WO2023283888A1 - 无线通信的方法及设备 - Google Patents

无线通信的方法及设备 Download PDF

Info

Publication number
WO2023283888A1
WO2023283888A1 PCT/CN2021/106543 CN2021106543W WO2023283888A1 WO 2023283888 A1 WO2023283888 A1 WO 2023283888A1 CN 2021106543 W CN2021106543 W CN 2021106543W WO 2023283888 A1 WO2023283888 A1 WO 2023283888A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
information
channel access
transmission
available transmission
Prior art date
Application number
PCT/CN2021/106543
Other languages
English (en)
French (fr)
Inventor
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/106543 priority Critical patent/WO2023283888A1/zh
Priority to EP21949674.2A priority patent/EP4366409A1/en
Priority to CN202180100323.6A priority patent/CN117616842A/zh
Publication of WO2023283888A1 publication Critical patent/WO2023283888A1/zh
Priority to US18/409,113 priority patent/US20240147532A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method and device.
  • Embodiments of the present application provide a wireless communication method and device.
  • a terminal device can determine whether to use available transmission resources for sidelink transmission based on the result of the channel access process, so that the terminal device can use unlicensed spectrum for sidelink transmission.
  • a wireless communication method includes:
  • the terminal device determines K available transmission resources
  • the terminal device determines whether to use the i-th available transmission resource for sidelink transmission according to the result of the channel access process;
  • i and K are positive integers, and 1 ⁇ i ⁇ K.
  • a second aspect provides a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • a third aspect provides a terminal device, including a processor and a memory; wherein, the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect above .
  • an apparatus for implementing the method in the first aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from a memory, so that a device installed with the device executes the method in the first aspect above.
  • a fifth aspect provides a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in the first aspect above.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in the first aspect above.
  • a computer program which, when running on a computer, causes the computer to execute the method in the first aspect above.
  • the terminal device determines whether to use the i-th available transmission resource for sidelink transmission according to the result of the channel access process, so that the terminal device can use non- Licensed spectrum for sidelink transmission.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of another communication system architecture applied in the embodiment of the present application.
  • Fig. 3 is a schematic diagram of uplink communication within a network coverage provided by the present application.
  • Fig. 4 is a schematic diagram of partial network coverage side communication provided by the present application.
  • Fig. 5 is a schematic diagram of outbound communication provided by the network coverage provided by the present application.
  • Fig. 6 is a schematic diagram of a side communication with a central control node provided by the present application.
  • Fig. 7 is a schematic diagram of unicast sidelink communication provided by the present application.
  • Fig. 8 is a schematic diagram of multicast sideline communication provided by the present application.
  • Fig. 9 is a schematic diagram of broadcast sideline communication provided by the present application.
  • Fig. 10 is a schematic diagram of a time slot structure in NR-V2X provided by the present application.
  • Fig. 11 is a schematic diagram of resource interception provided by the present application.
  • Fig. 12 is a schematic diagram of channel occupancy provided in this application.
  • FIG. 13 is a schematic diagram of an FBE-based channel access manner provided by the present application.
  • Fig. 14 is a schematic diagram of channel access type switching provided in this application.
  • Fig. 15 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 16 is a schematic diagram of available transmission resources provided according to an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 19 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 20 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • Fig. 1 is a schematic diagram of a communication system to which the embodiment of the present application is applicable.
  • the transmission resources of the vehicle-mounted terminals (vehicle-mounted terminal 121 and vehicle-mounted terminal 122 ) are allocated by the base station 110 , and the vehicle-mounted terminals transmit data on the sidelink according to the resources allocated by the base station 110 .
  • the base station 110 may allocate resources for a single transmission to the terminal, or may allocate resources for semi-static transmission to the terminal.
  • Fig. 2 is a schematic diagram of another communication system to which the embodiment of the present application is applicable.
  • the vehicle-mounted terminals (vehicle-mounted terminal 131 and vehicle-mounted terminal 132 ) autonomously select transmission resources on sidelink resources for data transmission.
  • the vehicle-mounted terminal may select transmission resources randomly, or select transmission resources by listening.
  • side communication according to the network coverage of the communicating terminal, it can be divided into network coverage inner communication, as shown in Figure 3; part of the network coverage side communication, as shown in Figure 4 ; and network coverage outer line communication, as shown in FIG. 5 .
  • Figure 3 In network coverage inner line communication, all terminals performing side line communication are within the coverage of the same base station, thus, the above terminals can all perform side line based on the same side line configuration by receiving configuration signaling from the base station communication.
  • FIG 4 In the case of partial network coverage for sidelink communication, some terminals performing sidelink communication are located within the coverage of the base station. These terminals can receive configuration signaling from the base station and perform sidelink communication according to the configuration of the base station. However, terminals located outside the network coverage cannot receive the configuration signaling from the base station. In this case, the terminals outside the network coverage will use the pre-configuration information and the physical The information carried in the Physical Sidelink Broadcast Channel (PSBCH) determines the sidelink configuration for sidelink communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • Figure 5 For outbound communication under network coverage, all terminals performing side communication are located outside the network coverage, and all terminals determine side communication according to pre-configuration information to perform side communication.
  • FIG. 6 For side communication with a central control node, multiple terminals form a communication group, which has a central control node and can also become a cluster head terminal (Cluster Header, CH).
  • the central control node has the following functions One: responsible for the establishment of communication groups; joining and leaving of group members; performing resource coordination, allocating side transmission resources for other terminals, receiving side communication feedback information from other terminals; performing resource coordination with other communication groups, etc.
  • device-to-device communication is based on a sidelink (Sidelink, SL) transmission technology based on device to device (D2D), and the communication data in the traditional cellular system is received or sent through the base station.
  • the method is different, so it has higher spectral efficiency and lower transmission delay.
  • the Internet of Vehicles system adopts the terminal-to-terminal direct communication method. Two transmission modes are defined in 3GPP, which are respectively recorded as: the first mode (sidelink resource allocation mode 1) and the second mode (sidelink resource allocation mode 2).
  • the first mode the transmission resources of the terminal are allocated by the base station, and the terminal sends data on the sidelink according to the resources allocated by the base station; the base station can allocate resources for a single transmission to the terminal, and can also allocate semi-static transmission to the terminal H. As shown in FIG. 3 , the terminal is located within the coverage of the network, and the network allocates transmission resources for sidelink transmission to the terminal.
  • the second mode the terminal selects a resource from the resource pool for data transmission.
  • the terminal is located outside the coverage of the cell, and the terminal independently selects transmission resources from the pre-configured resource pool for sidelink transmission; or, as shown in Figure 3, the terminal independently selects transmission resources from the resource pool configured by the network Make sideways transfers.
  • New Radio-Vehicle to Everything NR-V2X
  • NR-V2X New Radio-Vehicle to Everything
  • it supports automatic driving, so it puts forward higher requirements for data interaction between vehicles, such as higher throughput, lower Latency, higher reliability, larger coverage, more flexible resource allocation, etc.
  • unicast transmission there is only one terminal at the receiving end, as shown in Figure 7, unicast transmission is performed between UE1 and UE2; for multicast transmission, the receiving end is all terminals in a communication group, or in a certain All terminals within the transmission distance, as shown in Figure 8, UE1, UE2, UE3, and UE4 form a communication group, in which UE1 sends data, and other terminal devices in the group are receiving end terminals; for broadcast transmission mode, its receiving The terminal is any terminal around the transmitting terminal. As shown in FIG. 9 , UE1 is the transmitting terminal, and other terminals around it, UE2-UE6 are all receiving terminals.
  • the time slot structure in NR-V2X is shown in Figure 10.
  • (a) in Figure 10 indicates that the time slot does not include the physical sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH) time slot structure; the diagram in Figure 10 ( b) shows the slot structure including PSFCH.
  • PSFCH Physical Sidelink Feedback Channel
  • the Physical Sidelink Control Channel starts from the second sidelink symbol of the time slot in the time domain and occupies 2 or 3 Orthogonal frequency division multiplexing (Orthogonal frequency- division multiplexing (OFDM) symbols can occupy ⁇ 10, 12 15, 20, 25 ⁇ physical resource blocks (physical resource blocks, PRBs) in the frequency domain.
  • Orthogonal frequency division multiplexing Orthogonal frequency division multiplexing (Orthogonal frequency- division multiplexing (OFDM) symbols can occupy ⁇ 10, 12 15, 20, 25 ⁇ physical resource blocks (physical resource blocks, PRBs) in the frequency domain.
  • OFDM Orthogonal frequency division multiplexing
  • the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs contained in a sub-channel in the resource pool , so as not to impose additional restrictions on PSSCH resource selection or allocation.
  • the PSSCH also starts from the second side row symbol of the time slot, the last time domain symbol in the time slot is a guard interval (Guard Period, GP) symbol, and the remaining symbols are mapped to the PSSCH.
  • the first side row symbol in this time slot is the repetition of the second side row symbol.
  • the receiving terminal uses the first side row symbol as an automatic gain control (AGC) symbol. Data is generally not used for data demodulation.
  • the PSSCH occupies M subchannels in the frequency domain, and each subchannel includes N consecutive PRBs. As shown in (a) in Figure 10.
  • the second-to-last and third-to-last symbols in the time slot are used for PSFCH channel transmission, and a time domain symbol before the PSFCH channel is used as a GP symbol, as shown in (b) in Figure 10 shown.
  • Mode 2 Mode 2 (Mode2) of NR-V2X, that is, the above-mentioned second mode, the terminal device autonomously selects transmission resources from the resource pool.
  • Support full listening or partial listening wherein, full listening means that the terminal can listen to the data sent by other terminals in all time slots (or subframes) except the time slot for sending data; and partial sensing (partial sensing ) is for energy saving of the terminal, the terminal only needs to listen to some time slots (or subframes), and select resources based on the result of partial listening.
  • the upper layer when the upper layer does not configure partial interception, it defaults to full interception for resource selection.
  • the high layer triggers the physical layer to report the transmission resource set
  • the physical layer listens according to the instruction information of the high layer
  • the terminal determines the listening window and the selection window [n+T 1 , n+T 2 ], according to the interception result in the interception window, determine the candidate resource set in the selection window.
  • T 0 1000
  • the terminal will select resources within [n+T 1 , n+T 2 ] according to the interception result in the interception window [n-1000,n-1).
  • the time unit of the listening window and the selection window is at least one of the following: millisecond, time slot, and subframe.
  • the time n includes at least one of the following: the time when resource selection is triggered, the time when resource reselection is triggered, the time when the upper layer triggers the lower layer to report resources, and the time when a new data packet arrives.
  • the above multiple times may be the same time, for example, the time when resource selection is triggered is also the time when a new data packet arrives; the time when resource reselection is triggered is also the time when a new data packet arrives; the time when resource selection is triggered, At the same time, it is also the moment when the upper layer triggers the lower layer to report resources.
  • T 2min is the processing delay
  • the process of resource selection by the terminal in the selection window is as follows: (The specific resource selection process can refer to the operation steps described in the standard protocol version 3GPPTS38.214v16.3.0, and several main resource selection steps are listed here)
  • the terminal will select all available resources in the window as a set A.
  • the terminal has no listening result for some subframes in the listening window, the resources of these subframes in the corresponding subframes in the selection window are excluded.
  • the terminal detects a PSCCH within the listening window, measure the Reference Signal Received Power (Reference Signal Received Power, RSRP) of the PSSCH scheduled by the PSCCH or the RSRP of the PSCCH, if the measured RSRP is higher than the RSRP threshold, and according to the control If there is a resource conflict between the reserved transmission resource determined by the reservation information in the information and the data to be sent by the user, the user excludes the resource from the set A.
  • the selection of the RSRP threshold is determined by the detected priority information carried in the PSCCH and the priority of the data to be transmitted by the terminal.
  • the terminal will increase the threshold of PSSCH-RSRP by 3dB, and repeat steps 1-3 until the remaining resources in set A The number of resources is greater than X% of the total number of resources.
  • the terminal reports the set A to the upper layer of the terminal.
  • the terminal selects resources from set A with medium probability to perform data transmission.
  • the terminal based on partial interception selects Y time slots in the resource selection window, and judges whether the resources on the Y time slots can be used as candidate resources according to the interception results, and specifically determines the candidate resource set
  • the process of A is similar to the process of complete interception, and will not be repeated here.
  • the unlicensed spectrum is the spectrum allocated by the country and region that can be used for radio device communication.
  • This spectrum is usually considered a shared spectrum, that is, communication devices in different communication systems can be used as long as they meet the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply to the government for exclusive spectrum authorization.
  • the communication device follows the "LBT" principle, that is, before the communication device transmits signals on the channel of the unlicensed spectrum, it needs to perform channel detection first, and only when the channel detection result shows that the channel is idle, the communication device can perform signal transmission ; If the result of the channel detection of the communication device on the channel of the unlicensed frequency spectrum is that the channel is busy, the communication device cannot perform signal transmission. In order to ensure fairness, in one transmission, the duration of signal transmission by the communication device using the channel of the unlicensed spectrum cannot exceed the Maximum Channel Occupancy Time (MCOT).
  • MCOT Maximum Channel Occupancy Time
  • MCOT Maximum channel occupancy time
  • Channel Occupancy Time Refers to the length of time that the channel is used for signal transmission after successful channel detection on the shared spectrum channel. It can also be considered as the time for occupying the channel after successful channel detection on the shared spectrum channel length of time. Wherein, the channel occupied by the signal within the time length may be continuous or discontinuous, and the time length includes the total time for signal transmission by the device initiating the channel occupation and the device occupied by the shared channel.
  • Channel occupancy time of network equipment (gNB/eNB-initiated COT): also known as COT initiated by network equipment, refers to the channel occupancy time obtained by the network equipment after successful channel detection on the channel of the shared spectrum.
  • the COT initiated by the network device can not only be used for network device transmission, but also can be used for terminal device transmission under certain conditions.
  • the COT of the network device is used by the terminal device for transmission, and it is also called that the terminal device shares the COT for transmission.
  • UE-initiated COT refers to the channel occupancy time obtained by the terminal equipment after successful channel detection on the channel of the shared spectrum.
  • the COT initiated by the terminal device can not only be used for transmission by the terminal device, but also can be used by the network device for transmission if certain conditions are met.
  • Downlink transmission burst A group of downlink transmissions performed by network equipment (that is, including one or more downlink transmissions), the group of downlink transmissions is continuous transmission (that is, there is no gap between multiple downlink transmissions), or the group There is a gap in the downlink transmission but the gap is less than or equal to 16 ⁇ s. If the gap between two downlink transmissions performed by the network device is greater than 16 ⁇ s, then the two downlink transmissions are considered to belong to two downlink transmission opportunities.
  • Uplink transmission burst A group of uplink transmissions (that is, including one or more uplink transmissions) performed by a terminal device, and the group of uplink transmissions is continuous transmission (that is, there is no gap between multiple uplink transmissions), or the There is a gap in the group upstream transmission but the gap is less than or equal to 16 ⁇ s. If the gap between two uplink transmissions performed by the terminal device is greater than 16 ⁇ s, it is considered that the two uplink transmissions belong to two uplink transmission opportunities.
  • Channel detection successful also known as channel detection idle.
  • the energy detection performed on the channel in the detection time slot is lower than the energy detection threshold.
  • Channel detection failure also known as channel detection busy.
  • the energy detection performed on the channel in the detection time slot is higher than or equal to the energy detection threshold.
  • Channel Access Type (CAT or Cat): Including Type 1 channel access type or Type 2 channel access type.
  • Type 1 channel access type is equivalent to Cat-4 LBT
  • Type 2 channel access type is equivalent to 25 ⁇ s Cat-2 LBT.
  • resources in the COT may be used for uplink transmission by the UE.
  • the UE For an uplink transmission opportunity that occurs within the COT of a network device, if the gap between the start position of the uplink transmission opportunity and the end position of the downlink transmission opportunity is less than 16 ⁇ s, the UE can immediately perform the uplink transmission (or Cat-1 LBT) ; If within the COT of the network device, there is no downlink (downlink, DL) transmission opportunity behind the uplink (uplink, UL) transmission opportunity, the UE can perform Cat-2 LBT before transmission; if within the COT of the network device, If the gap between any two adjacent transmissions is less than or equal to 25 ⁇ s, the UE can perform Cat-2 LBT.
  • Figure 12 gives an example.
  • Cat-1 LBT can mean that the communication equipment transmits without channel detection after the gap ends;
  • Cat-2 LBT can mean that the communication equipment performs single-slot channel detection, specifically, Cat-2 LBT can include 25 microseconds Single slot channel detection and 16 microsecond single slot channel detection.
  • the UE For an uplink transmission opportunity that occurs within the COT of the network device, if the gap between the start position of the uplink transmission opportunity and the end position of the downlink transmission opportunity is 16 ⁇ s, the UE can perform Cat-2 LBT for 16 ⁇ s before the uplink transmission; If the gap between the start position of the uplink transmission opportunity and the end position of the downlink transmission opportunity is 25 ⁇ s, the UE can perform Cat-2 LBT for 25 ⁇ s before the uplink transmission.
  • the network device may ensure the size of the gap between the start position of the uplink transmission opportunity and the end position of the downlink transmission opportunity, and notify the terminal device of the gap size information or the corresponding LBT mode.
  • the manner in which the network equipment obtains the above-mentioned channel occupancy time may be a load based equipment (LBE) channel access method, that is, the communication equipment can perform LBT on the unlicensed spectrum after the service arrives, and perform LBT on the LBT Start the signal transmission after success; it can also be a frame based equipment (FBE) channel access method, that is, the communication device periodically performs LBT on the unlicensed spectrum.
  • LBE load based equipment
  • FBE frame based equipment
  • Cat-4 LBT can refer to the channel detection method of communication equipment as multi-slot channel detection with random back-off based on contention window size adjustment. Specifically, Cat-4 LBT can include different channel access priorities according to the priorities of transmission services.
  • the frame structure appears periodically, and a frame structure includes a fixed frame period (length not exceeding 200 ms), channel occupation time (length not exceeding More than 95% of the fixed frame period), idle time (the length is at least 5% of the channel occupation time, the minimum value is 100us, and is located at the end of the fixed frame period), in addition, the channel idle detection (Clear Channel Assessment, CCA ).
  • the network device performs LBT on the unlicensed spectrum during the slot time (for example, it can be single-slot channel detection).
  • the channel occupation time in the next fixed frame period can be used to transmit signals; if the LBT fails, the next fixed frame period The channel occupation time within the frame period cannot be used for transmitting signals. In other words, channel resources that the communication device can use for service transmission appear periodically.
  • LTE-LAA Long Term Evolution Licensed-Assisted Access
  • the network device when a terminal device is scheduled for physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) transmission, the network device will pass the downlink control information (DCI) carrying the uplink grant (UL grant) to indicate the channel access type and channel access priority corresponding to the PUSCH.
  • DCI downlink control information
  • Channel Access Type (Channel Access Type, CAT): 1 bit, used to indicate Type 1 channel access type or Type 2 channel access type.
  • the Type 1 channel access type is equivalent to Cat-4 LBT
  • the Type 2 channel access type is equivalent to 25 ⁇ s Cat-2 LBT.
  • the principle for the network device to indicate the channel access type is to indicate Cat-2 LBT if the PUSCH to be transmitted belongs to the COT of the network device, otherwise, indicate Cat-4 LBT.
  • Channel Access Priority Class 2 bits, when the channel access type is Type 1 channel access type, the 2 bits are used to determine the corresponding channel access parameters from Table 1 below.
  • Table 1 shows the channel access parameters corresponding to different channel access priorities under Cat-4 LBT. The smaller the value of p, the higher the channel access priority.
  • m p refers to the number of back-off slots corresponding to channel access priority p
  • CW p refers to the contention window size corresponding to channel access priority p
  • CW min,p refers to the minimum value of CW p corresponding to channel access priority p
  • CW max,p refers to the maximum value of CW p corresponding to channel access priority p
  • T mcot,p refers to the channel access priority The maximum occupied time length of the channel corresponding to level p.
  • the terminal device receives the public indication information sent by the network device, it determines the network device's channel access type according to the public indication information.
  • the channel occupancy time is shared with resources for uplink transmission, and it is determined that the PUSCH to be transmitted (that is, the first PUSCH scheduled by the first Physical Downlink Control Channel (PDCCH)) belongs to the channel occupancy time shared by the network equipment, Then the terminal device can switch the Type 1 channel access type corresponding to the PUSCH to the Type 2 channel access type.
  • PDCCH Physical Downlink Control Channel
  • the indication of the channel access type in the NR-U system is described.
  • the network device when the terminal device is scheduled for PUSCH transmission, can also indicate the channel access corresponding to the PUSCH through the downlink control information DCI carrying the uplink grant (UL grant) Type and channel access priority.
  • DCI carrying the uplink grant (UL grant) Type and channel access priority.
  • the channel access types that need to be indicated may include Cat-1 LBT, Cat-2 LBT, and Cat-4 LBT.
  • Cat-2 LBT includes 25 ⁇ s Cat- 2 LBT and 16 ⁇ s Cat-2 LBT.
  • the terminal needs to transmit LBT needs to be performed. If the LBT is successful, the unlicensed spectrum can be used for data transmission, otherwise, the data transmission needs to be postponed until the LBT succeeds.
  • the terminal of the sidelink transmission system also needs to determine whether it can use the unlicensed spectrum for transmission through LBT, and the sidelink transmission system needs to avoid system Interference between internal terminals determines the available transmission resources. Therefore, how to perform data transmission on the unlicensed spectrum when the terminals of the sidelink transmission system is a problem that needs to be solved.
  • this application proposes a sidelink transmission scheme.
  • the terminal device can determine whether to use available transmission resources for sidelink transmission based on the result of the channel access process, so that the terminal device can use unlicensed spectrum for sidelink transmission. .
  • FIG. 15 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 15 , the wireless communication method 200 may include at least part of the following content:
  • the terminal device determines K available transmission resources
  • the terminal device determines whether to use the i-th available transmission resource for sidelink transmission according to the result of the channel access process; wherein, i and K are positive Integer, and 1 ⁇ i ⁇ K.
  • the embodiments of the present application are applied to unlicensed spectrum.
  • the i-th available transmission resource may be any available transmission resource among the K available transmission resources.
  • the channel access procedure (channel access procedure) may also be an LBT procedure. That is, the terminal device determines whether to use the i-th available transmission resource for sidelink transmission according to the result of the channel access process, which can also be expressed as: the terminal device determines whether to use the i-th available transmission resource according to the result of the LBT Make sideways transfers.
  • the terminal device determines to use the i-th available transmission resource for sidelink transmission; if the LBT fails, the terminal device determines not to use the i-th available transmission resource for sidelink transmission, or, the terminal The device discards the sidelink transmission corresponding to the i-th available transmission resource.
  • the available transmission resources in this embodiment may be the available transmission resources determined by the terminal through the resource selection or resource reselection process (such as the available transmission resources determined through Mode 2), or the available transmission resources determined according to the resource allocation information of the network. Resources (such as available transmission resources determined by Mode 1).
  • the above S210 may specifically include:
  • the terminal device determines the K available transmission resources according to a sidelink resource allocation mode (sidelink resource allocation mode 2) corresponding to mode 2.
  • the mode 2 is the above-mentioned second mode.
  • the terminal device determines the listening window and the selection window; and the terminal device determines the K available transmission resources within the selection window according to the listening result in the listening window.
  • the terminal device determines a candidate resource set in the selection window based on the interception result in the interception window, and reports the candidate resource set to the high-level of the terminal device, and the high-level randomly selects K resources from the candidate resource set as available resources.
  • Transmission resources that is, K available transmission resources
  • the upper layer notifies the physical layer of the terminal of the selected K available transmission resources.
  • the above S210 may specifically include:
  • the terminal device determines the K available transmission resources according to a sidelink resource allocation mode (sidelink resource allocation mode 1) corresponding to mode 1.
  • mode 1 is the above-mentioned first mode.
  • the terminal device receives third indication information sent by the network device, where the third indication information is used to allocate sideline transmission resources for the terminal device; and the terminal device determines the K available transmission resources according to the third indication information .
  • the third indication information is DCI, that is, the terminal determines the K available transmission resources according to the DCI sent by the network.
  • the third indication information is RRC signaling, through which the network configures Type-1 sideline configuration authorized transmission resources for the terminal, and the terminal determines the K available transmission resources according to the RRC signaling.
  • the terminal device determines to use the ith available transmission resource for sidelink transmission; otherwise, the terminal device determines not to use the ith The available transmission resource is used for sidelink transmission, or the terminal device discards the sidelink transmission corresponding to the i-th available transmission resource.
  • the terminal device determines to use the ith available transmission resource for sidelink transmission.
  • the terminal device determines not to use the i-th available transmission resource for sidelink transmission, or the terminal device discards the i-th available transmission resource The sidelink transmission corresponding to the available transmission resource.
  • the terminal device when the result of the channel access procedure indicates that the channel is idle, the terminal device sends the target information in the transmission occasion before the time unit where the i-th available transmission resource is located.
  • the target information is not valid sideline data or signals.
  • the target information includes but is not limited to at least one of the following:
  • the target information is determined according to the sidelink data to be transmitted, for example, the target information is a copy of the sidelink data to be transmitted, for example, a copy of the data on the first time domain symbol.
  • the terminal device determines at least one transmission opportunity included before the time unit where the i-th available transmission resource is located according to configuration information, where the configuration information includes pre-configuration information or configuration information sent by a network device.
  • the terminal device determines, according to the first information, the time domain position corresponding to the earliest transmission opportunity that is allowed to send the target information.
  • the channel can be preempted by sending data in advance, preventing terminals of other systems (such as WiFi terminals) from preempting the channel.
  • the first information includes a first parameter and/or a channel busy ratio (Channel Busy Ratio, CBR), and the first parameter includes but is not limited to at least one of the following: priority information, reliability information, time Delay information, transmission block size (Transmission Block Size, TBS).
  • the priority information is, for example, the priority information carried in Sidelink Control Information (SCI).
  • the terminal device determines, according to the first information and the first correspondence, the time domain position corresponding to the earliest transmission opportunity among the at least one transmission opportunity that is allowed to send the target information;
  • the first correspondence includes a correspondence between the first information and the time domain position corresponding to the earliest transmission opportunity among at least one transmission opportunity that is allowed to send the target information.
  • the first correspondence is pre-configured or stipulated in a protocol, or the first correspondence is configured by a network device.
  • the terminal device determines the number of transmission opportunities allowed to send the target information according to the second information.
  • the second information includes a second parameter and/or CBR, and the second parameter includes but is not limited to at least one of the following: priority information, reliability information, delay information, and TBS.
  • the priority information is, for example, the priority information carried in Sidelink Control Information (SCI).
  • the terminal device determines the number of transmission opportunities allowed to send the target information according to the second information and the second correspondence;
  • the second correspondence includes a correspondence between the second information and the number of transmission opportunities allowed to send the target information.
  • the second correspondence is pre-configured or stipulated in a protocol, or the second correspondence is configured by the network device.
  • the terminal device executes the channel access procedure in the GP of the previous time unit of the time unit where the i-th available transmission resource is located. Specifically, for example, the terminal device executes the channel access procedure in the GP symbol of the previous time slot of the time slot where the i-th available transmission resource is located.
  • the channel access process includes one of the following:
  • the first type of channel access process the second type of channel access process, and the third type of channel access process; wherein,
  • the first type channel access procedure includes Type1 channel access
  • the second type channel access procedure includes Type2A channel access and/or Type2B channel access
  • the third type channel access procedure includes Type2C channel access.
  • the channel access procedure is the second type channel access procedure or the third type channel access procedure.
  • the channel access procedure is the first type channel access procedure.
  • LBT also called channel detection
  • FBE Frame based equipment
  • the channel access mechanism of LBE includes a variety of different channel access schemes, such as Type1 channel access, Type2A channel access, Type2B channel access, and Type2C channel access.
  • Type1 channel access
  • the channel detection method of the communication device is a multi-slot channel detection based on random backoff of contention window size adjustment.
  • the number of detection time slots that need to perform channel detection is randomly generated according to the contention window, and the size of the contention window is determined according to the channel access priority class (CAPC) corresponding to the transmission service.
  • CAC channel access priority class
  • different channel access priorities may be included according to priorities of transmission services.
  • the above Table 1 is an example of channel access parameters corresponding to different channel access priorities. Wherein, the smaller the value of p is, the higher the channel access priority is.
  • the above Table 1 is used for Type1 channel access for uplink transmission of the terminal equipment.
  • Type2A channel access
  • the channel detection mode of the communication equipment is the channel detection of a single detection time slot with a fixed length of 25 microseconds.
  • the communication device can perform channel detection in the detection time slot of 25 microseconds before the transmission starts, and perform transmission after the channel detection succeeds.
  • Type2B channel access
  • the channel detection mode of the communication device is the channel detection of a single detection time slot with a fixed length of 16 microseconds. Specifically, under Type2B channel access, the communication device can perform channel detection within the detection time slot of 16 microseconds before the transmission starts, and perform transmission after the channel detection succeeds. Wherein, the gap length between the start position of the transmission and the end position of the previous transmission is 16 microseconds.
  • Type2C channel access
  • the communication device transmits without channel detection after the slot ends. Specifically, under Type2C channel access, the communication device can directly transmit, but the length of the gap between the start position of the transmission and the end position of the previous transmission is less than or equal to 16 microseconds. Additionally, the length of the transfer does not exceed 584 microseconds.
  • the terminal device receives first indication information sent by other terminals, where the first indication information is used to indicate the shared COT information.
  • the first indication information is sent through sidelink control information (Sidelink Control Information, SCI) or PC5 radio resource control (PC5 Radio Resource Control, PC5-RRC) signaling.
  • SCI Sidelink Control Information
  • PC5 radio resource control PC5 Radio Resource Control
  • the terminal device when the terminal device judges that the channel is idle through the first type channel procedure, the terminal device carries the shared COT information in the sent SCI.
  • the terminal device receives the SCI sent by other terminal devices, the SCI indicates the first shared COT information, and the terminal device determines through the second type channel access process or the third type channel access process in the shared COT When the channel is idle, the terminal device carries the second shared COT information in the sent SCI, where the second shared COT information is determined according to the first shared COT information.
  • the first terminal device receives the SCI sent by the second terminal device at time slot n, and the SCI indicates that the shared COT (that is, the first shared COT information) is 4 time slots, that is, the shared COT includes time slots n and n +1, n+2 and n+3, the available transmission resource determined by the first terminal device is time slot n+2, and the channel is judged to be idle through the second type of channel access procedure in the GP symbol of time slot n+1 , then the first terminal device performs sidelink transmission in time slot n+2, and indicates in the SCI of the sidelink transmission that the shared COT (that is, the second shared COT information) is 2 time slots, that is, the time slot included in the shared COT Slots n+2 and n+3.
  • the terminal device receives second indication information sent by the network device, where the second indication information is used to indicate the shared COT information.
  • the second indication information is sent through downlink control information (Downlink Control Information, DCI) or radio resource control (Radio Resource Control, RRC) signaling.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the time unit is at least one of the following: millisecond, slot, mini-slot, OFDM symbol, and subframe.
  • the mini-slot includes at least one OFDM symbol.
  • time slot k is the time slot where the available transmission resource is located, and the terminal uses this resource for sidelink-based access to unlicensed spectrum (SL-U).
  • LBT is performed before transmission, for example, LBT is performed in the GP symbol of time slot k-1, and 3 transmission opportunities are included in the GP symbol of time slot k-1, corresponding to t0, t1 and t2 respectively.
  • the terminal can send side data or signals (that is, the above target information) in advance before time slot k, and terminals with higher priority can send side data or signals earlier (that is, the above target information) , so that the channel can be preempted, preventing terminals of other systems (such as WiFi terminals) and low-priority terminals from preempting the channel.
  • side data or signals that is, the above target information
  • terminals with higher priority can send side data or signals earlier (that is, the above target information) , so that the channel can be preempted, preventing terminals of other systems (such as WiFi terminals) and low-priority terminals from preempting the channel.
  • the earliest time-domain position of the transmittable side data or signal (that is, the above-mentioned target information) of a terminal with a priority value of 0 is t0
  • the transmittable side data or signal of a terminal with a priority value of 1 that is, The earliest time-domain position of the above-mentioned target information
  • the earliest time-domain position of the transmittable sidelink data or signal (that is, the above-mentioned target information) of a terminal with a priority value of 2 is t2; wherein, the lower the priority value is The corresponding priority is higher.
  • the time domain positions of the transmittable sidelink data or signal (that is, the above-mentioned target information) of the terminal whose priority value is 0 are t0, t1 and t2 (a total of 3 positions), and the priority level
  • the time domain positions of the transmittable sidelink data or signal (that is, the above-mentioned target information) of the terminal with a value of 1 are t1 and t2 (a total of 2 positions), and the sendable sidelink data or signals of a terminal with a priority value of 2 or
  • the earliest time-domain position of the signal (that is, the above-mentioned target information) is t2 (a total of 1 position); wherein, the lower the priority value, the higher the corresponding priority.
  • High priority terminals can have more opportunities to send side data or signals (that is, the above-mentioned target information), therefore, the higher the probability of successfully preempting the channel, the lower priority terminals have fewer opportunities to send side data or signals (that is, the above-mentioned target information), the probability of successfully preempting the channel is low.
  • the terminal device determines whether to use the i-th available transmission resource for sidelink transmission according to the result of the channel access process, so that the terminal Devices can use unlicensed spectrum for sidelink transmissions.
  • mode 2 in the sidelink transmission system, in the process of determining available transmission resources, it is necessary to avoid interference between terminals in the system by means of sensing.
  • the terminal performs sidelink transmission based on the result of LBT and sensing (sensing), so that the terminal can use unlicensed spectrum for sidelink transmission.
  • Fig. 17 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes:
  • a processing unit 310 configured to determine K available transmission resources
  • the processing unit 310 is further configured to determine whether to use the i-th available transmission resource for sidelink transmission according to the result of the channel access process;
  • i and K are positive integers, and 1 ⁇ i ⁇ K.
  • the processing unit 310 is specifically used for:
  • the terminal device 300 further includes: a communication unit 320, wherein,
  • the communication unit 320 is configured to send target information in the transmission opportunity before the time unit where the i-th available transmission resource is located;
  • the target information includes at least one of the following: redundant bits, padding bits, and cyclic prefix extension.
  • the processing unit 310 is further configured to determine at least one transmission opportunity included before the time unit where the i-th available transmission resource is located according to the configuration information, where the configuration information includes pre-configuration information or information sent by the network device configuration information.
  • the processing unit 310 is further configured to determine, according to the first information, the time domain position corresponding to the earliest transmission opportunity that is allowed to send the target information;
  • the first information includes a first parameter and/or a channel busy rate CBR
  • the first parameter includes at least one of the following: priority information, reliability information, delay information, and a transport block size TBS.
  • the processing unit 310 is specifically used for:
  • the first information and the first corresponding relationship determine a time domain position corresponding to the earliest transmission opportunity among at least one transmission opportunity that is allowed to send the target information
  • the first correspondence includes a correspondence between the first information and the time domain position corresponding to the earliest transmission opportunity among at least one transmission opportunity that is allowed to send the target information.
  • the first correspondence is pre-configured or stipulated in a protocol, or the first correspondence is configured by a network device.
  • the processing unit 310 is further configured to determine the number of transmission opportunities allowed to send the target information according to the second information;
  • the second information includes a second parameter and/or CBR
  • the second parameter includes at least one of the following: priority information, reliability information, delay information, and TBS.
  • the processing unit 310 is specifically used for:
  • the second correspondence includes a correspondence between the second information and the number of transmission opportunities allowed to send the target information.
  • the second correspondence is pre-configured or stipulated in a protocol, or the second correspondence is configured by the network device.
  • the processing unit 310 is further configured to execute the channel access process within a guard interval GP of a time unit preceding the time unit where the i-th available transmission resource is located.
  • the channel access process includes one of the following:
  • the first type of channel access process the second type of channel access process, and the third type of channel access process; wherein,
  • the first type channel access procedure includes Type1 channel access
  • the second type channel access procedure includes Type2A channel access and/or Type2B channel access
  • the third type channel access procedure includes Type2C channel access.
  • the channel access procedure when the i-th available transmission resource is within the shared channel occupancy time COT, the channel access procedure is the second type channel access procedure or the third type channel access procedure; And/or, in the case that the i-th available transmission resource is not located in the shared COT, the channel access procedure is the first type channel access procedure.
  • the terminal device 300 also includes:
  • the communication unit 320 is configured to receive first indication information sent by other terminals, where the first indication information is used to indicate the shared COT information.
  • the first indication information is sent through sidelink control information SCI or PC5 radio resource control PC5-RRC signaling.
  • the terminal device 300 also includes:
  • the second indication information is sent through downlink control information DCI or radio resource control RRC signaling.
  • the processing unit 310 is specifically used for:
  • the K available transmission resources are determined according to the sidelink resource allocation manner corresponding to mode 2.
  • the processing unit 310 is specifically used for:
  • the K available transmission resources are determined in the selection window according to the interception result in the interception window.
  • the processing unit 310 is specifically used for:
  • the K available transmission resources are determined according to the sidelink resource allocation mode corresponding to mode 1.
  • the terminal device 300 further includes: a communication unit 320, wherein,
  • the communication unit 320 is configured to receive third indication information sent by the network device, where the third indication information is used to allocate sidelink transmission resources for the terminal device;
  • the processing unit 310 is specifically configured to determine the K available transmission resources according to the third indication information.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are respectively in order to realize the wireless
  • the corresponding processes of the terminal device in the communication method 200 are not repeated here.
  • FIG. 17 is a schematic structural diagram of a communication device 400 provided by an embodiment of the present application.
  • the communication device 400 shown in FIG. 17 includes a processor 410, and the processor 410 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 400 may further include a memory 420 .
  • the processor 410 can invoke and run a computer program from the memory 420, so as to implement the method in the embodiment of the present application.
  • the memory 420 may be an independent device independent of the processor 410 , or may be integrated in the processor 410 .
  • the communication device 400 may further include a transceiver 430, and the processor 410 may control the transceiver 430 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 400 may specifically be the network device of the embodiment of the present application, and the communication device 400 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 400 may specifically be the terminal device in the embodiment of the present application, and the communication device 400 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • Fig. 18 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 500 shown in FIG. 18 includes a processor 510, and the processor 510 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 500 may further include a memory 520 .
  • the processor 510 can invoke and run a computer program from the memory 520, so as to implement the method in the embodiment of the present application.
  • the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
  • the device 500 may further include an input interface 530 .
  • the processor 510 can control the input interface 530 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • the terminal device 610 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 620 can be used to realize the corresponding functions realized by the network device in the above method, for the sake of brevity, no longer repeat.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as an external cache.
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法及设备,终端设备可以基于信道接入过程的结果确定是否使用可用传输资源进行侧行传输,从而使得终端设备可以使用非授权频谱进行侧行传输。该无线通信的方法,包括:终端设备确定K个可用传输资源;针对该K个可用传输资源中的第i个可用传输资源,该终端设备根据信道接入过程的结果确定是否使用该第i个可用传输资源进行侧行传输;其中,i和K为正整数,且1≤i≤K。

Description

无线通信的方法及设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法及设备。
背景技术
在非授权频谱上可能存在多种通信系统的设备,设备之间共享频谱资源。因此,在非授权频谱上,当终端需要进行传输时,需要进行先侦听后传输(Listen Before Talk,LBT),如果LBT成功,则可以使用该非授权频谱进行数据传输,否则需要推迟进行数据传输,直至LBT成功为止。对于侧行传输系统内的终端,在非授权频谱上如何进行数据传输,是一个需要解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法及设备,终端设备可以基于信道接入过程的结果确定是否使用可用传输资源进行侧行传输,从而使得终端设备可以使用非授权频谱进行侧行传输。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备确定K个可用传输资源;
针对该K个可用传输资源中的第i个可用传输资源,该终端设备根据信道接入过程的结果确定是否使用该第i个可用传输资源进行侧行传输;
其中,i和K为正整数,且1≤i≤K。
第二方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第三方面,提供了一种终端设备,包括处理器和存储器;其中,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第四方面,提供了一种装置,用于实现上述第一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面中的方法。
通过上述技术方案,针对K个可用传输资源中的第i个可用传输资源,终端设备根据信道接入过程的结果确定是否使用第i个可用传输资源进行侧行传输,从而使得终端设备可以使用非授权频谱进行侧行传输。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请实施例应用的另一种通信系统架构的示意性图。
图3是本申请提供的一种网络覆盖范围内侧行通信的示意性图。
图4是本申请提供的一种部分网络覆盖侧行通信的示意性图。
图5是本申请提供的一种网络覆盖外侧行通信的示意性图。
图6是本申请提供的一种存在中央控制节点的侧行通信的示意性图。
图7是本申请提供的一种单播侧行通信的示意性图。
图8是本申请提供的一种组播侧行通信的示意性图。
图9是本申请提供的一种广播侧行通信的示意性图。
图10是本申请提供的一种NR-V2X中的时隙结构的示意性图。
图11是本申请提供的一种资源侦听的示意性图。
图12是本申请提供的一种信道占用的示意性图。
图13是本申请提供的一种基于FBE的信道接入方式的示意性图。
图14是本申请提供的一种信道接入类型切换的示意性图。
图15是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图16是根据本申请实施例提供的一种可用传输资源的示意性图。
图17是根据本申请实施例提供的一种终端设备的示意性框图。
图18是根据本申请实施例提供的一种通信设备的示意性框图。
图19是根据本申请实施例提供的一种装置的示意性框图。
图20是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、 “第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图1是本申请实施例适用的一种通信系统的示意图。车载终端(车载终端121和车载终端122)的传输资源是由基站110分配的,车载终端根据基站110分配的资源在侧行链路上进行数据的发送。具体地,基站110可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。
图2是本申请实施例适用的另一种通信系统的示意图。车载终端(车载终端131和车载终端132)在侧行链路的资源上自主选取传输资源进行数据传输。可选地,车载终端可以随机选取传输资源,或者通过侦听的方式选取传输资源。
需要说明的是,在侧行通信中,根据进行通信的终端所处的网络覆盖情况,可以分为网络覆盖内侧行通信,如图3所示;部分网络覆盖侧行通信,如图4所示;及网络覆盖外侧行通信,如图5所示。
图3:在网络覆盖内侧行通信中,所有进行侧行通信的终端均处于同一基站的覆盖范围内,从而,上述终端均可以通过接收基站的配置信令,基于相同的侧行配置进行侧行通信。
图4:在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于基站的覆盖范围内,这部分终端能够接收到基站的配置信令,而且根据基站的配置进行侧行通信。而位于网络覆盖范围外的终端,无法接收基站的配置信令,在这种情况下,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息确定侧行配置,进行侧行通信。
图5:对于网络覆盖外侧行通信,所有进行侧行通信的终端均位于网络覆盖范围外,所有终端均根据预配置(pre-configuration)信息确定侧行配置进行侧行通信。
图6:对于有中央控制节点的侧行通信,多个终端构成一个通信组,该通信组内具有中央控制节点,又可以成为组头终端(Cluster Header,CH),该中央控制节点具有以下功能之一:负责通信组的建立;组成员的加入、离开;进行资源协调,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。
需要说明的是,设备到设备通信是基于终端到终端(Device to Device,D2D)的一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,因此具有更高的频谱效率以及更低的传输时延。车联网系统采用终端到终端直接通信的方式,在3GPP定义了两种传输模式,分别记为:第一模式(sidelink  resource allocation mode 1)和第二模式(sidelink resource allocation mode 2)。
第一模式:终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。如图3所示,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:终端在资源池中选取一个资源进行数据的传输。如图5所示,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输;或者,如图3所示,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
在新空口-车辆到其他设备(New Radio-Vehicle to Everything,NR-V2X)中,支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在LTE-V2X中,支持广播传输方式,在NR-V2X中,引入了单播和组播的传输方式。对于单播传输,其接收端终端只有一个终端,如图7所示,UE1、UE2之间进行单播传输;对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端,如图8所示,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端设备都是接收端终端;对于广播传输方式,其接收端是发送端终端周围的任意一个终端,如图9所示,UE1是发送端终端,其周围的其他终端,UE2-UE6都是接收端终端。
为便于更好的理解本申请实施例,对本申请相关的NR-V2X系统帧结构进行说明。
NR-V2X中的时隙结构图10所示,图10中的(a)表示时隙中不包括物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)的时隙结构;图10中的图(b)表示包括PSFCH的时隙结构。
NR-V2X中物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)在时域上从该时隙的第二个侧行符号开始,占用2个或3个正交频分复用(Orthogonal frequency-division multiplexing,OFDM)符号,在频域上可以占用{10,12 15,20,25}个物理资源块(physical resource block,PRB)。为了降低UE对PSCCH的盲检测的复杂度,在一个资源池内只允许配置一个PSCCH符号个数和PRB个数。另外,因为子信道为NR-V2X中物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)资源分配的最小粒度,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对PSSCH资源选择或分配造成额外的限制。PSSCH在时域上也是从该时隙的第二个侧行符号开始,该时隙中的最后一个时域符号为保护间隔(Guard Period,GP)符号,其余符号映射PSSCH。该时隙中的第一个侧行符号是第二个侧行符号的重复,通常接收端终端将第一个侧行符号用作自动增益控制(Auto gain control,AGC)符号,该符号上的数据通常不用于数据解调。PSSCH在频域上占据M个子信道,每个子信道包括N个连续的PRB。如图10中的(a)所示。
当时隙中包含PSFCH信道时,该时隙中倒数第二个和倒数第三个符号用作PSFCH信道传输,在PSFCH信道之前的一个时域符号用作GP符号,如图10中的(b)所示。
为便于更好的理解本申请实施例,对本申请相关的基于侦听的资源选取进行说明。
在NR-V2X的模式2(Mode2)中,即上述第二模式,终端设备自主从资源池中选取传输资源。支持完全侦听或部分侦听,其中,完全侦听即终端可以侦听除了发送数据的时隙之外所有的时隙(或子帧)中其他终端发送的数据;而部分侦听(partial sensing)是为了终端节能,终端只需要侦听部分时隙(或子帧),并且基于部分侦听的结果进行资源选取。
具体的,当高层没有配置部分侦听时,即默认采用完全侦听的方式进行资源选取。
在时刻n,高层触发物理层上报传输资源集合,物理层根据高层的指示信息进行侦听,终端确定侦听窗
Figure PCTCN2021106543-appb-000001
和选择窗[n+T 1,n+T 2],根据侦听窗内的侦听结果,在选 择窗内确定候选资源集合。具体的,T 0=1000,
Figure PCTCN2021106543-appb-000002
如图11所示,终端会根据侦听窗[n-1000,n-1)中的侦听结果,在[n+T 1,n+T 2]内进行资源选取。其中该侦听窗、选择窗的时间单位为以下至少之一:毫秒、时隙、子帧。
其中,时刻n包括以下至少之一:触发进行资源选择的时刻、触发进行资源重选的时刻、高层触发底层进行资源上报的时刻、新数据包到达的时刻。
上述多种时刻可以是同一时刻,例如,触发进行资源选择的时刻,同时也是新数据包到达的时刻;触发进行资源重选的时刻同时也是新数据包到达的时刻;触发进行资源选择的时刻,同时也是高层触发底层进行资源上报的时刻。
其中
Figure PCTCN2021106543-appb-000003
T 2min≤T 2≤剩余包延迟预算(packet delay budget,PDB),
Figure PCTCN2021106543-appb-000004
是处理时延,T 2min是配置参数,例如,如果剩余PDB是100,T 2min=20,则20≤T 2≤100,如图11所示。
终端在选择窗内进行资源选取的过程如下:(具体的资源选取过程可以参照标准协议版本3GPPTS38.214v16.3.0中描述的操作步骤,此处列出了几个主要的资源选取步骤)
1,终端将选择窗内所有可用的资源作为一个集合A。
2,如果终端在侦听窗内某些子帧没有侦听结果,则这些子帧在选择窗内对应的子帧上的资源被排除掉。
3,如果终端侦听窗内检测到PSCCH,测量该PSCCH调度的PSSCH的参考信号接收功率(Reference Signal Received Power,RSRP)或该PSCCH的RSRP,如果测量的RSRP高于RSRP门限,并且根据该控制信息中预留信息确定的其预留的传输资源与本用户待发送的数据存在资源冲突,则用户在集合A中排除掉该资源。其中,RSRP门限的选取是由检测到的PSCCH中携带的优先级信息和终端待传输数据的优先级确定的。
4,如果集合A中剩余的资源个数小于总资源个数X%(X=20,35或50),终端会提升PSSCH-RSRP的门限3dB,并且重复步骤1-3,直到集合A中剩余的资源个数大于总资源数的X%。
5,终端将集合A上报给该终端的高层。
6,终端从集合A中等概率的选取资源进行数据传输。
相对于完全侦听的方式,基于部分侦听的终端在资源选择窗内选取Y个时隙,并且根据侦听结果判断Y个时隙上的资源是否可以作为候选资源,具体的确定候选资源集合A的过程与完全侦听过程类似,这里不再赘述。
为便于更好的理解本申请实施例,对本申请相关的基非授权频谱进行说明。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“LBT”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupancy Time,MCOT)。
共享频谱上传输的基本概念:
最大信道占用时间(MCOT):指在共享频谱的信道上信道检测(channel sensing)成功后允许使用该信道进行信号传输的最大时间长度。
信道占用时间(Channel Occupancy Time,COT):指在共享频谱的信道上信道检测成功后使用该信道进行信号传输的时间长度,也可以认为是在共享频谱的信道上信道检 测成功后占用该信道的时间长度。其中,该时间长度内信号占用信道可以是连续的或不连续的,该时间长度包括发起信道占用的设备和共享信道占用的设备进行信号传输的总时间。
网络设备的信道占用时间(gNB/eNB-initiated COT):也称为网络设备发起的COT,指网络设备在共享频谱的信道上信道检测成功后获得的一次信道占用时间。网络设备发起的COT内除了可以用于网络设备进行传输,也可以在满足一定条件下用于终端设备进行传输。网络设备的COT用于终端设备进行传输,也称为终端设备共享该COT进行传输。
终端设备的信道占用时间(UE-initiated COT):也称为终端设备发起的COT,指终端设备在共享频谱的信道上信道检测成功后获得的一次信道占用时间。终端设备发起的COT内除了可以用于终端设备进行传输,也可以在满足一定条件下用于网络设备进行传输。
下行传输机会(Downlink transmission burst):网络设备进行的一组下行传输(即包括一个或多个下行传输),该组下行传输为连续传输(即多个下行传输之间没有空隙),或该组下行传输中有空隙但空隙小于或等于16μs。如果网络设备进行的两个下行传输之间的空隙大于16μs,那么认为该两个下行传输属于两次下行传输机会。
上行传输机会(Uplink transmission burst):一个终端设备进行的一组上行传输(即包括一个或多个上行传输),该组上行传输为连续传输(即多个上行传输之间没有空隙),或该组上行传输中有空隙但空隙小于或等于16μs。如果该终端设备进行的两个上行传输之间的空隙大于16μs,那么认为该两个上行传输属于两次上行传输机会。
信道检测成功:也称为信道检测空闲。例如对信道进行的检测时隙内的能量检测低于能量检测门限。
信道检测失败:也称为信道检测忙碌。例如对信道进行的检测时隙内的能量检测高于或等于能量检测门限。
信道接入类型(Channel Access Type,CAT或Cat):包括类型(Type)1信道接入类型或Type 2信道接入类型。其中,Type 1信道接入类型相当于Cat-4 LBT,Type 2信道接入类型相当于25μs的Cat-2 LBT。
在一些实施例中,当网络设备发起COT后,可以将该COT内的资源用于UE进行上行传输。在网络设备的COT内发生的上行传输机会,如果该上行传输机会的起始位置和下行传输机会的结束位置之间的空隙小于16μs,UE可以立即进行该上行传输(或者说Cat-1 LBT);如果在该网络设备的COT内,该上行(uplink,UL)传输机会后面没有下行(downlink,DL)传输机会,UE在传输前可以进行Cat-2 LBT;如果在该网络设备的COT内,任意两次相邻的传输之间的空隙小于或等于25μs,UE可以进行Cat-2 LBT。图12给出了示例。
其中,Cat-1 LBT可以指通信设备在空隙结束后不做信道检测而进行传输;Cat-2 LBT可以指通信设备做单时隙信道检测,具体地,Cat-2 LBT可以包括25微秒的单时隙信道检测和16微秒的单时隙信道检测。在网络设备的COT内发生的上行传输机会,如果该上行传输机会的起始位置和下行传输机会的结束位置之间的空隙为16μs,UE可以在该上行传输前进行16μs的Cat-2 LBT;如果该上行传输机会的起始位置和下行传输机会的结束位置之间的空隙为25μs,UE可以在该上行传输前进行25μs的Cat-2 LBT。网络设备可以来保证该上行传输机会的起始位置和下行传输机会的结束位置之间的空隙的大小,并将该空隙大小信息或对应的LBT方式通知给终端设备。
应理解,网络设备获得上述信道占用时间的方式可以是基于负载的设备(Load based equipment,LBE)的信道接入方式,即通信设备可以在业务到达后进行非授权频谱上的LBT,并在LBT成功后开始信号的发送;也可以是基于帧结构的设备(Frame based equipment,FBE)的信道接入方式,即通信设备周期性地进行非授权频谱上的LBT。
如果是基于LBE的信道接入方式,网络设备可以通过Cat-4 LBT来获得信道占用时间。Cat-4 LBT可以指通信设备的信道检测方式为基于竞争窗口大小调整的随机回退的多时隙信道检测。具体地,Cat-4 LBT根据传输业务的优先级可以包括不同的信道接入优先级。
如果是基于FBE的信道接入方式,如图13所示,在该方式中,帧结构是周期出现的,在一个帧结构内包括固定帧周期(长度不超过200ms)、信道占用时间(长度不超过固定帧周期的95%)、空闲时间(长度至少为信道占用时间的5%,最小值为100us,且位于固定帧周期的尾部),此外,还会进行信道空闲检测(Clear Channel Assessment,CCA)。网络设备在空隙时间内对非授权频谱做LBT(例如可以是单时隙信道检测),如果LBT成功,下一个固定帧周期内的信道占用时间可以用于传输信号;如果LBT失败,下一个固定帧周期内的信道占用时间不能用于传输信号。或者说,通信设备可以用于业务发送的信道资源是周期性出现的。
为便于更好的理解本申请实施例,对长期演进的授权辅助接入(Long Term Evolution Licensed-Assisted Access,LTE-LAA)系统中的信道接入类型的指示进行说明。
在LTE-LAA系统中,当终端设备被调度进行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输时,网络设备会通过携带上行授权(UL grant)的下行控制信息(Downlink Control Information,DCI)来指示该PUSCH对应的信道接入类型和信道接入优先级。
信道接入类型(Channel Access Type,CAT):1比特,用于指示Type 1信道接入类型或Type 2信道接入类型。其中,Type 1信道接入类型相当于Cat-4 LBT,Type 2信道接入类型相当于25μs的Cat-2 LBT。网络设备指示信道接入类型的原则是,如果待传输PUSCH属于网络设备的COT内,指示Cat-2 LBT,否则,指示Cat-4 LBT。
信道接入优先级(Channel Access Priority Class,CAPC):2比特,当信道接入类型为Type 1信道接入类型时,该2比特用于从下表1中确定对应的信道接入参数。其中表1为Cat-4 LBT下不同信道接入优先级对应的信道接入参数,p取值越小,信道接入优先级越高。
表1
信道接入优先级(p) m p CW min,p CW max,p T mcot,p 允许的CW p取值
1 2 3 7 2ms {3,7}
2 2 7 15 4ms {7,15}
3 3 15 1023 6或10ms {15,31,63,127,255,511,1023}
4 7 15 1023 6或10ms {15,31,63,127,255,511,1023}
需要说明的是,在上述表1中,m p是指信道接入优先级p对应的回退时隙个数,CW p是指信道接入优先级p对应的竞争窗口大小,CW min,p是指信道接入优先级p对应的CW p取值的最小值,CW max,p是指信道接入优先级p对应的CW p取值的最大值,T mcot,p是指信道接入优先级p对应的信道最大占用时间长度。
还需要说明的是,在网络设备的信道占用时间内,只允许有一个上下行转换点。另外,在终端设备待传输的PUSCH对应的信道接入类型被指示为Type 1信道接入类型的情况下,如果该终端设备接收网络设备发送的公共指示信息,根据该公共指示信息确定网络设备的信道占用时间共享给上行传输的资源,并确定该待传输的PUSCH(即第一物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度的第一PUSCH)属于该网络设备共享的信道占用时间内,那么该终端设备可以将该PUSCH对应的Type 1信道接入类型切换为Type 2信道接入类型。如图14所示。
为便于更好的理解本申请实施例,对NR-U系统中的信道接入类型的指示进行说明。
和LTE-LAA系统类似,在NR-U系统中,当终端设备被调度进行PUSCH传输时,网络设备也可以通过携带上行授权(UL grant)的下行控制信息DCI来指示该PUSCH对应的信道接入类型和信道接入优先级。
和LTE-LAA不同的是,在NR-U系统中,需要指示的信道接入类型可能包括Cat-1 LBT,Cat-2 LBT,Cat-4 LBT,其中,Cat-2 LBT包括25μs的Cat-2 LBT和16μs的Cat-2 LBT。另外,NR-U系统中网络设备的信道占用时间内可能出现大于一个的上下行切换点。
为便于更好的理解本申请实施例,对本申请相关的现有技术及存在的问题进行说明。
在非授权频谱上可能存在多种通信系统的设备,设备之间共享频谱资源。因此,在非授权频谱上,当终端需要进行传输时,需要进行LBT,如果LBT成功,则可以使用该非授权频谱进行数据传输,否则需要推迟进行数据传输,直至LBT成功为止。当侧行传输系统工作在非授权频谱时,侧行传输系统的终端也需要通过LBT的方式确定是否可以使用该非授权频谱进行传输,而在侧行传输系统内部需要通过侦听的方式避免系统内终端之间的干扰,确定可用的传输资源,因此,当侧行传输系统的终端在非授权频谱上如何进行数据传输是需要解决的问题。
基于上述问题,本申请提出了一种侧行传输的方案,终端设备可以基于信道接入过程的结果确定是否使用可用传输资源进行侧行传输,从而使得终端设备可以使用非授权频谱进行侧行传输。
以下通过具体实施例详述本申请的技术方案。
图15是根据本申请实施例的无线通信的方法200的示意性流程图,如图15所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,终端设备确定K个可用传输资源;
S220,针对该K个可用传输资源中的第i个可用传输资源,该终端设备根据信道接入过程的结果确定是否使用该第i个可用传输资源进行侧行传输;其中,i和K为正整数,且1≤i≤K。
本申请实施例应用于非授权频谱。该第i个可用传输资源可以是该K个可用传输资源中的任意一个可用传输资源。在一些实施例中,信道接入过程(channel access procedure)也可以是LBT过程。也即,该终端设备根据信道接入过程的结果确定是否使用该第i个可用传输资源进行侧行传输,也可以表述为:该终端设备根据LBT的结果确定是否使用该第i个可用传输资源进行侧行传输。例如,若LBT成功,则终端设备确定使用该第i个可用传输资源进行侧行传输;若LBT失败,则该终端设备确定不使用该第i个可用传输资源进行侧行传输,或者,该终端设备丢弃该第i个可用传输资源对应的侧行传输。
应理解,本实施例中的可用传输资源可以是终端通过资源选取或资源重选过程确定的可用传输资源(如通过Mode 2确定的可用传输资源),或根据网络的资源分配信息确定的可用传输资源(如通过Mode 1确定的可用传输资源)。
在一些实施例中,上述S210具体可以包括:
该终端设备根据模式2对应的侧行资源分配方式(sidelink resource allocation mode 2)确定该K个可用传输资源。
需要说明的是,模式2即上述第二模式。
在一些实施例中,该终端设备确定侦听窗和选择窗;以及该终端设备根据该侦听窗内的侦听结果在该选择窗内确定该K个可用传输资源。
具体例如,终端设备基于侦听窗内的侦听结果在选择窗内确定候选资源集合,并且将该候选资源集合上报给终端设备的高层,高层在该候选资源集合中随机选取K个资源作为可用传输资源(即K个可用传输资源);进一步的,高层将选取的K个可用传输资源告知该终端的物理层。
在一些实施例中,上述S210具体可以包括:
该终端设备根据模式1对应的侧行资源分配方式(sidelink resource allocation mode 1)确定该K个可用传输资源。
需要说明的是,模式1即上述第一模式。
具体例如,该终端设备接收网络设备发送的第三指示信息,该第三指示信息用于为该终端设备分配侧行传输资源;以及该终端设备根据该第三指示信息确定该K个可用传输资源。例如,该第三指示信息为DCI,即终端根据网络发送的DCI确定该K个可用传输资源。又例如,该第三指示信息为RRC信令,网络通过RRC信令为该终端配置Type-1侧行配置授权传输资源,终端根据该RRC信令确定该K个可用传输资源。
在一些实施例中,在该信道接入过程的结果指示信道空闲的情况下,该终端设备确定使用该第i个可用传输资源进行侧行传输;否则,该终端设备确定不使用该第i个可用传输资源进行侧行传输,或者,该终端设备丢弃该第i个可用传输资源对应的侧行传输。
在一些实施例中,在该信道接入过程的结果指示信道空闲的情况下,该终端设备确定使用该第i个可用传输资源进行侧行传输。
在一些实施例中,在该信道接入过程的结果指示信道非空闲的情况下,该终端设备确定不使用该第i个可用传输资源进行侧行传输,或者,该终端设备丢弃该第i个可用传输资源对应的侧行传输。
在一些实施例中,在该信道接入过程的结果指示信道空闲的情况下,该终端设备在该第i个可用传输资源所在的时间单元之前的传输机会(Transmission occasion)中发送目标信息。
在一些实施例中,该目标信息不是有效的侧行数据或信号。
在一些实施例中,该目标信息包括但不限于以下至少之一:
冗余比特,填充比特,循环前缀扩展(Cyclic Prefix extension,CP-extension)。
在一些实施例中,该目标信息是根据待传输的侧行数据确定的,例如,该目标信息是待传输的侧行数据的复制,例如,是第一个时域符号上的数据的复制。
在一些实施例中,该终端设备根据配置信息确定该第i个可用传输资源所在的时间单元之前包括的至少一个传输机会,其中,该配置信息包括预配置信息或网络设备发送的配置信息。
在一些实施例中,该终端设备根据第一信息确定允许发送该目标信息的最早的传输机会对应的时域位置。具体的,通过提前发送数据可以抢占信道,避免其他系统的终端(如WiFi终端)抢占信道。
在一些实施例中,该第一信息包括第一参数和/或信道繁忙率(Channel Busy Ratio,CBR),该第一参数包括但不限于以下至少之一:优先级信息、可靠性信息、时延信息、传输块大小(Transmission Block Size,TBS)。其中,优先级信息例如是在侧行控制信息(SidelinkControlInformation,SCI)中携带的优先级信息。
在一些实施例中,该终端设备根据该第一信息和第一对应关系,确定允许发送该目标信息的至少一个传输机会中最早的传输机会对应的时域位置;
其中,该第一对应关系包括该第一信息与允许发送该目标信息的至少一个传输机会中最早的传输机会对应的时域位置之间的对应关系。
在一些实施例中,该第一对应关系为预配置或协议约定的,或者,该第一对应关系为网络设备配置的。
在一些实施例中,该终端设备根据第二信息确定允许发送该目标信息的传输机会的数量。
在一些实施例中,该第二信息包括第二参数和/或CBR,该第二参数包括但不限于以下至少之一:优先级信息、可靠性信息、时延信息、TBS。其中,优先级信息例如是在侧行控制信息(SidelinkControlInformation,SCI)中携带的优先级信息。
在一些实施例中,该终端设备根据该第二信息和第二对应关系,确定允许发送该目 标信息的传输机会的数量;
其中,该第二对应关系包括该第二信息与允许发送该目标信息的传输机会的数量之间的对应关系。
在一些实施例中,该第二对应关系为预配置或协议约定的,或者,该第二对应关系为网络设备配置的。
在一些实施例中,该终端设备在该第i个可用传输资源所在的时间单元的前一个时间单元的GP内执行该信道接入过程。具体例如,该终端设备在该第i个可用传输资源所在的时隙的前一个时隙的GP符号内执行该信道接入过程。
在一些实施例中,该信道接入过程包括以下之一:
第一类型信道接入过程,第二类型信道接入过程,第三类型信道接入过程;其中,
该第一类型信道接入过程包括类型Type1信道接入,该第二类型信道接入过程包括Type2A信道接入和/或Type2B信道接入,该第三类型信道接入过程包括Type2C信道接入。
在一些实施例中,在该第i个可用传输资源位于共享的COT内的情况下,该信道接入过程为该第二类型信道接入过程或该第三类型信道接入过程。
在一些实施例中,在该第i个可用传输资源不位于共享的COT内的情况下,该信道接入过程为该第一类型信道接入过程。
需要说明的是,在共享频谱上,通信设备在发送信道或信号前需要先进行LBT(也称为信道检测),只有LBT成功才能传输,LBT失败不能传输。因此,共享频谱上的通信是机会性传输。从系统的布网角度,信道检测包括两种机制,一种是基于负载的设备(Load based equipment,LBE)的LBT,也称为动态信道检测、动态信道接入或动态信道占用,另一种是基于帧结构的设备(Frame based equipment,FBE)的LBT,也称为半静态信道检测、半静态信道接入或半静态信道占用。
在LBE的信道接入机制,或者说,动态信道接入模式中,包括多种不同的信道接入方案,如Type1信道接入、Type2A信道接入、Type2B信道接入和Type2C信道接入。
Type1信道接入:
通信设备的信道检测方式为基于竞争窗口大小调整的随机回退的多时隙信道检测。其中,需要进行信道检测的检测时隙的个数是根据竞争窗口随机生成的,竞争窗口大小是根据传输业务对应的信道接入优先级(Channel access priority class,CAPC)确定的。具体地,Type1信道接入下,根据传输业务的优先级可以包括不同的信道接入优先级(CAPC)。例如,上述表1为不同信道接入优先级对应的信道接入参数的示例。其中,p取值越小,信道接入优先级越高。可选地,上述表1用于终端设备的上行传输的Type1信道接入。
Type2A信道接入:
通信设备的信道检测方式为固定长度为25微秒的单检测时隙的信道检测。具体地,Type2A信道接入下,通信设备可以在传输开始前的25微秒的检测时隙内进行信道检测,并在信道检测成功后进行传输。
Type2B信道接入:
通信设备的信道检测方式为固定长度为16微秒的单检测时隙的信道检测。具体地,Type2B信道接入下,通信设备可以在传输开始前的16微秒的检测时隙内进行信道检测,并在信道检测成功后进行传输。其中,该传输的起始位置距离上一次传输的结束位置之间的空隙长度为16微秒。
Type2C信道接入:
通信设备在空隙结束后不做信道检测而进行传输。具体地,Type2C信道接入下,通信设备可以直接进行传输,但该传输的起始位置距离上一次传输的结束位置之间的空隙长度为小于或等于16微秒。另外,该传输的长度不超过584微秒。
在一些实施例中,该终端设备接收其他终端发送的第一指示信息,该第一指示信息用于指示该共享的COT信息。
在一些实施例中,该第一指示信息通过侧行控制信息(Sidelink Control Information,SCI)或PC5无线资源控制(PC5Radio Resource Control,PC5-RRC)信令发送。
在一些实施例中,当终端设备通过第一类型信道过程判断信道空闲时,该终端设备在发送的SCI中携带共享的COT信息。
在一些实施例中,终端设备接收其他终端设备发送的SCI,该SCI指示第一共享COT信息,该终端设备在该共享COT内通过第二类型信道接入过程或第三类型信道接入过程判断信道空闲时,该终端设备在发送的SCI中携带第二共享COT信息,其中,该第二共享COT信息根据该第一共享COT信息确定。例如,第一终端设备在时隙n接收到第二终端设备发送的SCI,该SCI中指示共享COT(即第一共享COT信息)为4个时隙,即共享COT内包括时隙n,n+1,n+2和n+3,该第一终端设备确定的可用传输资源为时隙n+2,并且在时隙n+1的GP符号内通过第二类型信道接入过程判断信道空闲,则该第一终端设备在时隙n+2进行侧行传输,并且在该侧行传输的SCI中指示共享COT(即第二共享COT信息)为2个时隙,即共享COT内包括时隙n+2和n+3。
在一些实施例中,该终端设备接收网络设备发送的第二指示信息,该第二指示信息用于指示该共享的COT信息。
在一些实施例中,该第二指示信息通过下行控制信息(Downlink Control Information,DCI)或无线资源控制(Radio Resource Control,RRC)信令发送。
在一些实施例中,上述时间单位为以下至少之一:毫秒(millisecond)、时隙(slot)、微时隙(mini-slot)、OFDM符号、子帧(subframe)。其中,微时隙包括至少一个OFDM符号。
具体例如,如图16所示,在侧行非授权频谱(Sidelink-based access to unlicensed spectrum,SL-U)上,时隙k是可用传输资源所在的时隙,终端在使用该资源进行侧行传输之前进行LBT,例如,在时隙k-1的GP符号内做LBT,在时隙k-1的GP符号内包括3个传输机会,分别对应t0,t1和t2。如果终端LBT成功,则终端可以在时隙k之前提前发侧行数据或信号(即上述目标信息),具有更高优先级的终端可以更早的发送侧行数据或信号(即上述目标信息),从而可以抢占信道,避免其他系统的终端(如WiFi的终端)以及低优先级的终端抢占信道。例如,优先等级取值为0的终端的可发送侧行数据或信号(即上述目标信息)的最早时域位置为t0,优先等级取值为1的终端的可发送侧行数据或信号(即上述目标信息)的最早时域位置为t1,优先等级取值为2的终端的可发送侧行数据或信号(即上述目标信息)的最早时域位置为t2;其中,优先等级取值越低对应的优先级越高。
具体又例如,在图16中,优先等级取值为0的终端的可发送侧行数据或信号(即上述目标信息)的时域位置为t0、t1和t2(共计3个位置),优先等级取值为1的终端的可发送侧行数据或信号(即上述目标信息)的时域位置为t1和t2(共计2个位置),优先等级取值为2的终端的可发送侧行数据或信号(即上述目标信息)的最早时域位置为t2(共计1个位置);其中,优先等级取值越低对应的优先级越高。高优先级的终端可以有更多的机会发送侧行数据或信号(即上述目标信息),因此,成功抢占信道的概率越高,低优先级的终端有较少的机会发送侧行数据或信号(即上述目标信息),成功抢占信道的概率低。
因此,在本申请实施例中,针对K个可用传输资源中的第i个可用传输资源,终端设备根据信道接入过程的结果确定是否使用第i个可用传输资源进行侧行传输,从而使得终端设备可以使用非授权频谱进行侧行传输。
进一步地,对于模式2,在侧行传输系统内部,在确定可用的传输资源的过程中,需要通过侦听(sensing)的方式避免系统内终端之间的干扰。终端基于LBT和侦听(sensing) 的结果进行侧行传输,从而使得终端可以使用非授权频谱进行侧行传输。
上文结合图15至图16,详细描述了本申请的方法实施例,下文结合图17,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图17示出了根据本申请实施例的终端设备300的示意性框图。如图17所示,该终端设备300包括:
处理单元310,用于确定K个可用传输资源;
针对该K个可用传输资源中的第i个可用传输资源,该处理单元310还用于根据信道接入过程的结果确定是否使用该第i个可用传输资源进行侧行传输;
其中,i和K为正整数,且1≤i≤K。
在一些实施例中,该处理单元310具体用于:
在该信道接入过程的结果指示信道空闲的情况下,确定使用该第i个可用传输资源进行侧行传输;否则,
确定不使用该第i个可用传输资源进行侧行传输,或者,丢弃该第i个可用传输资源对应的侧行传输。
在一些实施例中,该终端设备300还包括:通信单元320,其中,
在该信道接入过程的结果指示信道空闲的情况下,该通信单元320用于在该第i个可用传输资源所在的时间单元之前的传输机会中发送目标信息;
其中,该目标信息包括以下至少之一:冗余比特,填充比特,循环前缀扩展。
在一些实施例中,该处理单元310还用于根据配置信息确定该第i个可用传输资源所在的时间单元之前包括的至少一个传输机会,其中,该配置信息包括预配置信息或网络设备发送的配置信息。
在一些实施例中,该处理单元310还用于根据第一信息确定允许发送该目标信息的最早的传输机会对应的时域位置;
其中,该第一信息包括第一参数和/或信道繁忙率CBR,该第一参数包括以下至少之一:优先级信息、可靠性信息、时延信息、传输块大小TBS。
在一些实施例中,该处理单元310具体用于:
根据该第一信息和第一对应关系,确定允许发送该目标信息的至少一个传输机会中最早的传输机会对应的时域位置;
其中,该第一对应关系包括该第一信息与允许发送该目标信息的至少一个传输机会中最早的传输机会对应的时域位置之间的对应关系。
在一些实施例中,该第一对应关系为预配置或协议约定的,或者,该第一对应关系为网络设备配置的。
在一些实施例中,该处理单元310还用于根据第二信息确定允许发送该目标信息的传输机会的数量;
其中,该第二信息包括第二参数和/或CBR,该第二参数包括以下至少之一:优先级信息、可靠性信息、时延信息、TBS。
在一些实施例中,该处理单元310具体用于:
根据该第二信息和第二对应关系,确定允许发送该目标信息的传输机会的数量;
其中,该第二对应关系包括该第二信息与允许发送该目标信息的传输机会的数量之间的对应关系。
在一些实施例中,该第二对应关系为预配置或协议约定的,或者,该第二对应关系为网络设备配置的。
在一些实施例中,该处理单元310还用于在该第i个可用传输资源所在的时间单元的前一个时间单元的保护间隔GP内执行该信道接入过程。
在一些实施例中,该信道接入过程包括以下之一:
第一类型信道接入过程,第二类型信道接入过程,第三类型信道接入过程;其中,
该第一类型信道接入过程包括类型Type1信道接入,该第二类型信道接入过程包括Type2A信道接入和/或Type2B信道接入,该第三类型信道接入过程包括Type2C信道接入。
在一些实施例中,在该第i个可用传输资源位于共享的信道占用时间COT内的情况下,该信道接入过程为该第二类型信道接入过程或该第三类型信道接入过程;和/或,在该第i个可用传输资源不位于共享的COT内的情况下,该信道接入过程为该第一类型信道接入过程。
在一些实施例中,该终端设备300还包括:
通信单元320,用于接收其他终端发送的第一指示信息,该第一指示信息用于指示该共享的COT信息。
在一些实施例中,该第一指示信息通过侧行控制信息SCI或PC5无线资源控制PC5-RRC信令发送。
在一些实施例中,该终端设备300还包括:
通信单元320,用于接收网络设备发送的第二指示信息,该第二指示信息用于指示该共享的COT信息。
在一些实施例中,该第二指示信息通过下行控制信息DCI或无线资源控制RRC信令发送。
在一些实施例中,该处理单元310具体用于:
根据模式2对应的侧行资源分配方式确定该K个可用传输资源。
在一些实施例中,该处理单元310具体用于:
确定侦听窗和选择窗;
根据该侦听窗内的侦听结果在该选择窗内确定该K个可用传输资源。
在一些实施例中,该处理单元310具体用于:
根据模式1对应的侧行资源分配方式确定该K个可用传输资源。
在一些实施例中,该终端设备300还包括:通信单元320,其中,
该通信单元320用于接收网络设备发送的第三指示信息,该第三指示信息用于为该终端设备分配侧行传输资源;
该处理单元310具体用于根据该第三指示信息确定该K个可用传输资源。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图14所示无线通信的方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图17是本申请实施例提供的一种通信设备400示意性结构图。图17所示的通信设备400包括处理器410,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图17所示,通信设备400还可以包括存储器420。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
在一些实施例中,如图17所示,通信设备400还可以包括收发器430,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备400具体可为本申请实施例的网络设备,并且该通信设备400可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备400具体可为本申请实施例的终端设备,并且该通信设备400可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图18是本申请实施例的装置的示意性结构图。图18所示的装置500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图18所示,装置500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,该装置500还可以包括输入接口530。其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置500还可以包括输出接口540。其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图19是本申请实施例提供的一种通信系统600的示意性框图。如图19所示,该通信系统600包括终端设备610和网络设备620。
其中,该终端设备610可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备620可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM), 其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单 元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (47)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备确定K个可用传输资源;
    针对所述K个可用传输资源中的第i个可用传输资源,所述终端设备根据信道接入过程的结果确定是否使用所述第i个可用传输资源进行侧行传输;
    其中,i和K为正整数,且1≤i≤K。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备根据信道接入过程的结果确定是否使用所述第i个可用传输资源进行侧行传输,包括:
    在所述信道接入过程的结果指示信道空闲的情况下,所述终端设备确定使用所述第i个可用传输资源进行侧行传输;否则,
    所述终端设备确定不使用所述第i个可用传输资源进行侧行传输,或者,所述终端设备丢弃所述第i个可用传输资源对应的侧行传输。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在所述信道接入过程的结果指示信道空闲的情况下,所述终端设备在所述第i个可用传输资源所在的时间单元之前的传输机会中发送目标信息;
    其中,所述目标信息包括以下至少之一:冗余比特,填充比特,循环前缀扩展。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据配置信息确定所述第i个可用传输资源所在的时间单元之前包括的至少一个传输机会,其中,所述配置信息包括预配置信息或网络设备发送的配置信息。
  5. 如权利要求3或4所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第一信息确定允许发送所述目标信息的最早的传输机会对应的时域位置;
    其中,所述第一信息包括第一参数和/或信道繁忙率CBR,所述第一参数包括以下至少之一:优先级信息、可靠性信息、时延信息、传输块大小TBS。
  6. 如权利要求5所述的方法,其特征在于,所述终端设备根据第一信息确定允许发送所述目标信息的最早的传输机会对应的时域位置,包括:
    所述终端设备根据所述第一信息和第一对应关系,确定允许发送所述目标信息的至少一个传输机会中最早的传输机会对应的时域位置;
    其中,所述第一对应关系包括所述第一信息与允许发送所述目标信息的至少一个传输机会中最早的传输机会对应的时域位置之间的对应关系。
  7. 如权利要求6所述的方法,其特征在于,所述第一对应关系为预配置或协议约定的,或者,所述第一对应关系为网络设备配置的。
  8. 如权利要求3至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第二信息确定允许发送所述目标信息的传输机会的数量;
    其中,所述第二信息包括第二参数和/或CBR,所述第二参数包括以下至少之一:优先级信息、可靠性信息、时延信息、TBS。
  9. 如权利要求8所述的方法,其特征在于,所述终端设备根据第二信息确定允许发送所述目标信息的传输机会的数量,包括:
    所述终端设备根据所述第二信息和第二对应关系,确定允许发送所述目标信息的传输机会的数量;
    其中,所述第二对应关系包括所述第二信息与允许发送所述目标信息的传输机会的数量之间的对应关系。
  10. 如权利要求9所述的方法,其特征在于,所述第二对应关系为预配置或协议约定的,或者,所述第二对应关系为网络设备配置的。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第i个可用传输资源所在的时间单元的前一个时间单元的保护 间隔GP内执行所述信道接入过程。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,所述信道接入过程包括以下之一:
    第一类型信道接入过程,第二类型信道接入过程,第三类型信道接入过程;其中,
    所述第一类型信道接入过程包括类型Type1信道接入,所述第二类型信道接入过程包括Type2A信道接入和/或Type2B信道接入,所述第三类型信道接入过程包括Type2C信道接入。
  13. 如权利要求12所述的方法,其特征在于,
    在所述第i个可用传输资源位于共享的信道占用时间COT内的情况下,所述信道接入过程为所述第二类型信道接入过程或所述第三类型信道接入过程;和/或,
    在所述第i个可用传输资源不位于共享的COT内的情况下,所述信道接入过程为所述第一类型信道接入过程。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收其他终端发送的第一指示信息,所述第一指示信息用于指示所述共享的COT信息。
  15. 如权利要求14所述的方法,其特征在于,所述第一指示信息通过侧行控制信息SCI或PC5无线资源控制PC5-RRC信令发送。
  16. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述共享的COT信息。
  17. 如权利要求16所述的方法,其特征在于,所述第二指示信息通过下行控制信息DCI或无线资源控制RRC信令发送。
  18. 如权利要求1至17中任一项所述的方法,其特征在于,所述终端设备确定K个可用传输资源,包括:
    所述终端设备根据模式2对应的侧行资源分配方式确定所述K个可用传输资源。
  19. 如权利要求18所述的方法,其特征在于,所述终端设备根据模式2对应的侧行资源分配方式确定所述K个可用传输资源,包括:
    所述终端设备确定侦听窗和选择窗;
    所述终端设备根据所述侦听窗内的侦听结果在所述选择窗内确定所述K个可用传输资源。
  20. 如权利要求1至17中任一项所述的方法,其特征在于,所述终端设备确定K个可用传输资源,包括:
    所述终端设备根据模式1对应的侧行资源分配方式确定所述K个可用传输资源。
  21. 如权利要求20所述的方法,其特征在于,所述终端设备根据模式1对应的侧行资源分配方式确定K个可用传输资源,包括:
    所述终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于为所述终端设备分配侧行传输资源;
    所述终端设备根据所述第三指示信息确定所述K个可用传输资源。
  22. 一种终端设备,其特征在于,包括:
    处理单元,用于确定K个可用传输资源;
    针对所述K个可用传输资源中的第i个可用传输资源,所述处理单元还用于根据信道接入过程的结果确定是否使用所述第i个可用传输资源进行侧行传输;
    其中,i和K为正整数,且1≤i≤K。
  23. 如权利要求22所述的终端设备,其特征在于,所述处理单元具体用于:
    在所述信道接入过程的结果指示信道空闲的情况下,确定使用所述第i个可用传输资源进行侧行传输;否则,
    确定不使用所述第i个可用传输资源进行侧行传输,或者,丢弃所述第i个可用传输资源对应的侧行传输。
  24. 如权利要求22或23所述的终端设备,其特征在于,
    所述终端设备还包括:通信单元,其中,
    在所述信道接入过程的结果指示信道空闲的情况下,所述通信单元用于在所述第i个可用传输资源所在的时间单元之前的传输机会中发送目标信息;
    其中,所述目标信息包括以下至少之一:冗余比特,填充比特,循环前缀扩展。
  25. 如权利要求24所述的终端设备,其特征在于,所述处理单元还用于根据配置信息确定所述第i个可用传输资源所在的时间单元之前包括的至少一个传输机会,其中,所述配置信息包括预配置信息或网络设备发送的配置信息。
  26. 如权利要求24或25所述的终端设备,其特征在于,所述处理单元还用于根据第一信息确定允许发送所述目标信息的最早的传输机会对应的时域位置;
    其中,所述第一信息包括第一参数和/或信道繁忙率CBR,所述第一参数包括以下至少之一:优先级信息、可靠性信息、时延信息、传输块大小TBS。
  27. 如权利要求26所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述第一信息和第一对应关系,确定允许发送所述目标信息的至少一个传输机会中最早的传输机会对应的时域位置;
    其中,所述第一对应关系包括所述第一信息与允许发送所述目标信息的至少一个传输机会中最早的传输机会对应的时域位置之间的对应关系。
  28. 如权利要求27所述的终端设备,其特征在于,所述第一对应关系为预配置或协议约定的,或者,所述第一对应关系为网络设备配置的。
  29. 如权利要求24至28中任一项所述的终端设备,其特征在于,所述处理单元还用于根据第二信息确定允许发送所述目标信息的传输机会的数量;
    其中,所述第二信息包括第二参数和/或CBR,所述第二参数包括以下至少之一:优先级信息、可靠性信息、时延信息、TBS。
  30. 如权利要求29所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述第二信息和第二对应关系,确定允许发送所述目标信息的传输机会的数量;
    其中,所述第二对应关系包括所述第二信息与允许发送所述目标信息的传输机会的数量之间的对应关系。
  31. 如权利要求30所述的终端设备,其特征在于,所述第二对应关系为预配置或协议约定的,或者,所述第二对应关系为网络设备配置的。
  32. 如权利要求22至31中任一项所述的终端设备,其特征在于,所述处理单元还用于在所述第i个可用传输资源所在的时间单元的前一个时间单元的保护间隔GP内执行所述信道接入过程。
  33. 如权利要求22至32中任一项所述的终端设备,其特征在于,所述信道接入过程包括以下之一:
    第一类型信道接入过程,第二类型信道接入过程,第三类型信道接入过程;其中,
    所述第一类型信道接入过程包括类型Type1信道接入,所述第二类型信道接入过程包括Type2A信道接入和/或Type2B信道接入,所述第三类型信道接入过程包括Type2C信道接入。
  34. 如权利要求33所述的终端设备,其特征在于,
    在所述第i个可用传输资源位于共享的信道占用时间COT内的情况下,所述信道接入过程为所述第二类型信道接入过程或所述第三类型信道接入过程;和/或,
    在所述第i个可用传输资源不位于共享的COT内的情况下,所述信道接入过程为所述第一类型信道接入过程。
  35. 如权利要求34所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收其他终端发送的第一指示信息,所述第一指示信息用于指示所述共享的COT信息。
  36. 如权利要求35所述的终端设备,其特征在于,所述第一指示信息通过侧行控制信息SCI或PC5无线资源控制PC5-RRC信令发送。
  37. 如权利要求34所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述共享的COT信息。
  38. 如权利要求37所述的终端设备,其特征在于,所述第二指示信息通过下行控制信息DCI或无线资源控制RRC信令发送。
  39. 如权利要求22至38中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    根据模式2对应的侧行资源分配方式确定所述K个可用传输资源。
  40. 如权利要求39所述的终端设备,其特征在于,所述处理单元具体用于:
    确定侦听窗和选择窗;
    根据所述侦听窗内的侦听结果在所述选择窗内确定所述K个可用传输资源。
  41. 如权利要求22至38中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    根据模式1对应的侧行资源分配方式确定所述K个可用传输资源。
  42. 如权利要求41所述的终端设备,其特征在于,
    所述终端设备还包括:通信单元,其中,
    所述通信单元用于接收网络设备发送的第三指示信息,所述第三指示信息用于为所述终端设备分配侧行传输资源;
    所述处理单元具体用于根据所述第三指示信息确定所述K个可用传输资源。
  43. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至21中任一项所述的方法。
  44. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  46. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至21中任一项所述的方法。
  47. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
PCT/CN2021/106543 2021-07-15 2021-07-15 无线通信的方法及设备 WO2023283888A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/106543 WO2023283888A1 (zh) 2021-07-15 2021-07-15 无线通信的方法及设备
EP21949674.2A EP4366409A1 (en) 2021-07-15 2021-07-15 Wireless communication method and device
CN202180100323.6A CN117616842A (zh) 2021-07-15 2021-07-15 无线通信的方法及设备
US18/409,113 US20240147532A1 (en) 2021-07-15 2024-01-10 Wireless communication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106543 WO2023283888A1 (zh) 2021-07-15 2021-07-15 无线通信的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/409,113 Continuation US20240147532A1 (en) 2021-07-15 2024-01-10 Wireless communication method and device

Publications (1)

Publication Number Publication Date
WO2023283888A1 true WO2023283888A1 (zh) 2023-01-19

Family

ID=84918929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106543 WO2023283888A1 (zh) 2021-07-15 2021-07-15 无线通信的方法及设备

Country Status (4)

Country Link
US (1) US20240147532A1 (zh)
EP (1) EP4366409A1 (zh)
CN (1) CN117616842A (zh)
WO (1) WO2023283888A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019185010A1 (zh) * 2018-03-30 2019-10-03 华为技术有限公司 通信方法和通信设备
WO2021012167A1 (zh) * 2019-07-22 2021-01-28 Oppo广东移动通信有限公司 一种资源处理方法、设备及存储介质
CN112997551A (zh) * 2019-03-28 2021-06-18 Oppo广东移动通信有限公司 传输侧行信道的方法和终端设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019185010A1 (zh) * 2018-03-30 2019-10-03 华为技术有限公司 通信方法和通信设备
CN112997551A (zh) * 2019-03-28 2021-06-18 Oppo广东移动通信有限公司 传输侧行信道的方法和终端设备
WO2021012167A1 (zh) * 2019-07-22 2021-01-28 Oppo广东移动通信有限公司 一种资源处理方法、设备及存储介质

Also Published As

Publication number Publication date
US20240147532A1 (en) 2024-05-02
CN117616842A (zh) 2024-02-27
EP4366409A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2022110233A1 (zh) 无线通信的方法、终端设备和网络设备
US11804995B2 (en) Data sending method, terminal device, and non-transitory computer-readable storage medium
WO2022067519A1 (zh) 随机接入方法和终端设备
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2023004725A1 (zh) 无线通信方法、第一设备和第二设备
EP4087347B1 (en) Wireless communication method, terminal device, and network device
WO2022147797A1 (zh) 信道接入方法及设备
WO2022061776A1 (zh) 确定资源集合的方法和终端设备
WO2023283888A1 (zh) 无线通信的方法及设备
WO2024055231A1 (zh) 无线通信的方法及设备
WO2023065367A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022082785A1 (zh) 无线通信方法、终端设备和网络设备
WO2023197200A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2023065363A1 (zh) 无线通信的方法和终端设备
WO2023044735A9 (zh) 无线通信的方法和终端设备
WO2023230787A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022027679A1 (zh) 无线通信方法、终端设备和网络设备
WO2023193237A1 (zh) 信道接入方法、终端设备、网络设备
WO2023279403A1 (zh) 无线通信方法、终端设备和网络设备
WO2023279258A1 (zh) 资源选取的方法和终端设备
WO2023023903A1 (zh) 无线通信方法、第一设备和第二设备
WO2022236488A1 (zh) 信道繁忙率的测量方法、终端设备和网络设备
WO2023133685A1 (zh) 无线通信的方法及终端设备
WO2023133834A1 (zh) 无线通信方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100323.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021949674

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021949674

Country of ref document: EP

Effective date: 20240202

NENP Non-entry into the national phase

Ref country code: DE