WO2023109515A1 - 一种合成氧化铈的方法及一种化学机械抛光液 - Google Patents

一种合成氧化铈的方法及一种化学机械抛光液 Download PDF

Info

Publication number
WO2023109515A1
WO2023109515A1 PCT/CN2022/135395 CN2022135395W WO2023109515A1 WO 2023109515 A1 WO2023109515 A1 WO 2023109515A1 CN 2022135395 W CN2022135395 W CN 2022135395W WO 2023109515 A1 WO2023109515 A1 WO 2023109515A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
cerium
cerium oxide
precipitate
reaction
Prior art date
Application number
PCT/CN2022/135395
Other languages
English (en)
French (fr)
Inventor
杨磊
王振新
陈宇
尹先升
Original Assignee
安集微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安集微电子(上海)有限公司 filed Critical 安集微电子(上海)有限公司
Publication of WO2023109515A1 publication Critical patent/WO2023109515A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the invention relates to the field of chemical mechanical polishing, in particular to a method for synthesizing cerium oxide and a chemical mechanical polishing liquid.
  • Nano-cerium oxide is one of the important abrasives used in the chemical mechanical polishing process. It has irreplaceable application characteristics in the polishing processes of advanced semiconductor manufacturing shallow trench isolation, three-dimensional flash memory and interlayer dielectric.
  • the particle size distribution and morphology of nano-cerium oxide particles have a direct impact on its polishing performance.
  • the cerium oxide synthesized by roasting cerium carbonate as a precursor can be synthesized by controlling the morphology and particle size of cerium carbonate, and then realize the controllable synthesis of the morphology and particle size of cerium oxide particles.
  • the present invention proposes a method for controllable synthesis of cerium oxide nanoparticles. Firstly, cerium carbonate nanoparticles with different particle sizes are controllably synthesized, and then converted into cerium oxide nanoparticles of corresponding sizes after washing, drying and high-temperature roasting. The obtained Cerium oxide can be applied to chemical mechanical polishing after dispersion treatment.
  • the present invention proposes a method for synthesizing cerium oxide, comprising:
  • the cerium source is selected from cerium nitrate or cerium chloride; the precipitation agent is selected from one or more of ammonium carbonate, ammonium bicarbonate, and potassium carbonate.
  • the cerium source is cerium nitrate; the precipitating agent is ammonium carbonate.
  • the molar ratio of the cerium source aqueous solution to the precipitating agent aqueous solution is (1.0/1.0) ⁇ (1.0/4.0).
  • the molar concentration of the cerium source aqueous solution is 0.1-1.0M; the molar concentration of the precipitant aqueous solution is 0.2-2.0M.
  • the molar concentration of the cerium source aqueous solution is 0.3M; the molar concentration of the precipitating agent aqueous solution is 0.45-0.6M.
  • S2 Precipitation reaction: preheat the cerium source aqueous solution to 60-120°C, then add the precipitant aqueous solution to the cerium source aqueous solution, stir evenly, keep the reaction temperature, and carry out the precipitation reaction for 2.0-8.0 Hour.
  • S2 Precipitation reaction: preheat 1L of the cerium source aqueous solution to 80-95°C, then add 1L of the precipitant aqueous solution to the cerium source aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 4.0- 6.0 hours.
  • S3 high-temperature roasting: filter the precipitate, cool the precipitate to room temperature naturally, wash and dry the precipitate, and roast the precipitate at 300-800° C. for 2.0-6.0 hours to obtain a cerium oxide product.
  • Another aspect of the present invention also provides a chemical mechanical polishing liquid, which comprises the above-mentioned cerium oxide.
  • the method for synthesizing cerium oxide of the present invention controls the molar ratio of the precipitating agent to the cerium source to synthesize cerium carbonate nanoparticles with uniform particle size distribution, and obtains the cerium oxide nanoparticles with uniform particle size distribution through high-temperature roasting.
  • the cerium oxide particles obtained by the preparation method of the invention have uniform particle size distribution, are easy to disperse, and have good polishing application performance.
  • Fig. 1 is the scanning electron microscope (SEM) figure of the cerium carbonate synthesized by precipitation reaction in the embodiment of the present invention 1A;
  • Fig. 2 is the scanning electron microscope (SEM) figure of the cerium carbonate that precipitation reaction synthesizes in the embodiment of the present invention 2;
  • Fig. 3 is a scanning electron microscope (SEM) image of cerium oxide synthesized in Example 2 of the present invention.
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 95°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 95°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 95°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 95°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 95°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • reaction solution prepare cerium nitrate aqueous solution and ammonium carbonate aqueous solution, wherein the molar concentration of cerium nitrate aqueous solution is 0.3M, and the molar concentration of ammonium carbonate aqueous solution is 0.6M;
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 95°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 95°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • reaction solution prepare cerium nitrate aqueous solution and ammonium carbonate aqueous solution, wherein the molar concentration of cerium nitrate aqueous solution is 0.3M, and the molar concentration of ammonium carbonate aqueous solution is 0.45M;
  • reaction solution prepare cerium nitrate aqueous solution and ammonium carbonate aqueous solution, wherein the molar concentration of cerium nitrate aqueous solution is 0.3M, and the molar concentration of ammonium carbonate aqueous solution is 0.6M;
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 80°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, keep the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • S3 Roasting at high temperature: filter the precipitate, wait for the precipitate to cool naturally to room temperature, wash and dry.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • reaction solution prepare cerium nitrate aqueous solution and ammonium carbonate aqueous solution, wherein the molar concentration of cerium nitrate aqueous solution is 0.1M, and the molar concentration of ammonium carbonate aqueous solution is 0.2M;
  • S3 Roasting at high temperature: filter the precipitate, wait for the precipitate to cool naturally to room temperature, wash and dry.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 120°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, keep the reaction temperature, and carry out the precipitation reaction for 2.0 hours;
  • S3 Roasting at high temperature: filter the precipitate, wait for the precipitate to cool naturally to room temperature, wash and dry.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • reaction solution prepare cerium nitrate aqueous solution and potassium carbonate aqueous solution, wherein the molar concentration of cerium nitrate aqueous solution is 0.3M, and the molar concentration of potassium carbonate aqueous solution is 0.6M;
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 95°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • S3 Roasting at high temperature: filter the precipitate, wait for the precipitate to cool naturally to room temperature, wash and dry.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • reaction solution prepare cerium nitrate aqueous solution and ammonium bicarbonate aqueous solution, wherein the molar concentration of cerium nitrate aqueous solution is 0.3M, and the molar concentration of ammonium bicarbonate aqueous solution is 0.6M;
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 95°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • S3 Roasting at high temperature: filter the precipitate, wait for the precipitate to cool naturally to room temperature, wash and dry.
  • reaction solution configure cerium chloride aqueous solution and potassium carbonate aqueous solution, wherein the molar concentration of cerium chloride aqueous solution is 0.3M, and the molar concentration of potassium carbonate aqueous solution is 0.6M;
  • Precipitation reaction Preheat 1L of cerium nitrate aqueous solution to 95°C, then add 1L of cerium nitrate aqueous solution to the cerium nitrate aqueous solution, stir evenly, maintain the reaction temperature, and carry out the precipitation reaction for 6.0 hours;
  • S3 Roasting at high temperature: filter the precipitate, wait for the precipitate to cool naturally to room temperature, wash and dry.
  • Fig. 1, Fig. 2, Fig. 3 are the SEM figure of the product that the present invention makes according to the preparation method of embodiment 1A and 2 respectively:
  • Fig. 1 is the SEM figure of the cerium carbonate that obtains after the precipitation reaction of embodiment 1A, can observe carbonic acid The particle size of cerium is relatively large, and the uniformity is poor;
  • Fig. 2 is the SEM image of the cerium carbonate obtained after the precipitation reaction, it can be observed that the particles of cerium carbonate are uniform, the size is about 200 nanometers, and the dispersion is good, and no Agglomeration phenomenon;
  • Figure 3 is an SEM image of cerium oxide particles obtained after cerium carbonate particles were roasted at a high temperature. The particle size distribution of cerium oxide particles in the figure is relatively uniform, and there is no obvious agglomeration phenomenon.
  • cerium carbonate prepared in Examples 3 and 4 were 150 nanometers and 100 nanometers respectively, and the cerium oxide obtained by high-temperature calcination still retained its original shape and size. Therefore, the cerium oxide particles of different sizes prepared by using the method for synthesizing cerium oxide in the present invention have better particle size distribution and uniform dispersibility.
  • the above cerium oxide powder was formulated into an aqueous dispersion with a solid content of 1 wt % and a pH of about 4.5, and the polishing removal rate (RR) of a TEOS blank wafer was measured under different pressure conditions.
  • the specific polishing conditions are as follows: the polishing machine is Mirra, IC1010 polishing pad, the rotation speed of Platten and Carrier are 93rpm and 87rpm respectively, the pressure is 3psi, the flow rate of polishing solution is 150mL/min, and the polishing time is 60 seconds.
  • the crystallinity of the obtained cerium oxide is poor, resulting in weak polishing performance.
  • the crystallinity of the prepared cerium oxide is improved, and the polishing performance is also improved.
  • the size of cerium oxide prepared in Example 2 is about 200 nanometers, and the polishing effect is the best.
  • the cerium oxide particles prepared by the method are approximately spherical in shape and uniform in size, and do not cause scratches to the wafer during the polishing process.

Abstract

一种合成氧化铈的方法,包括:S1:配置反应溶液:配置铈源水溶液和沉淀剂水溶液;S2:沉淀反应:将沉淀剂水溶液添加至所述铈源水溶液中,搅拌均匀,沉淀反应进行2.0-8.0小时;S3:高温焙烧:过滤沉淀物,洗涤干燥后,高温焙烧沉淀物,得到氧化铈产物。该方法可以制得颗粒粒径均匀,粒径分布窄的氧化铈颗粒,并且具有优异的抛光性能,具有广泛的推广应用价值。

Description

一种合成氧化铈的方法及一种化学机械抛光液 技术领域
本发明涉及化学机械抛光领域,尤其涉及一种合成氧化铈的方法及一种化学机械抛光液。
背景技术
纳米氧化铈是化学机械抛光工艺采用的重要磨料之一,在先进半导体制程浅沟槽隔离、三维闪存以及层间电介质等抛光工艺中有着不可替代的应用特性。纳米氧化铈颗粒的粒径分布、形貌特征对其抛光性能有着直接影响。以碳酸铈作为前驱体焙烧合成的氧化铈,可以通过对碳酸铈形貌和粒径进行可控合成,进而实现对氧化铈颗粒形貌和粒径的可控合成。
本发明提出一种可控合成氧化铈纳米颗粒的方法,首先可控合成了不同粒径的碳酸铈纳米颗粒,然后经洗涤、干燥及高温焙烧后转化为相应尺寸的氧化铈纳米颗粒,所得的氧化铈经分散处理后可应用于化学机械抛光。
发明内容
为了克服上述技术问题,本发明提出一种合成氧化铈的方法,包括:
S1:配置反应溶液:配置铈源水溶液和沉淀剂水溶液;
S2:沉淀反应:将沉淀剂水溶液添加至所述铈源水溶液中,搅拌均匀,沉淀反应进行2.0-8.0小时;
S3:过滤沉淀物,洗涤干燥后,高温焙烧所述沉淀物,得到氧化铈产物。
优选的,所述铈源选自硝酸铈或氯化铈;所述沉淀剂选自碳酸铵、碳酸氢铵、碳酸钾中的一种或多种。
优选的,所述铈源为硝酸铈;所述沉淀剂为碳酸铵。
优选的,所述铈源水溶液与所述沉淀剂水溶液的摩尔比为(1.0/1.0)~(1.0/4.0)。
优选的,所述铈源水溶液的摩尔浓度为0.1~1.0M;所述沉淀剂水溶液的摩尔浓度为0.2~2.0M。
优选的,所述铈源水溶液的摩尔浓度为0.3M;所述沉淀剂水溶液的摩尔浓度为0.45~0.6M。
优选的,S2:沉淀反应:将所述铈源水溶液预热到60-120℃,随后将沉淀剂水溶液添加至所述铈源水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行2.0-8.0小时。
优选的,S2:沉淀反应:将1L所述铈源水溶液预热80-95℃,随后将1L沉淀剂水溶液添加至所述铈源水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行4.0-6.0小时。
优选的,S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,在300-800℃下焙烧2.0-6.0小时所述沉淀物,得到氧化铈产物。
本发明的另一方面,还提供一种化学机械抛光液,包含如上所述的氧化铈。
本发明合成氧化铈的方法通过控制沉淀剂与铈源的摩尔之比,合成出粒径分布均匀的碳酸铈纳米颗粒,通过高温焙烧即可得到粒径分布均匀的氧化铈纳米颗粒。通过本发明的制备方法得到的氧化铈颗粒粒径分布均匀,易于分散,具有良好的抛光应用性能。
附图说明
图1为本发明实施例1A中沉淀反应合成的碳酸铈的扫描电子显微镜(SEM)图;
图2为本发明实施例2中沉淀反应合成的碳酸铈的扫描电子显微镜(SEM)图;
图3为本发明实施例2合成的氧化铈的扫描电子显微镜(SEM)图。
具体实施方式
以下结合附图及具体实施例进一步阐述本发明的优点。
实施例1A:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸铵水溶液的摩尔浓度为1.2M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,在300℃下焙烧6.0小时所述沉淀物,得到氧化铈1A。
实施例1B:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸铵水溶液的摩尔浓度为1.2M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,在500℃下焙烧6.0小时所述沉淀物,得到氧化铈1B。
实施例1C:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸铵水溶液的摩尔浓度为1.2M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,在800℃下焙烧6.0小时所述沉淀物,得到氧化铈1C。
实施例1D:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸铵水溶液的摩尔浓度为1.2M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,在800℃下焙烧4.0小时所述沉淀物,得到氧化铈1D。
实施例1E:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸铵水溶液的摩尔浓度为1.2M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,在800℃ 下焙烧2.0小时所述沉淀物,得到氧化铈1E。
实施例2:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸铵水溶液的摩尔浓度为0.6M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,在800℃下焙烧4.0小时所述沉淀物,得到氧化铈2。
实施例3:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸铵水溶液的摩尔浓度为0.51M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,在800℃下焙烧4.0小时所述沉淀物,得到氧化铈3。
实施例4:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸铵水溶液的摩尔浓度为0.45M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行4.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,在800℃下焙烧4.0小时所述沉淀物,得到氧化铈4。
实施例5:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸铵水溶液的摩尔浓度为0.6M;
S2:沉淀反应:将1L硝酸铈水溶液预热至80℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,。
实施例6:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.1M,碳酸铵水溶液的摩尔浓度为0.2M;
S2:沉淀反应:将1L硝酸铈水溶液预热至60℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行8.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,。
实施例7:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸铵水溶液,其中硝酸铈水溶液的摩尔浓度为1.0M,碳酸铵水溶液的摩尔浓度为2.0M;
S2:沉淀反应:将1L硝酸铈水溶液预热至120℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行2.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,。
实施例8:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸钾水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸钾水溶液的摩尔浓度为0.6M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,。
实施例9:
S1:配置反应溶液:配置硝酸铈水溶液和碳酸氢铵水溶液,其中硝酸铈水溶液的摩尔浓度为0.3M,碳酸氢铵水溶液的摩尔浓度为0.6M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,。
实施例10:
S1:配置反应溶液:配置氯化铈水溶液和碳酸钾水溶液,其中氯化铈水溶液的摩尔浓度为0.3M,碳酸钾水溶液的摩尔浓度为0.6M;
S2:沉淀反应:将1L硝酸铈水溶液预热至95℃,随后将1L硝酸铈水溶液添加至所述硝酸铈水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行6.0小时;
S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,。
本发明中实施例1-10的合成条件整理如表1所示。
表1 实施例1-10合成氧化铈的合成条件
Figure PCTCN2022135395-appb-000001
图1、图2、图3分别为本发明依照实施例1A和2的制备方法制得的产物的SEM图:图1为实施例1A沉淀反应后得到的碳酸铈的SEM图,可以观察到碳酸铈的颗粒尺寸较大,且均匀性较差;图2为沉淀反应后得到的碳酸铈的SEM图,可以观察到碳酸铈的颗粒均匀,尺寸约200纳米,并且分散性较好,并未出现团聚现象;图3为碳酸铈颗粒经 高温焙烧后得到的氧化铈颗粒的SEM图,图中的氧化铈颗粒粒径分布较为均匀,并未出现明显的团聚现象。
实施例3、4中制备的碳酸铈颗粒尺寸分别为150纳米和100纳米,经高温焙烧得到氧化铈后仍保留原有形貌和尺寸。因此,使用本发明中的合成氧化铈的方法制得的不同尺寸的氧化铈颗粒,且粒径分布均匀分散性较好。
为了表征上述氧化铈颗粒的抛光性能,进一步制备含有该氧化铈的化学机械抛光液,并进一步测量所述抛光液对TEOS的抛光速率。具体测试条件如下:
将上述氧化铈粉体调配为固含量1wt%,pH为4.5左右水分散液,并进行不同压力条件下测量TEOS空白晶圆的抛光去除速率(RR)。
具体抛光条件为,抛光机台为Mirra,IC1010抛光垫,Platten和Carrier转速分别为93rpm和87rpm,压力3psi,抛光液流速为150mL/min,抛光时间为60秒。
测得的抛光速率记于表2。
表2 实施例1-10的氧化铈分散液的抛光速率
Figure PCTCN2022135395-appb-000002
根据上述实验结果可知,由于实施例1A和1B的焙烧温度较低,得到的氧化铈结晶性较差,导致其抛光性能较弱。升高焙烧温度至800℃后,制备的氧化铈结晶性提高,抛光性能也得以提升。其中,实施例2制备的氧化铈尺寸约200纳米,抛光效果最佳。并且,与现有氧化铈抛光液相比,该方法制备的氧化铈颗粒形貌近似球形且尺寸均匀,在抛光过程中没有对晶圆造成划伤。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限 制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种合成氧化铈的方法,其特征在于,
    S1:配置反应溶液:配置铈源水溶液和沉淀剂水溶液;
    S2:沉淀反应:将沉淀剂水溶液添加至所述铈源水溶液中,搅拌均匀,沉淀反应进行2.0-8.0小时;
    S3:高温焙烧:过滤沉淀物,洗涤干燥后,高温焙烧所述沉淀物,得到氧化铈产物。
  2. 如权利要求1所述的合成氧化铈的方法,其特征在于,
    所述铈源选自硝酸铈或氯化铈;
    所述沉淀剂选自碳酸铵、碳酸氢铵、碳酸钾中的一种或多种。
  3. 如权利要求2所述的合成氧化铈的方法,其特征在于,
    所述铈源为硝酸铈;
    所述沉淀剂为碳酸铵。
  4. 如权利要求1所述的合成氧化铈的方法,其特征在于,
    所述铈源水溶液与所述沉淀剂水溶液的摩尔比为(1.0/1.0)~(1.0/4.0)。
  5. 如权利要求1所述的合成氧化铈的方法,其特征在于,
    所述铈源水溶液的摩尔浓度为0.1~1.0M;
    所述沉淀剂水溶液的摩尔浓度为0.2~2.0M。
  6. 如权利要求5所述的合成氧化铈的方法,其特征在于,
    所述铈源水溶液的摩尔浓度为0.3M;
    所述沉淀剂水溶液的摩尔浓度为0.45~0.6M。
  7. 如权利要求1所述的合成氧化铈的方法,其特征在于,
    S2:沉淀反应:将所述铈源水溶液预热到60-120℃,随后将沉淀剂水溶液添加至所述铈源水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行2.0-8.0小时。
  8. 如权利要求7所述的合成氧化铈的方法,其特征在于,
    S2:沉淀反应:将1L所述铈源水溶液预热80-95℃,随后将1L沉淀剂水溶液添加至所述铈源水溶液中,搅拌均匀,保持该反应温度,沉淀反应进行4.0-6.0小时。
  9. 如权利要求1所述的合成氧化铈的方法,其特征在于,
    S3:高温焙烧:过滤沉淀物,待所述沉淀物自然冷却至室温,洗涤干燥后,在300-800℃下焙烧2.0-6.0小时所述沉淀物,得到氧化铈产物。
  10. 一种化学机械抛光液,其特征在于,
    包括权利要求1-9中任一所述的方法制得的氧化铈。
PCT/CN2022/135395 2021-12-14 2022-11-30 一种合成氧化铈的方法及一种化学机械抛光液 WO2023109515A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111524966.1A CN116262628A (zh) 2021-12-14 2021-12-14 一种合成氧化铈的方法及一种化学机械抛光液
CN202111524966.1 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023109515A1 true WO2023109515A1 (zh) 2023-06-22

Family

ID=86723449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135395 WO2023109515A1 (zh) 2021-12-14 2022-11-30 一种合成氧化铈的方法及一种化学机械抛光液

Country Status (2)

Country Link
CN (1) CN116262628A (zh)
WO (1) WO2023109515A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083350A (ja) * 2002-08-28 2004-03-18 Nippon Denko Kk 一次粒子径が100nm以下の希土類酸化物微粉の製造方法及び希土類酸化物微粉
JP2004107186A (ja) * 2002-09-20 2004-04-08 National Institute For Materials Science 易焼結性ナノ球状セリア系化合物粉末の製造方法
JP2005247673A (ja) * 2004-03-08 2005-09-15 National Institute For Materials Science Dyドープナノセリア系焼結体およびその製造方法
CN1704339A (zh) * 2004-06-03 2005-12-07 中南大学 一种制备高纯活性纳米二氧化铈的方法
CN101239703A (zh) * 2008-03-10 2008-08-13 江苏大学 一种制备单分散球形纳米金属氧化物粉末的方法
CN102502758A (zh) * 2011-10-28 2012-06-20 包头市京瑞新材料有限公司 制备大颗粒氧化铈的方法
CN112299469A (zh) * 2020-09-22 2021-02-02 江汉大学 一种二氧化铈及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083350A (ja) * 2002-08-28 2004-03-18 Nippon Denko Kk 一次粒子径が100nm以下の希土類酸化物微粉の製造方法及び希土類酸化物微粉
JP2004107186A (ja) * 2002-09-20 2004-04-08 National Institute For Materials Science 易焼結性ナノ球状セリア系化合物粉末の製造方法
JP2005247673A (ja) * 2004-03-08 2005-09-15 National Institute For Materials Science Dyドープナノセリア系焼結体およびその製造方法
CN1704339A (zh) * 2004-06-03 2005-12-07 中南大学 一种制备高纯活性纳米二氧化铈的方法
CN101239703A (zh) * 2008-03-10 2008-08-13 江苏大学 一种制备单分散球形纳米金属氧化物粉末的方法
CN102502758A (zh) * 2011-10-28 2012-06-20 包头市京瑞新材料有限公司 制备大颗粒氧化铈的方法
CN112299469A (zh) * 2020-09-22 2021-02-02 江汉大学 一种二氧化铈及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI JI-GUANG, IKEGAMI TAKAYASU, WANG YARONG, MORI TOSHIYUKI: "Reactive Ceria Nanopowders via Carbonate Precipitation", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, BLACKWELL PUBLISHING, MALDEN, MA., US, vol. 85, no. 9, 1 September 2002 (2002-09-01), US , pages 2376 - 2378, XP093072390, ISSN: 0002-7820, DOI: 10.1111/j.1151-2916.2002.tb00465.x *

Also Published As

Publication number Publication date
CN116262628A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
TWI743161B (zh) 表面改性膠體二氧化鈰拋光粒子、其製造方法及包括此的拋光料漿組合物
JP5836472B2 (ja) 結晶性酸化セリウム及びその製造方法
TW200938487A (en) Ceria material and method of forming same
CN106186008B (zh) 一种锂电池隔膜涂层用勃姆石及其水热制备方法
US9790401B2 (en) Abrasive particles, polishing slurry and method of fabricating abrasive particles
TWI723107B (zh) 一種氧化鈰的製備方法及其化學機械研磨應用
JP2010510157A (ja) 有機溶媒を用いた酸化セリウム粉末の製造方法及びこの粉末を含むcmpスラリー
TWI522449B (zh) 磨料顆粒和拋光漿料的製造方法
TW200951070A (en) Doped ceria abrasives with controlled morphology and preparation thereof
JP2009508795A (ja) 炭酸セリウム粉末及び製法、これから製造された酸化セリウム粉末及び製法、これを含むcmpスラリー
KR20110091454A (ko) 탄산세륨의 제조 방법 및 산화세륨의 제조 방법
CN105800661A (zh) 一种氧化铈水热制备方法及其cmp抛光应用
WO2023109515A1 (zh) 一种合成氧化铈的方法及一种化学机械抛光液
WO2022135607A1 (zh) 一种氧化铈的合成方法及其使用方法
CN108249468A (zh) 一种氧化铈晶体的制备方法及其在化学机械抛光液中的应用
CN113120942A (zh) 一种纺锤形碳酸铈及其氧化铈的合成方法
WO2023125890A1 (zh) 一种合成氧化铈的方法、一种氧化铈及一种化学机械抛光液
CN113120940A (zh) 一种球形碳酸铈及一种氧化铈的合成方法
WO2023125884A1 (zh) 一种合成氧化铈的方法及一种化学机械抛光液
TWI430955B (zh) 製備碳酸鈰之方法以及製備氧化鈰粉末之方法
CN106915760B (zh) 一种氧化铈的制备方法及其在sti抛光领域的应用
CN113045319A (zh) 一种烧结助剂改性纳米陶瓷粉体及其制备方法
WO2015037312A1 (ja) 水素添加用触媒粒子の製造方法及び水素添加用触媒粒子
JP6298385B2 (ja) 金属酸化物微粒子の製造方法および金属酸化物微粒子、ならびにその粉末、分散液、分散体および被覆基材
CN116639972B (zh) 一种四方相纳米钛酸钡粉体及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906265

Country of ref document: EP

Kind code of ref document: A1