WO2021243920A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021243920A1
WO2021243920A1 PCT/CN2020/120899 CN2020120899W WO2021243920A1 WO 2021243920 A1 WO2021243920 A1 WO 2021243920A1 CN 2020120899 W CN2020120899 W CN 2020120899W WO 2021243920 A1 WO2021243920 A1 WO 2021243920A1
Authority
WO
WIPO (PCT)
Prior art keywords
prach resource
uplink
terminal device
uplink bwp
resource
Prior art date
Application number
PCT/CN2020/120899
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20938887.5A priority Critical patent/EP4087347B1/en
Priority to CN202080094506.7A priority patent/CN115023993A/zh
Priority to CN202211554340.XA priority patent/CN116017726A/zh
Publication of WO2021243920A1 publication Critical patent/WO2021243920A1/zh
Priority to US17/816,690 priority patent/US20220369386A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a wireless communication method, terminal device, and network device.
  • the network device can configure the physical random access channel (PRACH) resource for the terminal device, and the terminal device can select a PRACH resource to send the preamble (or message 1, Message 1). , Msg 1), and further, the network device may also send uplink authorization information, where the uplink authorization information is used to instruct the terminal device to determine the uplink resource for transmitting the message 3 (Msg 3).
  • PRACH physical random access channel
  • One RB set includes a set of consecutive RBs, and one RB set corresponds to at least one LBT bandwidth.
  • One RB set corresponds to at least one LBT bandwidth.
  • LBT bandwidth includes 20MHz.
  • the network device may configure at least one RB set for the terminal device. In this case, how the terminal device determines the set of uplink transmission RBs used in the random access process is a problem that needs to be solved urgently.
  • This application provides a wireless communication method, terminal equipment, and network equipment, which helps ensure that different terminal equipment has the same understanding of uplink resource allocation, and the network equipment and terminal equipment have the same understanding of uplink resource allocation.
  • a wireless communication method which includes: a terminal device receives first scheduling information sent by a network device, where the first scheduling information is used to schedule the terminal device to transmit the first uplink bandwidth part BWP.
  • the uplink channel, the first uplink BWP includes one or more resource block RB sets, the first uplink BWP corresponds to the physical random access channel PRACH resource configuration; the terminal equipment according to the first scheduling information, the initial uplink BWP And at least one of the first PRACH resources in the PRACH resource configuration, determining to transmit the first uplink channel through the first frequency domain resource in the first RB set.
  • a wireless communication method including: a network device sends first scheduling information to a terminal device, where the first scheduling information is used to schedule the terminal device to transmit the first uplink through the first uplink bandwidth part BWP Channel, the first uplink BWP includes one or more resource block RB sets, the first uplink BWP corresponds to a physical random access channel PRACH resource configuration, wherein the first scheduling information, the initial uplink BWP and the PRACH At least one item of the first PRACH resource in the resource configuration is used for the terminal device to determine to transmit the first uplink channel through the first frequency domain resource in the first RB set.
  • a terminal device which is used to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a network device is provided, which is used to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each of its implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the second aspect or its implementation manners.
  • a device for implementing any one of the above-mentioned first aspect to the second aspect or the method in each of its implementation manners.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product which includes computer program instructions that cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • the terminal device determines the first set of RBs used to transmit the first uplink channel according to the first scheduling information of the first uplink channel or the specific PRACH resource in the PRACH resource configuration corresponding to the uplink BWP, which is beneficial to guarantee Terminal devices in different stages (for example, the initial access stage and the RRC connected state stage) have the same understanding of uplink resource allocation, and network devices and terminal devices have the same understanding of uplink resource allocation.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of PRACH resource configuration provided by an embodiment of the present application.
  • Fig. 3 is a schematic interaction diagram of a wireless communication method provided according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of PRACH resource and uplink BWP configuration.
  • Figure 5 is a schematic diagram of PRACH resource configuration across RB sets.
  • Figure 6 is another schematic diagram of PRACH resource configuration across RB sets.
  • Fig. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Air Interface New Radio, NR
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, on unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • the embodiment of the application does not limit the applied frequency spectrum.
  • the embodiments of this application may be applied to licensed spectrum, or unlicensed spectrum, or shared spectrum.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, an indirect indication, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B relation.
  • correlate can mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association relationship between the two, or indicating and being instructed, configuring and being Configuration and other relationships.
  • the configuration parameters or configuration information or configuration signaling in the embodiment of this application includes radio resource control (Radio Resource Control, RRC) signaling and media access control element (Media Access Control Control Element, MAC CE). At least one of.
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • the embodiments of this application describe various embodiments in combination with terminal equipment and network equipment.
  • the terminal equipment may also be referred to as User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, and remote station. Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and a personal digital processing unit.
  • SIP Session Initiation Protocol
  • WLL wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • next-generation communication systems such as terminal devices in the NR network or Terminal equipment in the public land mobile network (PLMN) network that will evolve in the future.
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets and smart jewelry for physical sign monitoring.
  • a network device can be a device used to communicate with mobile devices.
  • the network device can be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, or a device in WCDMA.
  • a base station (NodeB, NB) can also be an Evolutional Node B (eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device or base station in the NR network (gNB) or network equipment in the future evolved PLMN network.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, or a high elliptical orbit (High Elliptical Orbit, HEO). ) Satellite etc.
  • the network device may also be a base station installed in a location such as land or water.
  • the network equipment provides services for the cell
  • the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network equipment (for example, The cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, Pico Cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Unlicensed spectrum also known as shared spectrum or unlicensed spectrum
  • This spectrum is usually considered to be a shared spectrum, that is, communication equipment in different communication systems only needs to meet the requirements of the country or region. According to the regulatory requirements set by the region on the spectrum, the spectrum can be used, and there is no need to apply for a proprietary spectrum authorization from the government.
  • a communication device follows the principle of "Listen Before Talk (LBT)", that is, the communication device needs to perform channel listening before sending signals on channels of unlicensed spectrum, only when the channel listening result is When the channel is idle, the communication device can send signals; if the channel detection result of the communication device on the channel of the unlicensed spectrum is that the channel is busy, the communication device cannot send signals.
  • LBT Listen Before Talk
  • the time that the communication device uses the channel of the unlicensed spectrum for signal transmission cannot exceed the maximum channel occupation time (Maximum Channel Occupancy Time, MCOT).
  • signals transmitted on unlicensed spectrum channels need to be Occupy at least a certain percentage of the channel bandwidth.
  • the 5GHz frequency band is 80% of the channel bandwidth occupied by signals
  • the 60GHz frequency band is 70% of the channel bandwidth occupied by signals.
  • the bandwidth occupied by the signal should be at least 16MHz.
  • a four-step random access process based on contention and a two-step random access process can be supported.
  • the four-step random access includes:
  • Step 1 The terminal device sends a random access preamble (Preamble, also known as Msg 1) to the network device.
  • Preamble also known as Msg 1
  • the random access preamble can also be referred to as a preamble, a random access preamble sequence, a preamble sequence, and so on.
  • the terminal device may select physical random access channel (Physical Random Access Channel, PRACH) resources, and the PRACH resources may include time domain resources, frequency domain resources, and code domain resources.
  • PRACH Physical Random Access Channel
  • Step 2 The network device sends a random access response (Random Access Response, RAR, or Msg 2) to the terminal device.
  • RAR Random Access Response
  • Msg2 Random Access Response
  • the RAR can notify the terminal equipment of the uplink resource information that can be used when sending Msg3, assign the terminal equipment a temporary cell radio network temporary identifier (Temporary Cell Radio Network Temporary Identity, TC-RNTI), and provide the terminal equipment with a time advance (TA) command).
  • RAR Random Access Response
  • Msg2 Random Access Response
  • Msg2 Random Access Response
  • the RAR can notify the terminal equipment of the uplink resource information that can be used when sending Msg3, assign the terminal equipment a temporary cell radio network temporary identifier (Temporary Cell Radio Network Temporary Identity, TC-RNTI), and provide the terminal equipment with a time advance (TA) command).
  • TC-RNTI Temporary Cell Radio Network Temporary Identity
  • the terminal device After the terminal device sends the Preamble to the network device, it can open a random access response window (ra-ResponseWindow), detect the physical downlink control channel (PDCCH) in the ra-ResponseWindow, and obtain the physical downlink scheduled by the PDCCH Shared channel (Physical Downlink Shared Channel, PDSCH).
  • ra-ResponseWindow a random access response window
  • the terminal device After the terminal device sends the Preamble to the network device, it can open a random access response window (ra-ResponseWindow), detect the physical downlink control channel (PDCCH) in the ra-ResponseWindow, and obtain the physical downlink scheduled by the PDCCH Shared channel (Physical Downlink Shared Channel, PDSCH).
  • the PDSCH includes the RAR corresponding to the Preamble.
  • Step 3 The terminal device sends Msg 3.
  • the terminal device After receiving the RAR message, the terminal device determines whether the RAR is its own RAR message. For example, the terminal device can use the preamble index to check.
  • the Msg3 message is sent in the resource, or, after the terminal device transmits the Msg3, when it detects that there is an uplink authorization for scheduling the Msg3 retransmission, the Msg3 retransmission is performed.
  • the Msg3 is transmitted through a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), which is called Msg3-PUSCH.
  • PUSCH Physical Uplink Shared Channel
  • the network device can use the uplink authorization scrambled by TC-RNTI to schedule the retransmission of Msg3 for the terminal device.
  • Step 4 The network device sends Msg 4 to the terminal device, including a contention resolution message.
  • the network device can use the downlink authorization of the TC-RNTI scrambling code to schedule the retransmission of Msg4 for the terminal device.
  • the terminal device After receiving the downlink authorization corresponding to Msg4, the terminal device will feed back the hybrid automatic repeat request response (Hybrid Automatic Repeat request Acknowledgement, HARQ-ACK) information corresponding to Msg4 on the corresponding PUCCH resource.
  • Hybrid Automatic Repeat request Acknowledgement Hybrid Automatic Repeat request Acknowledgement, HARQ-ACK
  • the two-step random access process is as follows:
  • Step 1 The terminal device sends a message A (ie Msg A) to the network device through PRACH and PUSCH.
  • MsgA includes the Preamble transmitted on the PRACH and the Msg A-PUSCH. After the Msg A is transmitted, the terminal device monitors the response from the network side in the configured window.
  • Step 2 After receiving MsgA, the network device sends a random access response to the terminal device, that is, message B (ie MsgB)
  • the terminal device After receiving the scheduling corresponding to the MsgB, the terminal device will feed back the HARQ-ACK information corresponding to the MsgB on the corresponding Physical Uplink Control Channel (PUCCH) resource.
  • PUCCH Physical Uplink Control Channel
  • the terminal determines the frequency domain position of the PRACH resource (also referred to as RO resource, RACH Occasion) according to the frequency domain start position configuration parameter of the PRACH resource notified by the network device (for example, the high-level parameter msg1-FrequencyStart or msgA-RO-FrequencyStart).
  • the frequency domain start position configuration parameter is used to indicate the frequency of the first PRACH resource in the frequency domain in the uplink BWP (for example, uplink initial BWP or uplink activated BWP) relative to the first PRB (i.e. PRB 0) of the uplink BWP. Domain offset.
  • the network device can also notify the number of PRACH resources of frequency division multiplexing (FDM) on the same time unit through high-level parameters (for example, msg1-FDM or msgA-RO-FDM).
  • the terminal may determine the frequency domain position of the PRACH resource included in the uplink BWP according to the frequency domain start position configuration parameter and the number of PRACH resources FDM.
  • the terminal determines that the frequency domain start position offset value is 2 according to the indication information of the network device, the number of RBs occupied by a PRACH resource is 12, and the number of PRACH resource FDM is 4, the terminal can determine
  • the four PRACH resources included in the uplink BWP are shown in Figure 2.
  • the unit channel bandwidth of the communication device during LBT can include 20MHz, and because the signal transmission needs to meet the indicator requirements of the channel occupation bandwidth, a long sequence of PRACH sequences is introduced in the NR-U system .
  • the PRACH is 15kHz subcarrier spacing (Subcarrier spacing, SCS)
  • the length of the PRACH sequence is 1151
  • the PRACH is 30kHz subcarrier spacing
  • the length of the PRACH sequence is 571.
  • PRACH subcarrier spacing and PUSCH subcarrier spacing supported on the shared spectrum and the number of RBs occupied by a corresponding PRACH resource are shown in Table 1 below. Among them, the number of RBs occupied by PRACH is expressed in units of RBs of PUSCH.
  • the concept of RB set is introduced, where one RB set includes a group of continuous RBs, one RB set corresponds to an integer number, for example, one LBT bandwidth, and one LBT bandwidth is 20 MHz.
  • the network device may configure at least one RB set for the terminal device.
  • a guard band in the carrier may be included between two adjacent RB sets, and the guard band in the carrier includes an integer number of RBs.
  • the carrier may be an uplink carrier or a downlink carrier of the terminal equipment.
  • the size of the guard band in the carrier is obtained according to the protocol.
  • the guard band in the carrier is obtained according to the configuration parameters of the network device, such as the starting position of the RB set configured by the network device and the number of RBs included in the RB set.
  • the guard band in the carrier may not be included between two adjacent RB sets.
  • the terminal device can consider the RB included in the guard band in the carrier The number is 0.
  • the configured or activated BWP of the terminal device completely overlaps with at least one RB set.
  • the configured or activated BWP of the terminal device may partially overlap with at least one RB set.
  • the transmission in the random access process occurs on the initial bandwidth part (Band Width Part, BWP). If the uplink BWP only includes 20 MHz, or the uplink BWP includes only one RB set, then PRACH, Msg3PUSCH initial transmission, Msg3PUSCH retransmission, or Msg4 corresponding PUCCH transmission can occur in the same RB set.
  • BWP Band Width Part
  • the activated uplink BWP of the terminal equipment can be configured based on UE (UE-specific), but the PRACH resource is configured based on the cell (Cell-specific).
  • the set of RBs corresponding to the PRACH resource The size may be different, so that different terminal devices may have ambiguities in their understanding of the resources allocated by the network device.
  • a BWP can also include multiple RB sets, in these cases, how to perform uplink transmission in the random access process is a problem that needs to be solved.
  • this application proposes an uplink resource allocation scheme used in the random access process, which enables different terminal devices in the RRC connected state to determine the RB set and bandwidth used to transmit the uplink channel in the random access process. So as to avoid the ambiguity of understanding between network equipment and terminal equipment.
  • uplink transmission introduces a comb-tooth structure-based resource allocation method.
  • the definition of the comb tooth structure is as follows: comb tooth 0 (interlace 0) is defined from CRB 0 based on the common resource block (Common Resource Block, CRB) grid, and each comb tooth includes the resource block (Resource Block) , RB)
  • the frequency domain interval between two adjacent RBs is M RBs.
  • the manner in which the network device allocates frequency domain resources to the terminal device includes: if the uplink BWP includes one or more RB sets, for the comb-based PUSCH transmission on the uplink BWP ,
  • the frequency domain resource allocation domain (frequency domain resource allocation, FDRA) in the authorization information for assigning frequency domain resources to the PUSCH may include X+Y bits, where X bits are used to indicate the assigned comb index, and Y bits are used It indicates which RB set or sets in the uplink BWP are allocated to the terminal device.
  • the authorization information may only include X bits to indicate The allocated comb index does not include Y-bit information for indicating the RB set in the uplink BWP. Therefore, in this case, the terminal device needs to determine which RB set or sets in the uplink BWP are allocated for uplink transmission through other methods.
  • FIG. 3 is a schematic interaction diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 3, the method 200 may include at least part of the following content:
  • a terminal device receives first scheduling information sent by a network device, where the first scheduling information is used to schedule the terminal device to transmit a first uplink channel through a first uplink bandwidth part BWP, and the first uplink BWP includes one or more A set of resource block RBs, the first uplink BWP corresponds to a physical random access channel PRACH resource configuration;
  • the terminal device determines, according to at least one of the first scheduling information, the initial uplink BWP, and the first PRACH resource in the PRACH resource configuration, to transmit data through the first frequency domain resource in the first RB set.
  • the first uplink channel The first uplink channel.
  • the first uplink BWP includes one or more RB sets.
  • the BWP includes multiple RB sets, two adjacent RB sets in the multiple RB sets include a guard band in the carrier, or one of the two adjacent RB sets in the multiple RB sets The interval does not include the guard band within the carrier.
  • the first uplink BWP may include an initial uplink BWP, or may also include an activated uplink BWP in an RRC connected state.
  • the terminal device determines the guard band included in the first uplink BWP according to the guard band configuration information of the network device or according to preset information (for example, agreed upon in a protocol).
  • the guard band may include the guard band in the carrier, or the number of RBs included in the guard band may be 0, that is, the guard band in the carrier is not included.
  • the size of the guard band in the carrier is obtained according to the protocol.
  • the guard band in the carrier is obtained according to the configuration parameters of the network device. For example, the network device indicates the starting position of the guard band in the carrier and the number of RBs included in the guard band.
  • the configuration parameters of the guard band are as follows:
  • the configuration parameter of the guard band is UE-specific configuration signaling.
  • the configuration parameter of the guard band is Cell-specific configuration signaling.
  • the configuration parameters of the protection band are configured in at least one of the following RRC configuration parameters:
  • BWP-UplinkDedicated BWP-DownlinkDedicated
  • ServingCellConfigCommon BWP-UplinkCommon
  • BWP-DownlinkCommon BWP-DownlinkCommon.
  • the physical random access channel PRACH resource configuration corresponding to the first uplink BWP may refer to determining the PRACH resource on the first uplink BWP according to the PRACH resource configuration, or
  • the first uplink BWP is an uplink BWP configured with PRACH resources, or the configuration parameters of the first uplink BWP include configuration parameters used for a random access process.
  • the PUSCH resource can also be determined, for example, used to transmit the PUSCH in the MsgA in the two-step random access process, or called the MsgA-PUSCH resource.
  • the PRACH resource configuration may include a first configuration parameter and/or a second configuration parameter.
  • the first configuration parameter is used by the terminal device to determine the frequency domain position of the PRACH resource (also referred to as a random access channel opportunity (RACH Occasion, RO) or RACH transmission opportunity) in the first uplink BWP.
  • the second configuration parameter is used by the terminal device to determine the frequency domain position of the MsgA-PUSCH resource (also referred to as PUSCH Occasion (PUSCH Occasion, PO), or MsgA-PUSCH transmission opportunity) in the first uplink BWP.
  • the first configuration parameter may include a PRACH resource frequency domain start position configuration parameter (for example, a high-level parameter msg1-FrequencyStart or msgA-RO-FrequencyStart) and/or frequency division multiplexing (Frequency -Division multiplexing, FDM) the number of PRACH resources (for example, msg1-FDM or msgA-RO-FDM).
  • the terminal device may determine the frequency domain position of the PRACH resource included in the uplink BWP according to the PRACH resource frequency domain start position configuration parameter and the number of FDM PRACH resources.
  • the PRACH resource frequency domain start position configuration parameter includes a first frequency domain start position configuration parameter, which is used to indicate that the first PRACH resource in the frequency domain in the uplink BWP (for example, the initial uplink BWP or the uplink activated BWP) is relative to the first PRACH resource in the frequency domain.
  • the first physical resource block (PRB) of the uplink BWP is the frequency domain offset of PRB 0.
  • the second configuration parameter may include a PUSCH resource frequency domain start position configuration parameter (for example, frequencyStartMsgA-PUSCH-r16) and/or the number of PO resources of frequency division multiplexing FDM on the same time unit (for example, nrofMsgA). -PO-FDM-r16).
  • the terminal device may determine the frequency domain position of the PO resource included in the uplink BWP according to the frequency domain start position configuration parameter of the PUSCH resource and the number of FDM PO resources.
  • the PUSCH resource frequency domain start position configuration parameter is used to indicate the frequency domain offset of the first PO resource in the frequency domain of the uplink BWP relative to the first PRB of the uplink BWP, that is, PRB 0.
  • the parameters used for the random access procedure are Cell-specific configuration.
  • the parameters used for the random access process in an uplink BWP can be configured through high-layer signaling (for example, the uplink public BWP (BWP-UplinkCommon)).
  • the network device can send it to the terminal device through public radio resource control (Radio Resource Control, RRC) signaling or dedicated RRC signaling. If it is sent to the terminal device through dedicated RRC signaling, the network device needs to ensure that different terminal devices in the cell have the same understanding of the Cell-specific configuration parameters.
  • RRC Radio Resource Control
  • the network device can send the Cell-specific configuration parameters on the initial uplink BWP to the terminal device through system information (system information), and for other serving cells, the network device can use dedicated signaling (dedicated signaling). Send Cell-specific configuration parameters to the terminal device.
  • system information system information
  • dedicated signaling dedicated signaling
  • the uplink BWP of different terminal devices is configured in UE-specific manner. Therefore, the network When a device configures an uplink BWP including PRACH resources for a terminal device, it needs to meet at least one of the following conditions:
  • the starting point of the uplink BWP of different terminal devices is the same. Therefore, different terminal devices can determine the frequency domain position of the PRACH resource included in the uplink BWP through the PRACH resource frequency domain start position configuration parameter and the number of FDM PRACH resources.
  • the uplink BWPs of different terminal devices need to include all PRACH resources. Therefore, in this case, different terminal devices have the same understanding of the mapping relationship between SSB resources and PRACH resources.
  • Figure 4 shows an example of the above configuration.
  • the uplink BWP includes 4 RB sets (RB set 0 to RB set 3), where RB set 0 includes 4 PRACH resources (PRACH resource 0 to PRACH resource 3); for UE2 , The uplink BWP includes 2 RB sets (RB set 0 to RB set 1), where RB set 0 includes 4 PRACH resources; for UE3, the uplink BWP includes 1 RB set (RB set 0), where, RB set 0 includes 4 PRACH resources.
  • the uplink BWP of different UEs may be UE-specifically configured, for different UEs, the number of RBs included in RB set 0 may be the same or different. In this way, when performing uplink transmission, different UEs will have ambiguities in the interpretation of the uplink allocated resources, resulting in inconsistent understanding between network equipment and terminal equipment.
  • the first set of RBs for transmitting the first uplink channel can be determined according to at least one of the first scheduling information, the information of the initial uplink BWP, and the first PRACH resource in the PRACH resource configuration.
  • the first frequency domain resource is determined in the first RB set to transmit the first uplink channel/signal.
  • the first RB set is a candidate frequency domain resource set used to transmit the first uplink channel.
  • the first RB set may include one RB set, or may also include multiple RB sets, that is, the first uplink channel may be transmitted through frequency domain resources in one RB set; or, may also be transmitted through multiple RB sets Frequency domain resource transmission in.
  • the first frequency domain resource may include frequency domain resources in one RB set, or may also include frequency domain resources in multiple RB sets.
  • the first uplink channel is used for uplink transmission in a random access process, or uplink transmission related to a random access process, for example, uplink transmission of HARQ-ACK feedback information corresponding to Msg4.
  • the first uplink channel includes at least one of the following:
  • the first scheduling information includes frequency domain resource allocation information, and the frequency domain resource allocation information is used to indicate resource allocation determined according to the first RB set.
  • the frequency domain resource allocation information includes comb index indication information, the comb index indication information indicates a first comb, and the first frequency domain resource includes the first comb and the first comb.
  • the first scheduling information is used to schedule uplink transmission in the random access process, or uplink transmission related to the random access process, for example, HARQ-ACK feedback information corresponding to Msg4.
  • the first scheduling information includes at least one of the following:
  • Random access response RAR uplink authorization information temporary cell radio network temporary identifier TC-RNTI scrambling code uplink authorization information, and TC-RNTI scrambling code downlink authorization information.
  • the uplink grant information in the RAR can be used to schedule the initial transmission of Msg3-PUSCH.
  • the uplink authorization information includes RAR uplink grant.
  • the uplink grant information of the TC-RNTI scrambling code can be used to schedule the retransmission of the Msg3-PUSCH.
  • the uplink grant information includes the DCI format 0_0 of the TC-RNTI scrambling code.
  • the downlink grant information of the TC-RNTI scrambling code is used to schedule HARQ-ACK information corresponding to Msg4.
  • the downlink grant information includes the DCI format 1_0 of the TC-RNTI scrambling code.
  • the first scheduling information may include information of the first uplink BWP.
  • the terminal device may determine a first set of RBs for transmitting the first uplink channel according to the first scheduling information.
  • the terminal device may determine the first set of RBs for transmitting the first uplink channel according to the first scheduling information may include: determining the start of the first set of RBs according to the first scheduling information Starting position and/or the number of RBs included in the first RB set.
  • the terminal device may determine the frequency domain resource allocation in the first RB set used for transmitting the first uplink channel according to the first scheduling information.
  • the terminal device may determine the starting position of the first RB set and/or the number of RBs included according to whether the first uplink BWP includes an initial uplink BWP.
  • the first uplink BWP includes the initial uplink BWP
  • the terminal device may determine the first RB set according to other preset rules.
  • the first RB set includes the first RB set in the first uplink BWP, such as RB set 0.
  • the first uplink BWP includes an initial uplink BWP, which may be: the subcarrier interval and cyclic prefix CP corresponding to the first uplink BWP are the same as the subcarrier interval and CP corresponding to the initial uplink BWP, and
  • the RB in the first uplink BWP includes the RB in the initial uplink BWP.
  • the first uplink BWP does not include the initial uplink BWP, which may be: the subcarrier interval corresponding to the first uplink BWP is different from the subcarrier interval corresponding to the initial uplink BWP, or the first uplink BWP
  • the corresponding CP is different from the CP corresponding to the initial uplink BWP, or the RB in the first uplink BWP does not include at least one of the RBs in the initial uplink BWP.
  • the PRACH resource is located in at least two RB sets in the first uplink BWP (that is, the PRACH resource crosses the RB set), or the RB corresponding to the PRACH resource is protected in the first uplink BWP
  • the RBs included in the band overlap in the frequency domain (in other words, the PRACH resources are at least partially located on the guard band), or the first uplink BWP includes at least one PRACH resource and the RBs included in the two RB sets overlap in the frequency domain. overlapping.
  • the terminal device may determine the first RB set according to the first PRACH resource in the PRACH resource configuration corresponding to the first uplink BWP.
  • the first PRACH resource may be a specific PRACH resource in the PRACH resource configuration, which is not limited in this application.
  • the first PRACH resource includes the first PRACH resource in the PRACH resource configuration; or,
  • the first PRACH resource includes the last PRACH resource in the PRACH resource configuration; or,
  • the first PRACH resource includes a PRACH resource for sending a PRACH by the terminal device, that is, the first RPACH resource includes a PRACH resource for sending an Msg1.
  • the starting position of the first RB set is determined according to the starting position of the RB set corresponding to the first PRACH resource.
  • the starting position of the first RB set is the same as the starting position of the RB set corresponding to the first PRACH resource.
  • the number of RBs included in the first RB set is determined according to the number of RBs included in the RB set corresponding to the first PRACH resource.
  • the terminal device may determine the first RB set according to the RB set corresponding to the first RB in the first PRACH resource.
  • the terminal device determining the first RB set according to the RB set corresponding to the first RB in the first PRACH resource may include: the terminal device according to the first PRACH resource The start position of the RB set corresponding to the first RB determines the start position of the first RB set, and/or the number of RBs included in the RB set corresponding to the first RB in the first PRACH resource is determined The number of RBs included in the first RB set.
  • the starting position of the first RB set is determined according to the starting position of the first PRACH resource.
  • the starting position of the first RB set is the same as the starting position of the first PRACH resource.
  • the starting position of the first RB set is determined according to the position of the first RB in the first PRACH resource.
  • the starting position of the first RB set is the same as the position of the first RB in the first PRACH resource.
  • the starting position of the RB set corresponding to the first RB may be determined as the starting position of the first RB set.
  • the number of RBs included in the RB set corresponding to the first RB may be determined as the number of RBs included in the first RB set.
  • the terminal device may also determine the number of RBs included in the first RB set according to other agreed rules.
  • the number of RBs included in the first RB set is determined according to the number of RBs included in the initial uplink BWP, for example, the number of RBs included in the initial uplink BWP is determined as the number of RBs included in the first RB set .
  • the number of RBs included in the first RB set is determined according to a preset value. For example, it is determined that the number of RBs included in the first RB set is the preset value.
  • the size is not limited.
  • the preset value is associated with the subcarrier interval. For example, if the subcarrier interval corresponding to the first uplink BWP is 30 kHz, the preset value may be 51. For another example, if the subcarrier interval corresponding to the first uplink BWP is 15 kHz, the preset value may be 106. For another example, if the subcarrier interval corresponding to the first uplink BWP is 60 kHz, the preset value may be 24.
  • the number of RBs included in the first RB set is determined according to configuration parameters of the network device.
  • the number of RBs configured by the network device may be determined as the number of RBs included in the first RB set.
  • the first RB may be an RB at a specific position in the first PRACH resource, which is not limited in this application.
  • the first RB includes the first RB of the first PRACH resource; or,
  • the first RB includes the last RB of the first PRACH resource; or,
  • the first RB includes the first RB in the first PRACH resource that overlaps with an RB set; or,
  • the first RB includes the last RB in the first PRACH resource that overlaps with an RB set.
  • the first uplink BWP includes multiple RB sets
  • a first guard band is included between two adjacent RB sets in the multiple RB sets, and the first RB and the first protection The bands do not overlap in the frequency domain.
  • the first uplink BWP corresponds to 4 PRACH resources (PRACH resources 0 to 3), and the terminal device can determine the first RB in PRACH resource 0 or the start of the RB set corresponding to PRACH resource 0.
  • the starting position is the starting position of the first RB set, that is, the starting position of RB set 0.
  • the terminal device may determine that the number of RBs included in the first RB set is the same as the number of RBs included in the initial uplink BWP. That is, in this example, the starting position of the first RB set is the starting position of RB set 0, and the length is the length of the initial uplink BWP.
  • the first uplink BWP corresponds to 4 PRACH resources (PRACH resources 0 to 3), PRACH2 is the PRACH resource for transmitting Msg1, and the terminal device can determine that the first RB in PRACH resource 2 corresponds to The starting position of the RB set is the starting position of the first RB set, that is, the starting position of the RB set 2.
  • the terminal device may determine that the number of RBs included in the first RB set is the same as the number of RBs included in the initial uplink BWP. That is, in this example, the starting position of the first RB set is the starting position of RB set 2, and the length is the length of the initial uplink BWP.
  • the first protective tape may include one protective tape, or may also include multiple protective tapes.
  • one RB set corresponds to one LBT bandwidth, or one RB set corresponds to 20 MHz bandwidth.
  • the terminal device determines the first set of RBs used to transmit the first uplink channel according to the first scheduling information of the first uplink channel or the specific PRACH resource in the PRACH resource configuration corresponding to the uplink BWP. It is helpful to ensure that terminal devices in different stages (such as the initial access stage and the RRC connected state stage) have consistent understanding of uplink resource allocation, and network devices and terminal devices have consistent understanding of uplink resource allocation.
  • Fig. 7 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes:
  • the communication unit 310 is configured to receive first scheduling information sent by a network device, where the first scheduling information is used to schedule the terminal device to transmit a first uplink channel through a first uplink bandwidth part BWP, and the first uplink BWP includes one Or multiple resource block RB sets, the first uplink BWP corresponds to the physical random access channel PRACH resource configuration;
  • a processing unit configured to determine, according to at least one of the first scheduling information, the initial uplink BWP, and the first PRACH resource in the PRACH resource configuration, to transmit the first frequency domain resource in the first RB set The first uplink channel.
  • the first RB set is determined according to the first PRACH resource; or,
  • the first uplink BWP includes the initial uplink BWP
  • the first set of RBs is a set of RBs included in the initial uplink BWP.
  • the first RB set is determined according to the RB set corresponding to the first RB in the first PRACH resource.
  • the first RB includes the first RB of the first PRACH resource; or,
  • the first RB includes the last RB of the first PRACH resource; or,
  • the first RB includes the first RB in the first PRACH resource that overlaps with an RB set; or,
  • the first RB includes the last RB in the first PRACH resource that overlaps with an RB set.
  • the first uplink BWP includes a plurality of RB sets, a first guard band is included between two adjacent RB sets in the plurality of RB sets, and the first RB and the first guard band There is no overlap in the frequency domain.
  • the first RB set is determined according to the first PRACH resource, and includes:
  • the starting position of the first RB set is determined according to the starting position of the RB set corresponding to the first PRACH resource; or,
  • the starting position of the first RB set is determined according to the starting position of the RB set corresponding to the first RB in the first PRACH resource.
  • the first PRACH resource includes the first PRACH resource in the PRACH resource configuration; or,
  • the first PRACH resource includes the last PRACH resource in the PRACH resource configuration; or,
  • the first PRACH resource includes a PRACH resource for sending a PRACH by the terminal device.
  • the number of RBs included in the first RB set is determined according to the number of RBs included in the initial uplink BWP; or,
  • the number of RBs included in the first RB set is determined according to a preset value; or,
  • the number of RBs included in the first RB set is determined according to configuration parameters of the network device.
  • the first scheduling information includes frequency domain resource allocation information, and the frequency domain resource allocation information is used to indicate resource allocation determined according to the first RB set.
  • the frequency domain resource allocation information includes comb index indication information, the comb index indication information indicates a first comb, and the first frequency domain resource includes the first comb and the first comb.
  • the first scheduling information includes at least one of the following:
  • the uplink authorization information in the random access response the uplink authorization information of the temporary cell radio network temporary identifier TC-RNTI scrambling code, and the downlink authorization information of the TC-RNTI scrambling code.
  • the first uplink channel includes at least one of the following:
  • the first uplink BWP includes an activated uplink BWP in an RRC connected state.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the terminal device 300 are to implement the method shown in FIG. 3, respectively.
  • the corresponding process of the terminal equipment in 200 will not be repeated here.
  • FIG. 8 shows a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 includes:
  • the communication unit 410 is configured to send first scheduling information to a terminal device, where the first scheduling information is used to schedule the terminal device to transmit a first uplink channel through a first uplink bandwidth part BWP, and the first uplink BWP includes one or Multiple resource block RB sets, the first uplink BWP corresponds to a physical random access channel PRACH resource configuration, at least one of the first scheduling information, the initial uplink BWP, and the first PRACH resource in the PRACH resource configuration , Used for the terminal device to determine to transmit the first uplink channel through the first frequency domain resource in the first RB set.
  • the first RB set is determined according to the first PRACH resource; or,
  • the first uplink BWP includes the initial uplink BWP
  • the first set of RBs is a set of RBs included in the initial uplink BWP.
  • the first RB set is determined according to the RB set corresponding to the first RB in the first PRACH resource.
  • the first RB includes the first RB of the first PRACH resource; or,
  • the first RB includes the last RB of the first PRACH resource; or,
  • the first RB includes the first RB in the first PRACH resource that overlaps with an RB set; or,
  • the first RB includes the last RB in the first PRACH resource that overlaps with an RB set.
  • the first uplink BWP includes multiple RB sets, and a first guard band is included between two adjacent RB sets in the multiple RB sets, and the first RB is connected to The first guard band does not overlap in the frequency domain.
  • the first RB set is determined according to the first PRACH resource, and includes:
  • the starting position of the first RB set is determined according to the starting position of the RB set corresponding to the first PRACH resource; or,
  • the starting position of the first RB set is determined according to the starting position of the RB set corresponding to the first RB in the first PRACH resource.
  • the first PRACH resource includes the first PRACH resource in the PRACH resource configuration; or, the first PRACH resource includes the last PRACH resource in the PRACH resource configuration; or, the first PRACH resource in the PRACH resource configuration; or A PRACH resource includes the PRACH resource used by the terminal device to send the PRACH.
  • the number of RBs included in the first RB set is determined according to the number of RBs included in the initial uplink BWP; or,
  • the number of RBs included in the first RB set is determined according to a preset value; or,
  • the number of RBs included in the first RB set is determined according to configuration parameters of the network device.
  • the first scheduling information includes frequency domain resource allocation information, and the frequency domain resource allocation information is used to indicate resource allocation determined according to the first RB set.
  • the frequency domain resource allocation information includes comb index indication information, the comb index indication information indicates a first comb, and the first frequency domain resource includes the first comb and the first comb.
  • the first scheduling information includes at least one of the following:
  • the uplink authorization information in the random access response the uplink authorization information of the temporary cell radio network temporary identifier TC-RNTI scrambling code, and the downlink authorization information of the TC-RNTI scrambling code.
  • the first uplink channel includes at least one of the following:
  • the first uplink BWP includes an activated uplink BWP in an RRC connected state.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the network device 400 may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 400 are to implement the method shown in FIG. 3, respectively.
  • the corresponding process of the network equipment in 200 will not be repeated here.
  • FIG. 9 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 9 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may specifically be a network device in an embodiment of the application, and the communication device 500 may implement the corresponding process implemented by the network device in each method of the embodiment of the application.
  • the communication device 500 may implement the corresponding process implemented by the network device in each method of the embodiment of the application.
  • details are not repeated here. .
  • the communication device 500 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 500 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • Fig. 10 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 10 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the apparatus 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the device 600 may further include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 600 may further include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 11 is a schematic block diagram of a communication system 700 according to an embodiment of the present application. As shown in FIG. 11, the communication system 700 includes a terminal device 710 and a network device 720.
  • the terminal device 710 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 720 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信的方法、终端设备和网络设备,终端设备接收网络设备发送的第一调度信息,所述第一调度信息用于调度所述终端设备通过第一上行带宽部分BWP传输第一上行信道,所述第一上行BWP包括一个或多个资源块RB集合,所述第一上行BWP对应物理随机接入信道PRACH资源配置;所述终端设备根据所述第一调度信息、初始上行BWP和所述PRACH资源配置中的第一PRACH资源中的至少一项,确定通过第一RB集合中的第一频域资源传输所述第一上行信道。

Description

无线通信的方法、终端设备和网络设备
本申请要求于2020年06月02日提交中国专利局、申请号为202010491795.6、发明名称为“无线通信的方法、终端设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在非授权频谱上的新空口(New Radio-based access to unlicensed spectrum,NR-U)系统中,可以支持两步和四步随机接入。以四步随机接入为例,网络设备可以给终端设备配置物理随机接入信道(Physical Random Access Channel,PRACH)资源,终端设备可以选择一个PRACH资源发送前导码(或称,消息1,Message 1,Msg 1),进一步地网络设备还可以发送上行授权信息,所述上行授权信息用于指示终端设备确定传输消息3(Msg 3)的上行资源。
在宽带资源配置中,引入了资源块(Resource Block,RB)集合的概念,其中,一个RB集合包括一组连续的RB,一个RB集合对应至少一个LBT带宽,一个先听后说(Listen Before Talk,LBT)带宽包括20MHz。网络设备可以为终端设备配置至少一个RB集合。此情况下,终端设备如何确定用于随机接入过程中的上行传输RB集合是一项急需解决的问题。
发明内容
本申请提供了一种无线通信的方法、终端设备和网络设备,有利于保证不同终端设备对于上行资源分配的理解一致,以及网络设备和终端设备对于上行资源分配的理解一致。
第一方面,提供了一种无线通信的方法,包括:终端设备接收网络设备发送的第一调度信息,所述第一调度信息用于调度所述终端设备通过第一上行带宽部分BWP传输第一上行信道,所述第一上行BWP包括一个或多个资源块RB集合,所述第一上行BWP对应物理随机接入信道PRACH资源配置;所述终端设备根据所述第一调度信息、初始上行BWP和所述PRACH资源配置中的第一PRACH资源中的至少一项,确定通过第一RB集合中的第一频域资源传输所述第一上行信道。
第二方面,提供了一种无线通信的方法,包括:网络设备向终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备通过第一上行带宽部分BWP传输第一上行信道,所述第一上行BWP包括一个或多个资源块RB集合,所述第一上行BWP对应物理随机接入信道PRACH资源配置,其中,所述第一调度信息、初始上行BWP和所述PRACH资源配置中的第一PRACH资源中的至少一项,用于所述终端设备确定通过第一RB集合中的第一频域资源传输所述第一上行信道。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备通过根据第一上行信道的第一调度信息或上行BWP对应的PRACH资源配置中的特定PRACH资源确定用于传输所述第一上行信道的第一RB集合,有利于保证不同阶段(例如初始接入阶段和RRC连接态阶段)的终端设备对于上行资源分配的理解一致,以及网络设备和终端设备对于上行资源分配的理解一致。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的PRACH资源配置的示意性图。
图3是根据本申请实施例提供的一种无线通信的方法的示意性交互图。
图4是PRACH资源和上行BWP配置的示意图。
图5是一种跨RB集合的PRACH资源配置示意图。
图6是另一种跨RB集合的PRACH资源配置示意图。
图7是根据本申请实施例提供的一种终端设备的示意性框图。
图8是根据本申请实施例提供的一种网络设备的示意性框图。
图9是根据本申请实施例提供的一种通信设备的示意性框图。
图10是根据本申请实施例提供的一种装置的示意性框图。
图11是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity, WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于非授权频谱,或者说共享频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
可选地,在本申请实施例中的配置参数或配置信息或配置信令包括无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制单元(Media Access Control Control Element,MAC CE)中的至少一种。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿 戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备可以具有移动特性,例如,网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
非授权频谱(也可以称为共享频谱或免授权频谱)是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“先侦听后传输(Listen Before Talk,LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupancy Time,MCOT)。
又例如,为了避免对在非授权频谱信道上传输的信号造成子带干扰,也为了提高通信设备在对非授权频谱的信道进行检测时的检测准确性,在非授权频谱信道上传输的信号需要至少占用该信道带宽的一定比例。例如,5GHz频段为信号占用信道带宽的80%,60GHz频段为信号占用信道带宽的70%。以20MHz为例,如果要满足信号占用信道带宽的80%的指标,那么信号占用的带宽至少应为16MHz。
又例如,为了避免在非授权频谱的信道上传输的信号的功率太大,影响该信道上的其他重要信号,例如雷达信号等的传输,法规规定了通信设备使用非授权频谱的信道进行信号传输时的最大功率和最大功率谱密度。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
在NR-U系统中,可以支持基于竞争的四步随机接入过程和两步随机接入过程。
具体地,四步随机接入包括:
步骤1,终端设备向网络设备发送随机接入前导码(Preamble,也即Msg 1)。
其中,随机接入前导码也可以称为前导码、随机接入前导码序列、前导码序列等。
具体地,终端设备可以选择物理随机接入信道(Physical Random Access Channel,PRACH)资源,PRACH资源可以包括时域资源、频域资源和码域资源。
步骤2,网络设备向终端设备发送随机接入响应(Random Access Response,RAR,也即Msg 2)。该RAR可以通知终端设备发送Msg3时可以使用的上行资源信息,为终端设备分配临时小区无线网络临时标识符(Temporary Cell Radio Network Temporary Identity,TC-RNTI),以及给终端设备提供时间提前量(TA command)。
终端设备向网络设备发送Preamble后,可以开启一个随机接入响应窗口(ra-ResponseWindow),在该ra-ResponseWindow内检测物理下行控制信道(Physical Downlink Control Channel,PDCCH),获得该PDCCH调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。其中,该PDSCH中包括Preamble对应的RAR。
步骤3,终端设备发送Msg 3。
终端设备在收到RAR消息后,判断该RAR是否为属于自己的RAR消息,例如终端设备可以利用前导码索引进行核对,在确定是属于自己的RAR消息后,在所述RAR消息所指定的上行资源中发送Msg3消息,或者,终端设备在传输Msg3之后,在检测到有调度Msg3重传的上行授权时,进行Msg3的重传。其中,该Msg3通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输,称为Msg3-PUSCH。
可选地,若Msg3上行传输失败,网络设备可以使用TC-RNTI加扰的上行授权为终端设备调度Msg3的重传。
步骤4,网络设备向终端设备发送Msg 4,包括冲突解决消息(contention resolution)。
可选地,若Msg4下行传输失败,网络设备可以使用TC-RNTI扰码的下行授权为终端设备调度Msg4的重传。
进一步地,终端设备接收到Msg4对应的下行授权后,会在对应的PUCCH资源上反馈Msg4对应的混合自动重传请求应答(Hybrid Automatic Repeat request Acknowledgement,HARQ-ACK)信息。
两步随机接入过程如下:
步骤1:终端设备通过PRACH和PUSCH向网络设备发送消息A(即Msg A)。
其中,MsgA包含在PRACH上传输的Preamble和在Msg A-PUSCH,在Msg A传输后,终端设备在配置的窗口内监听网络侧的响应。
步骤2:网络设备接收到MsgA后向终端设备发送随机接入相应,即消息B(即MsgB)
终端设备接收到MsgB对应的调度后,会在对应的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源上反馈MsgB对应的HARQ-ACK信息。
终端会根据网络设备通知的PRACH资源频域起始位置配置参数(例如高层参数msg1-FrequencyStart或msgA-RO-FrequencyStart)来确定PRACH资源(也称为RO资源,RACH Occasion)的频域位置。具体地,频域起始位置配置参数用于指示上行BWP(例如上行初始BWP或上行激活BWP)中频域上第一个PRACH资源相对于该上行BWP的第一个PRB(即PRB 0)的频域偏移。网络设备还可以通过高层参数(例如msg1-FDM或msgA-RO-FDM)通知同一时间单元上频分复用(FDM)的PRACH资源的个数。终端可以根据该频域起始位置配置参数和PRACH资源FDM的个数来确定该上行BWP中包括的PRACH资源的频域位置。
例如,在上行BWP上,终端根据网络设备的指示信息确定频域起始位置偏移值为2,一个PRACH资源占用的RB个数为12,PRACH资源FDM的个数为4,则终端可以确定该上行BWP中包括的4个PRACH资源,如图2所示。
由于在共享频谱上,通信设备在进行LBT时的单位信道带宽大小可以包括20MHz,由于在进行信号传输时需要满足信道占用带宽的指标要求,因此在NR-U系统中引入了长序列的PRACH序列。其中,在PRACH为15kHz子载波间隔(Subcarrier spacing,SCS)下,PRACH序列的长度为1151,在PRACH为30kHz子载波间隔下,PRACH序列的长度为571。
共享频谱上支持的PRACH子载波间隔和PUSCH子载波间隔的组合以及对应的一个PRACH资源占用的RB个数如下表1所示。其中,PRACH占用RB个数是以PUSCH的RB为单位表示的。
表1
Figure PCTCN2020120899-appb-000001
在宽带资源配置中,引入了RB集合的概念,其中,一个RB集合包括一组连续的RB,一个RB集合对应整数个例如一个LBT带宽,一个LBT带宽为20MHz。网络设备可以为终端设备配置至少一个RB集合。当网络设备为终端设备配置一个载波内包括多个RB集合时,相邻两个RB集合之间可以包括载波内的保护带,该载波内的保护带包括整数个RB。其中,该载波可以为终端设备的上行载波或下行载波。一种可选的情况下,该载波内的保护带的大小是根据协议获取的。另一种可选的情况下,该载波内的保护带是根据网络设备的配置参数例如网络设备配置的RB集合的起始位置和RB集合包括的RB个数获取的。或者,当网络设备为终端设备配置多个RB集合时,相邻两个RB集合之间也可以不包括载波内的保护带,在该情况下,终端设备可以认为载波内的保护带包括的RB个数为0。可选地,终端设备被配置或被激活的BWP与至少一个RB集合完全重叠。可选地,终端设备被配置或被激活的BWP可以与至少一个RB集合部分重叠。
在初始接入阶段,随机接入过程中的传输发生在初始带宽部分(Band Width Part,BWP)上。如果上行BWP只包括20MHz,或者说上行BWP只包括一个RB集合,那么PRACH,Msg3PUSCH的初传,Msg3PUSCH的重传,或者Msg4对应的PUCCH传输可以发生在相同的RB集合内。
在RRC连接态,终端设备的激活上行BWP可以是基于UE(UE-specific)配置的,然而PRACH资源是基于小区(Cell-specific)配置的,对于不同的终端设备,PRACH资源对应的RB集合的大小可能不同,这样不同的终端设备对于网络设备分配的资源的理解可能产生歧义。另外,由于一个BWP中也可以包括多个RB集合,在这些情况下,如 何进行随机接入过程中的上行传输,是一个需要解决的问题。
基于上述问题,本申请提出一种用于随机接入过程中的上行资源分配方案,能够使得RRC连接态下的不同终端设备确定用于传输随机接入过程中的上行信道的RB集合以及带宽,从而避免网络设备和终端设备的理解歧义。
在NR-U系统中,上行传输引入了基于梳齿结构的资源分配方式。对于15kHz子载波间隔,包括10个梳齿(即M=10),梳齿索引为0到9;对于30kHz子载波间隔,包括5个梳齿(即M=5),梳齿索引为0到4。其中,该梳齿结构的定义如下:梳齿0(interlace 0)是从CRB 0开始根据公共资源块(Common Resource Block,CRB)网格定义的,且每个梳齿包括的资源块(Resource Block,RB)中相邻两个RB之间的频域间隔为M个RB。
当终端设备被配置基于梳齿的上行传输时,网络设备为终端设备分配频域资源的方式包括:如果上行BWP包括一个或多个RB集合,对于该上行BWP上的基于梳齿结构的PUSCH传输,为该PUSCH分配频域资源的授权信息中的频域资源分配域(frequency domain resource allocation,FDRA)中可以包括X+Y比特,其中X比特用于指示被分配的梳齿索引,Y比特用于指示该上行BWP中的哪个或哪些RB集合被分配给了该终端设备。然而在随机接入过程中,当网络设备通过RAR授权信息或通过TC-RNTI扰码的授权信息为终端设备分配用于传输Msg3的PUSCH资源时,该授权信息中可能只包括X比特用于指示被分配的梳齿索引而不包括用于指示该上行BWP中的RB集合的Y比特信息。因此,在该情况下,终端设备需要通过其他方式确定该上行BWP中的哪个或哪些RB集合被分配用于上行传输。
图3是根据本申请实施例的无线通信的方法200的示意性交互图,如图3所示,该方法200可以包括如下内容中的至少部分内容:
S210,终端设备接收网络设备发送的第一调度信息,所述第一调度信息用于调度所述终端设备通过第一上行带宽部分BWP传输第一上行信道,所述第一上行BWP包括一个或多个资源块RB集合,所述第一上行BWP对应物理随机接入信道PRACH资源配置;
S220,所述终端设备根据所述第一调度信息、初始上行BWP和所述PRACH资源配置中的第一PRACH资源中的至少一项,确定通过第一RB集合中的第一频域资源传输所述第一上行信道。
可选地,所述第一上行BWP中包括一个或多个RB集合。其中,如果该BWP中包括多个RB集合,该多个RB集合中的相邻两个RB集合之间包括载波内的保护带,或者,该多个RB集合中的相邻两个RB集合之间不包括载波内的保护带。
可选地,所述第一上行BWP可以包括初始上行BWP,或者也可以包括RRC连接态的激活上行BWP。
可选地,所述终端设备根据网络设备的保护带配置信息或根据预设信息(例如协议约定的)确定所述第一上行BWP中包括的保护带。其中,该保护带可以包括载波内的保护带,或者,该保护带包括的RB个数可以为0,即不包括载波内的保护带。
一种情况下,该载波内的保护带的大小是根据协议获取的。另一种情况下,该载波内的保护带是根据网络设备的配置参数获取的。例如,网络设备指示载波内的保护带的起始位置和保护带包括的RB的个数。
作为一个示例,保护带的配置参数如下所示:
Figure PCTCN2020120899-appb-000002
可选地,所述保护带的配置参数是UE-specific配置信令。
可选地,所述保护带的配置参数是Cell-specific配置信令。
可选地,所述保护带的配置参数配置在以下RRC配置参数中的至少一项中:
BWP-UplinkDedicated、BWP-DownlinkDedicated、ServingCellConfigCommon、BWP-UplinkCommon、BWP-DownlinkCommon。
需要说明的是,在本申请实施例中,所述第一上行BWP对应物理随机接入信道PRACH资源配置可以指根据所述PRACH资源配置确定所述第一上行BWP上的PRACH资源,或者,所述第一上行BWP为被配置有PRACH资源的上行BWP,或者,所述第一上行BWP的配置参数中包括用于随机接入过程的配置参数。进一步可选地,还可以确定PUSCH资源,例如用于传输两步随机接入过程中MsgA中的PUSCH,或称MsgA-PUSCH资源。
可选地,在本申请实施例中,所述PRACH资源配置可以包括第一配置参数和/或第二配置参数。其中,所述第一配置参数用于所述终端设备确定PRACH资源(也称为随机接入信道时机(RACH Occasion,RO)或RACH传输机会)在该第一上行BWP中的频域位置。所述第二配置参数用于所述终端设备确定MsgA-PUSCH资源(也称为PUSCH时机(PUSCH Occasion,PO),或者,MsgA-PUSCH传输机会)在该第一上行BWP中的频域位置。
可选地,所述第一配置参数可以包括PRACH资源频域起始位置配置参数(例如高层参数msg1-FrequencyStart或msgA-RO-FrequencyStart)和/或同一时间单元上频分多路复用(Frequency-division multiplexing,FDM)的PRACH资源的个数(例如msg1-FDM或msgA-RO-FDM)。所述终端设备可以根据该PRACH资源频域起始位置配置参数和FDM的PRACH资源的个数来确定该上行BWP中包括的PRACH资源的频域位置。
例如,所述PRACH资源频域起始位置配置参数包括第一频域起始位置配置参数,用于指示上行BWP(例如初始上行BWP或上行激活BWP)中频域上第一个PRACH资源相对于该上行BWP的第一个物理资源块(physical resource block,PRB)即PRB 0的频域偏移。
可选地,所述第二配置参数可以包括PUSCH资源频域起始位置配置参数(例如frequencyStartMsgA-PUSCH-r16)和/或同一时间单元上频分复用FDM的PO资源的个数(例如nrofMsgA-PO-FDM-r16)。进一步地,所述终端设备可以根据该PUSCH资源频域起始位置配置参数和FDM的PO资源的个数来确定该上行BWP中包括的PO资源的频域位置。
例如,所述PUSCH资源频域起始位置配置参数用于指示上行BWP中频域上第一个PO资源相对于该上行BWP的第一个PRB即PRB 0的频域偏移。
应理解,在通信系统中,用于随机接入过程的参数是Cell-specific配置的。例如,一个上行BWP中用于随机接入过程的参数可以通过高层信令(例如,上行公共BWP(BWP-UplinkCommon))配置的。对于Cell-specific配置的参数,网络设备可以通过公共无线资源控制(Radio Resource Control,RRC)信令或专用RRC信令下发给终端设备。如果是通过专用RRC信令发送给终端设备的,则网络设备需要保证小区中的不同终端设备对Cell-specific配置参数的理解是一致的。可选地,对于主小区,网络设备可以通过系统消息(system information)向终端设备发送初始上行BWP上的Cell-specific配置的参数,对于其他服务小区,网络设备可以通过专用信令(dedicated signalling)向终端设备发送Cell-specific配置的参数。
可选地,由于用于随机接入过程的参数例如PRACH资源和MsgA-PUSCH资源是Cell-specific配置的,而在RRC连接态,不同终端设备的上行BWP是UE-specific配置的,因此,网络设备在为终端设备配置包括PRACH资源的上行BWP时,需要满足以下条件中的至少一项:
1、不同终端设备的上行BWP的起点是相同的。因此,不同的终端设备可以通过该PRACH资源频域起始位置配置参数和FDM的PRACH资源的个数来确定该上行BWP中包括的PRACH资源的频域位置。
2、不同终端设备的上行BWP中需要包括所有的PRACH资源。因此,在该情况下,不同终端设备对于SSB资源和PRACH资源的映射关系的理解才能一致。
图4对上述配置给出了一个示例。
如图4所示,对于UE1,上行BWP中包括4个RB集合(RB集合0~RB集合3),其中,RB集合0中包括4个PRACH资源(PRACH资源0~PRACH资源3);对于UE2,上行BWP中包括2个RB集合(RB集合0~RB集合1),其中,RB集合0中包括4个PRACH资源;对于UE3,上行BWP中包括1个RB集合(RB集合0),其中,RB集合0中包括4个PRACH资源。
由于不同UE的上行BWP可以是UE-specific配置的,因此,对于不同的UE,RB集合0中包括的RB个数可以相同,也可以不同。这样,在进行上行传输时,不同UE对于上行分配资源的解读会有歧义,导致网络设备和终端设备理解的不一致。
在本申请实施例中,可以根据第一调度信息、初始上行BWP的信息和PRACH资源配置中的第一PRACH资源中的至少一项,确定传输第一上行信道的第一RB集合,进一步可以在所述第一RB集合中确定第一频域资源传输所述第一上行信道/信号。
因此,所述第一RB集合为用于传输所述第一上行信道的候选频域资源集合。所述第一RB集合可以包括一个RB集合,或者,也可以包括多个RB集合,即所述第一上行信道可以通过一个RB集合中的频域资源传输;或者,也可以通过多个RB集合中的频域资源传输。换言之,所述第一频域资源可以包括一个RB集合中的频域资源,或者也可以包括多个RB集合中的频域资源。
所述第一上行信道用于随机接入过程中的上行传输,或者随机接入过程相关的上行传输,例如,Msg4对应的HARQ-ACK反馈信息的上行传输。
可选地,所述第一上行信道包括以下至少一种:
消息3-物理上行共享信道Msg3-PUSCH、物理上行控制信道PUCCH。
可选地,所述第一调度信息包括频域资源分配信息,所述频域资源分配信息用于指示根据所述第一RB集合确定的资源分配。
可选地,所述频域资源分配信息包括梳齿索引指示信息,所述梳齿索引指示信息指示第一梳齿,所述第一频域资源包括所述第一梳齿和所述第一RB集合中重叠的RB。
所述第一调度信息用于调度随机接入过程中的上行传输,或者随机接入过程相关的上行传输,例如,Msg4对应的HARQ-ACK反馈信息。
可选地,所述第一调度信息包括以下至少一种:
随机接入响应RAR中的上行授权信息、临时小区无线网络临时标识符TC-RNTI扰码的上行授权信息、TC-RNTI扰码的下行授权信息。
可选地,所述RAR中的上行授权信息可以用于调度Msg3-PUSCH的初传。例如,所述上行授权信息包括RAR uplink grant。
可选地,所述TC-RNTI扰码的上行授权信息可以用于调度Msg3-PUSCH的重传,例如,所述上行授权信息包括TC-RNTI扰码的DCI格式0_0。
可选地,所述TC-RNTI扰码的下行授权信息用于调度Msg4对应的HARQ-ACK信息。例如,所述下行授权信息包括TC-RNTI扰码的DCI格式1_0。
可选地,所述第一调度信息可以包括所述第一上行BWP的信息。
在一些实施例中,所述终端设备可以根据所述第一调度信息确定用于传输所述第一上行信道的第一RB集合。
可选地,所述终端设备可以根据所述第一调度信息确定用于传输所述第一上行信道的第一RB集合可以包括:根据所述第一调度信息确定所述第一RB集合的起始位置和/ 或所述第一RB集合包括的RB的个数。
在一些实施例中,所述终端设备可以根据所述第一调度信息确定用于传输所述第一上行信道的第一RB集合中的频域资源分配。
作为一个实施例,所述终端设备可以根据所述第一上行BWP是否包括初始上行BWP,确定所述第一RB集合的起始位置和/或包括的RB的个数。
例如,若所述第一上行BWP包括初始上行BWP,可以确定所述第一RB集合是所述初始上行BWP包括的RB集合。即所述第一RB集合的起始位置和包括的RB个数与初始上行BWP包括的RB集合的起始位置和包括的RB个数相同。
又例如,若所述第一上行BWP不包括初始上行BWP,所述终端设备可以根据其他预设规则确定所述第一RB集合。作为示例,所述第一RB集合包括所述第一上行BWP中的第一个RB集合例如RB集合0。
可选地,所述第一上行BWP包括初始上行BWP,可以为:所述第一上行BWP对应的子载波间隔和循环前缀CP与所述初始上行BWP对应的子载波间隔和CP相同,且所述第一上行BWP中的RB包括所述初始上行BWP中的RB。
可选地,所述第一上行BWP不包括初始上行BWP,可以为:所述第一上行BWP对应的子载波间隔与所述初始上行BWP对应的子载波间隔不同,或所述第一上行BWP对应的CP与所述初始上行BWP对应的CP不同,或所述第一上行BWP中的RB不包括所述初始上行BWP中的RB中的至少一个。
可选地,在一些情况中,PRACH资源位于所述第一上行BWP中的至少两个RB集合内(即PRACH资源跨RB集合),或者,PRACH资源对应的RB与该第一上行BWP中保护带包括的RB在频域上有重叠(换言之,PRACH资源至少部分位于保护带上),或者,该第一上行BWP中包括至少一个PRACH资源与两个RB集合中包括的RB在频域上有重叠。此情况下,也可能出现网络设备和终端设备对于上行分配资源理解不一致的问题。
在另一些实施例中,所述终端设备可以根据所述第一上行BWP对应的PRACH资源配置中的第一PRACH资源确定所述第一RB集合。
可选地,所述第一PRACH资源可以为所述PRACH资源配置中的特定PRACH资源,本申请对此不作限定。
作为示例而非限定。所述第一PRACH资源包括所述PRACH资源配置中的第一个PRACH资源;或者,
所述第一PRACH资源包括所述PRACH资源配置中的最后一个PRACH资源;或者,
所述第一PRACH资源包括所述终端设备发送PRACH的PRACH资源,即所述第一RPACH资源包括用于发送Msg1的PRACH资源。
可选地,所述第一RB集合的起始位置是根据所述第一PRACH资源对应的RB集合的起始位置确定的。例如,所述第一RB集合的起始位置与所述第一PRACH资源对应的RB集合的起始位置相同。
可选地,所述第一RB集合包括的RB个数是根据所述第一PRACH资源对应的RB集合包括的RB个数确定的。
可选地,所述终端设备可以根据所述第一PRACH资源中的第一RB对应的RB集合确定所述第一RB集合。
在一些实施例中,所述终端设备根据所述第一PRACH资源中的第一RB对应的RB集合确定所述第一RB集合,可以包括:所述终端设备根据所述第一PRACH资源中的第一RB对应的RB集合的起始位置确定所述第一RB集合的起始位置,和/或根据所述第一PRACH资源中的第一RB对应的RB集合包括的RB个数确定所述第一RB集合包括的RB个数。
可选地,所述第一RB集合的起始位置是根据所述第一PRACH资源的起始位置确定 的。例如,所述第一RB集合的起始位置与所述第一PRACH资源的起始位置相同。
可选地,所述第一RB集合的起始位置是根据所述第一PRACH资源中的第一RB的位置确定的。例如,所述第一RB集合的起始位置与所述第一PRACH资源中的第一RB的位置相同。
可选地,可以将所述第一RB对应的RB集合的起始位置确定为所述第一RB集合的起始位置。
可选地,可以将所述第一RB对应的RB集合包括的RB个数确定为所述第一RB集合包括的RB个数。
可选地,所述终端设备也可以根据其他约定规则确定所述第一RB集合包括的RB个数。
可选地,根据初始上行BWP包括的RB个数确定所述第一RB集合包括的RB个数,例如,将初始上行BWP包括的RB个数确定为所述第一RB集合包括的RB个数。
可选地,根据预设值确定所述第一RB集合包括的RB个数,例如,确定所述第一RB集合包括的RB个数为所述预设值,本申请对于所述预设值的大小不作限定。
可选地,所述预设值和子载波间隔相关联。例如,如果第一上行BWP对应的子载波间隔为30kHz,所述预设值可以为51。又例如,如果第一上行BWP对应的子载波间隔为15kHz,所述预设值可以为106。又例如,如果第一上行BWP对应的子载波间隔为60kHz,所述预设值可以为24。
可选地,根据所述网络设备的配置参数确定所述第一RB集合包括的RB个数。例如,可以将网络设备配置的RB个数确定为所述第一RB集合包括的RB个数。
应理解,所述第一RB可以为所述第一PRACH资源中特定位置的RB,本申请对此不作限定。
作为一些示例,所述第一RB包括所述第一PRACH资源的第一个RB;或,
所述第一RB包括所述第一PRACH资源的最后一个RB;或,
所述第一RB包括所述第一PRACH资源中的第一个与RB集合有重叠的RB;或,
所述第一RB包括所述第一PRACH资源中的最后一个与RB集合有重叠的RB。
可选地,若所述第一上行BWP包括多个RB集合,所述多个RB集合中的相邻两个RB集合之间包括第一保护带,所述第一RB与所述第一保护带在频域上不重叠。
通过配置不同的终端设备基于同一规则确定用于传输所述第一上行信道的RB集合,能够保证网络设备和终端设备对于传输所述第一上行信道的第一频域资源的理解一致。
例如,如图5所示,第一上行BWP对应4个PRACH资源(PRACH资源0~3),所述终端设备可以确定PRACH资源0中的第一个RB或PRACH资源0对应的RB集合的起始位置为所述第一RB集合的起始位置,即RB集合0的起始位置。另外,终端设备可以确定第一RB集合包括的RB个数与初始上行BWP包括的RB个数相同。也就是说,在该示例中,第一RB集合的起始位置为RB集合0的起始位置,长度为初始上行BWP的长度。
又例如,如图6所示,第一上行BWP对应4个PRACH资源(PRACH资源0~3),PRACH2为传输Msg1的PRACH资源,所述终端设备可以确定PRACH资源2中的第一个RB对应的RB集合的起始位置为所述第一RB集合的起始位置,即RB集合2的起始位置。另外,终端设备可以确定第一RB集合包括的RB个数与初始上行BWP包括的RB个数相同。也就是说,在该示例中,第一RB集合的起始位置为RB集合2的起始位置,长度为初始上行BWP的长度。
可选地,所述第一保护带可以包括一个保护带,或者也可以包括多个保护带。
可选地,一个RB集合对应一个LBT带宽,或者,一个RB集合对应20MHz带宽。
因此,本申请实施例中,终端设备通过根据第一上行信道的第一调度信息或上行BWP对应的PRACH资源配置中的特定PRACH资源确定用于传输所述第一上行信道的 第一RB集合,有利于保证不同阶段(例如初始接入阶段和RRC连接态阶段)的终端设备对于上行资源分配的理解一致,以及网络设备和终端设备对于上行资源分配的理解一致。
上文结合图3至图6,详细描述了本申请的方法实施例,下文结合图7至图11,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图7示出了根据本申请实施例的终端设备300的示意性框图。如图7所示,该终端设备300包括:
通信单元310,用于接收网络设备发送的第一调度信息,所述第一调度信息用于调度所述终端设备通过第一上行带宽部分BWP传输第一上行信道,所述第一上行BWP包括一个或多个资源块RB集合,所述第一上行BWP对应物理随机接入信道PRACH资源配置;
处理单元,用于根据所述第一调度信息、初始上行BWP和所述PRACH资源配置中的第一PRACH资源中的至少一项,确定通过第一RB集合中的第一频域资源传输所述第一上行信道。
可选地,所述第一RB集合是根据所述第一PRACH资源确定的;或,
若所述第一上行BWP包括所述初始上行BWP,所述第一RB集合是所述初始上行BWP包括的RB集合。
可选地,所述第一RB集合是根据所述第一PRACH资源中的第一RB对应的RB集合确定的。
可选地,所述第一RB包括所述第一PRACH资源的第一个RB;或,
所述第一RB包括所述第一PRACH资源的最后一个RB;或,
所述第一RB包括所述第一PRACH资源中的第一个与RB集合有重叠的RB;或,
所述第一RB包括所述第一PRACH资源中的最后一个与RB集合有重叠的RB。
可选地,所述第一上行BWP包括多个RB集合,所述多个RB集合中的相邻两个RB集合之间包括第一保护带,所述第一RB与所述第一保护带在频域上不重叠。
可选地,所述第一RB集合是根据所述第一PRACH资源确定的,包括:
所述第一RB集合的起始位置是根据所述第一PRACH资源对应的RB集合的起始位置确定的;或,
所述第一RB集合的起始位置是根据所述第一PRACH资源中的第一RB对应的RB集合的起始位置确定的。
可选地,所述第一PRACH资源包括所述PRACH资源配置中的第一个PRACH资源;或者,
所述第一PRACH资源包括所述PRACH资源配置中的最后一个PRACH资源;或者,
所述第一PRACH资源包括所述终端设备发送PRACH的PRACH资源。
可选地,所述第一RB集合包括的RB个数是根据所述初始上行BWP包括的RB个数确定的;或,
所述第一RB集合包括的RB个数是根据预设值确定的;或,
所述第一RB集合包括的RB个数是根据所述网络设备的配置参数确定的。
可选地,所述第一调度信息包括频域资源分配信息,所述频域资源分配信息用于指示根据所述第一RB集合确定的资源分配。
可选地,所述频域资源分配信息包括梳齿索引指示信息,所述梳齿索引指示信息指示第一梳齿,所述第一频域资源包括所述第一梳齿和所述第一RB集合中重叠的RB。
可选地,所述第一调度信息包括以下至少一种:
随机接入响应中的上行授权信息、临时小区无线网络临时标识符TC-RNTI扰码的上行授权信息、TC-RNTI扰码的下行授权信息。
可选地,所述第一上行信道包括以下至少一种:
消息3-物理上行共享信道Msg3-PUSCH、物理上行控制信道PUCCH。
可选地,所述第一上行BWP包括RRC连接态的激活上行BWP。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图8示出了根据本申请实施例的网络设备400的示意性框图。如图8所示,该网络设备400包括:
通信单元410,用于向终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备通过第一上行带宽部分BWP传输第一上行信道,所述第一上行BWP包括一个或多个资源块RB集合,所述第一上行BWP对应物理随机接入信道PRACH资源配置,所述第一调度信息、初始上行BWP和所述PRACH资源配置中的第一PRACH资源中的至少一项,用于所述终端设备确定通过第一RB集合中的第一频域资源传输所述第一上行信道。
可选地,在一些实施例中,所述第一RB集合是根据所述第一PRACH资源确定的;或,
若所述第一上行BWP包括所述初始上行BWP,所述第一RB集合是所述初始上行BWP包括的RB集合。
可选地,在一些实施例中,所述第一RB集合是根据所述第一PRACH资源中的第一RB对应的RB集合确定的。
可选地,所述第一RB包括所述第一PRACH资源的第一个RB;或,
所述第一RB包括所述第一PRACH资源的最后一个RB;或,
所述第一RB包括所述第一PRACH资源中的第一个与RB集合有重叠的RB;或,
所述第一RB包括所述第一PRACH资源中的最后一个与RB集合有重叠的RB。
可选地,在一些实施例中,所述第一上行BWP包括多个RB集合,所述多个RB集合中的相邻两个RB集合之间包括第一保护带,所述第一RB与所述第一保护带在频域上不重叠。
可选地,所述第一RB集合是根据所述第一PRACH资源确定的,包括:
所述第一RB集合的起始位置是根据所述第一PRACH资源对应的RB集合的起始位置确定的;或,
所述第一RB集合的起始位置是根据所述第一PRACH资源中的第一RB对应的RB集合的起始位置确定的。
可选地,所述第一PRACH资源包括所述PRACH资源配置中的第一个PRACH资源;或者,所述第一PRACH资源包括所述PRACH资源配置中的最后一个PRACH资源;或者,所述第一PRACH资源包括所述终端设备发送PRACH的PRACH资源。
可选地,在一些实施例中,所述第一RB集合包括的RB个数是根据所述初始上行BWP包括的RB个数确定的;或,
所述第一RB集合包括的RB个数是根据预设值确定的;或,
所述第一RB集合包括的RB个数是根据所述网络设备的配置参数确定的。
可选地,在一些实施例中,所述第一调度信息包括频域资源分配信息,所述频域资源分配信息用于指示根据所述第一RB集合确定的资源分配。
可选地,所述频域资源分配信息包括梳齿索引指示信息,所述梳齿索引指示信息指示第一梳齿,所述第一频域资源包括所述第一梳齿和所述第一RB集合中重叠的RB。
可选地,在一些实施例中,所述第一调度信息包括以下至少一种:
随机接入响应中的上行授权信息、临时小区无线网络临时标识符TC-RNTI扰码的上行授权信息、TC-RNTI扰码的下行授权信息。
可选地,在一些实施例中,所述第一上行信道包括以下至少一种:
消息3-物理上行共享信道Msg3-PUSCH、物理上行控制信道PUCCH。
可选地,在一些实施例中,所述第一上行BWP包括RRC连接态的激活上行BWP。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例提供的一种通信设备500示意性结构图。图9所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图9所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备500具体可为本申请实施例的移动终端/终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的装置的示意性结构图。图10所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的移动终端/终端设备,并且该装置可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统700的示意性框图。如图11所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (62)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一调度信息,所述第一调度信息用于调度所述终端设备通过第一上行带宽部分BWP传输第一上行信道,所述第一上行BWP包括一个或多个资源块RB集合,所述第一上行BWP对应物理随机接入信道PRACH资源配置;
    所述终端设备根据所述第一调度信息、初始上行BWP和所述PRACH资源配置中的第一PRACH资源中的至少一项,确定通过第一RB集合中的第一频域资源传输所述第一上行信道。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一RB集合是根据所述第一PRACH资源确定的;或,
    若所述第一上行BWP包括所述初始上行BWP,所述第一RB集合是所述初始上行BWP包括的RB集合。
  3. 根据权利要求2所述的方法,其特征在于,所述第一RB集合是根据所述第一PRACH资源中的第一RB对应的RB集合确定的。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一RB包括所述第一PRACH资源的第一个RB;或,
    所述第一RB包括所述第一PRACH资源的最后一个RB;或,
    所述第一RB包括所述第一PRACH资源中的第一个与RB集合有重叠的RB;或,
    所述第一RB包括所述第一PRACH资源中的最后一个与RB集合有重叠的RB。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一上行BWP包括多个RB集合,所述多个RB集合中的相邻两个RB集合之间包括第一保护带,所述第一RB与所述第一保护带在频域上不重叠。
  6. 根据权利要求2-5中任一项所述的方法,其特征在于,所述第一RB集合是根据所述第一PRACH资源确定的,包括:
    所述第一RB集合的起始位置是根据所述第一PRACH资源对应的RB集合的起始位置确定的;或,
    所述第一RB集合的起始位置是根据所述第一PRACH资源中的第一RB对应的RB集合的起始位置确定的。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述第一PRACH资源包括所述PRACH资源配置中的第一个PRACH资源;或者,
    所述第一PRACH资源包括所述PRACH资源配置中的最后一个PRACH资源;或者,
    所述第一PRACH资源包括所述终端设备发送PRACH的PRACH资源。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,
    所述第一RB集合包括的RB个数是根据所述初始上行BWP包括的RB个数确定的;或,
    所述第一RB集合包括的RB个数是根据预设值确定的;或,
    所述第一RB集合包括的RB个数是根据所述网络设备的配置参数确定的。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一调度信息包括频域资源分配信息,所述频域资源分配信息用于指示根据所述第一RB集合确定的资源分配。
  10. 根据权利要求9所述的方法,其特征在于,所述频域资源分配信息包括梳齿索引指示信息,所述梳齿索引指示信息指示第一梳齿,所述第一频域资源包括所述第一梳齿和所述第一RB集合中重叠的RB。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述第一调度信息包括以下至少一种:
    随机接入响应中的上行授权信息、临时小区无线网络临时标识符TC-RNTI扰码的上 行授权信息、TC-RNTI扰码的下行授权信息。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述第一上行信道包括以下至少一种:
    消息3-物理上行共享信道Msg3-PUSCH、物理上行控制信道PUCCH。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述第一上行BWP包括RRC连接态的激活上行BWP。
  14. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备通过第一上行带宽部分BWP传输第一上行信道,所述第一上行BWP包括一个或多个资源块RB集合,所述第一上行BWP对应物理随机接入信道PRACH资源配置,所述第一调度信息、初始上行BWP和所述PRACH资源配置中的第一PRACH资源中的至少一项,用于所述终端设备确定通过第一RB集合中的第一频域资源传输所述第一上行信道。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第一RB集合是根据所述第一PRACH资源确定的;或,
    若所述第一上行BWP包括所述初始上行BWP,所述第一RB集合是所述初始上行BWP包括的RB集合。
  16. 根据权利要求15所述的方法,其特征在于,所述第一RB集合是根据所述第一PRACH资源中的第一RB对应的RB集合确定的。
  17. 根据权利要求16所述的方法,其特征在于,
    所述第一RB包括所述第一PRACH资源的第一个RB;或,
    所述第一RB包括所述第一PRACH资源的最后一个RB;或,
    所述第一RB包括所述第一PRACH资源中的第一个与RB集合有重叠的RB;或,
    所述第一RB包括所述第一PRACH资源中的最后一个与RB集合有重叠的RB。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一上行BWP包括多个RB集合,所述多个RB集合中的相邻两个RB集合之间包括第一保护带,所述第一RB与所述第一保护带在频域上不重叠。
  19. 根据权利要求15-18中任一项所述的方法,其特征在于,所述第一RB集合是根据所述第一PRACH资源确定的,包括:
    所述第一RB集合的起始位置是根据所述第一PRACH资源对应的RB集合的起始位置确定的;或,
    所述第一RB集合的起始位置是根据所述第一PRACH资源中的第一RB对应的RB集合的起始位置确定的。
  20. 根据权利要求14-19中任一项所述的方法,其特征在于,所述第一PRACH资源包括所述PRACH资源配置中的第一个PRACH资源;或者,
    所述第一PRACH资源包括所述PRACH资源配置中的最后一个PRACH资源;或者,
    所述第一PRACH资源包括所述终端设备发送PRACH的PRACH资源。
  21. 根据权利要求14-20中任一项所述的方法,其特征在于,
    所述第一RB集合包括的RB个数是根据所述初始上行BWP包括的RB个数确定的;或,
    所述第一RB集合包括的RB个数是根据预设值确定的;或,
    所述第一RB集合包括的RB个数是根据所述网络设备的配置参数确定的。
  22. 根据权利要求14-21中任一项所述的方法,其特征在于,所述第一调度信息包括频域资源分配信息,所述频域资源分配信息用于指示根据所述第一RB集合确定的资源分配。
  23. 根据权利要求22所述的方法,其特征在于,所述频域资源分配信息包括梳齿索引指示信息,所述梳齿索引指示信息指示第一梳齿,所述第一频域资源包括所述第一梳 齿和所述第一RB集合中重叠的RB。
  24. 根据权利要求14-23中任一项所述的方法,其特征在于,所述第一调度信息包括以下至少一种:
    随机接入响应中的上行授权信息、临时小区无线网络临时标识符TC-RNTI扰码的上行授权信息、TC-RNTI扰码的下行授权信息。
  25. 根据权利要求14-24中任一项所述的方法,其特征在于,所述第一上行信道包括以下至少一种:
    消息3-物理上行共享信道Msg3-PUSCH、物理上行控制信道PUCCH。
  26. 根据权利要求14-25中任一项所述的方法,其特征在于,所述第一上行BWP包括RRC连接态的激活上行BWP。
  27. 一种终端设备,其特征在于,包括:
    通信单元,用于接收网络设备发送的第一调度信息,所述第一调度信息用于调度所述终端设备通过第一上行带宽部分BWP传输第一上行信道,所述第一上行BWP包括一个或多个资源块RB集合,所述第一上行BWP对应物理随机接入信道PRACH资源配置;
    处理单元,用于根据所述第一调度信息、初始上行BWP和所述PRACH资源配置中的第一PRACH资源中的至少一项,确定通过第一RB集合中的第一频域资源传输所述第一上行信道。
  28. 根据权利要求27所述的终端设备,其特征在于,
    所述第一RB集合是根据所述第一PRACH资源确定的;或,
    若所述第一上行BWP包括所述初始上行BWP,所述第一RB集合是所述初始上行BWP包括的RB集合。
  29. 根据权利要求28所述的终端设备,其特征在于,所述第一RB集合是根据所述第一PRACH资源中的第一RB对应的RB集合确定的。
  30. 根据权利要求29所述的终端设备,其特征在于,
    所述第一RB包括所述第一PRACH资源的第一个RB;或,
    所述第一RB包括所述第一PRACH资源的最后一个RB;或,
    所述第一RB包括所述第一PRACH资源中的第一个与RB集合有重叠的RB;或,
    所述第一RB包括所述第一PRACH资源中的最后一个与RB集合有重叠的RB。
  31. 根据权利要求29或30所述的终端设备,其特征在于,所述第一上行BWP包括多个RB集合,所述多个RB集合中的相邻两个RB集合之间包括第一保护带,所述第一RB与所述第一保护带在频域上不重叠。
  32. 根据权利要求28-31中任一项所述的终端设备,其特征在于,所述第一RB集合是根据所述第一PRACH资源确定的,包括:
    所述第一RB集合的起始位置是根据所述第一PRACH资源对应的RB集合的起始位置确定的;或,
    所述第一RB集合的起始位置是根据所述第一PRACH资源中的第一RB对应的RB集合的起始位置确定的。
  33. 根据权利要求27-32中任一项所述的终端设备,其特征在于,所述第一PRACH资源包括所述PRACH资源配置中的第一个PRACH资源;或者,
    所述第一PRACH资源包括所述PRACH资源配置中的最后一个PRACH资源;或者,
    所述第一PRACH资源包括所述终端设备发送PRACH的PRACH资源。
  34. 根据权利要求27-33中任一项所述的终端设备,其特征在于,
    所述第一RB集合包括的RB个数是根据所述初始上行BWP包括的RB个数确定的;或,
    所述第一RB集合包括的RB个数是根据预设值确定的;或,
    所述第一RB集合包括的RB个数是根据所述网络设备的配置参数确定的。
  35. 根据权利要求27-34中任一项所述的终端设备,其特征在于,所述第一调度信息包括频域资源分配信息,所述频域资源分配信息用于指示根据所述第一RB集合确定的资源分配。
  36. 根据权利要求35所述的终端设备,其特征在于,所述频域资源分配信息包括梳齿索引指示信息,所述梳齿索引指示信息指示第一梳齿,所述第一频域资源包括所述第一梳齿和所述第一RB集合中重叠的RB。
  37. 根据权利要求27-36中任一项所述的终端设备,其特征在于,所述第一调度信息包括以下至少一种:
    随机接入响应中的上行授权信息、临时小区无线网络临时标识符TC-RNTI扰码的上行授权信息、TC-RNTI扰码的下行授权信息。
  38. 根据权利要求27-37中任一项所述的终端设备,其特征在于,所述第一上行信道包括以下至少一种:
    消息3-物理上行共享信道Msg3-PUSCH、物理上行控制信道PUCCH。
  39. 根据权利要求27-38中任一项所述的终端设备,其特征在于,所述第一上行BWP包括RRC连接态的激活上行BWP。
  40. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备通过第一上行带宽部分BWP传输第一上行信道,所述第一上行BWP包括一个或多个资源块RB集合,所述第一上行BWP对应物理随机接入信道PRACH资源配置,所述第一调度信息、初始上行BWP和所述PRACH资源配置中的第一PRACH资源中的至少一项,用于所述终端设备确定通过第一RB集合中的第一频域资源传输所述第一上行信道。
  41. 根据权利要求40所述的网络设备,其特征在于,
    所述第一RB集合是根据所述第一PRACH资源确定的;或,
    若所述第一上行BWP包括所述初始上行BWP,所述第一RB集合是所述初始上行BWP包括的RB集合。
  42. 根据权利要求41所述的网络设备,其特征在于,所述第一RB集合是根据所述第一PRACH资源中的第一RB对应的RB集合确定的。
  43. 根据权利要求42所述的网络设备,其特征在于,
    所述第一RB包括所述第一PRACH资源的第一个RB;或,
    所述第一RB包括所述第一PRACH资源的最后一个RB;或,
    所述第一RB包括所述第一PRACH资源中的第一个与RB集合有重叠的RB;或,
    所述第一RB包括所述第一PRACH资源中的最后一个与RB集合有重叠的RB。
  44. 根据权利要求42或43所述的网络设备,其特征在于,所述第一上行BWP包括多个RB集合,所述多个RB集合中的相邻两个RB集合之间包括第一保护带,所述第一RB与所述第一保护带在频域上不重叠。
  45. 根据权利要求41-44中任一项所述的网络设备,其特征在于,所述第一RB集合是根据所述第一PRACH资源确定的,包括:
    所述第一RB集合的起始位置是根据所述第一PRACH资源对应的RB集合的起始位置确定的;或,
    所述第一RB集合的起始位置是根据所述第一PRACH资源中的第一RB对应的RB集合的起始位置确定的。
  46. 根据权利要求40-45中任一项所述的网络设备,其特征在于,所述第一PRACH资源包括所述PRACH资源配置中的第一个PRACH资源;或者,
    所述第一PRACH资源包括所述PRACH资源配置中的最后一个PRACH资源;或者,
    所述第一PRACH资源包括所述终端设备发送PRACH的PRACH资源。
  47. 根据权利要求40-46中任一项所述的网络设备,其特征在于,
    所述第一RB集合包括的RB个数是根据所述初始上行BWP包括的RB个数确定的;或,
    所述第一RB集合包括的RB个数是根据预设值确定的;或,
    所述第一RB集合包括的RB个数是根据所述网络设备的配置参数确定的。
  48. 根据权利要求40-47中任一项所述的网络设备,其特征在于,所述第一调度信息包括频域资源分配信息,所述频域资源分配信息用于指示根据所述第一RB集合确定的资源分配。
  49. 根据权利要求48所述的网络设备,其特征在于,所述频域资源分配信息包括梳齿索引指示信息,所述梳齿索引指示信息指示第一梳齿,所述第一频域资源包括所述第一梳齿和所述第一RB集合中重叠的RB。
  50. 根据权利要求40-49中任一项所述的网络设备,其特征在于,所述第一调度信息包括以下至少一种:
    随机接入响应中的上行授权信息、临时小区无线网络临时标识符TC-RNTI扰码的上行授权信息、TC-RNTI扰码的下行授权信息。
  51. 根据权利要求40-50中任一项所述的网络设备,其特征在于,所述第一上行信道包括以下至少一种:
    消息3-物理上行共享信道Msg3-PUSCH、物理上行控制信道PUCCH。
  52. 根据权利要求40-51中任一项所述的网络设备,其特征在于,所述第一上行BWP包括RRC连接态的激活上行BWP。
  53. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法。
  54. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求14至26中任一项所述的方法。
  55. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法。
  56. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求14至26中任一项所述的方法。
  57. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  58. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求14至26中任一项所述的方法。
  59. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法。
  60. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求14至26中任一项所述的方法。
  61. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  62. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求14至26中任一项所述的方法。
PCT/CN2020/120899 2020-06-02 2020-10-14 无线通信的方法、终端设备和网络设备 WO2021243920A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20938887.5A EP4087347B1 (en) 2020-06-02 2020-10-14 Wireless communication method, terminal device, and network device
CN202080094506.7A CN115023993A (zh) 2020-06-02 2020-10-14 无线通信的方法、终端设备和网络设备
CN202211554340.XA CN116017726A (zh) 2020-06-02 2020-10-14 无线通信的方法、终端设备和网络设备
US17/816,690 US20220369386A1 (en) 2020-06-02 2022-08-01 Wireless communication method, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010491795 2020-06-02
CN202010491795.6 2020-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/816,690 Continuation US20220369386A1 (en) 2020-06-02 2022-08-01 Wireless communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2021243920A1 true WO2021243920A1 (zh) 2021-12-09

Family

ID=78830103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120899 WO2021243920A1 (zh) 2020-06-02 2020-10-14 无线通信的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20220369386A1 (zh)
EP (1) EP4087347B1 (zh)
CN (2) CN116017726A (zh)
WO (1) WO2021243920A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117998625A (zh) * 2022-11-04 2024-05-07 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494476A (zh) * 2008-01-24 2009-07-29 中兴通讯股份有限公司 资源块调度方法及系统
US20110044391A1 (en) * 2009-08-24 2011-02-24 Samsung Electronics Co., Ltd. Method and apparatus for configuring control channel in ofdm system
CN103701559A (zh) * 2010-11-09 2014-04-02 华为技术有限公司 一种信道质量信息的传输方法、基站及用户设备
CN107872847A (zh) * 2016-09-28 2018-04-03 华为技术有限公司 传输数据的方法、网络设备和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494476A (zh) * 2008-01-24 2009-07-29 中兴通讯股份有限公司 资源块调度方法及系统
US20110044391A1 (en) * 2009-08-24 2011-02-24 Samsung Electronics Co., Ltd. Method and apparatus for configuring control channel in ofdm system
CN103701559A (zh) * 2010-11-09 2014-04-02 华为技术有限公司 一种信道质量信息的传输方法、基站及用户设备
CN107872847A (zh) * 2016-09-28 2018-04-03 华为技术有限公司 传输数据的方法、网络设备和终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "MPR issue with distributed RB allocation in UL", R1-1718576 3GPP TSG WG1 MEETING 90BIS, 2 October 2017 (2017-10-02), XP051353143 *
See also references of EP4087347A4

Also Published As

Publication number Publication date
CN116017726A (zh) 2023-04-25
EP4087347A1 (en) 2022-11-09
US20220369386A1 (en) 2022-11-17
EP4087347A4 (en) 2023-05-10
EP4087347B1 (en) 2024-05-01
CN115023993A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2022110233A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020248259A1 (zh) 随机接入方法、终端设备和网络设备
US11804995B2 (en) Data sending method, terminal device, and non-transitory computer-readable storage medium
WO2019237805A1 (zh) 一种随机接入方法及装置、通信设备
WO2020034223A1 (zh) Harq信息的传输方法、网络设备和终端设备
WO2022067519A1 (zh) 随机接入方法和终端设备
WO2021243920A1 (zh) 无线通信的方法、终端设备和网络设备
CN112740808B (zh) 消息传输的方法和设备
US20230088011A1 (en) Resource configuration method and apparatus, terminal device and network device
WO2021209013A1 (zh) 无线通信方法、终端设备和网络设备
WO2022067611A1 (zh) 先侦听后传输失败上报的方法、终端设备和网络设备
WO2021159514A1 (zh) 资源分配方法、装置及可读存储介质
EP3751930B1 (en) Method and apparatus for transmitting harq information, and computer storage medium
WO2022036696A1 (zh) 无线通信方法、终端设备和网络设备
WO2023283888A1 (zh) 无线通信的方法及设备
CN113273302B (zh) 无线通信方法、终端设备和网络设备
WO2022027679A1 (zh) 无线通信方法、终端设备和网络设备
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
CN113691355B (zh) 信息反馈的方法和设备
WO2022150991A1 (zh) 无线通信的方法和设备
CN113765642B (zh) Harq码本确定方法、终端设备和网络设备
WO2022082785A1 (zh) 无线通信方法、终端设备和网络设备
WO2022047629A1 (zh) 报告随机接入情况的方法、终端设备和网络设备
CN117397331A (zh) 无线通信的方法和终端设备
CN115804185A (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020938887

Country of ref document: EP

Effective date: 20220805

NENP Non-entry into the national phase

Ref country code: DE