WO2023115274A1 - 一种热管理系统、热管理方法及用电设备 - Google Patents

一种热管理系统、热管理方法及用电设备 Download PDF

Info

Publication number
WO2023115274A1
WO2023115274A1 PCT/CN2021/139758 CN2021139758W WO2023115274A1 WO 2023115274 A1 WO2023115274 A1 WO 2023115274A1 CN 2021139758 W CN2021139758 W CN 2021139758W WO 2023115274 A1 WO2023115274 A1 WO 2023115274A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
compressor
heat exchange
condenser
communicates
Prior art date
Application number
PCT/CN2021/139758
Other languages
English (en)
French (fr)
Inventor
张传辉
李宝
吴凯
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21912331.2A priority Critical patent/EP4224091A4/en
Priority to KR1020227018959A priority patent/KR20230098498A/ko
Priority to PCT/CN2021/139758 priority patent/WO2023115274A1/zh
Priority to JP2022535188A priority patent/JP2024504886A/ja
Priority to US17/888,506 priority patent/US20230191868A1/en
Publication of WO2023115274A1 publication Critical patent/WO2023115274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6564Gases with forced flow, e.g. by blowers using compressed gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the embodiments of the present application relate to the technical field of batteries, and in particular, to a thermal management system, method and device.
  • the performance of the battery is greatly affected by the climate environment, and the performance of the battery will be affected if the ambient temperature is too high or too low. Therefore, it is necessary to adjust the temperature of the battery to maintain it within a certain range.
  • a battery cooling system needs to be added to reduce the temperature of the battery if it becomes too hot.
  • a battery heating system needs to be added to raise the temperature of the battery when it is too cold.
  • thermal management is required to control the temperature environment in which the battery operates.
  • the present application provides a thermal management system, method and device, which can provide cooling and heating functions for the battery, and have a simple structure and high reliability.
  • the present application provides a thermal management system, including a compressor, a condenser and an evaporator.
  • a thermal management system including a compressor, a condenser and an evaporator.
  • the compressor, the condenser and the heat exchange pipeline of the battery form a cooling circuit
  • the compressor, the evaporator and the heat exchange pipeline form a heating circuit.
  • the compressor and condenser form a cooling circuit with the heat exchange pipeline of the battery
  • the compressor and evaporator form a heating circuit with the heat exchange pipeline
  • the thermal management system can provide cooling for the battery Function and heating function, compared with the form of direct cooling system and heating film, the thermal management system has simple structure and high reliability.
  • the position of the condenser and evaporator can be reasonably set according to the needs, so as to realize the secondary utilization of hot air and cold air.
  • the thermal management system further includes a first non-through valve, a second non-through valve, and a control device, and the control device is respectively connected in communication with the first non-through valve and the second non-through valve.
  • the exhaust port of the compressor communicates with the first end of the condenser
  • the second end of the condenser communicates with the first end of the heat exchange pipeline
  • the suction port of the compressor communicates with the end of the heat exchange pipeline through the first stop valve.
  • the second end communicates to form a cooling circuit.
  • the exhaust port of the compressor communicates with the first end of the heat exchange pipeline through the second stop valve, the first end of the evaporator communicates with the second end of the heat exchange pipeline, and the second end of the evaporator communicates with the compressor's
  • the suction port is connected to form a heating circuit.
  • the control device is used to control the opening of the first stop valve and the closing of the second stop valve to conduct the cooling circuit, or control the closing of the first stop valve and the opening of the second stop valve to conduct the heating circuit.
  • the cooling circuit or the heating circuit can be selectively turned on by selectively controlling the opening of the first non-stop valve or the second non-stop valve by the control device.
  • the cooling circuit When the cooling circuit is turned on, the compressor and condenser work to provide cooling for the battery.
  • the heating circuit When the heating circuit is turned on, the compressor and evaporator work to provide heating for the battery. That is, the cooling function and the heating function can be provided through a set of thermal management system, and the thermal management system has a simple system structure and simple control, which can improve reliability.
  • the thermal management system further includes an accumulator, and the accumulator is used for storing refrigerant.
  • the accumulator by setting the accumulator, on the one hand, it can store a sufficient amount of refrigerant, and on the other hand, it can play a role of pressure buffer, preventing the pipes of the thermal management system from rupture due to excessive pressure.
  • the air inlet of the accumulator communicates with the second end of the evaporator, and the air inlet of the accumulator communicates with the second end of the heat exchange pipeline through the first stop valve.
  • the gas outlet of the accumulator is connected with the suction port of the compressor.
  • the energy storage device is set in the above-mentioned manner, so that the energy storage device can be located in the cooling circuit or in the heating circuit, that is, no matter whether the thermal management system works in cooling mode or in heating mode, the energy storage Both devices can provide refrigerant and play the role of buffering pressure.
  • the above arrangement has a simple structure.
  • the thermal management system further includes a first expansion valve, the first end of the first expansion valve communicates with the second end of the condenser, and the second end of the first expansion valve communicates with the heat exchange
  • the first end of the pipeline communicates.
  • the first expansion valve is connected in communication with the control device, and the control device is also used to control the connection of the first expansion valve when the cooling circuit is turned on.
  • the refrigerant entering the heat exchange pipeline is in a vapor state, which is convenient for fully evaporating after absorbing heat in the heat exchange pipeline , the heat exchange efficiency is high, and in addition, the flow rate of the refrigerant entering the heat exchange pipeline can also be controlled, and no negative impact will be caused by too much or too little flow of the refrigerant.
  • the heat management system further includes a second expansion valve, the first end of the second expansion valve communicates with the first end of the evaporator, and the second end of the second expansion valve communicates with the heat exchange The second end of the pipeline communicates.
  • the second expansion valve is connected in communication with the control device, and the control device is also used to control the connection of the second expansion valve when the heating circuit is turned on.
  • the refrigerant entering the evaporator is in a vapor state, which is convenient for full evaporation after absorbing heat in the evaporator, and the evaporation efficiency is high .
  • it can also control the flow of refrigerant entering the evaporator, so that the evaporation will not be incomplete due to excessive flow of refrigerant.
  • the thermal management system further includes a third non-stop valve, and the third non-stop valve is disposed on the pipeline between the discharge port of the compressor and the first end of the condenser.
  • the third stop valve is connected in communication with the control device, and the control device is also used to control the third stop valve to open when the cooling circuit is connected, or to control the third stop valve to close when the heating circuit is connected.
  • the control device controls the third stop valve.
  • the valve is closed to prevent the refrigerant from entering the condenser in the heating mode, that is, the gaseous refrigerant all enters the heat exchange pipeline through the second check valve when the third check valve is closed, and the heating efficiency is high.
  • the heat management system further includes a radiator, and the radiator is used to dissipate heat to the condenser.
  • the radiator is communicated with the control device, and the control device is also used to control the radiator to start working when the cooling circuit is turned on, or to control the radiator to stop working when the heating circuit is turned on.
  • the present application provides a control method for a thermal management system.
  • the thermal management system includes a compressor, a condenser, and an evaporator.
  • the compressor, the condenser and the heat exchange pipeline of the battery form a cooling circuit.
  • the compressor and the evaporator The device and the heat exchange pipeline form a heating circuit.
  • the aforementioned method includes: obtaining the current temperature of the battery, and if the current temperature is greater than or equal to the first temperature threshold, controlling the compressor and the condenser to start working, and controlling the cooling circuit to be turned on. If the current temperature is less than or equal to the second temperature threshold, the compressor and the evaporator are controlled to start working, and the heating circuit is controlled to be turned on. Wherein, the first temperature threshold is greater than the second temperature threshold.
  • a cooling function and a heating function can be provided for the battery.
  • the corresponding air outlets of the condenser and evaporator can be reasonably controlled according to needs, so as to realize the secondary utilization of hot air and cold air.
  • the thermal management system further includes a first stop valve and a second stop valve
  • the exhaust port of the compressor communicates with the first end of the condenser, and the second end of the condenser It communicates with the first end of the heat exchange pipeline
  • the suction port of the compressor communicates with the second end of the heat exchange pipeline through the first stop valve to form a cooling circuit.
  • the exhaust port of the compressor communicates with the first end of the heat exchange pipeline through the second stop valve
  • the first end of the evaporator communicates with the second end of the heat exchange pipeline
  • the second end of the evaporator communicates with the compressor's
  • the suction port is connected to form a heating circuit.
  • controlling the conduction of the cooling circuit includes: controlling the opening of the first non-stop valve and the closing of the second non-stop valve to conduct the cooling circuit.
  • controlling the conduction of the heating circuit includes: controlling the closing of the first stop valve and opening of the second stop valve to conduct the heating circuit.
  • the cooling circuit can be turned on by controlling the opening of the first stop valve and the closing of the second stop valve, and the turning on of the heating circuit by controlling the closing of the first stop valve and the opening of the second stop valve , the control is simple and the reliability can be improved.
  • the thermal management system further includes a first expansion valve, the first end of the first expansion valve communicates with the second end of the condenser, and the second end of the first expansion valve communicates with the heat exchange The first end of the pipeline communicates.
  • controlling the conduction of the cooling circuit also includes: controlling the conduction of the first expansion valve.
  • the first expansion valve is controlled to open during cooling, so that the refrigerant entering the heat exchange pipeline is in a vapor state, which is convenient for full evaporation after absorbing heat in the heat exchange pipeline, and the heat exchange efficiency is high. , and can also control the flow of the refrigerant entering the heat exchange pipeline, and will not have negative effects due to too much or too little refrigerant flow.
  • the thermal management system further includes a second expansion valve, the first end of the second expansion valve communicates with the first end of the evaporator, and the second end of the second expansion valve communicates with the heat exchange The second end of the pipeline communicates.
  • controlling the conduction of the heating circuit also includes: controlling the conduction of the second expansion valve.
  • the second expansion valve is controlled to open during heating, so that the refrigerant entering the evaporator is in a vapor state, which is convenient for full evaporation after absorbing heat in the evaporator, and the evaporation efficiency is high.
  • the refrigerant entering the evaporator can also be controlled The flow of refrigerant in the evaporator will not evaporate incompletely due to excessive flow of refrigerant.
  • the thermal management system further includes a third non-stop valve, and the third non-stop valve is disposed on the pipeline between the exhaust port of the compressor and the first end of the condenser.
  • controlling the conduction of the cooling circuit also includes: controlling the opening of the third non-stop valve.
  • the third non-stop valve when the cooling circuit needs to be turned on, the third non-stop valve is controlled to open so that the gaseous refrigerant enters the condenser.
  • the third stop valve is controlled to close to avoid the refrigerant entering the condenser in the heating mode and affecting the heating effect.
  • the gaseous refrigerant passes through the second stop valve when the third stop valve is closed Entering the heat exchange pipeline, the heating efficiency is high.
  • the heat management system further includes a radiator, and the radiator is used to dissipate heat to the condenser.
  • the aforementioned method further includes: if the current temperature is greater than or equal to the first temperature threshold, controlling the radiator to start working.
  • the present application provides an electrical device, including the thermal management system and the battery in the first aspect.
  • the thermal management system can provide cooling and heating functions for the battery, and has a simple and reliable structure, which is conducive to the normal operation of electrical equipment in high or low temperature environments.
  • FIG. 1 is a schematic structural view of an electric vehicle in some embodiments of the present application.
  • Fig. 2 is a schematic structural diagram of a battery in some embodiments of the present application.
  • Fig. 3 is a schematic structural diagram of heat exchange pipelines in some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of a thermal management system in some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a thermal management system in some embodiments of the present application.
  • Fig. 6 is a schematic structural diagram of a thermal management system in some embodiments of the present application.
  • Fig. 7 is a schematic flowchart of a control method of a thermal management system in some embodiments of the present application.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • the inventors of the present application have noticed that the charging and discharging efficiency of a battery is related to its working temperature, and if it is too high or too low, its performance and battery life will be greatly affected. Specifically, under low ambient temperature, the internal resistance of the battery will increase and the capacity will decrease. In extreme cases, the electrolyte will freeze and the battery will not be able to discharge, resulting in reduced battery life. If not handled properly, it will lead to instantaneous voltage overcharge, resulting in internal short circuit, causing the risk of explosion. Under the high temperature environment, the charging and discharging efficiency of the battery is low, which affects the power of the battery, and in severe cases, it will cause thermal runaway, affecting its safety and life.
  • the battery itself will also generate a large amount of heat during the discharge process, which accumulates in a relatively small space over time, making it difficult to dissipate heat, which will also reduce the discharge efficiency and cause thermal runaway. risk.
  • thermo management system to manage the temperature of the battery so that it can work within a safe temperature range without being affected by the ambient temperature or the heat released by the battery itself.
  • the air cooling system uses natural wind or cooling air to flow through the surface of the battery to achieve the effect of heat exchange and cooling.
  • the heat taken away by the air is limited, the heat exchange efficiency is low, the temperature uniformity inside the battery is not good, and it is difficult to achieve more precise control of the battery temperature.
  • the liquid cooling system uses antifreeze (such as ethylene glycol) as the heat exchange medium, which flows in the heat exchange circuit to cool down and absorb heat for the battery.
  • the direct cooling system uses refrigerant (refrigerant, phase-changing material) as the heat exchange medium. Compared with the liquid cooling system, the refrigerant can absorb a large amount of heat during the gas-liquid phase change process, and take away the heat inside the battery more quickly. High heat exchange efficiency.
  • the direct cooling system only has a cooling mode, not a heating mode, and needs to be combined with a heating film to achieve battery heating.
  • the heating film belongs to the constant resistance heating element, which is generally composed of resistance wire, insulating coating layer and lead wire.
  • the resistance wire is generally nickel-chromium alloy or iron-chromium alloy, and the insulating coating layer is generally polyimide (PI film), Silicone or epoxy resin etc.
  • the heating film is pasted on the shell of the cell module. Multiple heating films are connected in series or in parallel and powered by the battery. After the heating film is energized, the resistance generates heat to provide heat for the battery.
  • the circuit is complex, the reliability is low, and the heating efficiency is low. , on the other hand, it takes up more space inside the battery and affects the energy density of the battery.
  • the inventors of the present application have found through research that they have designed a thermal management system, which can provide the battery with a reasonable pipeline design and the phase change of the refrigerant (such as liquid to gas or gas to liquid, etc.). Cooling function or heating function. That is, when the battery temperature is too high, in the cooling mode, the thermal management system absorbs the internal heat of the battery to cool down the battery; when the battery temperature is too low, in the heating mode, the thermal management system provides heat for the battery to achieve temperature rise.
  • the refrigerant such as liquid to gas or gas to liquid, etc.
  • the thermal management system includes a compressor, a condenser, and an evaporator, wherein the compressor, the condenser, and the heat exchange pipeline of the battery form a cooling loop, and the compressor, the evaporator, and the heat exchange pipeline of the battery form a heating loop. That is to say, only one heat exchange pipeline needs to be provided in the battery.
  • an S-shaped or Z-shaped capillary pipeline can be laid on the inner side of the bottom or side wall of the battery casing to form a heat exchange pipeline.
  • the thermal management system can be installed in the environment where the battery is used. For example, when the battery supplies power to the electric vehicle, the thermal management system can be installed on the electric vehicle, that is, the compressor, condenser and evaporator are installed on the electric vehicle.
  • cooling channel used to transmit and store refrigerant (such as Freon) between the compressor, condenser and heat exchange pipeline, that is, in the cooling circuit, the compressor compresses the low-temperature and low-pressure gaseous refrigerant into a high-temperature
  • refrigerant such as Freon
  • the compressor compresses the low-temperature and low-pressure gaseous refrigerant into a high-temperature
  • the high-pressure gaseous refrigerant is cooled by the condenser and then becomes a liquid refrigerant.
  • the liquid refrigerant flows into the heat exchange pipeline of the battery, absorbs the heat inside the battery, evaporates and becomes a gaseous refrigerant, and the gaseous refrigerant can be compressed again by the compressor.
  • the refrigerant is circulated through the gas-liquid phase change in the cooling circuit, and when passing through the heat exchange pipeline, it absorbs the heat inside the battery to achieve the effect of cooling the battery.
  • the heat exchange pipeline is equivalent to an evaporator.
  • heating channel used to transmit and store refrigerant between the compressor, evaporator and heat exchange pipeline, that is, in the heating circuit, the compressor compresses the low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant, and the high-temperature and high-pressure gaseous refrigerant enters
  • the heat exchange pipeline dissipates heat and becomes a liquid refrigerant. After the liquid refrigerant enters the evaporator for evaporation, it becomes a gaseous refrigerant, which can be compressed again by the compressor.
  • the refrigerant is circulated through the gas-liquid phase change in the cooling circuit, and when passing through the heat exchange pipeline, it dissipates heat to achieve the effect of raising the temperature of the battery.
  • the heat exchange pipeline is equivalent to a condenser.
  • both the heating circuit and the cooling circuit share the compressor and the heat exchange pipeline, and the heating circuit and the cooling circuit also share the same refrigerant.
  • the refrigerant will undergo different phase changes when passing through the heat exchange pipeline, providing cooling or heating functions.
  • the thermal management system can provide cooling and heating functions for the battery. Compared with the above-mentioned direct cooling system and heating film, the thermal management system has a simple structure and high reliability.
  • the thermal management system and the battery disclosed in the embodiments of the present application can be used, but not limited to, in electrical equipment such as vehicles, ships, or aircraft.
  • the thermal management system can provide cooling and heating functions for the battery, has a simple structure and high reliability, and is conducive to the normal operation of electrical equipment in high-temperature or low-temperature environments.
  • An embodiment of the present application provides an electrical device, which may be, but not limited to, a vehicle, a ship, or an aircraft.
  • an electric vehicle is used as an example for illustration in an embodiment of the present application.
  • a battery 100 and a heat management system 200 are arranged inside an electric vehicle 1000 , and the heat management system 200 communicates with the heat exchange pipeline of the battery 100 .
  • the battery 100 can be arranged at the bottom, head or tail of the electric vehicle 1000 .
  • the battery 100 can be used as a driving power source of the electric vehicle 1000 to provide driving power for the electric vehicle 1000 by replacing or partially replacing fuel oil or natural gas.
  • FIG. 2 is an exploded view of a battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 housed in the case 10 .
  • the box body 10 is used to provide accommodating space for the battery cells 20 , and the box body 10 may adopt various structures.
  • the box body 10 may include a first part 11 and a second part 12, the first part 11 and the second part 12 cover each other, the first part 11 and the second part 12 jointly define a of accommodation space.
  • the second part 12 can be a hollow structure with one end open, the first part 11 can be a plate-shaped structure, and the first part 11 covers the opening side of the second part 12, so that the first part 11 and the second part 12 jointly define an accommodation space ;
  • the first part 11 and the second part 12 can also be hollow structures with one side opening, and the opening side of the first part 11 is covered by the opening side of the second part 12 .
  • the box body 10 formed by the first part 11 and the second part 12 can be in various shapes, such as a cylinder, a cuboid and the like.
  • the battery 100 there may be multiple battery cells 20 , and the multiple battery cells 20 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 20 are connected in series and in parallel.
  • a plurality of battery cells 20 can be directly connected in series, in parallel or mixed together, and then the whole composed of a plurality of battery cells 20 is housed in the box 10; of course, the battery 100 can also be a plurality of battery cells 20
  • the battery modules are firstly connected in series or parallel or in combination, and then multiple battery modules are connected in series or in parallel or in combination to form a whole, which is accommodated in the case 10 .
  • the battery 100 may also include other structures, for example, the battery 100 may also include a confluence component for realizing the electrical connection between a plurality of battery cells 20; The series and parallel connection of the body, the installation and fixing of the sampling line, etc.
  • each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but not limited thereto.
  • the battery cell 20 may be in the form of a cylinder, a flat body, a cuboid or other shapes.
  • the battery 100 also includes a heat exchange pipeline 30.
  • the heat exchange pipeline 30 is arranged inside the box body 10, for example, it can be arranged on the top of the first part 11 or the bottom of the second part 12, or it can also be arranged on the first part 11 and the bottom of the second part 12. /or the sides of the second part 12 .
  • the heat exchange pipeline 30 is disposed at the bottom of the second part 12 for illustration. Here, there is no restriction on the position of the heat exchange pipeline inside the battery.
  • the heat exchange pipeline includes a network of capillary channels.
  • the heat exchange pipeline has an inlet and an outlet, and the gaseous or liquid refrigerant enters from the inlet and discharges from the outlet to flow in the heat exchange pipeline.
  • a plurality of parallel-connected capillary pipes may be arranged between the inlet and the outlet, so that the refrigerant entering from the inlet can disperse and flow into the plurality of parallel-connected capillary pipes, thereby improving heat exchange efficiency.
  • the thermal management system is installed on the electric vehicle, and the thermal management system is connected to the heat exchange pipeline of the battery. Through reasonable pipeline design and combined with the phase change of the refrigerant (such as liquid to gas or gas to liquid, etc.), it can provide energy for the battery.
  • the thermal management system Provide cooling function or heating function. That is, when the battery temperature is too high, in the cooling mode, the thermal management system absorbs the internal heat of the battery to cool down the battery; when the battery temperature is too low, in the heating mode, the thermal management system provides heat for the inside of the battery to achieve temperature rise.
  • the thermal management system 200 includes a compressor 201, a condenser 202 and an evaporator 203, wherein the compressor 201, the condenser 202 and the heat exchange pipeline 30 of the battery form a cooling circuit , the compressor 201 and the evaporator 203 form a heating circuit with the heat exchange pipeline 30 of the battery.
  • the compressor 201 is a driven fluid machine that lifts low-pressure gas into high-pressure gas.
  • the suction port of the compressor 201 inhales low-temperature and low-pressure refrigerant gas (such as Freon), drives the piston to compress the low-temperature and low-pressure refrigerant gas through the operation of the motor, and then discharges high-temperature and high-pressure refrigerant gas to the exhaust port, which is the phase state of the refrigerant
  • the cycle of change provides the impetus.
  • the compressor 201 can be divided into a piston compressor, a screw compressor, a centrifugal compressor, a linear compressor, and the like. In this embodiment, there is no limitation on the type or model of the compressor 201, and those skilled in the art can select a suitable compressor based on actual conditions.
  • the condenser 202 is a heat exchanger, which can change gas or steam into liquid, that is, gas into liquid, and quickly transfer the heat dissipated during the process of gas into liquid to the air medium nearby.
  • the condenser 202 can be classified into an air-cooled condenser, a water-cooled condenser, or a spray condenser. In this embodiment, there is no limitation on the type or model of the condenser 202, and those skilled in the art can select a suitable condenser based on actual conditions.
  • the evaporator 203 is a device capable of converting a liquid substance into a gaseous state.
  • the low-temperature liquid refrigerant passes through the evaporator 203 and exchanges heat with the outside air to become a gaseous refrigerant. During the gasification process of the refrigerant, it absorbs heat from the surrounding air.
  • Those skilled in the art can select a suitable evaporator based on actual conditions.
  • a "cooling channel" for transporting and storing refrigerant (such as freon) is also provided between the compressor 201, the condenser 202 and the heat exchange pipeline 30, and constitutes a cooling circuit together with the heat exchange pipeline 30 of the battery. That is, in the cooling circuit, the compressor 201 compresses the low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant, and then turns into a liquid refrigerant after being cooled by the condenser 202.
  • refrigerant such as freon
  • the liquid refrigerant flows into the heat exchange pipeline 30 of the battery to absorb the The heat is evaporated into a gaseous refrigerant, and the gaseous refrigerant can be compressed by the compressor 201 again. Therefore, the refrigerant is circulated through the gas-liquid phase change in the cooling circuit, and when passing through the heat exchange pipeline 30, it absorbs the heat inside the battery to achieve the effect of cooling the battery. At this time, the heat exchange pipeline 30 is equivalent to an evaporator.
  • a “heating channel” for transporting and storing refrigerant is also provided between the compressor 201 , the evaporator 203 and the heat exchange pipeline 30 , forming a heating circuit together with the heat exchange pipeline 30 of the battery. That is, in the heating circuit, the compressor 201 compresses the low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant, and the high-temperature and high-pressure gaseous refrigerant enters the heat exchange pipeline 30 to dissipate heat and become a liquid refrigerant.
  • the liquid refrigerant After the liquid refrigerant enters the evaporator 203 for evaporation, it becomes a gaseous refrigerant, and the gaseous refrigerant can be compressed by the compressor 201 again. Therefore, the refrigerant is circulated through the gas-liquid phase change in the cooling circuit, and dissipates heat when passing through the heat exchange pipeline 30 to achieve the effect of raising the temperature of the battery. At this time, the heat exchange pipeline 30 is equivalent to a condenser.
  • both the heating circuit and the cooling circuit share the compressor and the heat exchange pipeline, and the heating circuit and the cooling circuit also share the same refrigerant.
  • the refrigerant will undergo different phase changes when passing through the heat exchange pipeline, providing cooling or heating functions.
  • the compressor 201 , the condenser 202 and the evaporator 203 can all be arranged on electric equipment (such as an electric vehicle).
  • the condenser 202 When the condenser 202 is working, it will dissipate heat to the surrounding air, heat the surrounding air, and generate hot air.
  • the evaporator 203 When the evaporator 203 is working, it will absorb the heat in the surrounding air, cool the surrounding air, and generate cold air.
  • Reasonably setting the positions of the condenser 202 and the evaporator 203 can realize secondary utilization of hot air and cold air.
  • the hot air generated by the operation of the condenser 202 in the thermal management system can be discharged into the cabin of the electric vehicle to warm the driver or passengers, and the cold air generated by the operation of the evaporator 203 can be Discharge into the cabin of electric vehicles to cool the driver or passengers.
  • the evaporator 203 and the condenser 202 can adopt the evaporator and the condenser of the electric vehicle air conditioning system, that is, the electric vehicle air conditioning system and the thermal management system can share the evaporator and the condenser.
  • the hot air generated by the operation of the condenser 202 or the cold air generated by the operation of the evaporator 203 can also be exhausted outside the cabin as exhaust gas.
  • Those skilled in the art can flexibly design according to actual needs.
  • the compressor, the condenser and the heat exchange pipeline of the battery form a cooling circuit
  • the compressor, the evaporator and the heat exchange pipeline form a heating circuit
  • the thermal management system can provide cooling for the battery Function and heating function, compared with the form of direct cooling system and heating film, the thermal management system has simple structure and high reliability.
  • the position of the condenser and evaporator can be reasonably set according to the needs, so as to realize the secondary utilization of hot air and cold air.
  • the above-mentioned thermal management system 200 further includes a first stop valve 204, a second stop valve 205 and a control device (not shown in the figure), and the control device is connected with The first check valve 204 and the second check valve 205 are connected in communication.
  • the exhaust port of the compressor 201 communicates with the first end of the condenser 202, the second end of the condenser 202 communicates with the first end of the heat exchange pipeline 30, and the suction port of the compressor 201 passes through the first non-stop valve 204 It communicates with the second end of the heat exchange pipeline 30 to form a cooling circuit.
  • the exhaust port of the compressor 201 communicates with the first end of the heat exchange pipeline 30 through the second non-stop valve 205, the first end of the evaporator 203 communicates with the second end of the heat exchange pipeline 30, and the second end of the evaporator 203 The two ends communicate with the suction port of the compressor 201 to form a heating circuit.
  • the communication between any two of the compressor 201 , the condenser 202 , the heat exchange pipeline 30 , the evaporator 203 , the first through valve 204 and the second through valve 205 can be through conduits.
  • the conduit serves as a transmission channel for gaseous or liquid refrigerant.
  • the above "the suction port of the compressor 201 communicates with the second end of the heat exchange pipeline 30 through the first non-stop valve 204" may be the connection between the suction port of the compressor 201 and the second end of the heat exchange pipeline 30
  • the above "the exhaust port of the compressor 201 communicates with the first end of the heat exchange pipeline 30 through the second non-stop valve 205" may be the connection between the exhaust port of the compressor 201 and the first end of the heat exchange pipeline 30
  • the above "the discharge port of the compressor 201 communicates with the first end of the condenser 202" may mean that the conduit 3# is connected between the discharge port of the compressor 201 and the first end of the condenser 202 .
  • the above “the second end of the condenser 202 communicates with the first end of the heat exchange pipeline 30" may mean that the conduit 4# is connected between the second end of the condenser 202 and the first end of the heat exchange pipeline 30 .
  • the above “the first end of the evaporator 203 communicates with the second end of the heat exchange pipeline 30” may mean that the conduit 5# is connected between the first end of the evaporator 203 and the second end of the heat exchange pipeline 30 .
  • the above “the second end of the evaporator 203 communicates with the suction port of the compressor 201” may mean that the second end of the evaporator 203 and the suction port of the compressor 201 are connected with a conduit 6#.
  • conduits 1# to 6# are only for distinguishing the conduits, and the symbols 1#-6# do not impose any limitation on the conduits.
  • Conduit 1# to conduit 6# can be the same kind of conduit, for example, all are hard conduits or all are soft conduits.
  • the first stop valve 204 and the second stop valve 205 are electronic switches for controlling fluid, such as electromagnetic valves or electric valves.
  • the conduit 1# where the first non-through valve 204 is located is conducting, and when the first non-through valve 204 is closed, the conduit 1# where the first non-through valve 204 is located is not conducting .
  • the conduit 2# where the second non-through valve 205 is located is conducted, and when the second non-through valve 205 is closed, the conduit 2# where the second non-through valve 205 is located Not conducting.
  • the control device can be a general-purpose processor, digital signal processor (DSP), application-specific integrated circuit (ASIC), field programmable gate array (FPGA), single-chip microcomputer, ARM (Acorn RISC Machine) or other programmable logic devices, discrete gates or Transistor logic, discrete hardware components, or any combination of these.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • ARM Acorn RISC Machine
  • Other programmable logic devices discrete gates or Transistor logic, discrete hardware components, or any combination of these.
  • the first non-through valve 204 can be controlled to open and the second non-through valve 205 can be opened by the control device. closure.
  • the second non-stop valve 205 can be controlled to open and the first non-stop valve 204 can be closed by the control device.
  • the control device selectively controls the opening of the first stop valve 204 or the second stop valve 205, so that the cooling circuit or the heating circuit can be selectively turned on.
  • the cooling circuit When the cooling circuit is turned on, the compressor 201 and the condenser 202 work to provide cooling for the battery.
  • the heating circuit When the heating circuit is turned on, the compressor 201 and the evaporator 203 work to provide heating for the battery. That is, the cooling function and the heating function can be provided through a set of thermal management system, and the thermal management system has simple structure, simple control and high reliability.
  • the thermal management system further includes an accumulator, and refrigerant is stored in the accumulator.
  • the accumulator may be a container provided with an air inlet and an air outlet.
  • the air outlet and air outlet of the accumulator are respectively connected into the heating circuit and the cooling circuit.
  • the accumulator by setting the accumulator, on the one hand, it can store a sufficient amount of refrigerant, and on the other hand, it can play a role of pressure buffer, preventing the pipes of the thermal management system from rupture due to excessive pressure.
  • the air inlet of the accumulator 206 communicates with the second end of the evaporator 203 , and the air inlet of the accumulator 206 passes through the first non-stop valve 204 It communicates with the second end of the heat exchange pipeline 30 , and the gas outlet of the accumulator 206 communicates with the suction port of the compressor 201 .
  • the accumulator 206 is equivalent to being arranged on the conduit 6#, the air outlet of the accumulator 206 is connected to the suction port of the compressor 201 through the conduit 6#, and the air inlet of the accumulator 206 is connected to the evaporation port through the conduit 6#
  • the second end of the device 203, and one end of the conduit 1# communicates with the air inlet of the accumulator 206. That is, one end of the conduit 1# and one end of the conduit 6# converge at the air inlet of the accumulator 206 .
  • the energy accumulator is set in the above manner, so that the energy accumulator can be located in the cooling circuit or in the heating circuit, that is, no matter whether the thermal management system works in the cooling mode or in the heating mode, the energy storage Both devices can provide refrigerant and play the role of buffering pressure.
  • the above arrangement has a simple structure.
  • the thermal management system 200 further includes a first expansion valve 207, the first end of the first expansion valve 207 communicates with the second end of the condenser 202, The second end of the first expansion valve 207 communicates with the first end of the heat exchange pipeline 30 .
  • the first expansion valve 207 plays a throttling role, that is, the liquid refrigerant becomes a low-temperature and low-pressure mist liquid refrigerant after passing through the first expansion valve 207, which provides conditions for the liquid refrigerant to absorb heat and evaporate in the heat exchange pipeline.
  • the first expansion valve 207 can also control the flow rate of the liquid refrigerant to ensure that the refrigerant transferred to the second end (the outlet) of the heat exchange pipeline 30 becomes completely gaseous.
  • the first expansion valve 207 may be an electronic expansion valve.
  • the electronic expansion valve is known to those skilled in the art, and the structure and working principle of the electronic expansion valve will not be introduced in detail here.
  • the first expansion valve 207 is equivalently arranged on the conduit 4#, so that the liquid refrigerant output from the condenser 202 is throttled and controlled by the first expansion valve 207, and then flows into the heat exchange pipeline 30 for heat exchange.
  • the first expansion valve 207 is connected in communication with the control device, so that when the cooling circuit needs to be turned on, the control device controls the first expansion valve 207 to be turned on and the first non-stop valve 204 to be opened.
  • the refrigerant entering the heat exchange line 30 is in a vapor state, which is convenient for the refrigerant in the heat exchange line 30
  • the heat is fully evaporated after absorbing heat, and the heat exchange efficiency is high.
  • the flow rate of the refrigerant entering the heat exchange pipeline 30 can be controlled, and no negative impact will be caused by too much or too little flow of the refrigerant.
  • the heat management system 200 further includes a second expansion valve 208, the first end of the second expansion valve 208 communicates with the first end of the evaporator 203, and the second expansion valve 208 communicates with the first end of the evaporator 203.
  • the second end of the second expansion valve 208 communicates with the second end of the heat exchange pipeline 30 .
  • the second expansion valve 208 plays a throttling role, that is, the liquid refrigerant becomes a low-temperature and low-pressure mist liquid refrigerant after passing through the second expansion valve 208 , which provides conditions for the liquid refrigerant to absorb heat and evaporate in the evaporator 203 .
  • the second expansion valve 208 can also control the flow rate of the liquid refrigerant, which can ensure that the refrigerant transferred to the evaporator 203 is completely evaporated into a gaseous state.
  • the second expansion valve 208 may be an electronic expansion valve.
  • the electronic expansion valve is known to those skilled in the art, and the structure and working principle of the electronic expansion valve will not be introduced in detail here.
  • the second expansion valve 208 is equivalently arranged on the conduit 5#, so that the liquid refrigerant output from the heat exchange line 30 is throttled and controlled by the second expansion valve 208, and then flows into the evaporator 203 for evaporation.
  • the second expansion valve 208 is communicatively connected with the control device, so that when the heating circuit needs to be turned on, the control device controls the second expansion valve 208 to be turned on and the second non-stop valve 205 to be opened.
  • the refrigerant entering the evaporator 203 is in a vapor state, which is convenient for fully absorbing heat in the evaporator 203. Evaporation, the evaporation efficiency is high, and in addition, the flow rate of the refrigerant entering the evaporator 203 can also be controlled, so that the evaporation will not be incomplete due to too much flow of the refrigerant.
  • the thermal management system 200 further includes a third non-stop valve 209, and the third non-stop valve 209 is arranged between the exhaust port of the compressor 201 and the condenser 202. on the pipeline between the first ends of the
  • the third check valve 209 is an electronic switch for controlling fluid, for example, it may be a solenoid valve or an electric valve.
  • the third non-through valve 209 is connected in communication with the control device, so that the control device can control the opening or closing of the third non-through valve 209 .
  • the third stop valve 209 is arranged on the pipeline between the exhaust port of the compressor 201 and the first end of the condenser 202" may mean that the third stop valve 209 is arranged on the conduit 3#, so that the compressor 201 The gaseous refrigerant discharged from the exhaust port enters the condenser 202 after passing through the third check valve 209 .
  • the control device controls the third non-stop valve 209 to open so that the gaseous refrigerant enters the condenser 202 .
  • the control device controls the third stop valve 209 to close, so as to prevent the refrigerant from entering the condenser 202 in the heating mode and affect the heating effect.
  • the gaseous refrigerant passes through when the third stop valve 209 is blocked.
  • the second check valve 205 enters the heat exchange pipeline, and the heating efficiency is high.
  • the control device controls the first The three check valves 209 are closed to prevent the refrigerant from entering the condenser 202 in the heating mode, that is, the gaseous refrigerant all enters the heat exchange pipeline through the second check valve when the third check valve 209 is closed, and the heating efficiency is high.
  • the thermal management system 200 further includes a radiator 210 .
  • the radiator 210 is a device for conducting and releasing heat, for example, the radiator 210 may be a fan.
  • the heat sink 210 can be used to dissipate heat from the condenser 202 . That is to say, the heat dissipated from the operation of the condenser 202 to the surrounding air is further transmitted to the external environment.
  • the radiator 210 can be set to dissipate the heat generated by the condenser 202 into the cabin for heating for the user.
  • radiator 210 may also be provided to dissipate the heat generated by condenser 202 to the outside of the vehicle.
  • the control device can control the radiator 210 to start working or stop working as required. Specifically, when the cooling circuit needs to be turned on, the radiator 210 is controlled to start working to dissipate heat from the condenser 202; when the heating circuit needs to be turned on, the radiator 210 is controlled to stop working.
  • the present application provides a thermal management system 200, including a compressor 201, a condenser 202, an evaporator 203, a radiator 210 and a control device (not shown).
  • a conduit 1# is connected between the suction port of the compressor 201 and the second end of the heat exchange pipeline 30, and a first stop valve 204 is arranged on the conduit 1#.
  • a conduit 2# is connected between the exhaust port of the compressor 201 and the first end of the heat exchange pipeline 30, and a second stop valve 205 is arranged on the conduit 2#.
  • a conduit 3# is connected between the exhaust port of the compressor 201 and the first end of the condenser 202, and a third stop valve 209 is arranged on the conduit 3#.
  • a conduit 4# is connected between the second end of the condenser 202 and the first end of the heat exchange pipeline 30, and a first expansion valve 207 is arranged on the conduit 4#.
  • a conduit 5# is connected between the first end of the evaporator 201 and the second end of the heat exchange pipeline 30, and a second expansion valve 208 is arranged on the conduit 5#.
  • a conduit 6# is connected between the second end of the evaporator 201 and the suction port of the compressor 201, the conduit 6# is provided with an accumulator 206, and one end of the conduit 1# and one end of the conduit 6# are collected in the energy storage At the air inlet of the device 206.
  • the radiator 210 is disposed around the condenser 202 for cooling the condenser 202 .
  • the control device is respectively connected with the compressor 201, the condenser 202, the evaporator 203, the radiator 210, the first through valve 204, the second through valve 205, the third through valve 209, the first expansion valve 207, and the second expansion valve.
  • Valve 208 is communicatively connected.
  • the control device controls the opening of the first check valve 204, the closing of the second check valve 205, the opening of the third check valve 209, and the opening of the first expansion valve.
  • the through valve 209 enters the condenser 202 to condense into a liquid refrigerant.
  • the radiator 210 takes away the heat dissipated during the condensation process of the condenser 202.
  • the liquid refrigerant passes through the first expansion valve 207 and enters the heat exchange pipeline 30.
  • the liquid refrigerant absorbs the heat inside the battery. The heat evaporates to cool the battery.
  • the evaporated gaseous refrigerant enters the accumulator 206 through the first check valve 204 to re-enter the compressor 201 for the next cooling cycle.
  • the control device controls the opening of the second check valve 205, closing of the first check valve 204, closing of the third check valve 209, and closing of the second expansion valve. 207 is turned on, and the compressor 201 and the evaporator 203 are controlled to work, so that the gaseous refrigerant is sucked by the compressor 201 from the accumulator 206, and after being compressed, it becomes a high-temperature and high-pressure gaseous refrigerant, and then enters through the second check valve 205 In the heat exchange pipeline 30, the high-temperature and high-pressure gaseous refrigerant releases heat to heat the battery.
  • the gaseous refrigerant absorbed by the heat is liquefied into a liquid refrigerant, and then enters the evaporator 203 through the second expansion valve 208 for evaporation.
  • the evaporated gaseous refrigerant passes through Enter the accumulator 206 to re-enter the compressor 201 for the next heating cycle.
  • compressors, condensers, and evaporators can all be installed on electrical equipment (such as electric vehicles), and the hot air generated by the condenser in the thermal management system can be discharged into the cabin of the electric vehicle for the driver or passengers.
  • electrical equipment such as electric vehicles
  • the hot air generated by the condenser in the thermal management system can be discharged into the cabin of the electric vehicle for the driver or passengers.
  • the cold air generated by the evaporator can be exhausted into the cabin of the electric vehicle to cool the driver or passengers.
  • the evaporator and condenser can adopt the evaporator and condenser of the air conditioning system of electric vehicles, that is, the air conditioning system and thermal management system of electric vehicles can share the evaporator and condenser, and when installing The thermal management system does not need to add another set of condenser and evaporator, which can reduce the overall cost, has a simple structure, can improve reliability, and can realize secondary utilization of hot air and cold air.
  • the compressor, the condenser and the heat exchange pipeline of the battery form a cooling circuit
  • the compressor, the evaporator and the heat exchange pipeline form a heating circuit
  • the thermal management system can provide cooling for the battery Function and heating function, and simple structure, high reliability.
  • the position of the condenser and evaporator can be reasonably set according to the needs, so as to realize the secondary utilization of hot air and cold air.
  • the thermal management system 200 includes a compressor 201, a condenser 202, and an evaporator 203.
  • the compressor 201, the condenser 202 and the heat exchange pipeline 30 of the battery form a cooling circuit, and the compression
  • the machine 201, the evaporator 203 and the heat exchange pipeline 30 form a heating circuit.
  • the thermal management system 200 further includes a communicatively connected processor and memory (not shown in the figure), and the processor is also communicatively connected with the compressor 201 , the condenser 202 and the evaporator 203 .
  • the memory stores instructions executable by the processor, and the instructions are executed by the processor, so that the processor can execute the control method of the thermal management system described below.
  • the memory may include a read-only memory and a random access memory, and provides instructions and data to the processor.
  • a portion of the memory may also include non-volatile random accedd memory (NVRAM).
  • NVRAM non-volatile random accedd memory
  • the memory stores operating instructions, executable modules or data structures, or a subset thereof, or an extension thereof.
  • the processor can be an integrated circuit chip with signal processing capability.
  • each step of the control method of the thermal management system described below can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • processor can be general-purpose processor, digital signal processor (digital signal processing, DSP), microprocessor or microcontroller, can further include application specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate Array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the processor can realize or execute the control method of the thermal management system described below.
  • FIG. 7 is a schematic flowchart of a method for controlling a thermal management system provided by an embodiment of the present application.
  • the method S100 may specifically include the following steps:
  • the first temperature threshold is greater than the second temperature threshold. It can be understood that the first temperature threshold is a high temperature threshold, that is, the operating temperature of the battery cannot exceed the first temperature threshold.
  • the second temperature threshold is a low temperature threshold, that is, the operating temperature of the battery cannot be lower than the second temperature threshold.
  • the current temperature is the temperature inside the battery collected in real time.
  • the battery management system (BMS) inside the battery monitors the temperature of at least one location in real time, and may use the average value of the monitored temperatures as the current temperature. Based on the communication connection between the battery and the thermal management system, the battery can send the current temperature to the processor of the thermal management system.
  • BMS battery management system
  • the compression is controlled.
  • the compressor and condenser are turned on, and the conduction of the cooling circuit is controlled so that the gaseous refrigerant passes through the compressor and the condenser and then enters the heat exchange pipeline to absorb the heat inside the battery to cool down the battery. Then, it becomes a gaseous refrigerant and returns to the compressor. machine for circulating refrigeration.
  • the compressor and evaporator are controlled to start working, and the heating circuit is controlled to be turned on so that the gaseous refrigerant becomes a high-temperature and high-pressure gaseous state after passing through the compressor
  • the refrigerant enters the heat exchange pipeline to provide heat for the inside of the battery, heats the battery, and the refrigerant after heat dissipation becomes a liquid refrigerant, and then enters the evaporator to evaporate into a gaseous refrigerant and returns to the compressor to perform cycle heating.
  • the compressor, the condenser and the evaporator can all be arranged on electric equipment (such as an electric vehicle). Based on the fact that the condenser will dissipate heat to the surrounding air, heat the surrounding air and generate hot air, and the evaporator will absorb the heat in the surrounding air, cool the surrounding air and generate cold air when working, so that it can be set reasonably according to the needs.
  • the location of the condenser and evaporator, and the corresponding controls, enable the secondary utilization of hot and cold air.
  • the electric vehicle is provided with a condensing chamber
  • the condensing chamber has a first air inlet, a first air outlet and a second air outlet
  • the first air inlet is connected to the outside of the cabin
  • the first air outlet is connected to the cabin
  • the second air outlet is connected to the outside of the cabin
  • the first air outlet is provided with a first air door
  • the second air outlet is provided with a second air door
  • the condenser is arranged in the condensation chamber, so that the condenser is working
  • the air in the condensing room will be refrigerated when the temperature is high.
  • the electric vehicle is also equipped with an evaporation chamber, the evaporation chamber has a second air inlet, a third air outlet and a fourth air outlet, the second air inlet is connected to the outside of the cabin, the third air outlet is connected to the inside of the cabin, and the fourth air outlet is connected to the cabin.
  • the air outlet is connected to the outside of the cabin, the third air outlet is provided with a third air door, the fourth air outlet is provided with a fourth air door, and the evaporator is arranged in the evaporation chamber, so that the evaporator will make the air in the evaporation chamber conditioned during operation.
  • Heat by controlling the opening of the third air door and closing of the fourth air door, hot air can be blown into the cabin for heating for the user, and by controlling the closing of the third air door and the opening of the fourth air door, the hot air can be blown to the outside environment.
  • the real-time current temperature of the battery is obtained. If the current temperature is greater than or equal to the first temperature threshold, the compressor and condenser are controlled to start working, and the cooling circuit is controlled to be turned on; is equal to the second temperature threshold, the compressor and the evaporator are controlled to start working, and the heating circuit is controlled to be turned on.
  • a cooling function and a heating function can be provided to the battery.
  • the corresponding air outlets of the condenser and evaporator can be reasonably controlled according to needs, so as to realize the secondary utilization of hot air and cold air.
  • the second end of the condenser 202 communicates with the first end of the heat exchange pipeline 30, and the suction port of the compressor 201 communicates with the second end of the heat exchange pipeline 30 through the first stop valve 204, so as to A cooling circuit is formed;
  • the exhaust port of the compressor 201 communicates with the first end of the heat exchange pipeline 30 through the second non-stop valve 205, and the first end of the evaporator 30 communicates with the second end of the heat exchange pipeline 30 to evaporate
  • the second end of the device 30 communicates with the suction port of the compressor 201 to form a heating circuit.
  • a conduit 1# is connected between the suction port of the compressor 201 and the second end of the heat exchange pipeline 30 , and a first stop valve 204 is arranged on the conduit 1#.
  • a conduit 2# is connected between the exhaust port of the compressor 201 and the first end of the heat exchange pipeline 30, and a second non-stop valve 205 is arranged on the conduit 2#.
  • a conduit 3# is connected between the exhaust port of the compressor 201 and the first end of the condenser 202
  • a conduit 4# is connected between the second end of the condenser 202 and the first end of the heat exchange pipeline 30 .
  • a conduit 5# is connected between the first end of the evaporator 30 and the second end of the heat exchange pipeline 30 .
  • a conduit 6# is connected between the second end of the evaporator 30 and the suction port of the compressor 201.
  • the aforementioned "controlling the conduction of the cooling circuit” includes:
  • S21 controlling the opening of the first stop valve and closing of the second stop valve to conduct the cooling circuit.
  • the cooling circuit sequentially includes a compressor, a condenser, a heat exchange pipeline, and a first non-stop valve. Therefore, when controlling the conduction of the cooling circuit, it is necessary to control the opening of the first non-stop valve. Since the branch circuit formed by conduit 3# and conduit 4# is connected in parallel with conduit 2#, in order to prevent the refrigerant from entering the heating circuit during cooling, the second stop valve needs to be closed.
  • controlling the conduction of the heating circuit includes:
  • S31 controlling the closing of the first stop valve and opening of the second stop valve to conduct the heating circuit.
  • the heating circuit sequentially includes a compressor, a second non-stop valve, a heat exchange pipeline and an evaporator. Therefore, when controlling the conduction of the heating circuit, it is necessary to control the opening of the second non-stop valve. Since the branch formed by conduit 4# and conduit 6# is connected in parallel with conduit 1#, in order to prevent the refrigerant from entering the cooling circuit during heating, the first non-stop valve needs to be closed.
  • the cooling circuit By controlling the opening of the first stop valve and closing of the second stop valve, the cooling circuit can be conducted, and the heating circuit can be conducted by controlling the closing of the first stop valve and the opening of the second stop valve.
  • the control is simple and the reliability can be improved. .
  • the thermal management system 200 further includes a first expansion valve 207, the first end of the first expansion valve 207 communicates with the second end of the condenser 202, and the second end of the first expansion valve 207 communicates with the second end of the condenser 202.
  • the second end of an expansion valve 207 communicates with the first end of the heat exchange line 30 .
  • the first expansion valve 207 is equivalently arranged on the conduit 4#.
  • the first expansion valve 207 may be an electronic expansion valve.
  • controlling the conduction of the cooling circuit also includes:
  • the cooling circuit sequentially includes a compressor, a condenser, a first expansion valve, a heat exchange pipeline, and a first stop valve. Therefore, when controlling the conduction of the cooling circuit, in addition to controlling the first stop valve In addition to opening and closing the second check valve, it is also necessary to control the connection of the first expansion valve.
  • the heat management system 200 further includes a second expansion valve 208, the first end of the second expansion valve 208 communicates with the first end of the evaporator 203, and the second expansion valve 208 communicates with the first end of the evaporator 203.
  • the second end of the second expansion valve 208 communicates with the second end of the heat exchange pipeline 30 .
  • the second expansion valve 208 is equivalently arranged on the conduit 5#.
  • the second expansion valve 208 may be an electronic expansion valve.
  • controlling the conduction of the heating circuit also includes:
  • the heating circuit sequentially includes a compressor, a second non-stop valve, a heat exchange pipeline, a second expansion valve and an evaporator. Therefore, when controlling the conduction of the heating circuit, in addition to controlling the second non-stop valve In addition to opening and closing the first check valve, it is also necessary to control the connection of the second expansion valve.
  • the second expansion valve When heating, the second expansion valve is controlled to open, so that the refrigerant entering the evaporator is in a vapor state, which is convenient for full evaporation after absorbing heat in the evaporator, and the evaporation efficiency is high.
  • the flow of refrigerant entering the evaporator can also be controlled. There will be no incomplete evaporation due to excessive refrigerant flow.
  • the thermal management system 200 further includes a third non-stop valve 209, and the third non-stop valve 209 is arranged between the exhaust port of the compressor 201 and the condenser 202. on the pipeline between the first ends of the
  • the third check valve 209 is an electronic switch for controlling fluid, for example, it may be a solenoid valve or an electric valve.
  • the third check valve 209 is arranged on the conduit 3#, so that the gaseous refrigerant discharged from the exhaust port of the compressor 201 enters the condenser 202 after passing through the third check valve 209 .
  • controlling the conduction of the cooling circuit also includes:
  • the third stop valve is controlled to open so that the gaseous refrigerant can enter the condenser.
  • the third stop valve is controlled to close to avoid the refrigerant entering the condenser in the heating mode and affecting the heating effect.
  • the gaseous refrigerant passes through the second stop valve when the third stop valve is closed Entering the heat exchange pipeline, the heating efficiency is high.
  • the thermal management system 200 further includes a radiator 210 .
  • the radiator 210 is a device for conducting and releasing heat, for example, the radiator may be a fan.
  • the radiator 20 can be used to dissipate heat from the condenser 202 . That is to say, the heat dissipated from the operation of the condenser 202 to the surrounding air is further transmitted to the external environment.
  • the method S100 also includes:
  • the cooling circuit needs to be turned on, and the radiator is controlled to work when the cooling circuit is turned on to dissipate heat from the condenser.
  • the present application further provides an electric device, the foregoing thermal management system and the foregoing battery.
  • the thermal management system can provide cooling and heating functions for the battery, has a simple structure and high reliability, and is conducive to the normal operation of electrical equipment in high-temperature or low-temperature environments.

Abstract

一种热管理系统(200)、方法及设备,在热管理系统(200)中,压缩机(201)和冷凝器(202)与电池(100)的热交换管路(30)形成冷却回路,压缩机(201)和蒸发器(203)与热交换管路(30)形成加热回路,使得该热管理系统(200)能够为电池(100)提供冷却功能和加热功能。相比于直冷系统和加热膜的形式,该热管理系统(200)结构简单、可靠性高。此外,可以根据需要合理设置冷凝器(202)和蒸发器(203)的位置,实现热空气和冷空气的二次利用。

Description

一种热管理系统、热管理方法及用电设备 技术领域
本申请实施例涉及电池技术领域,特别是涉及一种热管理系统、方法及设备。
背景技术
目前,电池的性能受气候环境影响较大,环境温度过高或者过低都会影响电池的性能,因此,需要对电池的温度进行调节,以使其维持在一定范围内。对于气候环境炎热的地区,需要增加电池冷却系统,以在电池温度过高时降低其温度。对于气候环境寒冷的地区,需要增加电池加热系统,以在电池温度过低时升高其温度。
为了使得电池适应环境以及使电池发挥最佳性能和寿命,需对其进行热管理,控制电池运行的温度环境。
发明内容
鉴于上述问题,本申请提供一种热管理系统、方法及设备,能够为电池提供冷却功能和加热功能,结构简单,可靠性高。
第一方面,本申请提供一种热管理系统,包括压缩机、冷凝器和蒸发器。其中,压缩机和冷凝器与电池的热交换管路形成冷却回路,压缩机和蒸发器与热交换管路形成加热回路。
在本申请的上述实施方式中,通过压缩机和冷凝器与电池的热交换管路形成冷却回路,压缩机和蒸发器与热交换管路形成加热回路,使得该热管理系统能够为电池提供冷却功能和加热功能,相比于直冷系统和加热膜的形式,该热管理系统,结构简单,可靠性高。此外,可以根据需要合理设置冷凝器和蒸发器的位置,实现热空气和冷空气的二次利用。
在第一方面的一种可能实现方式中,热管理系统还包括第一止通 阀、第二止通阀和控制装置,控制装置分别与第一止通阀和第二止通阀通信连接。压缩机的排气口与冷凝器的第一端连通,冷凝器的第二端与热交换管路的第一端连通,压缩机的吸气口通过第一止通阀与热交换管路的第二端连通,以形成冷却回路。压缩机的排气口通过第二止通阀与热交换管路的第一端连通,蒸发器的第一端与热交换管路的第二端连通,蒸发器的第二端与压缩机的吸气口连通,以形成加热回路。控制装置用于控制第一止通阀打开且第二止通阀关闭以导通冷却回路,或者,控制第一止通阀关闭且第二止通阀打开以导通加热回路。
在本申请上述实施方式中,基于上述冷却回路和加热回路的结构,通过控制装置选择性控制第一止通阀或第二止通阀打开,即可选择性导通冷却回路或加热回路。当冷却回路导通时,压缩机和冷凝器工作,即可为电池提供冷却功能。当加热回路导通时,压缩机和蒸发器工作,即可为为电池提供加热功能。即通过一套热管理系统,即可提供冷却功能和加热功能,并且,热管理系统系统结构简单,控制简单,能够提高可靠性。
在第一方面的一种可能实现方式中,热管理系统还包括储能器,该储能器用于存储冷媒。
在本申请上述实施方式中,通过设置储能器,一方面,能够存储足量的冷媒,另一方面,能够起到压力缓冲作用,防止热管理系统的管道因压力过大而发生破裂。
在第一方面的一种可能实现方式中,储能器的进气口与蒸发器的第二端连通,储能器的进气口通过第一止通阀与热交换管路的第二端连通,储能器的出气口与压缩机的吸气口连通。
在本申请上述实施方式中,通过上述方式设置储能器,使得储能器能够位于冷却回路中,也能够位于加热回路中,即无论热管理系统以冷却模式工作或以加热模式工作,储能器均可以提供冷媒,以及起到缓冲压力的作用,此外,上述设置方式,结构简单。
在第一方面的一种可能实现方式中,热管理系统还包括第一膨胀阀,第一膨胀阀的第一端与冷凝器的第二端连通,第一膨胀阀的第二 端与热交换管路的第一端连通。第一膨胀阀与控制装置通信连接,控制装置还用于在导通冷却回路时控制第一膨胀阀接通。
在本申请上述实施方式中,通过在冷凝器和热交换管路之间设置第一膨胀阀,使得进入热交换管路中的冷媒呈蒸汽状态,便于在热交换管路中吸热后充分蒸发,热量交换效率高,另外,还能控制进入热交换管路中的冷媒的流量,不会因冷媒流量过多或过少而产生负面影响。
在第一方面的一种可能实现方式中,热管理系统还包括第二膨胀阀,第二膨胀阀的第一端与蒸发器的第一端连通,第二膨胀阀的第二端与热交换管路的第二端连通。第二膨胀阀与控制装置通信连接,控制装置还用于在导通加热回路时控制第二膨胀阀接通。
在本申请上述实施方式中,通过在蒸发器和热交换管路之间设置第二膨胀阀,使得进入蒸发器中的冷媒呈蒸汽状态,便于在蒸发器中吸热后充分蒸发,蒸发效率高,另外,还能控制进入蒸发器中的冷媒的流量,不会因冷媒流量过多而蒸发不完全。
在第一方面的一种可能实现方式中,热管理系统还包括第三止通阀,第三止通阀设置于压缩机的排气口与冷凝器的第一端之间的管路上。第三止通阀与控制装置通信连接,控制装置还用于在导通冷却回路时控制第三止通阀打开,或者,在导通加热回路时控制第三止通阀关闭。
在本申请上述实施方式中,通过在压缩机的排气口与冷凝器的第一端之间的管路上设置第三止通阀,在需要导通加热回路时,控制装置控制第三止通阀关闭,避免在加热模式下冷媒进入冷凝器,即气态冷媒在第三止通阀的截止下全部通过第二止通阀进入热交换管路,加热效率高。
在第一方面的一种可能实现方式中,热管理系统还包括散热器,散热器用于给冷凝器散热。散热器与控制装置通信连接,控制装置还用于在导通冷却回路时控制散热器开启工作,或者,在导通加热回路时控制散热器停止工作。
在本申请上述实施方式中,通过设置散热器为冷凝器散热,能够有效避免冷凝器周围热量堆积,使得冷凝器具有更好的冷凝效果,从而,可以提高热管理系统的冷却效果。
第二方面,本申请提供了一种热管理系统的控制方法,热管理系统包括压缩机、冷凝器和蒸发器,压缩机和冷凝器与电池的热交换管路形成冷却回路,压缩机和蒸发器与热交换管路形成加热回路。
前述方法包括:获取电池的当前温度,若当前温度大于或等于第一温度阈值,控制压缩机和冷凝器开启工作,以及,控制冷却回路导通。若当前温度小于或等于第二温度阈值,控制压缩机和蒸发器开启工作,以及,控制加热回路导通。其中,第一温度阈值大于第二温度阈值。
在本申请上述实施方式中,能够为电池提供冷却功能和加热功能。此外,可以根据需要合理控制冷凝器和蒸发器对应的出风口,实现热空气和冷空气的二次利用。
在第二方面的一种可能实现方式中,热管理系统还包括第一止通阀和第二止通阀,压缩机的排气口与冷凝器的第一端连通,冷凝器的第二端与热交换管路的第一端连通,压缩机的吸气口通过第一止通阀与热交换管路的第二端连通,以形成冷却回路。压缩机的排气口通过第二止通阀与热交换管路的第一端连通,蒸发器的第一端与热交换管路的第二端连通,蒸发器的第二端与压缩机的吸气口连通,以形成加热回路。
前述“控制冷却回路导通”,包括:控制第一止通阀打开且第二止通阀关闭以导通冷却回路。
前述“控制加热回路导通”,包括:控制第一止通阀关闭且第二止通阀打开以导通加热回路。
在本申请上述实施方式中,通过控制第一止通阀打开且第二止通阀关闭即可导通冷却回路,控制第一止通阀关闭且第二止通阀打开即可导通加热回路,控制简单,能够提高可靠性。
在第二方面的一种可能实现方式中,热管理系统还包括第一膨胀 阀,第一膨胀阀的第一端与冷凝器的第二端连通,第一膨胀阀的第二端与热交换管路的第一端连通。
前述“控制冷却回路导通”,还包括:控制第一膨胀阀接通。
在本申请上述实施方式中,在冷却时控制第一膨胀阀打开,使得进入热交换管路中的冷媒呈蒸汽状态,便于在热交换管路中吸热后充分蒸发,热量交换效率高,另外,还能控制进入热交换管路中的冷媒的流量,不会因冷媒流量过多或过少而产生负面影响。
在第二方面的一种可能实现方式中,热管理系统还包括第二膨胀阀,第二膨胀阀的第一端与蒸发器的第一端连通,第二膨胀阀的第二端与热交换管路的第二端连通。
前述“控制加热回路导通”,还包括:控制第二膨胀阀接通。
在本申请上述实施方式中,在加热时控制第二膨胀阀打开,使得进入蒸发器中的冷媒呈蒸汽状态,便于在蒸发器中吸热后充分蒸发,蒸发效率高,另外,还能控制进入蒸发器中的冷媒的流量,不会因冷媒流量过多而蒸发不完全。
在第二方面的一种可能实现方式中,热管理系统还包括第三止通阀,第三止通阀设置于压缩机的排气口与冷凝器的第一端之间的管路上。
前述“控制冷却回路导通”,还包括:控制第三止通阀打开。
在本申请上述实施方式中,在需要导通冷却回路时,控制第三止通阀打开,以便气态冷媒进入冷凝器。在需要导通加热回路时,控制第三止通阀关闭,避免在加热模式下冷媒进入冷凝器,影响加热效果,此外,气态冷媒在第三止通阀的截止下全部通过第二止通阀进入热交换管路,加热效率高。
在第二方面的一种可能实现方式中,热管理系统还包括散热器,散热器用于给冷凝器散热。
前述方法还包括:若当前温度大于或等于第一温度阈值,控制散热器开启工作。
在本申请上述实施方式中,通过控制散热器开启工作,为冷凝器散 热,能够有效避免冷凝器周围热量堆积,使得冷凝器具有更好的冷凝效果,从而,可以提高热管理系统的冷却效果。
第三方面,本申请提供了一种用电设备,包括第一方面中的热管理系统和电池。
在本申请上述实施方式中,热管理系统能够为电池提供可冷却功能和加热功能,结构简单、可靠,有利于用电设备在高温或低温环境中都能正常运行。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例中电动汽车的结构示意图;
图2为本申请一些实施例中电池的结构示意图;
图3为本申请一些实施例中热交换管路的结构示意图;
图4为本申请一些实施例中热管理系统的结构示意图;
图5为本申请一些实施例中热管理系统的结构示意图;
图6为本申请一些实施例中热管理系统的结构示意图;
图7为本申请一些实施例中热管理系统的控制方法的流程示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
随着绿色能源的发展,电池的应用越来越广泛,尤其是在近年来兴起的新能源汽车领域、信息家电领域或光伏发电领域,电池都作为重要的储能或供电设备,例如,为新能源汽车或终端设备等供电,为太阳能板储能。随着电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请发明人注意到,电池的充放电效率,与其工作温度有关,过高或过低都会对其性能及续航能力造成很大影响。具体地,在环境低温下,电池会出现内阻增大、容量变小的现象,极端情况更会导致 电解液冻结、电池无法放电等情况,导致续航能力减弱。若处理不当,会导致瞬间的电压过充,造成内部短路,引发燃爆风险。在环境高温下,电池充放电效率低,影响电池的功率,严重时还会导致热失控,影响其安全性和寿命。可以理解的是,电池除了受环境高温影响,其自身在放电过程中也会产生大量的热量且随着时间的累积在相对狭小的空间内聚集,散热困难,也会降低放电效率,存在热失控风险。
因此,需要一种热管理系统对电池的温度进行管理,使其能在安全的温度范围内进行工作,不受环境温度影响,也不受电池自身放热影响。
目前,热管理系统大部分仅包括冷却系统,冷却系统主要分为风冷系统、液冷系统和直冷系统三大类。风冷系统是利用自然风或者制冷风流经电池的表面达到换热冷却的效果。通过空气带走的热量有限,换热效率较低,电池内部均温性不佳,对电池温度也难以实现比较精确的控制。液冷系统采用防冻液(例如乙二醇)作为换热介质,在换热回路中流动,为电池进行降温吸热。直冷系统采用冷媒(即制冷剂,变相材料)作为换热介质,相比于液冷系统,冷媒能在气液相变化过程中吸收大量的热,更快速地将电池内部的热量带走,换热效率高。
然而,直冷系统只有冷却模式,无加热模式,需配合加热膜实现电池加热。其中,加热膜属于恒定电阻加热元件,一般由电阻丝、绝缘包覆层以及引线组成,电阻丝一般为镍铬合金或铁铬合金,绝缘包覆层一般为聚酰亚胺(PI膜)、硅胶或环氧树脂等。加热膜贴在电芯模组的外壳上,多个加热膜串联或并联后由电池供电,加热膜通电后电阻发热,为电池提供热量,一方面,线路多复杂,可靠性低,加热效率低,另一方面,占用电池内部空间较多,影响电池的能量密度。
基于以上考虑,本申请发明人经过研究发现,设计了一种热管理系统,通过合理的管路设计,以及结合冷媒的相态变化(例如液态变气态或气态变液态等),能够为电池提供冷却功能或加热功能。即当电池温度过高时,在冷却模式下,热管理系统吸收电池内部热量,为 电池降温;当电池温度过低时,在加热模式下,热管理系统为电池内部提供热量,实现升温。
具体地,热管理系统包括压缩机、冷凝器和蒸发器,其中,压缩机和冷凝器与电池的热交换管路形成冷却回路,压缩机和蒸发器与电池的热交换管路形成加热回路。也就是说,电池内仅需要设置一个热交换管路,例如,可以在电池的外壳底部内侧或侧壁内侧铺设S型或Z字型的毛细管道,以形成热交换管路。热管理系统可以设置于电池的使用环境中,例如当电池为电动汽车供电时,热管理系统可以设置于电动汽车上,即压缩机、冷凝器和蒸发器设置于电动汽车上。
可以理解的是,压缩机、冷凝器和热交换管路之间还设置有用于传输存储冷媒(例如氟利昂)的“冷却通道”,即在冷却回路中,压缩机将低温低压气态冷媒压缩成高温高压气态冷媒,再经冷凝器冷却散热后变成液态冷媒,液态冷媒流入电池的热交换管路中,吸收电池内部的热量,蒸发变成气态冷媒,气态冷媒可供压缩机再次压缩。从而,冷媒在冷却回路中经过气液相变化循环使用,在经过热交换管路时,吸收电池内部的热量,达到给电池降温的效果,此时,热交换管路相当于蒸发器。
压缩机、蒸发器和热交换管路之间还设置有用于传输存储冷媒的“加热通道”,即在加热回路中,压缩机将低温低压气态冷媒压缩成高温高压气态冷媒,高温高压气态冷媒进入热交换管路,散发热量,变成液态冷媒。液态冷媒再进入蒸发器进行蒸发后,变成气态冷媒,气态冷媒可供压缩机再次压缩。从而,冷媒在冷却回路中经过气液相变化循环使用,在经过热交换管路时,散发热量,达到给电池升温的效果,此时,热交换管路相当于冷凝器。
可以理解的是,加热回路和冷却回路均共用压缩机和热交换管路,加热回路和冷却回路也共用同一冷媒。通过控制冷却回路或加热回路导通,使得冷媒在经过热交换管路时,发生不同的相态变化,提供冷却或加热功能。
也即,该热管理系统能够为电池提供冷却功能和加热功能,相比 于上述直冷系统和加热膜的形式,该热管理系统,结构简单,可靠性高。
本申请实施例公开的热管理系统和电池可以但不限于用于车辆、船舶或飞行器等用电设备中。这样,热管理系统能够为电池提供冷却功能和加热功能,结构简单、可靠性高,有利于用电设备在高温或低温环境中都能正常运行。
本申请实施例提供一种用电设备,用电设备可以为但不限于车辆、轮船或飞行器等等。以下实施例为了方便说明,以本申请一实施例中用电设备为电动汽车为例进行说明。如图1所示,电动汽车1000的内部设置有电池100和热管理系统200,热管理系统200和电池100的热交换管路连通。
电池100可以设置在电动汽车1000的底部或头部或尾部。电池100可以作为电动汽车1000的驱动电源,代替或部分地代替燃油或天然气为电动汽车1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多 个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接;该电池100还可以包括线束隔离板组件,用于实现电池单体的串并联、实现采样线的安装与固定等。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
电池100还包括热交换管路30,热交换管路30设置于箱体10内部,例如,可以设置于第一部分11的顶部或第二部分12的底部,或者,也可以设置于第一部分11和/或第二部分12的侧面。在图2中,以热交换管路30设置于第二部分12的底部进行示例性说明。在此,不对热交换管路在电池内部中的位置做任何限制。
如图3所示,热交换管路包括网络状的毛细管道,这里,对热交换管路的形状不做任何限制。可以理解的是,该热交换管路具有一个入口和一个出口,气态或液态的冷媒从入口进入,从出口排出,在热交换管路中流动。该入口和该出口之间可以设置有多个并联的毛细管道,从而,从入口进入的冷媒可以分散流入多个并联的毛细管道,能够提高热交换效率。
热管理系统设置于电动汽车上,热管理系统与电池的热交换管路连通,通过合理的管路设计,以及结合冷媒的相态变化(例如液态变气态或气态变液态等),能够为电池提供冷却功能或加热功能。即当电池温度过高时,在冷却模式下,热管理系统吸收电池内部热量,为电池降温;当电池温度过低时,在加热模式下,热管理系统为电池内部提供热量,实现升温。
根据本申请的一些实施例,请参照图4,热管理系统200包括压缩机201、冷凝器202和蒸发器203,其中,压缩机201和冷凝器202 与电池的热交换管路30形成冷却回路,压缩机201和蒸发器203与电池的热交换管路30形成加热回路。
其中,压缩机201是一种将低压气体提升为高压气体的从动的流体机械。压缩机201的吸气口吸入低温低压的冷媒气体(例如氟利昂),通过电机运转带动活塞对低温低压的冷媒气体进行压缩后,向其排气口排出高温高压的冷媒气体,为冷媒的相态变化循环提供动力。压缩机201可分为活塞压缩机、螺杆压缩机、离心压缩机和直线压缩机等。在此实施例中,不对压缩机201的类型或型号进行任何限制,本领域技术人员可基于实际情况选择合适的压缩机。
冷凝器202是一种换热器,能将气体或蒸汽转变成液体,即气态变成液态,并将气态变液态过程中散热的热量,快速传递到其附近的空气介质中。冷凝器202可分为空气冷却式冷凝器、水冷式冷凝器或喷淋式冷凝器等。在此实施例中,不对冷凝器202的类型或型号进行任何限制,本领域技术人员可基于实际情况选择合适的冷凝器。
蒸发器203是一种能够将液态物质转换为气态的器件,低温的液态冷媒通过蒸发器203,与外界的空气进行热交换,变成气态冷媒。在冷媒气化的过程中,会吸收周围空气的热量。本领域技术人员可基于实际情况选择合适的蒸发器。
可以理解的是,压缩机201、冷凝器202和热交换管路30之间还设置有用于传输存储冷媒(例如氟利昂)的“冷却通道”,与电池的热交换管路30一起构成冷却回路。即在冷却回路中,压缩机201将低温低压气态冷媒压缩成高温高压气态冷媒,再经冷凝器202冷却散热后变成液态冷媒,液态冷媒流入电池的热交换管路30中,吸收电池内部的热量,蒸发变成气态冷媒,气态冷媒可供压缩机201再次压缩。从而,冷媒在冷却回路中经过气液相变化循环使用,在经过热交换管路30时,吸收电池内部的热量,达到给电池降温的效果,此时,热交换管路30相当于蒸发器。
压缩机201、蒸发器203和热交换管路30之间还设置有用于传输存储冷媒的“加热通道”,与电池的热交换管路30一起构成加热回路。 即在加热回路中,压缩机201将低温低压气态冷媒压缩成高温高压气态冷媒,高温高压气态冷媒进入热交换管路30,散发热量,变成液态冷媒。液态冷媒再进入蒸发器203进行蒸发后,变成气态冷媒,气态冷媒可供压缩机201再次压缩。从而,冷媒在冷却回路中经过气液相变化循环使用,在经过热交换管路30时,散发热量,达到给电池升温的效果,此时,热交换管路30相当于冷凝器。
可以理解的是,加热回路和冷却回路均共用压缩机和热交换管路,加热回路和冷却回路也共用同一冷媒。通过控制冷却回路或加热回路导通,使得冷媒在经过热交换管路时,发生不同的相态变化,提供冷却或加热功能。
可以理解的是,压缩机201、冷凝器202和蒸发器203均可以设置于用电设备(例如电动汽车)上。基于冷凝器202工作时会散热热量至周围空气中,为周围空气加热,产生热空气,蒸发器203工作时会吸收周围空气中的热量,为周围空气制冷,产生冷空气,从而,可以根据需要合理设置冷凝器202和蒸发器203的位置,能够实现热空气和冷空气的二次利用。例如,以电动汽车为例进行示例性说明,热管理系统中的冷凝器202工作产生的热空气可以排入电动汽车的车舱中,给司机或乘客取暖,蒸发器203工作产生的冷空气可以排入电动汽车的车舱中,给司机或乘客纳凉。也即,在此实施例中,蒸发器203和冷凝器202可以采用电动汽车空调系统的蒸发器和冷凝器,即电动汽车的空调系统和热管理系统可以共用蒸发器和冷凝器,在为电动汽车安装热管理系统时无需额外增加另一套冷凝器和蒸发器,能够降低整体成本,且结构简单,能够提高可靠性。
可以理解的是,在其他实施例中,冷凝器202工作产生的热空气或蒸发器203工作产生的冷空气也可以作为废气排出车舱外。本领域技术人员可根据实际需要灵活设计。
本申请实施例的技术方案中,通过压缩机和冷凝器与电池的热交换管路形成冷却回路,压缩机和蒸发器与热交换管路形成加热回路,使得该热管理系统能够为电池提供冷却功能和加热功能,相比于直冷系统和 加热膜的形式,该热管理系统,结构简单,可靠性高。此外,可以根据需要合理设置冷凝器和蒸发器的位置,实现热空气和冷空气的二次利用。
根据本申请的一些实施例,可选地,请参阅图5,上述热管理系统200还包括第一止通阀204、第二止通阀205和控制装置(图未示),控制装置分别与第一止通阀204和第二止通阀205通信连接。压缩机201的排气口与冷凝器202的第一端连通,冷凝器202的第二端与热交换管路30的第一端连通,压缩机201的吸气口通过第一止通阀204与热交换管路30的第二端连通,以形成冷却回路。压缩机201的排气口通过第二止通阀205与热交换管路30的第一端连通,蒸发器203的第一端与热交换管路30的第二端连通,蒸发器203的第二端与压缩机201的吸气口连通,以形成加热回路。
可以理解的是,上述压缩机201、冷凝器202、热交换管路30、蒸发器203、第一直通阀204和第二直通阀205中任一两个之间的连通可以采用导管连通。从而,导管作为气态或液态冷媒的传输通道。
上述“压缩机201的吸气口通过第一止通阀204与热交换管路30的第二端连通”可以是压缩机201的吸气口和热交换管路30的第二端之间连接有导管1#,并且,在该导管1#上设置有第一止通阀204。上述“压缩机201的排气口通过第二止通阀205与热交换管路30的第一端连通”可以是压缩机201的排气口和热交换管路30的第一端之间连接有导管2#,并且,在该导管2#上设置有第二止通阀205。可以理解的是,基于冷媒流向,热交换管路30的第一端相当于其入口,第二端相当于其出口。
上述“压缩机201的排气口与冷凝器202的第一端连通”可以是压缩机201的排气口与冷凝器202的第一端之间连接有导管3#。上述“冷凝器202的第二端与热交换管路30的第一端连通”可以是冷凝器202的第二端与热交换管路30的第一端之间连接有导管4#。上述“蒸发器203的第一端与热交换管路30的第二端连通”可以是蒸发器203的第一端与热交换管路30的第二端之间连接有导管5#。上 述“蒸发器203的第二端与压缩机201的吸气口连通”可以是蒸发器203的第二端与压缩机201的吸气口之间连接有导管6#。
可以理解的是,导管1#至导管6#中的标号仅仅是为了区分导管,标号1#-6#并不对导管造成任何限定。导管1#至导管6#可以为同一种导管,例如均为硬质导管或均为软质导管等。
其中,第一止通阀204和第二止通阀205为用于控制流体的电子开关,例如可以为电磁阀或电动阀等。当第一止通阀204打开时,该第一止通阀204所在的导管1#导通,当第一止通阀204关闭时,该第一止通阀204所在的导管1#不导通。同理,当第二止通阀205打开时,该第二止通阀205所在的导管2#导通,当第二止通阀205关闭时,该第二止通阀205所在的导管2#不导通。
控制装置可以为通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、单片机、ARM(Acorn RISC Machine)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合。
基于控制装置分别与第一止通阀204和第二止通阀205通信连接,从而,当需要导通冷却回路时,可以通过控制装置控制第一止通阀204打开且第二止通阀205关闭。当需要导通加热回路时,可以通过控制装置控制第二止通阀205打开且第一止通阀204关闭。
在本申请的实施例中,基于上述冷却回路和加热回路的结构,通过控制装置选择性控制第一止通阀204或第二止通阀205打开,即可选择性导通冷却回路或加热回路。当冷却回路导通时,压缩机201和冷凝器202工作,即可为电池提供冷却功能。当加热回路导通时,压缩机201和蒸发器203工作,即可为为电池提供加热功能。即通过一套热管理系统,即可提供冷却功能和加热功能,并且,热管理系统系统结构简单,控制简单,可靠性高。
根据本申请的一些实施例,可选地,热管理系统还包括储能器,该储能器中存储有冷媒。
储能器可以为设置有进气口和出气口的容器。储能器的出气口和 出气口分别连入加热回路和冷却回路中。在热管理系统不工作的情况下,储能器中存储有冷媒。在热管理系统工作的情况下,储能器中的冷媒被压缩机吸走,此时,储能器能够起到压力缓冲作用,防止热管理系统的管道因压力过大而发生破裂。
在本申请的实施例中,通过设置储能器,一方面,能够存储足量的冷媒,另一方面,能够起到压力缓冲作用,防止热管理系统的管道因压力过大而发生破裂。
根据本申请的一些实施例,可选地,请参阅图6,储能器206的进气口与蒸发器203的第二端连通,储能器206的进气口通过第一止通阀204与热交换管路30的第二端连通,储能器206的出气口与压缩机201的吸气口连通。
其中,该储能器206相当于设置在导管6#上,储能器206的出气口通过导管6#连通压缩机201的吸气口,储能器206的进气口通过导管6#连通蒸发器203的第二端,并且,导管1#的一端连通储能器206的进气口。即导管1#的一端与导管6#的一端汇集于储能器206的进气口处。
在本申请的实施例中,通过上述方式设置储能器,使得储能器能够位于冷却回路中,也能够位于加热回路中,即无论热管理系统以冷却模式工作或以加热模式工作,储能器均可以提供冷媒,以及起到缓冲压力的作用,此外,上述设置方式,结构简单。
根据本申请的一些实施例,可选地,请再次参阅图6,热管理系统200还包括第一膨胀阀207,该第一膨胀阀207的第一端与冷凝器202的第二端连通,该第一膨胀阀207的第二端与热交换管路30的第一端连通。
其中,第一膨胀阀207起到节流作用,即液态冷媒经过第一膨胀阀207后变成低温低压的雾状液态冷媒,为液态冷媒在热交换管路中吸热蒸发提供条件。另一方面,第一膨胀阀207还能控制液态冷媒的流量,能够保证传输至热交换管路30的第二端(出口)处的冷媒完全变成气态。第一膨胀阀207可以为电子膨胀阀。电子膨胀阀是本领 域技术人员所知的,在此不对电子膨胀阀的结构和工作原理进行详细介绍。
第一膨胀阀207相当于设置于导管4#上,使得冷凝器202输出的液态冷媒经过第一膨胀阀207节流、控量后,再流入热交换管路30,进行热交换。第一膨胀阀207与控制装置通信连接,从而,在需要导通冷却回路时,控制装置控制第一膨胀阀207接通以及控制第一止通阀204打开。
在本申请的实施例中,通过在冷凝器202和热交换管路30之间设置第一膨胀阀207,使得进入热交换管30路中的冷媒呈蒸汽状态,便于在热交换管路30中吸热后充分蒸发,热量交换效率高,另外,还能控制进入热交换管路30中的冷媒的流量,不会因冷媒流量过多或过少而产生负面影响。
根据本申请的一些实施例,可选地,请再次参阅图6,热管理系统200还包括第二膨胀阀208,第二膨胀阀208的第一端与蒸发器203的第一端连通,第二膨胀阀208的第二端与热交换管路30的第二端连通。
其中,第二膨胀阀208起到节流作用,即液态冷媒经过第二膨胀阀208后变成低温低压的雾状液态冷媒,为液态冷媒在蒸发器203中吸热蒸发提供条件。另一方面,第二膨胀阀208还能控制液态冷媒的流量,能够保证传输至蒸发器203的冷媒完全蒸发变成气态。第二膨胀阀208可以为电子膨胀阀。电子膨胀阀是本领域技术人员所知的,在此不对电子膨胀阀的结构和工作原理进行详细介绍。
第二膨胀阀208相当于设置于导管5#上,使得热交换管路30输出的液态冷媒经过第二膨胀阀208节流、控量后,再流入蒸发器203,进行蒸发。第二膨胀阀208与控制装置通信连接,从而,在需要导通加热回路时,控制装置控制第二膨胀阀208接通以及控制第二止通阀205打开。
在本申请的实施例中,通过在蒸发器203和热交换管路30之间设置第二膨胀阀208,使得进入蒸发器203中的冷媒呈蒸汽状态,便 于在蒸发器203中吸热后充分蒸发,蒸发效率高,另外,还能控制进入蒸发器203中的冷媒的流量,不会因冷媒流量过多而蒸发不完全。
根据本申请的一些实施例,可选地,请再次参阅图6,热管理系统200还包括第三止通阀209,第三止通阀209设置于压缩机201的排气口与冷凝器202的第一端之间的管路上。
第三止通阀209为用于控制流体的电子开关,例如可以为电磁阀或电动阀等。第三止通阀209与控制装置通信连接,从而,控制装置可以控制第三止通阀209的打开或关闭。
“第三止通阀209设置于压缩机201的排气口与冷凝器202的第一端之间的管路上”可以是第三止通阀209设置于导管3#上,使得由压缩机201的排气口排出的气态冷媒经第三止通阀209后再进入冷凝器202。
在需要导通冷却回路时,控制装置控制第三止通阀209打开,以便气态冷媒进入冷凝器202。在需要导通加热回路时,控制装置控制第三止通阀209关闭,避免在加热模式下冷媒进入冷凝器202,影响加热效果,此外,气态冷媒在第三止通阀209的截止下全部通过第二止通阀205进入热交换管路,加热效率高。
在本申请的实施例中,通过在压缩机201的排气口与冷凝器202的第一端之间的管路上设置第三止通阀209,在需要导通加热回路时,控制装置控制第三止通阀209关闭,避免在加热模式下冷媒进入冷凝器202,即气态冷媒在第三止通阀209的截止下全部通过第二止通阀进入热交换管路,加热效率高。
根据本申请的一些实施例,可选地,请再次参阅图6,热管理系统200还包括散热器210。散热器210是一种用来传导、释放热量的装置,例如散热器210可以是风扇。从而,散热器210可以用来给冷凝器202散热。即将冷凝器202工作散发至其周围空气中的热量,进一步传播至外界环境中。
在一些实施例中,当用电设备为电动汽车时,可以设置散热器210将冷凝器202产生的热量散发至车舱内,供用户取暖。或者,也 可以设置散热器210将冷凝器202产生的热量散发至车外。
基于散热器210与控制装置通信连接,从而,控制装置能够根据需要控制散热器210开启工作或停止工作。具体地,在需要导通冷却回路时控制散热器210开启工作,以为冷凝器202散热;在需要导通加热回路时控制散热器210停止工作。
在本申请的实施例中,通过设置散热器210为冷凝器202散热,能够有效避免冷凝器202周围热量堆积,使得冷凝器202具有更好的冷凝效果,从而,可以提高热管理系统200的冷却效果。
根据本申请的一些实施例,请参阅图6,本申请提供了一种热管理系统200,包括压缩机201、冷凝器202、蒸发器203、散热器210和控制装置(图未示)。其中,压缩机201的吸气口和热交换管路30的第二端之间连接有导管1#,导管1#上设置有第一止通阀204。压缩机201的排气口和热交换管路30的第一端之间连接有导管2#,导管2#上设置有第二止通阀205。压缩机201的排气口与冷凝器202的第一端之间连接有导管3#,导管3#上设置有第三止通阀209。冷凝器202的第二端与热交换管路30的第一端之间连接有导管4#,导管4#上设置有第一膨胀阀207。蒸发器201的第一端与热交换管路30的第二端之间连接有导管5#,导管5#上设置有第二膨胀阀208。蒸发器201的第二端与压缩机201的吸气口之间连接有导管6#,导管6#上设置有储能器206,并且导管1#的一端与导管6#的一端汇集于储能器206的进气口处。散热器210设置于冷凝器202周围,用于给冷凝器202散热。
控制装置分别与压缩机201、冷凝器202、蒸发器203、散热器210、第一止通阀204、第二止通阀205、第三止通阀209和第一膨胀阀207、第二膨胀阀208通信连接。当热管理系统200需要为电池提供冷却功能时(即冷却模式下),控制装置控制第一止通阀204打开、第二止通阀205关闭、第三止通阀209打开、第一膨胀阀207接通,第二膨胀阀208关闭,以及,控制压缩机201、冷凝器202、散热器210工作,从而,气态冷媒由储能器206被压缩机201吸入,经压缩 后,由第三止通阀209进入冷凝器202冷凝成液态冷媒,同时散热器210带走冷凝器202冷凝过程中散热的热量,液态冷媒经第一膨胀阀207后,进入热交换管路30,液态冷媒吸收电池内部的热量而蒸发,实现冷却电池。最后,蒸发后的气态冷媒经第一止通阀204进入储能器206,以重新进入压缩机201,进行下一个冷却循环。
当热管理系统200需要为电池提供加热功能时(即加热模式下),控制装置控制第二止通阀205打开、第一止通阀204关闭、第三止通阀209关闭、第二膨胀阀207接通,以及,控制压缩机201和蒸发器203工作,从而,气态冷媒由储能器206被压缩机201吸入,经压缩后变成高温高压气态冷媒,然后由第二止通阀205进入热交换管路30,高温高压气态冷媒释放热量,实现给电池加热,被吸收热量后的气态冷媒液化成液态冷媒,然后经过第二膨胀阀208进入蒸发203器进行蒸发,蒸发后的气态冷媒经进入储能器206,以重新进入压缩机201,进行下一个加热循环。
此外,压缩机、冷凝器和蒸发器均可以设置于用电设备(例如电动汽车)上,热管理系统中的冷凝器工作产生的热空气可以排入电动汽车的车舱中,给司机或乘客取暖,蒸发器工作产生的冷空气可以排入电动汽车的车舱中,给司机或乘客纳凉。也即,在此实施例中,蒸发器和冷凝器可以采用电动汽车空调系统的蒸发器和冷凝器,即电动汽车的空调系统和热管理系统可以共用蒸发器和冷凝器,在为电动汽车安装热管理系统时无需额外增加另一套冷凝器和蒸发器,能够降低整体成本,且结构简单,能够提高可靠性,还能能够实现热空气和冷空气的二次利用。
本申请实施例的技术方案中,通过压缩机和冷凝器与电池的热交换管路形成冷却回路,压缩机和蒸发器与热交换管路形成加热回路,使得该热管理系统能够为电池提供冷却功能和加热功能,并且结构简单、可靠性高。此外,可以根据需要合理设置冷凝器和蒸发器的位置,实现热空气和冷空气的二次利用。
根据本申请的一些实施例,请参阅图4,热管理系统200包括压 缩机201、冷凝器202和蒸发器203,压缩机201和冷凝器202与电池的热交换管路30形成冷却回路,压缩机201和蒸发器203与热交换管路30形成加热回路。
可以理解的是,热管理系统200还包括通信连接的处理器和存储器(图未示),处理器还分别与压缩机201、冷凝器202和蒸发器203通信连接。存储器存储有可被处理器执行的指令,该指令被处理器执行,以使处理器能够执行下述热管理系统的控制方法。
其中,存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器(non-volatile random accedd memory,NVRAM)。存储器存储有操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集。
处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,下述热管理系统的控制方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(diginal signal processing,DSP)、微处理器或微控制器,还可进一步包括专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。该处理器可实现或者执行下述热管理系统的控制方法。
请参阅图7,图7为本申请实施例提供的热管理系统的控制方法的流程示意图。该方法S100具体可以包括如下步骤:
S10:获取电池的当前温度。
S20:若当前温度大于或等于第一温度阈值,控制压缩机和冷凝器开启工作,以及,控制冷却回路导通。
S30:若当前温度小于或等于第二温度阈值,控制压缩机和蒸发器开启工作,以及,控制加热回路导通。
其中,第一温度阈值大于第二温度阈值。可以理解的是,第一温 度阈值为高温阈值,即电池的工作温度不能超过第一温度阈值。第二温度阈值为低温阈值,即电池的工作温度不能低于第二温度阈值。
当前温度是实时采集到的电池内部的温度。例如,电池内部的电池管理系统(BMS)实时监测至少一个位置的温度,可以将各监测到的温度的平均值作为当前温度。基于电池与热管理系统通信连接,从而,电池可以将当前温度发送给热管理系统的处理器。
在获取到当前温度后,分别比较当前温度与第一温度阈值、第二温度阈值之间的大小关系,若监测到当前温度大于或等于第一温度阈值,说明电池内部温度过高,则控制压缩机和冷凝器开启工作,以及,控制冷却回路导通,使得气态冷媒经过压缩机、冷凝器后输入热交换管路吸收电池内部的热量,给电池降温,然后,变成气态冷媒重新回到压缩机,进行循环制冷。
若监测到当前温度小于或等于第二温度阈值,说明电池内部温度过低,则控制压缩机和蒸发器开启工作,以及,控制加热回路导通,使得气态冷媒经过压缩机后变成高温高压气态冷媒,然后,输入热交换管路为电池内部提供热量,给电池加热,散热后的冷媒变成液态冷媒,然后,进入蒸发器蒸发变成气态冷媒重新回到压缩机,进行循环制热。
可以理解的是,压缩机、冷凝器和蒸发器均可以设置于用电设备(例如电动汽车)上。基于冷凝器工作时会散热热量至周围空气中,为周围空气加热,产生热空气,蒸发器工作时会吸收周围空气中的热量,为周围空气制冷,产生冷空气,从而,可以根据需要合理设置冷凝器和蒸发器的位置,以及相应控制,能够实现热空气和冷空气的二次利用。例如,以电动汽车为例进行示例性说明,电动汽车上设置有冷凝室,冷凝室具有第一进风口、第一出风口和第二出风口,第一进风口连通车舱外,第一出风口连通车舱内,第二出风口连通车舱外,第一出风口处设置有第一风门,第二出风口处设置有第二风门,冷凝器设置于冷凝室内,从而,冷凝器在工作时会使得冷凝室内的空气制冷,通过控制第一风门打开、第二风门闭合即可将冷风吹入车舱内,以供用户纳凉,通过控制第一风 门关闭、第二风门打开即可将冷风吹至外界环境中。同理,电动汽车上还设置有蒸发室,蒸发室具有第二进风口、第三出风口和第四出风口,第二进风口连通车舱外,第三出风口连通车舱内,第四出风口连通车舱外,第三出风口处设置有第三风门,第四出风口处设置有第四风门,蒸发器设置于蒸发室内,从而,蒸发器在工作时会使得蒸发室内的空气制热,通过控制第三风门打开、第四风门闭合即可将热风吹入车舱内,以供用户取暖,通过控制第三风门关闭、第四风门打开即可将热风吹至外界环境中。
本申请实施例的技术方案中,获取电池的实时的当前温度,若当前温度大于或等于第一温度阈值,控制压缩机和冷凝器开启工作,以及,控制冷却回路导通;若当前温度小于或等于第二温度阈值,控制压缩机和蒸发器开启工作,以及,控制加热回路导通。从而,能够为电池提供冷却功能和加热功能。此外,可以根据需要合理控制冷凝器和蒸发器对应的出风口,实现热空气和冷空气的二次利用。
根据本申请的一些实施例,可选地,请参阅图5,热管理系统200还包括第一止通阀204和第二止通阀205,压缩机201的排气口与冷凝器202的第一端连通,冷凝器202的第二端与热交换管路30的第一端连通,压缩机201的吸气口通过第一止通阀204与热交换管路30的第二端连通,以形成冷却回路;压缩机201的排气口通过第二止通阀205与热交换管路30的第一端连通,蒸发器30的第一端与热交换管路30的第二端连通,蒸发器30的第二端与压缩机201的吸气口连通,以形成加热回路。
也即,是压缩机201的吸气口和热交换管路30的第二端之间连接有导管1#,并且,在该导管1#上设置有第一止通阀204。压缩机201的排气口和热交换管路30的第一端之间连接有导管2#,并且,在该导管2#上设置有第二止通阀205。压缩机201的排气口与冷凝器202的第一端之间连接有导管3#,冷凝器202的第二端与热交换管路30的第一端之间连接有导管4#。蒸发器30的第一端与热交换管路30的第二端之间连接有导管5#。蒸发器30的第二端与压缩机201的吸气口之间连接有 导管6#。
前述“控制冷却回路导通”,包括:
S21:控制第一止通阀打开且第二止通阀关闭以导通冷却回路。
在此实施例中,冷却回路依次包括压缩机、冷凝器、热交换管路、第一止通阀,因此,在控制冷却回路导通时,需要控制第一止通阀打开。由于导管3#和导管4#构成的支路与导管2#并联,为了防止冷却时冷媒进入加热回路,需要将第二止通阀关闭。
前述“控制加热回路导通”,包括:
S31:控制第一止通阀关闭且第二止通阀打开以导通加热回路。
在此实施例中,加热回路依次包括压缩机、第二止通阀、热交换管路和蒸发器,因此,在控制加热回路导通时,需要控制第二止通阀打开。由于导管4#和导管6#构成的支路与导管1#并联,为了防止加热时冷媒进入冷却回路,需要将第一止通阀关闭。
通过控制第一止通阀打开且第二止通阀关闭即可导通冷却回路,控制第一止通阀关闭且第二止通阀打开即可导通加热回路,控制简单,能够提高可靠性。
根据本申请的一些实施例,可选地,请再次参阅图6,热管理系统200还包括第一膨胀阀207,第一膨胀阀207的第一端与冷凝器202的第二端连通,第一膨胀阀207的第二端与热交换管路30的第一端连通。
第一膨胀阀207相当于设置于导管4#上。第一膨胀阀207可以为电子膨胀阀。
前述“控制所述冷却回路导通”,还包括:
S22:控制第一膨胀阀接通。
在此实施例中,冷却回路依次包括压缩机、冷凝器、第一膨胀阀、热交换管路、第一止通阀,因此,在控制冷却回路导通时,除了需要控制第一止通阀打开和第二止通阀关闭外,还需要控制第一膨胀阀接通。
在冷却时控制第一膨胀阀打开,使得进入热交换管路中的冷媒呈蒸汽状态,便于在热交换管路中吸热后充分蒸发,热量交换效率高, 另外,还能控制进入热交换管路中的冷媒的流量,不会因冷媒流量过多或过少而产生负面影响。
根据本申请的一些实施例,可选地,请再次参阅图6,热管理系统200还包括第二膨胀阀208,第二膨胀阀208的第一端与蒸发器203的第一端连通,第二膨胀阀208的第二端与热交换管路30的第二端连通。
第二膨胀阀208相当于设置于导管5#上。第二膨胀阀208可以为电子膨胀阀。
前述“控制加热回路导通”,还包括:
S32:控制第二膨胀阀接通。
在此实施例中,加热回路依次包括压缩机、第二止通阀、热交换管路、第二膨胀阀和蒸发器,因此,在控制加热回路导通时,除了需要控制第二止通阀打开和第一止通阀关闭外,还需要控制第二膨胀阀接通。
在加热时控制第二膨胀阀打开,使得进入蒸发器中的冷媒呈蒸汽状态,便于在蒸发器中吸热后充分蒸发,蒸发效率高,另外,还能控制进入蒸发器中的冷媒的流量,不会因冷媒流量过多而蒸发不完全。
根据本申请的一些实施例,可选地,请再次参阅图6,热管理系统200还包括第三止通阀209,第三止通阀209设置于压缩机201的排气口与冷凝器202的第一端之间的管路上。
第三止通阀209为用于控制流体的电子开关,例如可以为电磁阀或电动阀等。第三止通阀209设置于导管3#上,使得由压缩机201的排气口排出的气态冷媒经第三止通阀209后再进入冷凝器202。
前述“控制冷却回路导通”,还包括:
S23:控制第三止通阀打开。
在需要导通冷却回路时,控制第三止通阀打开,以便气态冷媒进入冷凝器。在需要导通加热回路时,控制第三止通阀关闭,避免在加热模式下冷媒进入冷凝器,影响加热效果,此外,气态冷媒在第三止通阀的截止下全部通过第二止通阀进入热交换管路,加热效率高。
根据本申请的一些实施例,可选地,请再次参阅图6,热管理系统200还包括散热器210。散热器210是一种用来传导、释放热量的装置,例如散热器可以是风扇。从而,散热器20可以用来给冷凝器202散热。即将冷凝器202工作散发至其周围空气中的热量,进一步传播至外界环境中。
所述方法S100还包括:
S40:若当前温度大于或等于第一温度阈值,控制散热器开启工作。
若当前温度大于或等于第一温度阈值,则需要导通冷却回路,在导通冷却回路时控制散热器开启工作,以为冷凝器散热。
通过控制散热器开启工作,为冷凝器散热,能够有效避免冷凝器周围热量堆积,使得冷凝器具有更好的冷凝效果,从而,可以提高热管理系统的冷却效果。
根据本申请的一些实施例,本申请还提供了一种用电设备,前述热管理系统和前述电池。
在上述实施方式中,热管理系统能够为电池提供冷却功能和加热功能,结构简单、可靠性高,有利于用电设备在高温或低温环境中都能正常运行。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种热管理系统,其特征在于,包括:
    压缩机、冷凝器和蒸发器;
    其中,所述压缩机和所述冷凝器与电池的热交换管路形成冷却回路;
    所述压缩机和所述蒸发器与所述热交换管路形成加热回路。
  2. 根据权利要求1所述的系统,其特征在于,所述系统还包括第一止通阀、第二止通阀和控制装置,所述控制装置分别与所述第一止通阀和所述第二止通阀通信连接;
    所述压缩机的排气口与所述冷凝器的第一端连通,所述冷凝器的第二端与所述热交换管路的第一端连通,所述压缩机的吸气口通过所述第一止通阀与所述热交换管路的第二端连通,以形成所述冷却回路;
    所述压缩机的排气口通过所述第二止通阀与所述热交换管路的第一端连通,所述蒸发器的第一端与所述热交换管路的第二端连通,所述蒸发器的第二端与所述压缩机的吸气口连通,以形成所述加热回路;
    所述控制装置用于控制所述第一止通阀打开且所述第二止通阀关闭以导通所述冷却回路,或者,控制所述第一止通阀关闭且所述第二止通阀打开以导通所述加热回路。
  3. 根据权利要求2所述的系统,其特征在于,所述系统还包括储能器,所述储能器用于存储冷媒。
  4. 根据权利要求3所述的系统,其特征在于,所述储能器的进气口与所述蒸发器的第二端连通,所述储能器的进气口通过所述第一止通阀与所述热交换管路的第二端连通,所述储能器的出气口与所述压缩机的吸气口连通。
  5. 根据权利要求2所述的系统,其特征在于,所述系统还包括第一膨胀阀,所述第一膨胀阀的第一端与所述冷凝器的第二端连通,所述第一膨胀阀的第二端与所述热交换管路的第一端连通;
    所述第一膨胀阀与所述控制装置通信连接,所述控制装置还用于在导通所述冷却回路时控制所述第一膨胀阀接通。
  6. 根据权利要求5所述的系统,其特征在于,所述系统还包括第二膨胀阀,所述第二膨胀阀的第一端与所述蒸发器的第一端连通,所述第二膨胀阀的第二端与所述热交换管路的第二端连通;
    所述第二膨胀阀与所述控制装置通信连接,所述控制装置还用于在导通所述加热回路时控制所述第二膨胀阀接通。
  7. 根据权利要求6所述的系统,其特征在于,所述系统还包括第三止通阀,所述第三止通阀设置于所述压缩机的排气口与所述冷凝器的第一端之间的管路上;
    所述第三止通阀与所述控制装置通信连接,所述控制装置还用于在导通所述冷却回路时控制所述第三止通阀打开,或者,在导通所述加热回路时控制所述第三止通阀关闭。
  8. 根据权利要求2-7任意一项所述的系统,其特征在于,所述系统还包括散热器,所述散热器用于给所述冷凝器散热;
    所述散热器与所述控制装置通信连接,所述控制装置还用于在导通所述冷却回路时控制所述散热器开启工作,或者,在导通所述加热回路时控制所述散热器停止工作。
  9. 一种热管理系统的控制方法,其特征在于,所述热管理系统包括压缩机、冷凝器和蒸发器,所述压缩机和所述冷凝器与电池的热交换管路形成冷却回路,所述压缩机和所述蒸发器与所述热交换管路形成加热回路;
    所述方法包括:
    获取所述电池的当前温度;
    若所述当前温度大于或等于第一温度阈值,控制所述压缩机和所述冷凝器开启工作,以及,控制所述冷却回路导通;
    若所述当前温度小于或等于第二温度阈值,控制所述压缩机和所述蒸发器开启工作,以及,控制所述加热回路导通;
    其中,所述第一温度阈值大于所述第二温度阈值。
  10. 根据权利要求9所述的方法,其特征在于,所述热管理系统还包括第一止通阀和第二止通阀,所述压缩机的排气口与所述冷凝器的第一端连通,所述冷凝器的第二端与所述热交换管路的第一端连通,所述压缩机的吸气口通过所述第一止通阀与所述热交换管路的第二端连通,以形成所述冷却回路;所述压缩机的排气口通过所述第二止通阀与所述热交换管路的第一端连通,所述蒸发器的第一端与所述热交换管路的第二端连通,所述蒸发器的第二端与所述压缩机的吸气口连通,以形成所述加热回路;
    所述控制所述冷却回路导通,包括:
    控制所述第一止通阀打开且所述第二止通阀关闭以导通所述冷却回路;
    所述控制所述加热回路导通,包括:
    控制所述第一止通阀关闭且所述第二止通阀打开以导通所述加热回路。
  11. 根据权利要求10所述的方法,其特征在于,所述热管理系统还包括第一膨胀阀,所述第一膨胀阀的第一端与所述冷凝器的第二端连通,所述第一膨胀阀的第二端与所述热交换管路的第一端连通;
    所述控制所述冷却回路导通,还包括:
    控制所述第一膨胀阀接通。
  12. 根据权利要求11所述的方法,其特征在于,所述热管理系统还包括第二膨胀阀,所述第二膨胀阀的第一端与所述蒸发器的第一端连通,所述第二膨胀阀的第二端与所述热交换管路的第二端连通;
    所述控制所述加热回路导通,还包括:
    控制所述第二膨胀阀接通。
  13. 根据权利要求12所述的方法,其特征在于,所述热管理系统还包括第三止通阀,所述第三止通阀设置于所述压缩机的排气口与所述冷凝器的第一端之间的管路上;
    所述控制所述冷却回路导通,还包括:
    控制所述第三止通阀打开。
  14. 根据权利要求9-13任意一项所述的方法,其特征在于,所述热管理系统还包括散热器,所述散热器用于给所述冷凝器散热;
    所述方法还包括:
    若所述当前温度大于或等于所述第一温度阈值,控制所述散热器开启工作。
  15. 一种用电设备,其特征在于,包括如权利要求1-8任意一项所述的热管理系统和所述电池。
PCT/CN2021/139758 2021-12-20 2021-12-20 一种热管理系统、热管理方法及用电设备 WO2023115274A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21912331.2A EP4224091A4 (en) 2021-12-20 2021-12-20 THERMAL MANAGEMENT SYSTEM, THERMAL MANAGEMENT METHOD AND ELECTRICAL DEVICE
KR1020227018959A KR20230098498A (ko) 2021-12-20 2021-12-20 열관리 시스템, 열관리 방법 및 전기 장치
PCT/CN2021/139758 WO2023115274A1 (zh) 2021-12-20 2021-12-20 一种热管理系统、热管理方法及用电设备
JP2022535188A JP2024504886A (ja) 2021-12-20 2021-12-20 熱管理システム、熱管理方法及び電力消費機器
US17/888,506 US20230191868A1 (en) 2021-12-20 2022-08-16 Thermal management system, thermal management method and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139758 WO2023115274A1 (zh) 2021-12-20 2021-12-20 一种热管理系统、热管理方法及用电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/888,506 Continuation US20230191868A1 (en) 2021-12-20 2022-08-16 Thermal management system, thermal management method and electrical device

Publications (1)

Publication Number Publication Date
WO2023115274A1 true WO2023115274A1 (zh) 2023-06-29

Family

ID=86767135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139758 WO2023115274A1 (zh) 2021-12-20 2021-12-20 一种热管理系统、热管理方法及用电设备

Country Status (5)

Country Link
US (1) US20230191868A1 (zh)
EP (1) EP4224091A4 (zh)
JP (1) JP2024504886A (zh)
KR (1) KR20230098498A (zh)
WO (1) WO2023115274A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116759719B (zh) * 2023-08-10 2023-11-21 山东小蚁电动科技有限公司 一种电动三轮车电池用防护装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080078542A1 (en) * 2004-02-04 2008-04-03 Gering Kevin L Thermal management methods
CN102290618A (zh) * 2011-07-26 2011-12-21 浙江吉利汽车研究院有限公司 一种车用电池热管理系统
CN105539067A (zh) * 2016-03-02 2016-05-04 天津三电汽车空调有限公司 带电池热管理功能的车辆空调系统
CN205752446U (zh) * 2016-06-08 2016-11-30 哲弗智能系统(上海)有限公司 一种智能化新能源车动力电池温控结构
CN107351619A (zh) * 2016-05-10 2017-11-17 比亚迪股份有限公司 汽车热管理系统和电动汽车
CN206669946U (zh) * 2017-04-21 2017-11-24 李博瀚 一种智能化家用冷热设备节能系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6432339B2 (ja) * 2014-12-25 2018-12-05 株式会社デンソー 冷凍サイクル装置
JP6884028B2 (ja) * 2017-04-26 2021-06-09 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080078542A1 (en) * 2004-02-04 2008-04-03 Gering Kevin L Thermal management methods
CN102290618A (zh) * 2011-07-26 2011-12-21 浙江吉利汽车研究院有限公司 一种车用电池热管理系统
CN105539067A (zh) * 2016-03-02 2016-05-04 天津三电汽车空调有限公司 带电池热管理功能的车辆空调系统
CN107351619A (zh) * 2016-05-10 2017-11-17 比亚迪股份有限公司 汽车热管理系统和电动汽车
CN205752446U (zh) * 2016-06-08 2016-11-30 哲弗智能系统(上海)有限公司 一种智能化新能源车动力电池温控结构
CN206669946U (zh) * 2017-04-21 2017-11-24 李博瀚 一种智能化家用冷热设备节能系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224091A4 *

Also Published As

Publication number Publication date
KR20230098498A (ko) 2023-07-04
EP4224091A4 (en) 2023-12-27
JP2024504886A (ja) 2024-02-02
US20230191868A1 (en) 2023-06-22
EP4224091A1 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
CN106985632B (zh) 一种多联式多功能的热泵型电动空调系统及其工作方法
US11089719B2 (en) Computer room heat-pipe air conditioning system with emergency cooling function and control and method thereof
EP2781380B1 (en) Device for cooling electrical apparatus
JP4407082B2 (ja) 発熱体の冷却システムおよび熱管理システム
US20120291987A1 (en) System for a motor vehicle for heating and/or cooling a battery and a vehicle interior
US20150017492A1 (en) Temperature regulation device
CN103958234B (zh) 电气设备的冷却装置
CN107351623B (zh) 汽车热管理系统及电动汽车
CN107351625B (zh) 汽车热管理系统和电动汽车
CN109501567A (zh) 电动汽车冷却系统
CN115000541A (zh) 一种储能集装箱的热管理系统和方法
WO2023115274A1 (zh) 一种热管理系统、热管理方法及用电设备
CN107351626B (zh) 汽车热管理系统和电动汽车
JP2014020675A (ja) 電池温調用冷凍サイクル装置
JP2013250035A (ja) ヒートサイフォン式冷凍サイクル装置
CN219889932U (zh) 散热装置和冰箱
CN113241495A (zh) 一种电池热管理设备及其控制方法
US20240017585A1 (en) Thermal management system for electric vehicle and electric vehicle
CN210986804U (zh) 数据中心冷却装置
CN107512149B (zh) 集成电池热管理功能的车辆热泵空调系统
CN209766604U (zh) 一种节能型水路可逆电池热管理系统
CN208027834U (zh) 制动电阻冷却系统及车辆
CN111502886A (zh) 一种混合动力源一体式冷热调节装置及其工作方法
CN220281077U (zh) 车辆热管理系统和车辆
CN218722376U (zh) 动力型热管集成化空调系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022535188

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021912331

Country of ref document: EP

Effective date: 20220707