2 (en) | High-efficiency silicon heterojunction solar cell and manufacturing method thereof | |
CN108963005B (zh) | 一种新型复合结构全背面异质结太阳电池及制备方法 | |
JP2010524262A (ja) | 接触抵抗の低い光電池装置を形成する方法 | |
WO2022142343A1 (zh) | 太阳能电池及其制备方法 | |
CN111509058A (zh) | 一种以非晶氧化硅薄膜为本征钝化层的异质结太阳电池 | |
WO2023155473A1 (zh) | 钝化接触电池及其制备工艺 | |
CN112002778B (zh) | 硅异质结太阳能电池及其制作方法 | |
CN114864729A (zh) | 硅基异质结太阳电池及其制备方法 | |
CN114823935B (zh) | 一种异质结电池及其制备方法 | |
CN115692545A (zh) | 一种提升PECVD路线N型TOPCon电池多晶硅活性磷掺杂浓度的方法 | |
TW202314040A (zh) | 用於製造異質結太陽能電池的方法及異質結太陽能電池 | |
WO2005078154A1 (ja) | 透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法 | |
CN113410334B (zh) | 多层薄膜钝化接触结构的制备方法及全钝化接触晶硅太阳电池 | |
CN106887483A (zh) | 硅基异质接面太阳能电池及其制备方法 | |
WO2023115787A1 (zh) | 一种太阳能电池的窗口层、太阳能电池及其制备方法 | |
CN114725239B (zh) | 一种异质结电池的制备方法 | |
TWI470812B (zh) | 異質接面太陽能電池及其電極 | |
CN115692533A (zh) | 一种TOPCon电池及其制备方法 | |
CN1407603A (zh) | 结晶硅薄膜半导体器件,光电器件及前者的制造方法 | |
CN210156405U (zh) | 具有氢退火tco导电膜的异质结电池结构 | |
CN114284374B (zh) | 钛酸锌在晶硅太阳电池中的应用 | |
CN219267664U (zh) | 一种异质结太阳能电池组件 | |
CN217606831U (zh) | 一种高效异质结太阳能电池 | |
CN118800821A (zh) | 一种含有透明导电氧化物层结构的晶硅异质结太阳能电池及其制备方法 | |
CN117253926A (zh) | 化学钝化与场效应钝化协同效应的晶硅异质结双面太阳电池及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22909123 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |