WO2023115306A1 - 拥塞控制的方法和终端设备 - Google Patents

拥塞控制的方法和终端设备 Download PDF

Info

Publication number
WO2023115306A1
WO2023115306A1 PCT/CN2021/139950 CN2021139950W WO2023115306A1 WO 2023115306 A1 WO2023115306 A1 WO 2023115306A1 CN 2021139950 W CN2021139950 W CN 2021139950W WO 2023115306 A1 WO2023115306 A1 WO 2023115306A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource block
block set
terminal device
transmission
irbs
Prior art date
Application number
PCT/CN2021/139950
Other languages
English (en)
French (fr)
Inventor
王昊
丁伊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/139950 priority Critical patent/WO2023115306A1/zh
Priority to CN202180102259.5A priority patent/CN118020334A/zh
Publication of WO2023115306A1 publication Critical patent/WO2023115306A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a congestion control method and a terminal device.
  • the terminal device measures the channel occupancy ratio (Channel Busy Ratio, CBR) and channel occupancy ratio (Channel Occupancy Ratio, CR) of the resource pool, and further conducts based on the CBR and CR of the resource pool. congestion control.
  • CBR Channel Busy Ratio
  • CR Channel occupancy ratio
  • the SL terminal When the SL system is deployed in the unlicensed spectrum, the SL terminal can access the unlicensed frequency band through the Sidelink-Unlicensed (SL-U) technology.
  • the SL-U system considers supporting large-bandwidth and high-throughput transmission scenarios.
  • the concept of resource block sets can be introduced.
  • the resource pool In the SL-U system, the resource pool needs to be configured as one or more resource block sets.
  • the sidelink transmission of the terminal device can be performed in one or more resource block sets. In this case, how to perform congestion control is an urgent problem to be solved.
  • the present application provides a congestion control method and a terminal device.
  • the terminal device can perform congestion control based on the CBR and/or CR on the target resource block set associated with sidelink transmission, which is beneficial to realize effective congestion control.
  • a congestion control method including: a terminal device performs congestion control according to a channel busy rate CBR and/or a channel occupancy rate CR on a target resource block set, wherein the target resource block set is the first The set of resource blocks where the transmission resources for side-line transmission are located.
  • a terminal device configured to execute the method in the foregoing first aspect or various implementation manners thereof.
  • the terminal device includes a functional module for executing the method in the above first aspect or its various implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or its various implementations.
  • a chip is provided for implementing the method in the above first aspect or various implementation manners thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or any of the implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a computer program product including computer program instructions, where the computer program instructions cause a computer to execute the method in the above first aspect or each implementation manner thereof.
  • a computer program which, when running on a computer, causes the computer to execute the method in the above first aspect or various implementations thereof.
  • the terminal device can measure the CBR and/or CR on the target resource block set associated with the transmission resource of the sidelink transmission to be performed, and further perform congestion control based on the CBR and/or CR on the target resource block set , which is conducive to effective congestion control.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of another communication system architecture applied in the embodiment of the present application.
  • Fig. 3 is a schematic diagram of LBT subband design according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of designing a guard band and an LBT sub-band in a cell according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a configuration manner of resource block sets and interval protection bags.
  • Fig. 6 is a schematic diagram of a comb structure with a bandwidth of 20MHz and a subcarrier spacing of 30KHz.
  • Fig. 7 is a schematic diagram of performing congestion control according to resource pools.
  • FIG. 8 is a schematic flowchart of a congestion control method provided by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of congestion control according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of congestion control according to another embodiment.
  • Fig. 11 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • Fig. 1 is a schematic diagram of a communication system to which the embodiment of the present application is applicable.
  • the transmission resources of the vehicle-mounted terminals (vehicle-mounted terminal 121 and vehicle-mounted terminal 122 ) are allocated by the base station 110 , and the vehicle-mounted terminals transmit data on the sidelink according to the resources allocated by the base station 110 .
  • the base station 110 may allocate resources for a single transmission to the terminal, or may allocate resources for semi-static transmission to the terminal.
  • Fig. 2 is a schematic diagram of another communication system to which the embodiment of the present application is applicable.
  • the vehicle-mounted terminals (vehicle-mounted terminal 131 and vehicle-mounted terminal 132 ) autonomously select transmission resources on sidelink resources for data transmission.
  • the vehicle-mounted terminal may select transmission resources randomly, or select transmission resources by listening.
  • device-to-device communication is based on a sidelink (Sidelink, SL) transmission technology based on device to device (D2D), and the communication data in the traditional cellular system is received or sent through the base station.
  • the method is different.
  • the Internet of Vehicles system adopts the method of terminal-to-terminal direct communication, so it has higher spectral efficiency and lower transmission delay.
  • Two transmission modes are defined in 3GPP, which are respectively recorded as: mode (sidelink resource allocation mode A) and second mode (sidelink resource allocation mode B).
  • Mode A The transmission resources of the terminal are allocated by the base station, and the terminal sends data on the sidelink according to the resources allocated by the base station; the base station can allocate resources for a single transmission to the terminal, and can also allocate resources for semi-static transmission to the terminal resource.
  • Mode B the terminal selects a resource from the resource pool for data transmission.
  • the vehicle-to-vehicle communication is only used as an example in FIG. 1 and FIG. 2 , and the SL technology can be applied to scenarios where various terminals directly communicate.
  • the terminal device in this application may refer to any terminal device that communicates using the SL technology.
  • the terminal device selects resources for performing SL sidewalk within the scope of the resource pool.
  • the minimum time domain granularity of resource pool configuration is one time slot, and the resource pool may include time slots that are not continuous in time.
  • the minimum frequency-domain granularity of resource pool configuration is a sub-channel (sub-channel), and a sub-channel is a plurality of continuous physical resource blocks (physical resource blocks, PRBs) in the frequency domain.
  • the frequency domain resources included in the resource pool are within the range of one SL bandwidth part (Band Width Part, BWP).
  • channel occupancy ratio Channel Busy Ratio, CBR
  • channel occupancy Ratio Channel occupancy Ratio, CR
  • the CBR measured by time slot n is defined as: within the measurement window [nc,n-1], the received signal strength indication (Received Signal Strength Indication, RSSI) measurement, the ratio of subchannels whose SL RSSI measurement results are higher than the configured threshold to the total number of subchannels in the measurement window, where c is equal to 100 or 100*2 ⁇ time slots, when the subcarrier spacing is 15KHz, 30KHz, 60KHz, 120KHz , ⁇ is 0, 1, 2, 3.
  • RSSI Received Signal Strength Indication
  • CR is: the number of sub-channels that the UE has used to send data in the range of [na,n-1] and the number of sub-channels included in the obtained sidelink authorization in the range of [n,n+b] account for [ na,nb] within the range of the total number of sub-channels belonging to the transmission resource pool, CR can be calculated for different priorities. Where a is a positive integer, b is 0 or a positive integer, and the values of a and b are determined by the UE, but the following three conditions need to be met:
  • the CBR can be measured and reported according to the configuration of the network device.
  • UE performs congestion control according to the measured CBR and CR. Specifically, when the UE independently selects resources, within a resource pool, the congestion control process will limit the transmission of the Physical Sidelink Control Channel (PSCCH)/Physical Sidelink Shared Channel (PSSCH) parameters to avoid channel congestion.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the upper layer sets a variety of CBR level configurations, each CBR level configuration includes Multiple CBR levels, and different priorities will correspond to different CBR level configurations.
  • the terminal device can determine that the CBR corresponds to the CBR level under the CBR level configuration according to the priority of the service and the measured CBR, and then further correspond to the PSSCH transmission according to the CBR level parameter.
  • the transmission parameters of the PSSCH include at least one of the following:
  • the specific role of the parameter CR Limit in congestion control is as follows: the sum of the CR corresponding to the side transmission with a priority value not lower than k is less than or equal to the CR Limit corresponding to the priority k, that is:
  • CR(i) is the CR corresponding to the priority i measured by the UE in the time slot (nN)
  • the corresponding CR Limit (k) is the PSSCH transmission parameter corresponding to the CBR obtained by the UE in the time slot (nN).
  • CR restriction n represents the PSSCH transmission time slot
  • N represents the time required for the UE to process congestion control, and has a relationship with ⁇ . How the UE performs congestion control to meet the above CR restriction is determined by the UE implementation, for example, it can be implemented by discarding some PSSCH transmissions.
  • the unlicensed spectrum is the spectrum allocated by the country and region that can be used for radio device communication.
  • This spectrum is usually considered a shared spectrum, that is, communication devices in different communication systems can be used as long as they meet the regulatory requirements set by the country or region on the spectrum.
  • the WIFI system is deployed on the unlicensed spectrum, and the LTE system and the NR system can also work on the unlicensed spectrum through the LTE-U and NR-U technologies respectively.
  • each transmission is based on a granularity of 20MHz bandwidth due to the requirements of the use of unlicensed spectrum.
  • the design of the NR system has taken into account large bandwidth and high throughput transmission, so the transmission of the NR system in the unlicensed spectrum should not be limited to transmission on a 20M bandwidth, so the NR-U system needs to support transmission of larger bandwidth , the larger bandwidth here can refer to the order of magnitude of several times of 20MHz.
  • the UE can be configured with a large-bandwidth BWP, which covers multiple 20MHz channel bandwidths. These 20MHz bandwidths are called Listen Before Talk (LBT) subbands in the early design of the NR-U system. And there is a guard band between the LBT sub-band and the LBT sub-band, as shown in FIG. 3 .
  • the role of the guard band is to prevent interference between sub-bands due to out-of-band power leakage.
  • the interference here is that UE transmits on an LBT subband, and interferes with the transmission of other UEs on the LBT subband adjacent to the LBT subband or even the transmission of other system equipment. Such interference is called inter-subband interference.
  • the first problem to be solved is the determination of the guard band and the LBT sub-band in the cell.
  • a default static value of the guard band in the cell is first considered.
  • the design idea of this guard band is to fix the center frequency point of the 20MHz bandwidth at the preset frequency point, and these frequency points are different from other
  • the central frequency points used by some systems such as Wireless Fidelity (WiFi) are very different, which is also to consider the reason why different systems coexist in a shared spectrum friendly.
  • a fixed guard band size is determined, and these guard bands are determined based on the number of resource blocks, that is, an integer number of resource blocks, as shown in FIG. 4 .
  • the LBT subbands are also collectively referred to as a resource block set (resource block set, RB set).
  • the configuration method of resource block sets and interval guard bands is as shown in Figure 5.
  • the network device first configures a carrier bandwidth on the common resource block grid (CRB) and configures one or more guard bands within the carrier bandwidth.
  • the configuration of the guard band in the cell includes the CRB position of the starting point and the length of the guard band.
  • the entire carrier bandwidth is divided into multiple resource block sets.
  • the network device configures the BWP, and then maps the resource block set to the BWP.
  • the BWP configured by the network includes an integer number of resource block sets.
  • interlaced resource block (IRB) related to the present application will be described.
  • the comb structure refers to a fixed number of M unavailable resource blocks between two consecutive available resource blocks in a comb.
  • the specific value of M is determined by the subcarrier spacing. For example, for 15KHz subcarrier spacing, M is 10; for 30KHz Subcarrier spacing, M is 5.
  • the comb ruler is used as the basic unit for resource allocation, and each comb ruler is assigned a certain comb ruler index.
  • Fig. 6 is a schematic diagram of a comb ruler with a bandwidth of 20MHz and a subcarrier spacing of 30KHz.
  • SL terminals When the SL system is deployed in the unlicensed spectrum, SL terminals can access the unlicensed frequency band through Sidelink-Unlicensed (SL-U) technology, because SL-U communication may also have large bandwidth and high throughput transmission scenarios , therefore, SL-U technology also needs to consider supporting large bandwidth transmission.
  • SL-U Sidelink-Unlicensed
  • SL-U can reuse the concept of resource block sets, that is, SL-U BWP contains an integer number of resource block sets, and the SL-U resource pool needs to be configured as one or There are multiple resource block sets, and the SL-U resource pool is included in the SL-U BWP frequency domain resource range, therefore, the resource for sidelink transmission of the SL-U terminal may be located in one or more resource block sets.
  • the measurement of SL CBR/CR is performed in the transmission resource pool. If this measurement method is reused for CBR/CR measurement, and further congestion control is performed based on the measured CBR/CR, congestion control will fail. accurate question.
  • the SL-U resource pool includes four resource block sets, and UE A only occupies one of the resource block sets when performing sidelink transmission in time slot m. Then when UE A performs CBR/CR measurement in the time slot (m-N), since the CBR measurement is a measure of the congestion degree of the entire resource pool, it may be due to the high degree of congestion of individual resource block sets in the resource pool, resulting in congestion of the entire resource pool If the degree is higher, then UE A will perform congestion control according to the measured higher CBR value, and even use the method of discarding sidelink transmissions to achieve the purpose of reducing the degree of congestion.
  • the transmission resource used by UE A is only located in one of the resource block sets, and the congestion degree of this resource block set is low. UE A does not need to adjust the congestion control, and can normally use this transmission resource for side traffic. transmission. Similarly, the opposite situation may also exist. Since the congestion level of most resource block sets is low, resulting in a low CBR value of the resource pool as a whole, UE A decides that no congestion control adjustment is needed, but UE A is used for sidelink transmission The congestion degree of the resource block set where the transmission resource is located is relatively high, and continuing to use the transmission resource will lead to more severe congestion.
  • the terminal device can measure the CBR and/or CR on the target resource block set where the transmission resource is located, and further perform congestion control based on the CBR and/or CR on the target resource block set , which is conducive to effective congestion control.
  • FIG. 8 is a schematic flowchart of a congestion control method 200 according to an embodiment of the present application. As shown in FIG. 8, the method 200 includes at least part of the following:
  • the terminal device performs congestion control according to the channel busy rate CBR and/or the channel occupancy rate CR on the target resource block set, where the target resource block set is the resource block set where the transmission resource of the first sidelink transmission is located.
  • the first side transmission may refer to the side transmission to be performed.
  • the first sidelink transmission may refer to any information exchanged between terminals, such as PSSCH, PSCCH and so on.
  • a target resource block set (resource block set, RB set) may include one or more resource block sets. That is, the transmission resources for the first sidelink transmission may be distributed in one or more resource block sets.
  • the set of target resource blocks may be continuous or discontinuous in the frequency domain.
  • the set of resource blocks may include at least one frequency domain resource.
  • the frequency domain resources may be in units of comb-teeth resource blocks (IRBs).
  • the resource block set included in the target resource block set belongs to a resource pool, or in other words, the resources in the resource block set included in the target resource block set belong to a resource pool.
  • the transmission resources of the first sidelink transmission include part or all of the resources in the target resource block set.
  • the target resource block set includes a resource block set
  • the transmission resource for the first sidelink transmission may include part or all of the resources in the resource block set.
  • the target resource block set includes multiple resource block sets.
  • the transmission resource for the first sidelink transmission includes part or all of resources in each resource block set in the plurality of resource block sets.
  • the method 200 further includes:
  • the terminal device measures the CBR and/or CR on the target resource block set.
  • the terminal device can measure the CBR and/or CR on the resource block set to which the transmission resource to be performed for sidelink transmission belongs, and further perform congestion control based on the CBR and/or CR on the resource block set, Since the congestion degree of the resource block set to which the transmission resources actually used can reflect the congestion degree of the actual execution of the sidelink transmission, congestion control based on the CBR and/or CR of the resource block set is conducive to realizing effective congestion control and ensuring The performance of the sidewalk transmission.
  • the CBR and/or CR on the target resource block set is measured at time slot m-N, where time slot m is the time slot corresponding to the first sidelink transmission, and N is the congestion control time of the terminal device.
  • the terminal device measures the CBR and/or CR on the target resource block set in time slot m-N, and performs congestion control based on the CBR and/or CR on the target resource block set in the next N time slots to ensure time The first side line transmission on slot m.
  • the congestion control time N of the terminal device is related to ⁇ , where ⁇ is related to subcarrier spacing (Subcarrier spacing, SCS).
  • is 0;
  • is 2;
  • is 3.
  • the terminal device measuring the CBR and/or CR on the target resource block set may include:
  • the terminal device measures the CBR and/or CR on each resource block set in the target resource block set.
  • the measured CBR and/or CR is at the granularity of a single resource block set.
  • CBR and/or CR are measured in units of resource block sets.
  • the terminal device may measure the CBR and/or CR on the resource block set, or, if the target resource block set includes multiple resource block sets, the terminal device may measure the CBR and/or CR on each resource block set of multiple resource block sets.
  • the terminal device measuring the CBR and/or CR on the target resource block set may include:
  • the terminal device measures the CBR and/or CR corresponding to the target resource block set.
  • the measured CBR and/or CR is at the granularity of the target resource block set.
  • the target resource block set is taken as a whole to perform CBR and/or CR measurement.
  • the method 200 further includes:
  • the terminal device determines a CBR for each resource block set in the target resource block set.
  • the terminal device determines CRs corresponding to different sidelink transmission priorities on each resource block set in the target resource block set.
  • the CBR of each resource block set and/or the CR corresponding to different sideline transmission priorities on each resource block set may be measured within the measurement window, and the specific measurement method is described in the following embodiments in detail.
  • the time slot corresponding to the first sidelink transmission is time slot m
  • the terminal device may measure the CBR of each resource block set in time slot m-N, and/or, on each resource block set CRs corresponding to different side transmission priorities, for example, CRs corresponding to side transmissions whose priority value is not lower than k.
  • N is the congestion control time of the terminal equipment
  • k is the priority value of the sidelink transmission.
  • a larger value of k indicates a lower priority of side transmission, and a smaller value of k indicates a higher priority of side transmission.
  • k may be any value of the priority of the sideline transmission, or in other words, the value of k may include any value within the range of priority values.
  • the value range of the priority of the lateral transmission is 1-8, and the value of k may include all the values of 1-8.
  • the value range of the priority may be predefined or configured by the network device.
  • This application only takes the priority value range of 1-8 as an example for illustration, but the application is not limited thereto.
  • N is determined from ⁇ , which is related to subcarrier spacing.
  • the CBR corresponding to the resource block set p in the target resource block set is denoted as CBR p
  • the CR corresponding to the side transmission with the priority value i on the resource block set p is denoted as CR p (i).
  • p may be an index of the resource block set, or, p may be the number or order of the resource block set in the target resource block set.
  • the terminal device after the terminal device obtains the CBR of each resource block set by measuring the time slot m-N, and/or, after the CR corresponding to different sidelink transmission priorities on each resource block set, the terminal device can Congestion control is performed based on the CBR of each resource block set, and/or CRs corresponding to different sidelink transmission priorities on each resource block set, and the present application does not limit the specific congestion control mode.
  • S210 includes:
  • the terminal device performs the first sidelink transmission.
  • the first condition includes: the sum of the CRs corresponding to the sidelink transmission whose priority value is not lower than k on the resource block set is less than or equal to the CR limit corresponding to the priority value k, where k is the priority value of the sidelink transmission level value. That is, the first condition (or called CR limit condition) can be expressed as: ⁇ i ⁇ k CR p (i) ⁇ CR Limit (k). Wherein, CR Limit (k) indicates the CR limit corresponding to the priority value k.
  • the value of i in the above formula may be the priority value of the sidelink transmission whose priority value is greater than or equal to k within the measurement window, where the transmission resource of the sidelink transmission is located within the measurement window.
  • the resource block set satisfies the first condition.
  • the first sidelink transmission is performed.
  • S210 includes:
  • the terminal device discards the first sidelink transmission.
  • the target resource block set includes a resource block set, and if the resource block set does not meet the above first condition after congestion control, the first sidelink transmission is discarded.
  • the target resource block set includes multiple resource block sets, if after congestion control, there is still a resource block set on the target resource block set that does not meet the first condition, then the first sideline transmission is discarded, or the The first sidelink transmission is performed on the transmission resource in the resource block set satisfying the first condition in the target resource block set.
  • the terminal device can determine the CBR level corresponding to the CBR p in the CBR level configuration according to the priority value k of the sidelink transmission and the measured CRR p , and further determine the corresponding PSSCH transmission parameters according to the CBR level,
  • the PSSCH sending parameter may include the CR restriction corresponding to the priority value k of the sidelink transmission.
  • the CBR on the resource block set may be obtained by measuring the frequency domain resources belonging to the resource block set within the measurement window.
  • the frequency domain resources in the resource block set may be in units of IRBs, therefore, the CBR on the resource block set may be determined by measuring the IRBs belonging to the resource block set within the measurement window.
  • measuring the frequency domain resource may refer to measuring the quality of a signal transmitted on the frequency domain resource.
  • the quality of the signal may be one of the following: Received Signal Strength Indication (Received Signal Strength Indication, RSSI), Reference Signal Received Power (Reference Signal Receiving Power, RSRP), Reference Signal Received Quality (Reference Signal Receiving Quality, RSRQ), Signal to Interference plus Noise Ratio (Signal to Interference plus Noise Ratio, SINR).
  • RSSI Received Signal Strength Indication
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal to Interference plus Noise Ratio
  • the target resource block set includes the first resource block set
  • the CBR corresponding to the first resource block set measured at time slot n may belong to the first resource block set within the measurement window and is measured
  • the ratio of the number of comb tooth resource block IRBs meeting the first threshold to the total number of IRBs belonging to the first resource block set in the measurement window, wherein the measurement result of the IRB is for the first resource block set in the measurement window It is obtained by measuring the transmission resource of the IRB on each time slot in the resource block set.
  • CBR p is the CBR of the resource block set p
  • IRB P is the number of IRBs belonging to the resource block set p in the measurement window and the measurement result meets the first threshold
  • IRB tx_P indicates the IRBs belonging to the resource block set p in the measurement window total.
  • the measurement result of the IRB is obtained by performing SL RSSI measurement on the transmission resource of the IRB on each time slot belonging to the resource block set p within the measurement window.
  • the first threshold is pre-configured, or configured by a network device.
  • it is configured through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • time slot n may correspond to the aforementioned time slots m-N.
  • the measurement window is [nc,n-1], where c is equal to 100 or 100*2 ⁇ time slots, and ⁇ is related to the subcarrier spacing.
  • when the subcarrier spacing is 15KHz, ⁇ is 0;
  • is 2;
  • is 3.
  • the CR on the resource block set may be obtained by measuring frequency domain resources belonging to the resource block set within the measurement window.
  • the target resource block set includes the first resource block set
  • the CR corresponding to the first resource block set measured at time slot n is the sum of the first IRB number and the second IRB number, which accounts for [n-a , the ratio of the total number of IRBs belonging to the first resource block set within the range of [n-b], wherein the first number of IRBs is the number of IRBs belonging to the first resource block set within the range of [n-a, n-1] and have been used to send data
  • the second number of IRBs is the number of IRBs that belong to the first resource block set within the range of [n,n+b] and that are included in the obtained side grant, where a is a positive integer and b is an integer.
  • CR p is the CR of resource block set p
  • IRB 1 is the first IRB number, that is, the number of IRBs belonging to the first resource block set in the range of [na,n-1] and has been used to send data
  • IRB 2 is the second IRB number, that is, the number of IRBs included in the obtained side grant that belongs to the first resource block set within the range of [n, n+b].
  • the first IRB number is the number of IRBs that belong to the first resource block set and have been used for sideline transmission in the range of [na,n-1]
  • the second IRB number is the number of IRBs in the range of [n,n+b]
  • the IRBs to be used for sidebound transmissions may be indicated by a sidebound grant.
  • IRB ty_P represents the total number of IRBs belonging to the resource block set p within the range of [na,nb].
  • the a and b meet the following conditions:
  • n+b does not exceed the time slot corresponding to the last retransmission of the first sidelink transmission indicated by the sidelink grant. That is, slot n+b is no later than the last retransmission slot of the first sidelink transmission.
  • the transmission resource of the first PSSCH is located in resource block set 2 and resource block set 3, that is, the target resource block set includes two resource block sets.
  • the transmission resources of the first PSSCH include part or all of resources in resource block set 2 and resource block set 3 .
  • the transmission resource of the first PSSCH is located in time slot m, then the terminal device measures and obtains CBR 2 and CR 2 (i) of resource block set 2 and CBR 3 and CR 3 (i) of resource block set 3 in time slot mN, wherein, i represents the priority value.
  • the terminal device uses the transmission resource of the first PSSCH to send the first PSSCH. Otherwise, do not send the first PSSCH, or cancel sending the first PSSCH, or discard the first PSSCH.
  • the method 200 further includes:
  • the terminal device determines the CBR corresponding to the target resource block set.
  • the terminal device determines CRs corresponding to different sidelink transmission priorities on the target resource block set.
  • the measurement of CBR and/or CR is performed at the granularity of the target resource block set.
  • the CBR of each resource block set and/or the CR corresponding to different sidelink transmission priorities on each resource block set may be measured within the measurement window, and the specific measurement method is described in the following embodiments in detail.
  • the time slot corresponding to the first sidelink transmission is time slot m
  • the terminal device can measure the CBR corresponding to the target resource block set in time slot m-N, and/or, the target resource block set is different
  • the corresponding CR is transmitted sideways. For example, measure the CR corresponding to the priority whose priority value is not lower than k on the target resource block set.
  • N is the congestion control time of the terminal equipment
  • k is the priority value of the sidelink transmission.
  • a larger value of k indicates a lower priority of side transmission, and a smaller value of k indicates a higher priority of side transmission.
  • k may be any value of the priority of the sideline transmission, or in other words, the value of k may include any value within the range of priority values.
  • the value range of the priority of the lateral transmission is 1-8, and the value of k may include all the values of 1-8.
  • the value range of the priority may be predefined or configured by the network device.
  • This application only takes the priority value range of 1-8 as an example for illustration, but the application is not limited thereto.
  • N is determined from ⁇ , which is related to subcarrier spacing.
  • the CBR corresponding to the target resource block set is denoted as CBR tx
  • the CR corresponding to the sideline transmission with priority value i on the target resource block set (or, the CR corresponding to the sideline transmission priority i) Denote as CR tx (i).
  • the terminal device can obtain the CBR corresponding to the target resource block set and/or the CR corresponding to different sidelink transmission priorities on the target resource block set after the measurement of the time slot m-N, the terminal device can The CBR corresponding to the block set, and/or the CR corresponding to different sidelink transmission priorities on the target resource block set perform congestion control, and this application does not limit the specific congestion control mode.
  • S210 includes:
  • the terminal device performs the first sidelink transmission.
  • the second condition includes: the sum of the CRs corresponding to the sideline transmissions whose priority value is not lower than k on the target resource block set is less than or equal to the CR limit corresponding to the priority value k, where k is the sideline transmission The priority value of the transmission.
  • the second condition (or called CR limit condition) can be expressed as: ⁇ i ⁇ k CR tx (i) ⁇ CR Limit (k).
  • CR Limit (k) indicates the CR limit corresponding to the priority value k.
  • the value of i in the above formula may be the priority value of the sidelink transmission whose priority value is greater than or equal to k within the measurement window, where the transmission resource of the sidelink transmission is located within the measurement window.
  • the target resource block set for any priority value, for example, k equals any value from 1 to 8, if the above formula is satisfied, then the target resource block set satisfies the second condition.
  • the first sidelink transmission is performed on the time slot m.
  • S210 includes:
  • the terminal device discards the first sidelink transmission.
  • the terminal device can determine the CBR level corresponding to the CBR tx in the CBR level configuration according to the priority value k of the sideline transmission and the measured CBR tx , and further determine the corresponding PSSCH transmission parameters according to the CBR level,
  • the PSSCH sending parameter may include the CR restriction corresponding to the priority value k of the sidelink transmission.
  • the CBR on the target resource block set may be obtained by measuring the frequency domain resources belonging to the target resource block set within the measurement window.
  • the frequency domain resources in the target resource block set may be in units of IRBs. Therefore, the frequency domain resources on the target resource block set may be determined by measuring the IRBs belonging to the target resource block set in the measurement window. CBR.
  • measuring the frequency domain resource may refer to measuring the quality of a signal transmitted on the frequency domain resource.
  • the quality of the signal may be one of the following: RSSI, RSRP, RSRQ, SINR.
  • RSSI measurement is taken as an example for description, but the present application is not limited thereto.
  • the CBR corresponding to the target resource block set measured at time slot n belongs to the target resource block set within the measurement window and the number of IRBs whose measurement results meet the second threshold accounts for the target resource within the measurement window The proportion of the total number of IRBs in the block set, wherein the measurement result of the IRB is obtained by measuring the transmission resource of the IRB on each time slot in the target resource block set within the measurement window.
  • CBR tx is the CBR corresponding to the target resource block set
  • IRB tx_th is the number of IRBs belonging to the target resource block set in the measurement window and the measurement result meets the second threshold
  • IRB tx indicates the number of IRBs belonging to the target resource block set in the measurement window Total number of IRBs.
  • the measurement result of the IRB is obtained by performing SL RSSI measurement on the transmission resource of the IRB on each time slot belonging to the target resource block set within the measurement window.
  • the second threshold is pre-configured, or configured by a network device. For example, it is configured through RRC signaling.
  • time slot n may correspond to the aforementioned time slots m-N.
  • the measurement window is [nc,n-1], where c is equal to 100 or 100*2 ⁇ time slots, and ⁇ is related to the subcarrier spacing.
  • when the subcarrier spacing is 15KHz, ⁇ is 0;
  • is 2;
  • is 3.
  • the CR on the target resource block set may be obtained by measuring the frequency domain resources belonging to the target resource block set within the measurement window.
  • the CR measured at time slot n is the ratio of the sum of the third IRB number and the fourth IRB number to the total number of IRBs belonging to the target resource block set within the range [n-a, n-b], where , the third number of IRBs is the number of IRBs that belong to the target resource block set and have been used to send data within the range of [n-a, n-1], and the fourth number of IRBs is [n, n+ b] The number of IRBs that belong to the target resource block set and are included in the obtained side grant, where a is a positive integer and b is an integer.
  • CR is the CR corresponding to the target resource block set
  • IRB 3 is the third IRB number, that is, the number of IRBs that belong to the target resource block set and have been used to send data within the range of [na,n-1]
  • IRB 4 is The fourth number of IRBs is the number of IRBs within the range of [n, n+b] that belong to the target resource block set and that have been included in the lateral authorization.
  • the third IRB number is the number of IRBs belonging to the target resource block set in the range of [na,n-1] and has been used for sideline transmission
  • the fourth IRB number is the number of IRBs in the range of [n,n+b] that belong to The number of IRBs in the target resource block set that will be used for sidelink transmission.
  • the IRBs to be used for sidebound transmissions may be indicated by a sidebound grant.
  • IRB ty indicates the total number of IRBs belonging to the target resource block set within the range of [na,nb].
  • the a and b meet the following conditions:
  • n+b does not exceed the time slot corresponding to the last retransmission of the first lateral transmission indicated by the lateral grant. That is, slot n+b is no later than the last retransmission slot of the first sidelink transmission.
  • the transmission resources of the second PSSCH are located in resource block set 2 and resource block set 3, that is, the target resource block set includes two resource block sets.
  • the transmission resources of the second PSSCH include part or all of resources in resource block set 2 and resource block set 3 .
  • the transmission resource of the second PSSCH is located in time slot m, and the terminal device measures CBR tx and CR tx (i) corresponding to resource block set 2 and resource block set 3 in time slot mN, where i is a priority value.
  • the terminal device uses the transmission resources of the second PSSCH to send the second PSSCH. Otherwise, do not send the second PSSCH, or cancel sending the second PSSCH, or discard the second PSSCH.
  • the terminal device can measure the CBR and/or CR on the resource block set where the transmission resource to be performed for sidelink transmission is located, and further perform congestion control based on the CBR and/or CR on the resource block set.
  • the congestion degree of the resource block set where the resource is located can reflect the congestion degree of the actual execution of the sidelink transmission.
  • Congestion control based on the CBR and/or CR of the resource block set is conducive to achieving effective congestion control and ensuring the sidelink transmission. performance.
  • Fig. 11 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes: a processing unit 410 configured to perform congestion control according to the channel busy rate CBR and/or channel occupancy rate CR on the target resource block set, wherein the target resource block set is A set of resource blocks where the transmission resource for the first side row transmission is located.
  • the transmission resources of the first sidelink transmission include part or all of the resources in the target resource block set.
  • the processing unit 410 is further configured to:
  • the CBR of each resource block set is measured in time slot m-N, and/or, the sidelink transmission whose priority value is not lower than k on each resource block set corresponds to
  • the CR is measured at time slot m-N, where the time slot m is the time slot corresponding to the first sidelink transmission, the N is the congestion control time of the terminal device, and k is the priority of the sidelink transmission value.
  • the N is determined according to ⁇ , and the ⁇ is related to subcarrier spacing.
  • the terminal device 400 further includes:
  • a communication unit configured to perform the first sideline transmission when each set of resource blocks satisfies the first condition, or,
  • the processing unit 410 is further configured to: discard the first lateral transmission when there is a resource block set that does not satisfy the first condition in the target resource block set;
  • the first condition includes: the sum of the CRs corresponding to the sidelink transmission whose priority value is not lower than k on the resource block set is less than or equal to the CR limit corresponding to the priority value k, where k is the priority value of the sidelink transmission level value.
  • the set of target resource blocks includes a first set of resource blocks, and the CBR corresponding to the first set of resource blocks measured at time slot n belongs to the first resource block within the measurement window
  • the ratio of the number of comb tooth resource block IRBs whose measurement results meet the first threshold to the total number of IRBs belonging to the first resource block set in the measurement window, where the measurement result of the IRB is in the It is obtained by measuring the transmission resource of the IRB on each time slot in the first resource block set in the measurement window.
  • the first threshold is preconfigured or configured by a network device.
  • the measurement result of the IRB is a received signal strength indicator (RSSI) measurement result.
  • RSSI received signal strength indicator
  • the measurement window is [nc,n-1], where c is equal to 100 or 100*2 ⁇ time slots, and ⁇ is related to the subcarrier spacing.
  • when the subcarrier spacing is 15KHz, ⁇ is 0;
  • is 2;
  • is 3.
  • the target resource block set includes a first resource block set
  • the CR corresponding to the first resource block set measured at time slot n is the first number of IRBs and the second number of IRBs
  • the sum accounts for the proportion of the total number of IRBs belonging to the first resource block set within the range of [n-a, n-b], wherein the first number of IRBs belongs to the first resource within the range of [n-a, n-1] Block set and the number of IRBs that have been used to send data
  • the second number of IRBs is the number of IRBs that belong to the first resource block set within the range of [n,n+b] and that are included in the obtained side grant , where a is a positive integer and b is an integer.
  • the a and b meet the following conditions:
  • n+b does not exceed the time slot corresponding to the last retransmission of the first lateral transmission indicated by the lateral grant.
  • the processing unit 410 is further configured to:
  • the CBR corresponding to the target resource block set is measured in time slot m-N, and/or, the CBR corresponding to the sidelink transmission whose priority value is not lower than k on the target resource block set CR is measured at time slot m-N, where time slot m is the time slot corresponding to the first sidelink transmission, N is the congestion control time of the terminal device, and k is the priority value of the sidelink transmission .
  • the N is determined according to ⁇ , and the ⁇ is related to subcarrier spacing.
  • the terminal device 400 further includes:
  • a communication unit configured to perform the first lateral transmission when the second condition is met, or,
  • the processing unit 410 is further configured to: discard the first lateral transmission if the second condition is not satisfied,
  • the second condition includes: the sum of the CRs corresponding to the sideline transmissions whose priority value is not lower than k on the target resource block set is less than or equal to the CR limit corresponding to the priority value k, where k is the sideline transmission The priority value of the transmission.
  • the CBR corresponding to the target resource block set measured at time slot n is the number of IRBs that belong to the target resource block set within the measurement window and whose measurement results meet the second threshold.
  • the proportion of the total number of IRBs belonging to the target resource block set in the measurement window, wherein the measurement result of the IRB is the IRB on each time slot in the target resource block set in the measurement window The transmission resources are measured.
  • the second threshold is preconfigured, or configured by a network device.
  • the measurement result of the IRB is an RSSI measurement result.
  • the measurement window is [nc,n-1], where c is equal to 100 or 100*2 ⁇ time slots, and ⁇ is related to the subcarrier spacing;
  • is 2;
  • is 3.
  • the CR measured at time slot n is the ratio of the sum of the third number of IRBs and the fourth number of IRBs to the total number of IRBs belonging to the target resource block set within the range of [n-a, n-b] , wherein, the third number of IRBs is the number of IRBs that belong to the target resource block set and have been used to send data within the range of [n-a, n-1], and the fourth number of IRBs is [n, The number of IRBs in the range of n+b] belonging to the target resource block set and included in the obtained side grant, where a is a positive integer and b is an integer.
  • the a and b meet the following conditions:
  • n+b does not exceed the time slot corresponding to the last retransmission of the first lateral transmission indicated by the lateral grant.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are to realize the For the sake of brevity, the corresponding process of the terminal device in the shown method 200 will not be repeated here.
  • the terminal device can measure the CBR and/or CR on the resource block set where the transmission resource to be performed for sidelink transmission is located, and further perform congestion control based on the CBR and/or CR on the resource block set , because the congestion degree of the resource block set where the transmission resources actually used can reflect the congestion degree of the actual execution of sidelink transmission, congestion control based on the CBR and/or CR of the resource block set is conducive to effective congestion control, The performance of this sideline transfer is guaranteed.
  • Fig. 12 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 12 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be a terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • FIG. 13 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 13 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the Let me repeat For the sake of brevity, the Let me repeat.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种拥塞控制的方法和终端设备,该方法包括:终端设备根据目标资源块集合上的信道繁忙率CBR和/或信道占用率CR,进行拥塞控制,其中,所述目标资源块集合是第一侧行传输的传输资源所在的资源块集合。

Description

拥塞控制的方法和终端设备 技术领域
本申请实施例涉及通信领域,具体涉及一种拥塞控制的方法和终端设备。
背景技术
在侧行链路(Sidelink,SL)系统中,终端设备测量资源池的信道占用比率(Channel Busy Ratio,CBR)和信道占用率(Channel occupancy Ratio,CR),进一步基于资源池的CBR和CR进行拥塞控制。
当SL系统部署在非授权频谱时,SL终端可以通过侧行非授权(Sidelink-Unlicensed,SL-U)技术接入非授权频段。SL-U系统考虑支持大带宽、大吞吐量传输场景,作为一种实现方式,可以引入资源块集合的概念,则在SL-U系统中,资源池需要配置为一个或多个资源块集合,终端设备的侧行传输可以在其中的一个或多个资源块集合中进行,此情况下,如何进行拥塞控制是一项亟需解决的问题。
发明内容
本申请提供了一种拥塞控制的方法和终端设备,终端设备可以基于与侧行传输关联的目标资源块集合上的CBR和/或CR进行拥塞控制,有利于实现有效的拥塞控制。
第一方面,提供了一种拥塞控制的方法,包括:终端设备根据目标资源块集合上的信道繁忙率CBR和/或信道占用率CR,进行拥塞控制,其中,所述目标资源块集合是第一侧行传输的传输资源所在的资源块集合。
第二方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
通过上述技术方案,终端设备可以测量待执行的侧行传输的传输资源所关联的目标资源块集合上的CBR和/或CR,进一步基于该目标资源块集合上的CBR和/或CR进行拥塞控制,有利于实现有效的拥塞控制。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请实施例应用的另一种通信系统架构的示意性图。
图3是根据本申请实施例的一种LBT子带设计示意图。
图4是根据本申请实施例的一种小区内保护带和LBT子带设计示意图。
图5是资源块集合和区间保护袋的配置方式示意图。
图6是带宽20MHz,子载波间隔30KHz的梳齿结构示意图。
图7是根据资源池进行拥塞控制的示意图。
图8是本申请实施例提供的一种拥塞控制的方法的示意性流程图。
图9是根据本申请一个实施例的拥塞控制的示意图性图。
图10是根据另一实施例的拥塞控制的示意图性图。
图11是根据本申请实施例提供的一种终端设备的示意性框图。
图12是根据本申请实施例提供的一种通信设备的示意性框图。
图13是根据本申请实施例提供的一种芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图1是本申请实施例适用的一种通信系统的示意图。车载终端(车载终端121和车载终端122)的传输资源是由基站110分配的,车载终端根据基站110分配的资源在侧行链路上进行数据的发送。具体地,基站110可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。
图2是本申请实施例适用的另一种通信系统的示意图。车载终端(车载终端131和车载终端132)在侧行链路的资源上自主选取传输资源进行数据传输。可选地,车载终端可以随机选取传输资源,或者通过侦听的方式选取传输资源。
需要说明的是,设备到设备通信是基于终端到终端(Device to Device,D2D)的一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。在3GPP定义了两种传输模式,分别记为:模式(sidelink resource allocation mode A)和第二模式(sidelink resource allocation mode B)。
模式A:终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。
模式B:终端在资源池中选取一个资源进行数据的传输。
应理解,图1和图2中仅以车对车通信为示例,SL技术可以应用于各种终端之间直接进行通信的场景。或者说,本申请中的终端设备可以指任何一种利用SL技术通信的终端设备。
在一些实施例中,终端设备在资源池范围内选择进行SL侧行的资源。
可选地,资源池配置的最小时域粒度为一个时隙,资源池内可以包含时间上不连续的时隙。
可选地,资源池配置的最小频域粒度为一个子信道(sub-channel),子信道是频域上连续的多个物理资源块(physical resource block,PRB)。资源池包含的频域资源位于一个SL带宽部分(Band Width Part,BWP)范围内。
为便于理解本申请实施例,对本申请相关的SL的信道占用比率(Channel Busy Ratio,CBR)和信道占用率(Channel occupancy Ratio,CR)进行说明。
CBR和CR是用于支持拥塞控制的两个测量量。其中,时隙n测量得到的CBR定义为:在测量窗[n-c,n-1]内针对资源池内每个时隙上每个子信道的传输资源进行SL接收的信号强度指示(Received Signal Strength Indication,RSSI)测量,SL RSSI测量结果高于配置门限的子信道占测量窗内子信道总数的比例,其中c等于100或100*2 μ个时隙,当子载波间隔为15KHz,30KHz,60KHz,120KHz时,μ为0,1,2,3。CR的定义为:UE在[n-a,n-1]范围内已经用于发送数据的子信道个数和[n,n+b]范围内已获得的侧行授权包含的子信道个数占[n-a,n-b]范围内属于发送资源池的子信道总数的比例,CR可以针对不同的优先级分别计算。其中为a正整数,b为0或者为正整数,a和b的值均由UE确定,但需要满足以下三个条件:
1)a+b+1=1000或1000*2 μ个时隙;
2)b<(a+b+1)/2;
3)n+b不超侧行授权指示的当前传输的最后一次重传对应的时隙;
对于无线资源控制(Radio Resource Control,RRC)连接状态下的UE,可以根据网络设备的配置测量和上报CBR。UE根据测量到的CBR和CR进行拥塞控制。具体的,在UE自主进行资源选择时,在一个资源池内,拥塞控制过程会限制物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)/物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)的发送参数,以避免信道拥塞。
考虑到同一优先级业务在不同信道的拥塞环境,以及不同优先级业务在同一信道的拥塞环境会对应不同的PSSCH发送参数,因此,高层设置了多种CBR等级配置,每一种CBR等级配置包括多个CBR等级,同时不同优先级会对应不同的CBR等级配置,终端设备可以根据业务的优先级和测量的CBR判定该CBR对应CBR等级配置下的CBR等级,然后进一步根据CBR等级对应到PSSCH发送参数。
在一些实施例中,PSSCH的发送参数包括以下中的至少一种:
资源池内支持的MCS范围;
子信道个数的可选范围;
PSSCH最大重传次数;
最大发送功率;
CR限制CR Limit
其中,参数CR Limit在拥塞控制中的具体作用如下:优先级取值不低于k的侧行传输对应的CR总和小于或等于优先级k对应的CR Limit,即:
i≥kCR(i)≤CR Limit(k)
其中,CR(i)为UE在时隙(n-N)测量得到的优先级i对应的CR,相应的CR Limit(k)为UE在时隙(n-N)测量得到的CBR对应的PSSCH发送参数中的CR限制,n表示PSSCH传输时隙,N表示UE处理拥塞控制所需的时间,并和μ有关系。UE如何进行拥塞控制以满足上述CR限制条件,由UE实现确定,例如,可以通过丢弃一些PSSCH传输来实现。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。例如,WIFI系统就部署在非授权频谱上,LTE系统和NR系统分别通过LTE-U和NR-U技术也可以工作于非授权频谱。
在NR-U系统中,由于非授权频谱的使用规定的要求,每次传输都是基于一个20MHz带宽的颗粒度去传输。而NR系统的设计已经考虑到大带宽和大吞吐量传输,因此NR系统在非授权频谱中的传输也不应限于在一个20M带宽上传输,所以在NR-U系统需要支持更大带宽的传输,这里的更大带宽可以指20MHz数倍的数量级。
UE可以被配置一个大带宽的BWP,该BWP覆盖了多个20MHz的信道带宽,这些20MHz带宽在NR-U系统的设计初期被称为先侦听后传输(Listen Before Talk,LBT)子带,且LBT子带和LBT子带间有保护带,如图3所示。其中保护带的作用是防止子带间的由于带外能量泄漏(out-of-band power leakage)所引起的干扰。这里的干扰是UE在一个LBT子带上传输,与和该LBT子带相邻的LBT子带上的其他UE的传输甚至于其它系统设备的传输的干扰,这样的干扰被称为子带间的干扰。
对于子带间的干扰,首先要解决的问题是小区内保护带以及LBT子带的确定。对于小区内保护带的设计,首先考虑了一个默认的静态小区内保护带数值,这个保护带的设计思路是把20MHz带宽的中心频点固定在预设定的频点上,这些频点与其他的系统例如无线保真(Wireless Fidelity,WiFi) 使用的中心频点相差甚微,这样同时也是为了考虑不同系统在一个共享频谱友善中共存的原因。然后根据子载波的间隔不同,确定了固定的保护带大小,这些保护带是基于资源块数量来确定的,即,整数个资源块,如图4。
更进一步地,LBT子带也被统一称为资源块集合(resource block set,RB set)。资源块集合和区间保护带的配置方式是,如图5,网络设备在公共资源基准(common resource block grid-CRB)上先配置一个载波带宽并且在载波带宽内配置一个或多个小区内保护带,小区内保护带的配置包括起点的CRB位置和保护带长度。当配置完成后,整个的载波带宽被分为了多个资源块集合。最后网络设备通过配置BWP,再把资源块集合映射到BWP上。其中,网络配置的BWP包括整数个资源块集合。
为便于理解本申请实施例,对本申请相关的梳尺资源块(interlaced resource block,IRB)进行说明。
梳尺结构是指一个梳齿内连续的两个可用资源块间隔固定数量的M个不可用资源块,M的具体值由子载波间隔确定,例如,对于15KHz子载波间隔,M为10;对于30KHz子载波间隔,M为5。资源分配时以梳尺为基本单位,每一个梳尺分配确定的梳尺索引。图6为带宽20MHz,子载波间隔30KHz的梳尺结构示意图。
当SL系统部署在非授权频谱时,SL终端可以通过侧行非授权(Sidelink-Unlicensed,SL-U)技术接入非授权频段,由于SL-U通信可能也存在大带宽、大吞吐量传输场景,因此,SL-U技术也需要考虑支持大带宽传输。基于NR-U大带宽传输技术设计的考虑,SL-U可以复用资源块集合的概念,即SL-U BWP中包含整数个资源块集合,SL-U资源池也相应地需要配置为一个或多个资源块集合,并且SL-U资源池包含在SL-U BWP频域资源范围内,因此,SL-U终端进行侧行传输的资源可能位于一个或多个资源块集合中。
但是,相关技术中,SL CBR/CR的测量都是在发送资源池中进行的,如果复用此测量方式进行CBR/CR测量,进一步基于测量的CBR/CR进行拥塞控制,会导致拥塞控制失准的问题。
例如,如图7所示,SL-U资源池包含了四个资源块集合,UE A在时隙m进行侧行传输时只占用其中一个资源块集合。则UE A在时隙(m-N)进行CBR/CR测量时,由于CBR测量是对整个资源池拥塞程度的衡量,可能由于资源池中个别资源块集合的拥塞程度较高,导致整个资源池的拥塞程度较高,那么,UE A将根据所测量得到的较高CBR值进行拥塞控制,甚至采用丢弃侧行传输的方式来达到降低拥塞程度的目的。但是,UE A所使用的传输资源只位于其中一个资源块集合中,并且该资源块集合的拥塞程度较低,UE A并不需要进行拥塞控制的调整,可以正常的使用该传输资源进行侧行传输。类似地,也可能存在相反的情况,由于大部分资源块集合的拥塞程度较低而导致资源池整体的CBR值较低,UE A判定无需进行拥塞控制调整,但是,UE A用于侧行传输的传输资源所在的资源块集合的拥塞程度较高,继续使用该传输资源将导致拥塞更严重。
因此,在SL-U系统中,如何进行有效的拥塞控制是一项亟需解决的问题。
有鉴于此,本申请提供了一种解决方案,终端设备可以测量传输资源所在的目标资源块集合上的CBR和/或CR,进一步基于该目标资源块集合上的CBR和/或CR进行拥塞控制,有利于实现有效的拥塞控制。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图8是根据本申请实施例的拥塞控制的方法200的示意性流程图,如图8所示,该方法200包括如下至少部分内容:
S210,终端设备根据目标资源块集合上的信道繁忙率CBR和/或信道占用率CR,进行拥塞控制,其中,所述目标资源块集合是第一侧行传输的传输资源所在的资源块集合。
应理解,本申请实施例仅以根据目标资源块集合上的CBR和/或CR进行拥塞控制为例进行说明,可替换地,也可以根据目标资源块集合上的其他拥塞指标进行拥塞控制,本申请对此不作限定。
在本申请实施例中,第一侧行传输可以指待执行的侧行传输。
在一些实施例中,第一侧行传输可以指终端和终端之间交互的任意信息,例如PSSCH,PSCCH等。
在一些实施例中,目标资源块集合(resource block set,RB set)可以包括一个或多个资源块集合。即第一侧行传输的传输资源可以分布在一个或多个资源块集合中。
在一些实施例中,所述目标资源块集合在频域上可以是连续的,也可以是不连续的。
在一些实施例中,资源块集合可以包括至少一个频域资源。可选地,该频域资源可以是以梳齿资源块IRB为单位。
在一些实施例中,目标资源块集合包括的资源块集合属于一个资源池,或者说,目标资源块集合包括的资源块集合中的资源属于一个资源池。
在一些实施例中,第一侧行传输的传输资源包括目标资源块集合中的部分或全部资源。
例如,目标资源块集合包括一个资源块集合,该第一侧行传输的传输资源可以包括该一个资源块集合中的部分或全部资源。
又例如,目标资源块集合包括多个资源块集合。该第一侧行传输的传输资源包括该多个资源块集合中的每个资源块集合中的部分或全部资源。
在本申请一些实施例中,所述方法200还包括:
终端设备测量所述目标资源块集合上的CBR和/或CR。
因此,在本申请实施例中,终端设备可以测量待执行侧行传输的传输资源所属资源块集合上的CBR和/或CR,进一步基于该资源块集合上的CBR和/或CR进行拥塞控制,由于实际使用的传输资源所属的资源块集合的拥塞程度,能够反映实际执行侧行传输的拥塞程度,基于该资源块集合的CBR和/或CR进行拥塞控制,有利于实现有效的拥塞控制,保证该侧行传输的性能。
在一些实施例中,目标资源块集合上的CBR和/或CR是在时隙m-N测量的,时隙m是第一侧行传输对应的时隙,N是终端设备的拥塞控制时间。例如,终端设备在时隙m-N测量目标资源块集合上的CBR和/或CR,在之后的N个时隙内,基于该目标资源块集合上的CBR和/或CR进行拥塞控制,以保证时隙m上的第一侧行传输。
在一些实施例中,终端设备的拥塞控制时间N和μ相关,其中,μ和子载波间隔(Subcarrier spacing,SCS)相关。
例如,当子载波间隔为15KHz时,μ为0;
当子载波间隔为30KHz时,μ为1;
当子载波间隔为60KHz,μ为2;
当子载波间隔为120KHz时,μ为3。
在本申请一些实施例中,终端设备测量目标资源块集合上的CBR和/或CR可以包括:
终端设备测量目标资源块集合中的每个资源块集合上的CBR和/或CR。
也即,测量的CBR和/或CR是单个资源块集合粒度的。或者说,以资源块集合为单位,进行CBR和/或CR的测量。
例如,若目标资源块集合包括一个资源块集合,该终端设备可以测量该资源块集合上的CBR和/或CR,或者,若目标资源块集合包括多个资源块集合,该终端设备可以测量该多个资源块集合中的每个资源块集合上的CBR和/或CR。
在本申请另一些实施例中,终端设备测量目标资源块集合上的CBR和/或CR可以包括:
终端设备测量目标资源块集合对应的CBR和/或CR。
也即,测量的CBR和/或CR是目标资源块集合粒度的。或者说,将目标该资源块集合作为一个整体,进行CBR和/或CR的测量。
以下,结合实施例1和实施例2,分别说明上述两种测量方式以及对应的拥塞控制方式。
实施例1:
在本申请一些实施例中,所述方法200还包括:
所述终端设备确定目标资源块集合中的每个资源块集合的CBR;和/或
所述终端设备确定目标资源块集合中的每个资源块集合上不同侧行传输优先级对应的CR。
在一些实施例中,每个资源块集合的CBR和/或所述每个资源块集合上不同侧行传输优先级对应的CR可以是在测量窗内测量得到的,具体测量方式在下文实施例中详细说明。
在一些实施例中,第一侧行传输对应的时隙是时隙m,终端设备可以在时隙m-N测量所述每个资源块集合的CBR,和/或,所述每个资源块集合上不同侧行传输优先级对应的CR,例如优先级取值不低于k的侧行传输对应的CR。
其中,N是终端设备的拥塞控制时间,k为侧行传输的优先级取值。
应理解,在本申请实施例中,k的取值越大,表示侧行传输的优先级越低,k的取值越小,表示侧行传输的优先级越高。
还应理解,k可以为侧行传输的任意优先级取值,或者说,k的取值可以包括优先级取值范围内的任意取值。例如,侧行传输的优先级取值范围为1~8,则该k的取值可以包括1~8中的所有取值。
可选地,优先级取值范围可以是预定义的,或者是网络设备配置的,本申请仅以优先级取值范围为1~8为例进行说明,但本申请并不限于此。
在一些实施例中,N根据μ确定,所述μ与子载波间隔相关。
为便于区分和说明,将目标资源块集合中的资源块集合p对应的CBR记为CBR p,将资源块集合p上优先级取值为i的侧行传输对应的CR(或称说,侧行传输优先级取值i对应的CR)记为CR p(i)。
可选地,p可以为资源块集合索引,或,p为资源块集合在该目标资源块集合中的编号或排序。
应理解,在本申请实施例中,终端设备在时隙m-N测量得到每个资源块集合的CBR,和/或,每个资源块集合上不同侧行传输优先级对应的CR后,终端设备可以基于该每个资源块集合的CBR,和/或,每个资源块集合上不同侧行传输优先级对应的CR进行拥塞控制,本申请对于具体的拥塞控制方式不作限定。
在本申请一些实施例中,S210包括:
在每个资源块集合均满足第一条件的情况下,所述终端设备执行所述第一侧行传输。
其中,所述第一条件包括:资源块集合上优先级取值不低于k的侧行传输对应的CR之和小于或等于优先级取值k对应的CR限制,k为侧行传输的优先级取值。也即,第一条件(或称CR限制条件)可以表示为:∑ i≥kCR p(i)≤CR Limit(k)。其中,CR Limit(k)表示优先级取值k对应的CR限制。
在一些实施例中,上述公式中i的取值可以为测量窗内优先级取值大于等于k的侧行传输的优先级取值,其中,该侧行传输的传输资源位于该测量窗内。
也就是说,在每个资源块集合上,对于任一优先级取值,例如,k等于1~8中的任意值,均满足上述公式,则该资源块集合才满足第一条件。在一些实施例中,在时隙m上,若经过拥塞控制,目标资源块集合中的每个资源块集合均满足上述第一条件,则执行第一侧行传输。
在本申请另一些实施例中,S210包括:
在目标资源块集合中存在不满足第一条件的资源块集合的情况下,终端设备丢弃第一侧行传输。
例如,目标资源块集合包括一个资源块集合,若经过拥塞控制,该一个资源块集合不满足上述第一条件,则丢弃第一侧行传输。
又例如,目标资源块集合包括多个资源块集合,若经过拥塞控制,该目标资源块集合上仍存在不满足第一条件的资源块集合,则丢弃第一侧行传输,或者,也可以在目标资源块集合中的满足第一条件的资源块集合中的传输资源上进行第一侧行传输。
可选地,终端设备可以根据侧行传输的优先级取值k和测量的CRR p,判定该CBR p在CBR等级配置中所对应的CBR等级,进一步根据该CBR等级确定对应的PSSCH发送参数,其中,该PSSCH发送参数可以包括侧行传输的优先级取值k对应的CR限制。
在本申请一些实施例中,资源块集合上的CBR可以是通过对测量窗内的属于该资源块集合的频域资源进行测量得到的。
在一些实施例中,资源块集合中的频域资源可以是以IRB为单位的,因此,可以通过对测量窗内的属于该资源块集合的IRB进行测量确定资源块集合上的CBR。
在一些实施例中,对频域资源进行测量可以指对频域资源上传输的信号的质量进行测量。
可选地,该信号的质量可以为以下中的一种:接收的信号强度指示(Received Signal Strength Indication,RSSI)、参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)。以下,以RSSI测量为例进行说明,但本申请并不限于此。
在一些实施例中,所述目标资源块集合包括第一资源块集合,则在时隙n测量得到的第一资源块集合对应的CBR可以为在测量窗内属于第一资源块集合的并且测量结果满足第一门限的梳齿资源块IRB的个数占测量窗内属于第一资源块集合的IRB总数的比例,其中,所述IRB的测量结果是在所述测量窗内针对所述第一资源块集合内每个时隙上所述IRB的传输资源进行测量得到的。
即:
Figure PCTCN2021139950-appb-000001
其中,CBR p为资源块集合p的CBR,IRB P为测量窗内属于该资源块集合p的并且测量结果满足第一门限的IRB数,IRB tx_P表示测量窗内属于该资源块集合p的IRB总数。
可选地,IRB的测量结果是在测量窗内属于资源块集合p的每个时隙上的IRB的传输资源进行SL RSSI测量得到的。
在一些实施例中,所述第一门限是预配置的,或者是网络设备配置的。例如通过无线资源控制(Radio Resource Control,RRC)信令配置的。
在一些实施例中,时隙n可以对应于前述时隙m-N。
在一些实施例中,所述测量窗为[n-c,n-1],其中,c等于100或100*2 μ个时隙,μ与子载波间隔相关。
在一些实施例中,当子载波间隔为15KHz时,μ为0;
当子载波间隔为30KHz时,μ为1;
当子载波间隔为60KHz,μ为2;
当子载波间隔为120KHz时,μ为3。
在本申请一些实施例中,资源块集合上的CR可以是通过对测量窗内的属于该资源块集合的频域资源进行测量得到的。
在一些实施例中,目标资源块集合包括第一资源块集合,则在时隙n测量得到的第一资源块集合对应的CR是第一IRB个数和第二IRB个数之和占[n-a,n-b]范围内属于第一资源块集合的IRB总数的比例,其中,第一IRB个数是在[n-a,n-1]范围内属于第一资源块集合并且已经用于发送数据的IRB个数,所述第二IRB个数是[n,n+b]范围内属于第一资源块集合并且已获得的侧行授权包含的IRB个数,其中,a为正整数,b为整数。
即:
Figure PCTCN2021139950-appb-000002
其中,CR p为资源块集合p的CR,IRB 1为第一IRB数,即[n-a,n-1]范围内的属于第一资源块集合并且已经用于发送数据的IRB个数,IRB 2为第二IRB数,即[n,n+b]范围内的属于第一资源块集合并且已获得的侧行授权包括的IRB个数。即,第一IRB数是[n-a,n-1]范围内的属于第一资源块集合并且已用于侧行传输的IRB个数,第二IRB数是[n,n+b]范围内的属于第一资源块集合的将用于侧行传输的IRB个数。该将用于侧行传输的IRB可以是通过侧行授权指示的。IRB ty_P表示[n-a,n-b]范围内属于该资源块集合p的IRB总数。
在一些实施例中,所述a和b满足如下条件:
a+b+1=1000或1000*2 μ个时隙;
b<(a+b+1)/2;
n+b不超过侧行授权指示的所述第一侧行传输的最后一次重传对应的时隙。即时隙n+b不晚于第一侧行传输的最后一次重传的时隙。
以第一侧行传输为第一PSSCH举例说明,如图9所示,第一PSSCH的传输资源位于资源块集合2和资源块集合3中,即目标资源块集合包括2个资源块集合。该第一PSSCH的传输资源包括资源块集合2和资源块集合3中的部分或全部资源。第一PSSCH的传输资源位于时隙m,则终端设备在时隙m-N测量得到资源块集合2的CBR 2和CR 2(i)以及资源块集合3的CBR 3和CR 3(i),其中,i表示优先级取值。
进一步地,在资源块集合2和资源块集合3上的CBR和CR均满足上述第一条件时,终端设备使用第一PSSCH的传输资源发送第一PSSCH。否则,不发送第一PSSCH,或者,取消发送第一PSSCH,或者,丢弃第一PSSCH。
实施例2
在本申请一些实施例中,所述方法200还包括:
所述终端设备确定目标资源块集合对应的CBR;和/或
所述终端设备确定目标资源块集合上不同侧行传输优先级对应的CR。
也即,以目标资源块集合为粒度进行CBR和/或CR的测量。
在一些实施例中,每个资源块集合的CBR和/或所述每个资源块集合上不同侧行传输优先级对应的CR可以是在测量窗内测量得到的,具体测量方式在下文实施例中详细说明。
在一些实施例中,第一侧行传输对应的时隙是时隙m,终端设备可以在时隙m-N测量所述目标资源块集合对应的CBR,和/或,所述目标资源块集合上不同侧行传输对应的CR。例如,测量目标资源块集合上优先级取值不低于k的优先级对应的CR。
其中,N是终端设备的拥塞控制时间,k为侧行传输的优先级取值。
应理解,在本申请实施例中,k的取值越大,表示侧行传输的优先级越低,k的取值越小,表示侧行传输的优先级越高。
还应理解,k可以为侧行传输的任意优先级取值,或者说,k的取值可以包括优先级取值范围内的任意取值。例如,侧行传输的优先级取值范围为1~8,则该k的取值可以包括1~8中的所有取值。
可选地,优先级取值范围可以是预定义的,或者是网络设备配置的,本申请仅以优先级取值范围为1~8为例进行说明,但本申请并不限于此。
在一些实施例中,N根据μ确定,所述μ与子载波间隔相关。
为便于区分和说明,将目标资源块集合对应的CBR记为CBR tx,将目标资源块集合上优先级取值 i的侧行传输对应的CR(或者,侧行传输优先级i对应的CR)记为CR tx(i)。
应理解,在本申请实施例中,在时隙m-N测量得到目标资源块集合对应的CBR,和/或,目标资源块集合上不同侧行传输优先级对应的CR后,终端设备可以基于目标资源块集合对应的CBR,和/或,目标资源块集合上不同侧行传输优先级对应的CR进行拥塞控制,本申请对于具体的拥塞控制方式不作限定。
在本申请一些实施例中,S210包括:
在满足第二条件的情况下,终端设备执行所述第一侧行传输。
其中,所述第二条件包括:所述目标资源块集合上优先级取值不低于k的侧行传输对应的CR之和小于或等于优先级取值k对应的CR限制,k为侧行传输的优先级取值。
也即,第二条件(或称CR限制条件)可以表示为:∑ i≥kCR tx(i)≤CR Limit(k)。其中,CR Limit(k)表示优先级取值k对应的CR限制。
在一些实施例中,上述公式中i的取值可以为测量窗内优先级取值大于等于k的侧行传输的优先级取值,其中,该侧行传输的传输资源位于该测量窗内。
也就是说,在目标资源块集合上,对于任一优先级取值,例如,k等于1~8中的任意值,均满足上述公式,则该目标资源块集合才满足第二条件。
在一些实施例中,在时隙m上,若经过拥塞控制,目标资源块集合对应的CBR和CR满足上述第二条件,则执行第一侧行传输。
在本申请一些实施例中,S210包括:
在不满足所述第二条件的情况下,所述终端设备丢弃所述第一侧行传输。
可选地,终端设备可以根据侧行传输的优先级取值k和测量的CBR tx,判定该CBR tx在CBR等级配置中所对应的CBR等级,进一步根据该CBR等级确定对应的PSSCH发送参数,其中,该PSSCH发送参数可以包括侧行传输的优先级取值k对应的CR限制。
在本申请一些实施例中,目标资源块集合上的CBR可以是通过对测量窗内的属于该目标资源块集合的频域资源进行测量得到的。
在一些实施例中,目标资源块集合中的频域资源可以是以IRB为单位的,因此,可以通过对测量窗内的属于该目标资源块集合的IRB进行测量确定该目标资源块集合上的CBR。
在一些实施例中,对频域资源进行测量可以指对频域资源上传输的信号的质量进行测量。
可选地,该信号的质量可以为以下中的一种:RSSI、RSRP、RSRQ、SINR。以下,以RSSI测量为例进行说明,但本申请并不限于此。
在一些实施例中,在时隙n测量得到的目标资源块集合对应的CBR是在测量窗内属于目标资源块集合的并且测量结果满足第二门限的IRB的个数占测量窗内属于目标资源块集合的IRB总数的比例,其中,所述IRB的测量结果是在测量窗内针对目标资源块集合内每个时隙上所述IRB的传输资源进行测量得到的。即:
Figure PCTCN2021139950-appb-000003
其中,CBR tx为目标资源块集合对应的CBR,IRB tx_th为测量窗内属于该目标资源块集合的并且测量结果满足第二门限的IRB数,IRB tx表示测量窗内属于该目标资源块集合的IRB总数。
可选地,IRB的测量结果是在测量窗内属于目标资源块集合的每个时隙上的IRB的传输资源进行SL RSSI测量得到的。
在一些实施例中,所述第二门限是预配置的,或者是网络设备配置的。例如通过RRC信令配置的。
在一些实施例中,时隙n可以对应于前述时隙m-N。
在一些实施例中,所述测量窗为[n-c,n-1],其中,c等于100或100*2 μ个时隙,μ与子载波间隔相关。
在一些实施例中,当子载波间隔为15KHz时,μ为0;
当子载波间隔为30KHz时,μ为1;
当子载波间隔为60KHz,μ为2;
当子载波间隔为120KHz时,μ为3。
在本申请一些实施例中,目标资源块集合上的CR可以是通过对测量窗内的属于该目标资源块集合的频域资源进行测量得到的。
在一些实施例中,在时隙n测量得到的CR是第三IRB个数和第四IRB个数之和占[n-a,n-b]范围内属于所述目标资源块集合的IRB总数的比例,其中,所述第三IRB个数是在[n-a,n-1]范围内属于所述目标资源块集合并且已经用于发送数据的IRB个数,所述第四IRB个数是[n,n+b]范围内属 于所述目标资源块集合并且已获得的侧行授权包含的IRB个数,其中,a为正整数,b为整数。
即:
Figure PCTCN2021139950-appb-000004
其中,CR为目标资源块集合对应的CR,IRB 3为第三IRB数,即[n-a,n-1]范围内的属于目标资源块集合并且已经用于发送数据的IRB个数,IRB 4为第四IRB数,即[n,n+b]范围内的属于目标资源块集合并且已获得侧行授权包括的IRB个数。即,第三IRB数是[n-a,n-1]范围内的属于目标资源块集合并且已用于侧行传输的IRB个数,第四IRB数是[n,n+b]范围内的属于目标资源块集合的将用于侧行传输的IRB个数。该将用于侧行传输的IRB可以是通过侧行授权指示的。IRB ty表示[n-a,n-b]范围内属于该目标资源块集合的IRB总数。
在一些实施例中,所述a和b满足如下条件:
a+b+1=1000或1000*2 μ个时隙;
b<(a+b+1)/2;
n+b不超侧行授权指示的所述第一侧行传输的最后一次重传对应的时隙。即时隙n+b不晚于第一侧行传输的最后一次重传的时隙。
以第一侧行传输为第二PSSCH举例说明,如图10所示,第二PSSCH的传输资源位于资源块集合2和资源块集合3中,即目标资源块集合包括2个资源块集合。该第二PSSCH的传输资源包括资源块集合2和资源块集合3中的部分或全部资源。第二PSSCH的传输资源位于时隙m,则终端设备在时隙m-N测量得到资源块集合2和资源块集合3对应的CBR tx和CR tx(i),其中,i为优先级取值。
进一步地,在资源块集合2和资源块集合3对应的CBR和CR满足上述第二条件时,终端设备使用第二PSSCH的传输资源发送第二PSSCH。否则,不发送第二PSSCH,或者,取消发送第二PSSCH,或者,丢弃第二PSSCH。
综上,终端设备可以测量待执行侧行传输的传输资源所在的资源块集合上的CBR和/或CR,进一步基于该资源块集合上的CBR和/或CR进行拥塞控制,由于实际使用的传输资源所在的资源块集合的拥塞程度,能够反映实际执行侧行传输的拥塞程度,基于该资源块集合的CBR和/或CR进行拥塞控制,有利于实现有效的拥塞控制,保证该侧行传输的性能。
上文结合图8至图10,详细描述了本申请的方法实施例,下文结合图11至图14,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图11示出了根据本申请实施例的终端设备400的示意性框图。如图11所示,该终端设备400包括:处理单元410,用于根据目标资源块集合上的信道繁忙率CBR和/或信道占用率CR,进行拥塞控制,其中,所述目标资源块集合是第一侧行传输的传输资源所在的资源块集合。
在本申请一些实施例中,所述第一侧行传输的传输资源包括所述目标资源块集合中的部分或全部资源。
在本申请一些实施例中,所述处理单元410还用于:
确定所述目标资源块集合中的每个资源块集合的CBR;和/或
确定所述目标资源块集合中的每个资源块集合上不同侧行传输优先级对应的CR。
在本申请一些实施例中,所述每个资源块集合的CBR是在时隙m-N测量的,和/或,所述每个资源块集合上优先级取值不低于k的侧行传输对应的CR是在时隙m-N测量的,其中,时隙m是所述第一侧行传输对应的时隙,所述N是所述终端设备的拥塞控制时间,k为侧行传输的优先级取值。
在本申请一些实施例中,所述N根据μ确定,所述μ与子载波间隔相关。
在本申请一些实施例中,所述终端设备400还包括:
通信单元,用于在所述每个资源块集合均满足第一条件的情况下,执行所述第一侧行传输,或者,
所述处理单元410还用于:在所述目标资源块集合中存在不满足所述第一条件的资源块集合的情况下,丢弃所述第一侧行传输;
其中,所述第一条件包括:资源块集合上优先级取值不低于k的侧行传输对应的CR之和小于或等于优先级取值k对应的CR限制,k为侧行传输的优先级取值。
在本申请一些实施例中,所述目标资源块集合包括第一资源块集合,在时隙n测量得到的所述第一资源块集合对应的CBR是在测量窗内属于所述第一资源块集合的并且测量结果满足第一门限的梳齿资源块IRB的个数占所述测量窗内属于所述第一资源块集合的IRB总数的比例,其中,所述IRB的测量结果是在所述测量窗内针对所述第一资源块集合内每个时隙上所述IRB的传输资源进行测量得到的。
在本申请一些实施例中,所述第一门限是预配置的,或者是网络设备配置的。
在本申请一些实施例中,所述IRB的测量结果是接收的信号强度指示RSSI测量结果。
在本申请一些实施例中,所述测量窗为[n-c,n-1],其中,c等于100或100*2 μ个时隙,μ与子载波间隔相关。
在本申请一些实施例中,当子载波间隔为15KHz时,μ为0;
当子载波间隔为30KHz时,μ为1;
当子载波间隔为60KHz,μ为2;
当子载波间隔为120KHz时,μ为3。
在本申请一些实施例中,所述目标资源块集合包括第一资源块集合,在时隙n测量得到的所述第一资源块集合对应的CR是第一IRB个数和第二IRB个数之和占[n-a,n-b]范围内属于所述第一资源块集合的IRB总数的比例,其中,所述第一IRB个数是在[n-a,n-1]范围内属于所述第一资源块集合并且已经用于发送数据的IRB个数,所述第二IRB个数是[n,n+b]范围内属于所述第一资源块集合并且已获得的侧行授权包含的IRB个数,其中,a为正整数,b为整数。
在本申请一些实施例中,所述a和b满足如下条件:
a+b+1=1000或1000*2 μ个时隙;
b<(a+b+1)/2;
n+b不超侧行授权指示的所述第一侧行传输的最后一次重传对应的时隙。
在本申请一些实施例中,所述处理单元410还用于:
确定所述目标资源块集合对应的CBR;和/或
确定所述目标资源块集合上不同侧行传输优先级对应的CR。
在本申请一些实施例中,所述目标资源块集合对应的CBR是在时隙m-N测量的,和/或,所述目标资源块集合上优先级取值不低于k的侧行传输对应的CR是在时隙m-N测量的,其中,时隙m是所述第一侧行传输对应的时隙,所述N是所述终端设备的拥塞控制时间,k为侧行传输的优先级取值。
在本申请一些实施例中,所述N根据μ确定,所述μ与子载波间隔相关。
在本申请一些实施例中,所述终端设备400还包括:
通信单元,用于在满足第二条件的情况下,执行所述第一侧行传输,或者,
所述处理单元410还用于:在不满足所述第二条件的情况下,丢弃所述第一侧行传输,
其中,所述第二条件包括:所述目标资源块集合上优先级取值不低于k的侧行传输对应的CR之和小于或等于优先级取值k对应的CR限制,k为侧行传输的优先级取值。
在本申请一些实施例中,在时隙n测量得到的所述目标资源块集合对应的CBR是在测量窗内属于所述目标资源块集合的并且测量结果满足第二门限的IRB的个数占所述测量窗内属于所述目标资源块集合的IRB总数的比例,其中,所述IRB的测量结果是在所述测量窗内针对所述目标资源块集合内每个时隙上所述IRB的传输资源进行测量得到的。
在本申请一些实施例中,所述第二门限是预配置的,或者是网络设备配置的。
在本申请一些实施例中,所述IRB的测量结果是RSSI测量结果。
在本申请一些实施例中,所述测量窗为[n-c,n-1],其中,c等于100或100*2 μ个时隙,μ与子载波间隔相关;
其中,当子载波间隔为15KHz时,μ为0;
当子载波间隔为30KHz时,μ为1;
当子载波间隔为60KHz,μ为2;
当子载波间隔为120KHz时,μ为3。
在本申请一些实施例中,在时隙n测量得到的CR是第三IRB个数和第四IRB个数之和占[n-a,n-b]范围内属于所述目标资源块集合的IRB总数的比例,其中,所述第三IRB个数是在[n-a,n-1]范围内属于所述目标资源块集合并且已经用于发送数据的IRB个数,所述第四IRB个数是[n,n+b]范围内属于所述目标资源块集合并且已获得的侧行授权包含的IRB个数,其中,a为正整数,b为整数。
在本申请一些实施例中,所述a和b满足如下条件:
a+b+1=1000或1000*2 μ个时隙;
b<(a+b+1)/2;
n+b不超侧行授权指示的所述第一侧行传输的最后一次重传对应的时隙。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端 设备400中的各个单元的上述和其它操作和/或功能分别为了实现图8至图10所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
因此,在本申请实施例中,终端设备可以测量待执行侧行传输的传输资源所在的资源块集合上的CBR和/或CR,进一步基于该资源块集合上的CBR和/或CR进行拥塞控制,由于实际使用的传输资源所在的资源块集合的拥塞程度,能够反映实际执行侧行传输的拥塞程度,基于该资源块集合的CBR和/或CR进行拥塞控制,有利于实现有效的拥塞控制,保证该侧行传输的性能。
图12是本申请实施例提供的一种通信设备600示意性结构图。图12所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图12所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的芯片的示意性结构图。图13所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存 取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (49)

  1. 一种拥塞控制的方法,其特征在于,包括:
    终端设备根据目标资源块集合上的信道繁忙率CBR和/或信道占用率CR,进行拥塞控制,其中,所述目标资源块集合是第一侧行传输的传输资源所在的资源块集合。
  2. 根据权利要求1所述的方法,其特征在于,所述第一侧行传输的传输资源包括所述目标资源块集合中的部分或全部资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述目标资源块集合中的每个资源块集合的CBR;和/或
    所述终端设备确定所述目标资源块集合中的每个资源块集合上不同侧行传输优先级对应的CR。
  4. 根据权利要求3所述的方法,其特征在于,所述每个资源块集合的CBR是在时隙m-N测量的,和/或,所述每个资源块集合上优先级取值不低于k的侧行传输对应的CR是在时隙m-N测量的,其中,时隙m是所述第一侧行传输对应的时隙,所述N是所述终端设备的拥塞控制时间,k为侧行传输的优先级取值。
  5. 根据权利要求4所述的方法,其特征在于,所述N根据μ确定,所述μ与子载波间隔相关。
  6. 根据权利要求3-5中任一项所述的方法,其特征在于,所述终端设备根据目标资源块集合上的信道繁忙率CBR和/或信道占用率CR,进行拥塞控制,包括:
    在所述每个资源块集合均满足第一条件的情况下,所述终端设备执行所述第一侧行传输,或者,
    在所述目标资源块集合中存在不满足所述第一条件的资源块集合的情况下,所述终端设备丢弃所述第一侧行传输;
    其中,所述第一条件包括:资源块集合上优先级取值不低于k的侧行传输对应的CR之和小于或等于优先级取值k对应的CR限制,k为侧行传输的优先级取值。
  7. 根据权利要求3-6中任一项所述的方法,其特征在于,所述目标资源块集合包括第一资源块集合,在时隙n测量得到的所述第一资源块集合对应的CBR是在测量窗内属于所述第一资源块集合的并且测量结果满足第一门限的梳齿资源块IRB的个数占所述测量窗内属于所述第一资源块集合的IRB总数的比例,其中,所述IRB的测量结果是在所述测量窗内针对所述第一资源块集合内每个时隙上所述IRB的传输资源进行测量得到的。
  8. 根据权利要求7所述的方法,其特征在于,所述第一门限是预配置的,或者是网络设备配置的。
  9. 根据权利要求7或8所述的方法,其特征在于,所述IRB的测量结果是接收的信号强度指示RSSI测量结果。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,所述测量窗为[n-c,n-1],其中,c等于100或100*2 μ个时隙,μ与子载波间隔相关;
    其中,当子载波间隔为15KHz时,μ为0;
    当子载波间隔为30KHz时,μ为1;
    当子载波间隔为60KHz,μ为2;
    当子载波间隔为120KHz时,μ为3。
  11. 根据权利要求3-10中任一项所述的方法,其特征在于,所述目标资源块集合包括第一资源块集合,在时隙n测量得到的所述第一资源块集合对应的CR是第一IRB个数和第二IRB个数之和占[n-a,n-b]范围内属于所述第一资源块集合的IRB总数的比例,其中,所述第一IRB个数是在[n-a,n-1]范围内属于所述第一资源块集合并且已经用于发送数据的IRB个数,所述第二IRB个数是[n,n+b]范围内属于所述第一资源块集合并且已获得的侧行授权包含的IRB个数,其中,a为正整数,b为整数。
  12. 根据权利要求11所述的方法,其特征在于,所述a和b满足如下条件:
    a+b+1=1000或1000*2 μ个时隙;
    b<(a+b+1)/2;
    n+b不超侧行授权指示的所述第一侧行传输的最后一次重传对应的时隙。
  13. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述目标资源块集合对应的CBR;和/或
    所述终端设备确定所述目标资源块集合上不同侧行传输优先级对应的CR。
  14. 根据权利要求13所述的方法,其特征在于,所述目标资源块集合对应的CBR是在时隙m-N测量的,和/或,所述目标资源块集合上优先级取值不低于k的侧行传输对应的CR是在时隙m-N测量的,其中,时隙m是所述第一侧行传输对应的时隙,所述N是所述终端设备的拥塞控制时间,k 为侧行传输的优先级取值。
  15. 根据权利要求14所述的方法,其特征在于,所述N根据μ确定,所述μ与子载波间隔相关。
  16. 根据权利要求13-15中任一项所述的方法,其特征在于,所述终端设备根据目标资源块集合上的信道繁忙率CBR和/或信道占用率CR,进行拥塞控制,包括:
    在满足第二条件的情况下,所述终端设备执行所述第一侧行传输,或者,
    在不满足所述第二条件的情况下,所述终端设备丢弃所述第一侧行传输,
    其中,所述第二条件包括:所述目标资源块集合上优先级取值不低于k的侧行传输对应的CR之和小于或等于优先级取值k对应的CR限制,k为侧行传输的优先级取值。
  17. 根据权利要求13-16中任一项所述的方法,其特征在于,在时隙n测量得到的所述目标资源块集合对应的CBR是在测量窗内属于所述目标资源块集合的并且测量结果满足第二门限的IRB的个数占所述测量窗内属于所述目标资源块集合的IRB总数的比例,其中,所述IRB的测量结果是在所述测量窗内针对所述目标资源块集合内每个时隙上所述IRB的传输资源进行测量得到的。
  18. 根据权利要求17所述的方法,其特征在于,所述第二门限是预配置的,或者是网络设备配置的。
  19. 根据权利要求17或18所述的方法,其特征在于,所述IRB的测量结果是RSSI测量结果。
  20. 根据权利要求17-20中任一项所述的方法,其特征在于,所述测量窗为[n-c,n-1],其中,c等于100或100*2 μ个时隙,μ与子载波间隔相关;
    其中,当子载波间隔为15KHz时,μ为0;
    当子载波间隔为30KHz时,μ为1;
    当子载波间隔为60KHz,μ为2;
    当子载波间隔为120KHz时,μ为3。
  21. 根据权利要求13-20中任一项所述的方法,其特征在于,在时隙n测量得到的CR是第三IRB个数和第四IRB个数之和占[n-a,n-b]范围内属于所述目标资源块集合的IRB总数的比例,其中,所述第三IRB个数是在[n-a,n-1]范围内属于所述目标资源块集合并且已经用于发送数据的IRB个数,所述第四IRB个数是[n,n+b]范围内属于所述目标资源块集合并且已获得的侧行授权包含的IRB个数,其中,a为正整数,b为整数。
  22. 根据权利要求21所述的方法,其特征在于,所述a和b满足如下条件:
    a+b+1=1000或1000*2 μ个时隙;
    b<(a+b+1)/2;
    n+b不超侧行授权指示的所述第一侧行传输的最后一次重传对应的时隙。
  23. 一种终端设备,其特征在于,包括:
    处理单元,用于根据目标资源块集合上的信道繁忙率CBR和/或信道占用率CR,进行拥塞控制,其中,所述目标资源块集合是第一侧行传输的传输资源所在的资源块集合。
  24. 根据权利要求23所述的终端设备,其特征在于,所述第一侧行传输的传输资源包括所述目标资源块集合中的部分或全部资源。
  25. 根据权利要求23或24所述的终端设备,其特征在于,所述处理单元还用于:
    确定所述目标资源块集合中的每个资源块集合的CBR;和/或
    确定所述目标资源块集合中的每个资源块集合上不同侧行传输优先级对应的CR。
  26. 根据权利要求25所述的终端设备,其特征在于,所述每个资源块集合的CBR是在时隙m-N测量的,和/或,所述每个资源块集合上优先级取值不低于k的侧行传输对应的CR是在时隙m-N测量的,其中,时隙m是所述第一侧行传输对应的时隙,所述N是所述终端设备的拥塞控制时间,k为侧行传输的优先级取值。
  27. 根据权利要求26所述的终端设备,其特征在于,所述N根据μ确定,所述μ与子载波间隔相关。
  28. 根据权利要求25-27中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于在所述每个资源块集合均满足第一条件的情况下,执行所述第一侧行传输,或者,
    所述处理单元还用于:在所述目标资源块集合中存在不满足所述第一条件的资源块集合的情况下,丢弃所述第一侧行传输;
    其中,所述第一条件包括:资源块集合上优先级取值不低于k的侧行传输对应的CR之和小于或等于优先级取值k对应的CR限制,k为侧行传输的优先级取值。
  29. 根据权利要求25-28中任一项所述的终端设备,其特征在于,所述目标资源块集合包括第一资源块集合,在时隙n测量得到的所述第一资源块集合对应的CBR是在测量窗内属于所述第一资源 块集合的并且测量结果满足第一门限的梳齿资源块IRB的个数占所述测量窗内属于所述第一资源块集合的IRB总数的比例,其中,所述IRB的测量结果是在所述测量窗内针对所述第一资源块集合内每个时隙上所述IRB的传输资源进行测量得到的。
  30. 根据权利要求29所述的终端设备,其特征在于,所述第一门限是预配置的,或者是网络设备配置的。
  31. 根据权利要求29或30所述的终端设备,其特征在于,所述IRB的测量结果是接收的信号强度指示RSSI测量结果。
  32. 根据权利要求29-31中任一项所述的终端设备,其特征在于,所述测量窗为[n-c,n-1],其中,c等于100或100*2 μ个时隙,μ与子载波间隔相关;
    其中,当子载波间隔为15KHz时,μ为0;
    当子载波间隔为30KHz时,μ为1;
    当子载波间隔为60KHz,μ为2;
    当子载波间隔为120KHz时,μ为3。
  33. 根据权利要求25-32中任一项所述的终端设备,其特征在于,所述目标资源块集合包括第一资源块集合,在时隙n测量得到的所述第一资源块集合对应的CR是第一IRB个数和第二IRB个数之和占[n-a,n-b]范围内属于所述第一资源块集合的IRB总数的比例,其中,所述第一IRB个数是在[n-a,n-1]范围内属于所述第一资源块集合并且已经用于发送数据的IRB个数,所述第二IRB个数是[n,n+b]范围内属于所述第一资源块集合并且已获得的侧行授权包含的IRB个数,其中,a为正整数,b为整数。
  34. 根据权利要求33所述的终端设备,其特征在于,所述a和b满足如下条件:
    a+b+1=1000或1000*2 μ个时隙;
    b<(a+b+1)/2;
    n+b不超侧行授权指示的所述第一侧行传输的最后一次重传对应的时隙。
  35. 根据权利要求23或24所述的终端设备,其特征在于,所述处理单元还用于:
    确定所述目标资源块集合对应的CBR;和/或
    确定所述目标资源块集合上不同侧行传输优先级对应的CR。
  36. 根据权利要求35所述的终端设备,其特征在于,所述目标资源块集合对应的CBR是在时隙m-N测量的,和/或,所述目标资源块集合上优先级取值不低于k的侧行传输对应的CR是在时隙m-N测量的,其中,时隙m是所述第一侧行传输对应的时隙,所述N是所述终端设备的拥塞控制时间,k为侧行传输的优先级取值。
  37. 根据权利要求36所述的终端设备,其特征在于,所述N根据μ确定,所述μ与子载波间隔相关。
  38. 根据权利要求35-37中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于在满足第二条件的情况下,执行所述第一侧行传输,或者,
    所述处理单元还用于:在不满足所述第二条件的情况下,丢弃所述第一侧行传输,
    其中,所述第二条件包括:所述目标资源块集合上优先级取值不低于k的侧行传输对应的CR之和小于或等于优先级取值k对应的CR限制,k为侧行传输的优先级取值。
  39. 根据权利要求35-38中任一项所述的终端设备,其特征在于,在时隙n测量得到的所述目标资源块集合对应的CBR是在测量窗内属于所述目标资源块集合的并且测量结果满足第二门限的IRB的个数占所述测量窗内属于所述目标资源块集合的IRB总数的比例,其中,所述IRB的测量结果是在所述测量窗内针对所述目标资源块集合内每个时隙上所述IRB的传输资源进行测量得到的。
  40. 根据权利要求39所述的终端设备,其特征在于,所述第二门限是预配置的,或者是网络设备配置的。
  41. 根据权利要求39或40所述的终端设备,其特征在于,所述IRB的测量结果是RSSI测量结果。
  42. 根据权利要求39-41中任一项所述的终端设备,其特征在于,所述测量窗为[n-c,n-1],其中,c等于100或100*2 μ个时隙,μ与子载波间隔相关;
    其中,当子载波间隔为15KHz时,μ为0;
    当子载波间隔为30KHz时,μ为1;
    当子载波间隔为60KHz,μ为2;
    当子载波间隔为120KHz时,μ为3。
  43. 根据权利要求35-42中任一项所述的终端设备,其特征在于,在时隙n测量得到的CR是第 三IRB个数和第四IRB个数之和占[n-a,n-b]范围内属于所述目标资源块集合的IRB总数的比例,其中,所述第三IRB个数是在[n-a,n-1]范围内属于所述目标资源块集合并且已经用于发送数据的IRB个数,所述第四IRB个数是[n,n+b]范围内属于所述目标资源块集合并且已获得的侧行授权包含的IRB个数,其中,a为正整数,b为整数。
  44. 根据权利要求43所述的终端设备,其特征在于,所述a和b满足如下条件:
    a+b+1=1000或1000*2 μ个时隙;
    b<(a+b+1)/2;
    n+b不超侧行授权指示的所述第一侧行传输的最后一次重传对应的时隙。
  45. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至22中任一项所述的方法。
  46. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至22中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  48. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至22中任一项所述的方法。
  49. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
PCT/CN2021/139950 2021-12-21 2021-12-21 拥塞控制的方法和终端设备 WO2023115306A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/139950 WO2023115306A1 (zh) 2021-12-21 2021-12-21 拥塞控制的方法和终端设备
CN202180102259.5A CN118020334A (zh) 2021-12-21 2021-12-21 拥塞控制的方法和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139950 WO2023115306A1 (zh) 2021-12-21 2021-12-21 拥塞控制的方法和终端设备

Publications (1)

Publication Number Publication Date
WO2023115306A1 true WO2023115306A1 (zh) 2023-06-29

Family

ID=86900863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139950 WO2023115306A1 (zh) 2021-12-21 2021-12-21 拥塞控制的方法和终端设备

Country Status (2)

Country Link
CN (1) CN118020334A (zh)
WO (1) WO2023115306A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210022139A1 (en) * 2019-07-16 2021-01-21 Samsung Electronics Co., Ltd. Apparatus and method for controlling congestion in wireless communication system
WO2021067730A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Congestion control for nr v2x
CN113170351A (zh) * 2019-03-28 2021-07-23 Oppo广东移动通信有限公司 一种车联网系统中的通信方法及终端设备、网络设备
CN113243123A (zh) * 2018-12-17 2021-08-10 弗劳恩霍夫应用研究促进协会 通信网络中的拥塞控制的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113243123A (zh) * 2018-12-17 2021-08-10 弗劳恩霍夫应用研究促进协会 通信网络中的拥塞控制的方法和装置
CN113170351A (zh) * 2019-03-28 2021-07-23 Oppo广东移动通信有限公司 一种车联网系统中的通信方法及终端设备、网络设备
US20210022139A1 (en) * 2019-07-16 2021-01-21 Samsung Electronics Co., Ltd. Apparatus and method for controlling congestion in wireless communication system
WO2021067730A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Congestion control for nr v2x

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Congestion Control for Sidelink-based V2X", 3GPP DRAFT; R2-1700929 - CONGESTION CONTROL FOR SIDELINK-BASED V2X, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051211703 *

Also Published As

Publication number Publication date
CN118020334A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2022140934A1 (zh) 无线通信的方法和终端设备
CN116711439A (zh) 无线通信的方法、终端设备和网络设备
WO2021226858A1 (zh) 传输资源的确定方法和终端设备
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
CN115245027A (zh) 资源分配方法和终端
CN116347601A (zh) 无线通信的方法和终端设备
US20220394503A1 (en) Wireless communication method and device
US20230007682A1 (en) Data transmission method, terminal device and network device
WO2021209013A1 (zh) 无线通信方法、终端设备和网络设备
WO2023115306A1 (zh) 拥塞控制的方法和终端设备
WO2021243920A1 (zh) 无线通信的方法、终端设备和网络设备
CN115413412A (zh) 侧行资源分配方法和终端设备
WO2022236511A1 (zh) 侦听方法、终端设备、网络设备、芯片和存储介质
WO2022266966A1 (zh) 测量方法、测量配置方法、终端设备和网络设备
WO2023044735A1 (zh) 无线通信的方法和终端设备
WO2023122905A1 (zh) 无线通信的方法及终端设备
WO2022061790A1 (zh) 资源集合的传输方法和终端
WO2023133834A1 (zh) 无线通信方法和通信设备
WO2022151141A1 (zh) 基于非连续接收的侦听方法和终端
WO2023050338A1 (zh) 无线通信的方法和终端设备
WO2023133685A1 (zh) 无线通信的方法及终端设备
WO2023019463A1 (zh) 无线通信的方法和设备
WO2023050320A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022141181A1 (zh) 设置方法、终端设备和网络设备
WO2023279258A1 (zh) 资源选取的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968460

Country of ref document: EP

Kind code of ref document: A1