WO2023115763A1 - 防止钢液凝固的钢包控流装置 - Google Patents

防止钢液凝固的钢包控流装置 Download PDF

Info

Publication number
WO2023115763A1
WO2023115763A1 PCT/CN2022/087487 CN2022087487W WO2023115763A1 WO 2023115763 A1 WO2023115763 A1 WO 2023115763A1 CN 2022087487 W CN2022087487 W CN 2022087487W WO 2023115763 A1 WO2023115763 A1 WO 2023115763A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
molten steel
upper nozzle
heat
lower plate
Prior art date
Application number
PCT/CN2022/087487
Other languages
English (en)
French (fr)
Inventor
曹磊
韩立浩
王素平
张珊珊
刘欣爱
张绅逸
王浩宇
刘晓闻
Original Assignee
河北工业职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北工业职业技术学院 filed Critical 河北工业职业技术学院
Priority to DE112022000048.1T priority Critical patent/DE112022000048T5/de
Publication of WO2023115763A1 publication Critical patent/WO2023115763A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/24Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings characterised by a rectilinearly movable plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/28Plates therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Definitions

  • the disclosure relates to the field of steelmaking equipment, in particular to a ladle flow control device for preventing molten steel from solidifying.
  • sliding mechanisms are generally used to control the flow rate and switch of molten steel from ladle to tundish.
  • the sliding mechanism changes the relative position of the upper and lower pouring holes through the sliding of the lower plate to realize the adjustment of the molten steel flow rate and switch.
  • the self-opening rate the ladle needs to be filled with refractory refractory drainage sand into the ladle upper nozzle before filling the molten steel.
  • the drainage sand is located in the upper nozzle of the ladle between the lower plate of the ladle and the molten steel.
  • the technical problem to be solved in the present disclosure is to provide a ladle flow control device without drainage sand and capable of preventing molten steel from solidifying.
  • the ladle flow control device for preventing molten steel from solidifying comprises an upper nozzle fixed on the bottom of the ladle, a lower plate and a lower nozzle fixed on the lower plate, the upper surface of the lower plate slides on the bottom surface of the upper nozzle so that the lower nozzle can
  • the ones that move laterally are connected or staggered with the upper nozzle; it is characterized in that: the pouring hole of the upper nozzle is in the shape of a trumpet with a large upper mouth and a smaller lower mouth, and the slope angle of the pouring hole is 50°-80°; the upper nozzle
  • Both the lower plate and the lower plate have a hollow structure, and a heat-insulating cavity is formed inside, and the minimum thickness of the heat-insulating cavity is not less than 20mm.
  • a further technical solution is that: the inner wall of the pouring hole of the upper nozzle is an arc surface protruding inward.
  • the upper nozzle, the lower nozzle and the lower plate are all corundum with an alumina content greater than 90%, high alumina with an alumina content greater than 60%, and zirconium with a zirconia content greater than 60%. made of any material.
  • the refractoriness of the upper nozzle, the lower nozzle and the lower plate is ⁇ 1700°C
  • the compressive strength is ⁇ 23Mpa
  • the apparent venting porosity is ⁇ 15%
  • the bulk density is ⁇ 2500kg/m 3
  • the flexural strength is ⁇ 10Mpa.
  • a further technical solution is: the heat insulation cavity is filled with heat preservation fillers.
  • thermo insulation filler is asbestos fiber.
  • a further technical solution is: the heat insulation chamber is provided with vent holes, and the heat preservation chamber is filled with air.
  • a further technical solution is: an air-proof layer is fixed on the inner wall of the heat-insulating cavity, the inside of the heat-insulating cavity is vacuum, and an air nozzle with a control valve is arranged on the heat-insulating cavity.
  • This device completely abandons the use of traditional refractory drainage sand drainage.
  • the pouring hole of the lower plate and the pouring hole of the upper nozzle are completely staggered, and the pouring hole of the upper nozzle of the ladle is completely blocked by the lower plate, and the molten steel enters the opening of the horn
  • the molten steel in the nozzle can maintain a liquid state, which solves the problem of the solidification of the molten steel and the blockage of the ladle nozzle. , eventually leading to the problem that the molten steel cannot be poured automatically, avoiding the secondary pollution caused by the use of refractory drainage sand.
  • Fig. 1 is a structural schematic diagram of a ladle flow control device in Embodiment 1;
  • Fig. 2 is the structural representation of ladle flow control device in embodiment two;
  • Fig. 3 is the structural representation of ladle flow control device in embodiment three;
  • Fig. 4 is a structural schematic diagram of partial overlapping of the upper and lower sprues in Embodiment 3;
  • Fig. 5 is a structural schematic diagram (critical position) of upper and lower sprue staggered in embodiment three;
  • Fig. 6 is a schematic diagram of the structure in which the upper and lower sprues are completely staggered in the third embodiment
  • Fig. 7 is a schematic diagram of the size of the corundum crucible in the embodiment (unit: mm).
  • a ladle flow control device that can prevent molten steel from solidifying
  • the device includes an upper nozzle 1 fixed at the bottom of the ladle, a lower plate 3 and a lower nozzle 2 fixed on the lower plate 3, the The upper surface of the lower slide 3 and the bottom surface of the upper nozzle 1 realize a sliding fit through a concave-convex guide structure, and one end of the lower slide 3 is connected with a telescopic drive component such as an electric telescopic rod or an oil cylinder, which is used to drive the lower slide 3 along the guide.
  • the structure moves laterally and locks, so that the lower nozzle 2 can move laterally to connect with the upper nozzle 1 or cross to close, and adjust the flow rate and switch of the molten steel by adjusting the relative position of the upper nozzle 1 and the lower nozzle 2.
  • the disclosed ladle flow control device capable of preventing solidification of molten steel does not use the traditional refractory drainage sand drainage during use, and completely avoids the technical problem that the refractory drainage sand pollutes the molten steel after use.
  • the nozzle of the ladle is finally blocked, which eventually leads to the problem that the molten steel cannot be poured automatically.
  • the slope angle of the pouring hole is 50°-80°, which increases the effective contact area between the molten steel in the upper nozzle 1 and the high-temperature molten steel in the ladle, thereby increasing the heat transfer and replenishment of the high-temperature molten steel in the ladle to the molten steel in the ladle nozzle.
  • the height of the upper nozzle 1 is set according to the wall thickness of the ladle, which is the same as the conventional setting.
  • the corresponding upper nozzle 1 around the pouring hole on the upper nozzle 1 and the lower plate 3 corresponding to the bottom are all hollow structures, and a heat insulating cavity 10 is formed inside, which has the function of heat insulation and heat preservation, and reduces the external environment and the upper nozzle.
  • the heat conduction of the molten steel in 1, the minimum thickness of the heat insulation cavity 10 is not less than 20mm, so as to further prevent the solidification of the molten steel in the upper nozzle 1.
  • the side wall of the pouring hole of the upper nozzle 1 is an arc-shaped surface slightly convex inward.
  • the shape of the inner wall of the upper nozzle is designed so that the side wall of the pouring hole of the upper nozzle 1 is an arc-shaped surface slightly convex inward, and then transitions from the arc-shaped surface to the cylindrical hole, which can effectively Reduce the height of the vortex generated by the molten steel in the ladle at the end of pouring.
  • the upper nozzle 1, the lower nozzle 2 and the lower plate 3 are all made of any one of corundum, high alumina and zirconium, and preferably, the alumina content in the corundum is greater than 90%, and the high alumina
  • the content of alumina in the zirconium is greater than 60%, and the content of zirconia in the zirconium is greater than 60%, both of which are existing materials.
  • the refractoriness of the upper nozzle 1, the lower nozzle 2 and the lower plate 3 is ⁇ 1700°C, the compressive strength is ⁇ 23Mpa, the apparent vent hole 101 ratio is ⁇ 15%, the bulk density is ⁇ 2500kg/m 3 , and the flexural strength is ⁇ 10Mpa.
  • the specific examples of the heat insulation chamber 10 in the device are as follows, and different examples can be selected according to the actual residence time of the molten steel in the ladle.
  • the heat insulation cavity 10 is filled with thermal insulation fillers, the thermal insulation fillers fill the thermal insulation cavity 10 , and the thermal insulation fillers are asbestos fibers.
  • This embodiment can be used under the process condition that the residence time of molten steel in the ladle is less than or equal to 2h.
  • an air vent 101 is provided on the heat insulation cavity 10, and air is filled in the heat insulation cavity.
  • the sides of the nozzle 1 and the lower plate 3 are respectively provided with exhaust holes 101.
  • the air can be discharged from the exhaust holes 101 after being heated and expanded to ensure that the pressure in the heat insulation chamber 10 is normal pressure.
  • This embodiment can be used under the process condition that the residence time of molten steel in the ladle is 2-4h.
  • the inside of the heat insulation chamber 10 is a vacuum
  • an air nozzle 102 with a control valve is arranged on the heat insulation chamber 10
  • an air-proof layer 103 is fixed on the inner wall of the heat-insulation chamber 10
  • the thickness of the air-proof layer 103 is 2 -5mm
  • the material includes but not limited to stainless steel, high-temperature refractory paint, etc., the purpose is to prevent external air from penetrating into the vacuum chamber through the upper nozzle 1 or the surface of the lower plate 3 after vacuuming, affecting the vacuum degree.
  • This embodiment can be used under the process condition that the residence time of molten steel in the ladle is 4-10h.
  • the interlayer of the corundum crucible is filled with asbestos fibers, air and vacuumized respectively, and three kinds of heat preservation covers corresponding to the top are made at the same time (the heat preservation cover of the heat preservation cover The thermal insulation effect is lower than the replenishment of the heat of the high-temperature molten steel in the upper part of the upper nozzle 1), forming three comparison schemes.
  • the 1513 1531 4.5 the 1510 1529 5 the the 1527 5.5 the the 1525 6 the the 1522 6.5 the the 1520 7 the the 1518 7.5 the the 1517 8 the the 1516 8.5 the the 1514 9 the the 1514 9.5 the the 1513 10 the the 1513 10.5 the the 1512
  • the temperature of molten steel may be lower than the liquidus temperature after the holding time exceeds 2 hours;
  • the temperature of molten steel may be lower than the liquidus temperature after the holding time exceeds 4 hours;
  • the temperature of the molten steel may be lower than the liquidus temperature after the holding time exceeds 10 hours.
  • the lower plate 3 when a large flow rate is required, the lower plate 3 can be continuously pulled under the action of the driving part, so that the pouring hole of the lower plate 3 completely overlaps with the pouring hole of the ladle upper nozzle 1, and the molten steel can pass through the lower plate 3 for pouring The hole and the nozzle 2 are poured with molten steel.
  • the lower plate 3 When pouring is stopped, the lower plate 3 can be pushed in the opposite direction under the action of the driving part, so that the pouring hole of the lower plate 3 is completely staggered with the pouring hole of the ladle upper nozzle 1, and returns to the state shown in Figure 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

一种防止钢液凝固的钢包控流装置,包括固定于钢包底部的上水口(1)、固定于下滑板(3)上的下水口(2),下滑板(3)的上表面滑接于上水口(1)的底面,使下水口(2)能够横向移动地与上水口(1)对接贯通或交错封闭。上水口(1)的浇注孔呈上口大下口小的喇叭形,浇注孔的坡角为50°~80°;上水口(1)和下滑板(3)均呈空心结构,内部形成隔热腔(10),隔热腔(10)的厚度不小于20mm。钢液进入喇叭开口形的钢包上水口(1)内,在上水口(1)以及下滑板(3)的隔热层保温作用以及上水口(1)上部高温钢液热量的补充作用下,水口内钢液可以保持液态,解决了钢液凝固将钢包水口堵死,最终导致钢液无法自动开浇的问题,避免了耐火引流砂使用所带来的二次污染等问题。

Description

防止钢液凝固的钢包控流装置
本公开要求在2021年12月22日提交中国专利局、申请号为202111581271.7、专利申请名称为“防止钢液凝固的钢包控流装置”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及炼钢设备领域,尤其涉及一种防止钢液凝固的钢包控流装置。
背景技术
目前冶金行业内,从钢包到中间包的钢水普遍采用滑动机构来控制流速及开关。滑动机构通过下滑板的滑动改变上下两个浇注孔的相对位置来实现调节钢水流速及开关。为了提高连铸钢包自动开浇率(简称自开率),钢包在装入钢液前需要向钢包上水口内装入难熔耐火引流砂。引流砂位于钢包下滑板和钢液之间的钢包上水口内,向钢包内装入钢液后,引流砂与钢液直接接触时,能形成烧结层,精炼完成后,当打开下滑板时,钢液会在静压力作用下将引流砂冲出,使钢液顺利通过水口,进而完成后续的浇注。
很多学者和技术人员研究分析了影响钢包自动开浇率的各种因素,并获得了钢包不能自动开浇的多种机理,并采取相应的工艺措施提升钢包自开率。但是在已经公开发表的文献中,国内外学者研究的聚焦点还是基于引流砂自动开浇工艺,而很少脱离引流砂而开展相关的研究工作。然而耐火引流砂相对于钢液来说是一种外来夹杂物,一旦进入钢液将会污染钢液,成为连铸坯中见杂物的主要来源,最终影响钢铁产品质量。
对于引流砂完成引流后,如何避免其进入钢液,防止其污染钢液,目前除了采用人工接砂盘截留引流砂外没有更好的解决措施。这种方式虽然可以避免引流砂进入中间包污染钢液,但是需要人工判断引流砂何时接完,判断钢液是否流入长水口,判断难度大,控制难度大。
发明内容
本公开所要解决的技术问题是提供一种无引流砂的、可防止钢液凝固的钢包控流装置。
为解决上述技术问题,本公开所采取的技术方案是:
防止钢液凝固的钢包控流装置,包括固定于钢包底部的上水口、下滑板和固定于下滑板上的下水口,所述下滑板的上表面滑接于上水口的底面,使下水口能够横向移动的与上水口对接贯通或交错;其特征在于:所述上水口的浇注孔呈上口大下口小的喇叭形、且浇注孔的坡角为50°~80°;所述上水口和下滑板均呈空心结构,内部形成隔热腔,隔热腔的最小厚度不小于20mm。
进一步的技术方案在于:所述上水口的浇注孔的内壁呈向内凸起的弧形面。
进一步的技术方案在于:所述上水口、下水口和下滑板均为氧化铝含量大于90%的刚玉质、氧化铝含量大于60%的高铝质、二氧化锆含量大于60%的锆质中的任意一种材质制作而成。
进一步的技术方案在于:所述上水口、下水口和下滑板的耐火度≥1700℃,耐压强度≥23Mpa,显排气孔率≤15%,体积密度≥2500kg/m 3,抗折强度≥10Mpa。
进一步的技术方案在于:所述隔热腔内填充有保温填料。
进一步的技术方案在于:所述保温填料为石棉纤维。
进一步的技术方案在于:所述隔热腔上设有排气孔,于保温腔内填充有空气。
进一步的技术方案在于:所述隔热腔内壁上固定有防透气层,隔热腔内为真空,于隔热腔上设有带控制阀的气嘴。
采用上述技术方案所产生的有益效果在于:
本装置完全摒弃使用传统的耐火引流砂引流,当向钢包内装入钢液时,下滑板浇注孔与上水口浇注孔完全错开,用下滑板完全堵住钢包上水口浇注孔,钢液进入喇叭开口形的钢包上水口内,在上水口以及下滑板的隔热层保温作用以及上水口上部高温钢液热量的补充作用下,水口内钢液可以保持液态,解决了钢液凝固将钢包水口堵死,最终导致钢液无法自动开浇的问题,避免了耐火引流砂使用所带来的二次污染等问题。
附图说明
下面结合附图和具体实施方式对本公开作进一步详细的说明。
图1是实施例一中钢包控流装置的结构示意图;
图2是实施例二中钢包控流装置的结构示意图;
图3是实施例三中钢包控流装置的结构示意图;
图4是实施例三中上、下浇注口部分重叠的结构示意图;
图5是实施例三中上、下浇注口交错的结构示意图(临界位置);
图6是实施例三中上、下浇注口完全交错的结构示意图;
图7是实施例中刚玉坩埚的尺寸示意图(单位:mm)。
具体实施方式
下面结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而 不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但是本公开还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本公开内涵的情况下做类似推广,因此本公开不受下面公开的具体实施例的限制。
如图1~图6所示,一种可防止钢液凝固的钢包控流装置,装置包括固定于钢包底部的上水口1、下滑板3和固定于下滑板3上的下水口2,所述下滑板3的上表面与上水口1的底面通过凹凸配合的导向结构实现滑接配合,在下滑板3的一端连接有电动伸缩杆或油缸等可伸缩的驱动部件,用于驱动下滑板3沿导向结构横向移动并锁定,使下水口2能够横向移动的与上水口1对接贯通或交错至封闭,通过调节上水口1和下水口2的相对位置来实现调节钢水流速及开关。
本公开的可防止钢液凝固的钢包控流装置,在使用时摒弃了使用传统的耐火引流砂引流,完全避免了耐火引流砂使用后对钢液污染的技术难题。为防止钢液随时间延长而不断的凝固,最后将钢包水口堵死,最终导致钢液无法自动开浇问题,本装置中上水口1上的浇注孔呈上口大下口小的喇叭形、且浇注孔的坡角为50°~80°,增加上水口1内钢液与钢包内高温钢液的有效接触面积,从而增加钢包内高温钢液对钢包水口内钢液热量的传递与补充。上水口1的高度根据钢包的壁厚来设置,与常规设置相同。
进一步的,上水口1上的浇注孔的四周对应的上水口1、底部对应的下滑板3均呈空心结构,内部形成隔热腔10,具有隔热和保温的作用,降低外部环境与上水口1内钢液的热量传导,隔热腔10的最小厚度不小于20mm,从而进一步防止上水口1内钢液的凝固。
另外,上水口1浇注孔的侧壁呈向内微微凸起的弧形面。在钢包内钢液浇注的末期,不可避免地会产生旋涡从而导致钢液卷渣现象,进而造成钢液的污染,同时降低了钢水的收得率(卷渣后,被迫关闭滑板停止浇注),所以,产生旋涡的高度越低越有利于防止卷渣,进而提升钢水收得率。为了降低钢液浇注过程中产生旋涡的高度,将上水口内壁形状设计为上水口1浇注孔的侧壁呈向内微微凸起的弧形面,然后由弧形面过渡到圆柱孔,可以有效降低钢包内钢液在浇注末期产生旋涡的高度。上水口1、下水口2和下滑板3均为刚玉质、高铝质和锆质中的任意一种材质制作而成,其中优选的,刚玉质中的氧化铝含量大于90%、高铝质中氧化铝的含量大于60%、锆质中二氧化锆含量大于60%,均为现有的材料。
上水口1、下水口2和下滑板3的耐火度≥1700℃,耐压强度≥23Mpa,显排气孔101率≤15%,体积密度≥2500kg/m 3,抗折强度≥10Mpa。
关于本装置中隔热腔10的具体实施例如下,可以根据钢包内钢液实际停留时间的长短选择不同的实施例。
实施例一
如图1所示,隔热腔10内填充有保温填料,保温填料填满隔热腔10,保温填料为石棉纤维。该实施例可以使用在钢包内钢液停留时间≤2h的工艺条件下使用。
实施例二
如图2所示,隔热腔10上设有排气孔101,于保温腔内填充有空气,为了防止空气受热膨胀对水口或下滑板3造成压力破坏,影响下滑板3的滑动,在上水口1和下滑板3的侧面各设置有排气孔101,当上水口1内装入钢液,空气受热膨胀后,可以从排气孔101排出,保证隔热腔10内压力 为常压状态。该实施例可以使用在钢包内钢液停留时间为2-4h的工艺条件下使用。
实施例三
如图3所示,隔热腔10内为真空,在隔热腔10上设有带控制阀的气嘴102,隔热腔10内壁上固定有防透气层103,防透气层103的厚度2-5mm,材料包含但不限于不锈钢、高温耐火涂料等,目的是防止抽真空后外部空气通过上水口1或下滑板3表面渗入真空腔内,影响真空度。该实施例可以使用在钢包内钢液停留时间为4-10h的工艺条件下使用。
采用如图7所示尺寸的刚玉坩埚(其材质满足上述要求),将刚玉坩埚的夹层内分别填充石棉纤维、空气和抽真空,同时制作了顶部相对应的三种保温盖(该保温盖的保温效果,低于上水口1上部高温钢液热量的补充),形成三种对照方案。
采用高温电阻炉熔化废钢(液相线温度1513℃),将废钢熔化且加热至1550℃后,导入所制作的三种不同方案的刚玉坩埚内,同时顶部盖上相对应的保温盖。每隔半小时对刚玉坩埚内温度进行测量,结果如下:
保温时间(小时) 方案1(℃) 方案2(℃) 方案3(℃)
0.5 1540 1545 1547
1 1529 1539 1545
1.5 1521 1534 1542
2 1515 1530 1540
2.5 1511 1526 1537
3   1520 1535
3.5   1517 1534
4   1513 1531
4.5   1510 1529
5     1527
5.5     1525
6     1522
6.5     1520
7     1518
7.5     1517
8     1516
8.5     1514
9     1514
9.5     1513
10     1513
10.5     1512
在方案1(夹层内填充石棉纤维)情况下,保温时间超过2h后,钢液温度有可能低于液相线温度;
在方案2(夹层内填充空气)情况下,保温时间超过4h后,钢液温度有可能低于液相线温度;
在方案3(夹层内抽真空)情况下,保温时间超过10h后,钢液温度有可能低于液相线温度。
由此可推断出,上述三种实施例适应的工艺条件。
如图6所示,当向钢包内装入钢液时,下滑板3浇注孔与上水口1浇注孔完全错开,用下滑板3完全堵住钢包上水口1的浇注孔,钢液进入喇 叭开口形的钢包上水口1内,在上水口1以及下滑板3的隔热层保温作用以及上水口1上部高温钢液热量的补充作用下,水口内钢液可以保持液态,防止凝固。
如图5和图4所示:当钢包浇注时,在驱动部作用下拉动下滑板3,使下滑板3浇注孔与钢包上水口1浇注孔部分重叠,钢液可以穿过下滑板3浇注孔以及下水口2进行钢液浇注,通过调节上下注浇孔重叠的大小,可对钢液的流量进行调控。
如图3所示:当需要大流量浇注时,可以继续在驱动部作用下拉动下滑板3,使下滑板3浇注孔与钢包上水口1浇注孔完全重叠,钢液可以穿过下滑板3浇注孔以及下水口2进行钢液浇注。
当停止浇注时,可以在驱动部作用下反方向推动下滑板3,使下滑板3浇注孔与钢包上水口1浇注孔完全错开,恢复到图6所示状态。
以上仅是本公开的较佳实施例,任何人根据本公开的内容对本公开作出的些许的简单修改、变形及等同替换均落入本公开的保护范围。

Claims (8)

  1. 防止钢液凝固的钢包控流装置,包括固定于钢包底部的上水口、下滑板和固定于下滑板上的下水口,所述下滑板的上表面滑接于上水口的底面,使下水口能够横向移动的与上水口对接贯通或交错;其特征在于:所述上水口的浇注孔呈上口大下口小的喇叭形、且浇注孔的坡角为50°~80°;所述上水口和下滑板均呈空心结构,内部形成隔热腔,隔热腔的最小厚度不小于20mm。
  2. 根据权利要求1所述的装置,其特征在于:所述上水口的浇注孔的内壁呈向内凸起的弧形面。
  3. 根据权利要求1所述的装置,其特征在于:所述上水口、下水口和下滑板均为氧化铝含量大于90%的刚玉质、氧化铝含量大于60%的高铝质、二氧化锆含量大于60%的锆质中的任意一种材质制作而成。
  4. 根据权利要求1所述的装置,其特征在于:所述上水口、下水口和下滑板的耐火度≥1700℃,耐压强度≥23Mpa,显排气孔率≤15%,体积密度≥2500kg/m 3,抗折强度≥10Mpa。
  5. 根据权利要求1所述的装置,其特征在于:所述隔热腔内填充有保温填料。
  6. 根据权利要求5所述的装置,其特征在于:所述保温填料为石棉纤维。
  7. 根据权利要求1所述的装置,其特征在于:所述隔热腔上设有排气孔,于保温腔内填充有空气。
  8. 根据权利要求1所述的装置,其特征在于:所述隔热腔内壁上固定 有防透气层,隔热腔内为真空,于隔热腔上设有带控制阀的气嘴。
PCT/CN2022/087487 2021-12-22 2022-04-18 防止钢液凝固的钢包控流装置 WO2023115763A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022000048.1T DE112022000048T5 (de) 2021-12-22 2022-04-18 Pfannenflusssteuervorrichtung zur Verhinderung der Erstarrung von geschmolzenem Stahl

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111581271.7 2021-12-22
CN202111581271.7A CN114309570A (zh) 2021-12-22 2021-12-22 防止钢液凝固的钢包控流装置

Publications (1)

Publication Number Publication Date
WO2023115763A1 true WO2023115763A1 (zh) 2023-06-29

Family

ID=81054043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087487 WO2023115763A1 (zh) 2021-12-22 2022-04-18 防止钢液凝固的钢包控流装置

Country Status (3)

Country Link
CN (1) CN114309570A (zh)
DE (1) DE112022000048T5 (zh)
WO (1) WO2023115763A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309570A (zh) * 2021-12-22 2022-04-12 河北工业职业技术学院 防止钢液凝固的钢包控流装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2144824A1 (de) * 1970-09-11 1972-03-16 The Babcock & Wilcox Co., New York, N. Y. (V.St.A.) Verschließvorrichtung für Gießpfannen oder dergleichen für flüssiges Metall
JPH10128528A (ja) * 1996-10-31 1998-05-19 Toshiba Ceramics Co Ltd 溶融金属収納鍋のノズル孔の開孔構造
JPH10137905A (ja) * 1996-11-01 1998-05-26 Nkk Corp 鋼の連続鋳造法における鋳造開始方法
JP2008126258A (ja) * 2006-11-20 2008-06-05 Tokyo Yogyo Co Ltd 断熱スリーブを備えた溶融金属用の鋳造ノズル
CN105945274A (zh) * 2016-06-27 2016-09-21 江阴兴澄特种钢铁有限公司 连铸钢包无引流开浇装置
CN110788315A (zh) * 2019-12-09 2020-02-14 徐富裕 一种连铸钢包开浇装置
CN112808990A (zh) * 2020-12-28 2021-05-18 河北工业职业技术学院 一种钢包引流方法
CN114309570A (zh) * 2021-12-22 2022-04-12 河北工业职业技术学院 防止钢液凝固的钢包控流装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2144824A1 (de) * 1970-09-11 1972-03-16 The Babcock & Wilcox Co., New York, N. Y. (V.St.A.) Verschließvorrichtung für Gießpfannen oder dergleichen für flüssiges Metall
JPH10128528A (ja) * 1996-10-31 1998-05-19 Toshiba Ceramics Co Ltd 溶融金属収納鍋のノズル孔の開孔構造
JPH10137905A (ja) * 1996-11-01 1998-05-26 Nkk Corp 鋼の連続鋳造法における鋳造開始方法
JP2008126258A (ja) * 2006-11-20 2008-06-05 Tokyo Yogyo Co Ltd 断熱スリーブを備えた溶融金属用の鋳造ノズル
CN105945274A (zh) * 2016-06-27 2016-09-21 江阴兴澄特种钢铁有限公司 连铸钢包无引流开浇装置
CN110788315A (zh) * 2019-12-09 2020-02-14 徐富裕 一种连铸钢包开浇装置
CN112808990A (zh) * 2020-12-28 2021-05-18 河北工业职业技术学院 一种钢包引流方法
CN114309570A (zh) * 2021-12-22 2022-04-12 河北工业职业技术学院 防止钢液凝固的钢包控流装置

Also Published As

Publication number Publication date
CN114309570A (zh) 2022-04-12
DE112022000048T5 (de) 2023-11-09

Similar Documents

Publication Publication Date Title
CN108176844B (zh) 一种清理中间包上水口结瘤物的装置和方法
WO2023115763A1 (zh) 防止钢液凝固的钢包控流装置
WO2007148941A1 (en) Continuous casting machine and method using molten mold flux
CN109332625A (zh) 一种改善塞棒控流Al脱氧钢水口堵塞的浇铸方法
CN102601351A (zh) 钢锭无中间包真空浇注装置及其浇注方法
CN109304432A (zh) 一种超薄大规格含铝钢异型坯的单点非平衡保护浇铸装置及使用方法
US2734240A (en) Vacuum pouring apparatus
US4222505A (en) Actuating device for a casting tube or nozzle
CN207259533U (zh) 球化包及浇注设备
CN102179491B (zh) 一种连铸中间包盖用吹氩预制件
CN216828635U (zh) 防止钢液凝固的钢包控流装置
CN114769573B (zh) 一种塞棒及预防连铸开浇低温事故的方法
CN217223582U (zh) 一种引流砂烧结层破口装置
JPH11197796A (ja) 溶鋼の造塊装置
CN106834762B (zh) 一种镍铝金属间化合物的真空熔炼装置
CN201744661U (zh) 首饰合金粒化熔铸室
CN211248314U (zh) 连铸中间包上水口钢水封堵工具
CN113857434A (zh) 金属阻隔片浇口盆装置
CN114247876A (zh) 一种钢包加引流砂装置及加砂方法
CN103387337B (zh) 用于生产矿棉的热熔渣保温炉
CN220216693U (zh) 一种自动调节取汤口大小的保温炉
CN2187507Y (zh) 填充钢包水口的棒砖
CN201997699U (zh) 一种连铸中间包盖用吹氩预制件
CN209094533U (zh) 一种便于对永久层进行防护的钢包
RU193804U1 (ru) Вакуумный ковш для расплавленного магния

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112022000048

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909100

Country of ref document: EP

Kind code of ref document: A1