WO2023109375A1 - 信号增强方法、装置、opa激光雷达及存储介质 - Google Patents

信号增强方法、装置、opa激光雷达及存储介质 Download PDF

Info

Publication number
WO2023109375A1
WO2023109375A1 PCT/CN2022/130634 CN2022130634W WO2023109375A1 WO 2023109375 A1 WO2023109375 A1 WO 2023109375A1 CN 2022130634 W CN2022130634 W CN 2022130634W WO 2023109375 A1 WO2023109375 A1 WO 2023109375A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
spectrum
frequency spectrum
signals
Prior art date
Application number
PCT/CN2022/130634
Other languages
English (en)
French (fr)
Inventor
王振
汝洪武
徐洋
邓永强
Original Assignee
北京万集科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京万集科技股份有限公司 filed Critical 北京万集科技股份有限公司
Publication of WO2023109375A1 publication Critical patent/WO2023109375A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00

Definitions

  • the present application belongs to the technical field of laser radar signal processing, and in particular relates to a signal enhancement method, device, OPA laser radar and storage medium.
  • the optical phased array (Optical Phased Array, OPA) laser radar transmission signal is transmitted in space, if it encounters an obstacle, it can form an echo signal, and the echo signal is mixed with the current local oscillator signal to generate a difference frequency signal. According to the frequency of the difference frequency signal, the distance between the obstacle and the OPA lidar can be obtained. However, noise usually exists in the echo signal, resulting in a low signal-to-noise ratio of the echo signal, which reduces the accuracy of the frequency measurement result of the beat frequency signal.
  • OPA Optical Phased Array
  • the embodiment of the present application provides a signal enhancement method, device, OPA lidar and storage medium, so as to improve the accuracy of the frequency measurement result of the difference frequency signal.
  • the embodiment of the present application provides a signal enhancement method applied to OPA lidar, and the signal enhancement method includes:
  • the first frequency spectrum includes a spectrum number and a spectrum amplitude corresponding to the spectrum number, and N is an integer greater than 1;
  • the second frequency spectrum of x 1 is the signal-to-noise ratio of a single described first frequency spectrum
  • the frequency of the beat frequency signal is determined.
  • the embodiment of the present application provides a signal enhancement device, which is applied to OPA lidar, and the signal enhancement device includes:
  • a frequency spectrum acquisition module configured to acquire the first frequency spectrum corresponding to each of the N difference frequency signals for the target detection object, the first frequency spectrum includes a spectrum number and a spectrum amplitude corresponding to the spectrum number, and N is greater than 1 integer;
  • the dot multiplication operation module is used to carry out the dot multiplication operation for the frequency spectrum amplitudes with the same frequency spectrum number in the N first frequency spectrums to obtain a signal-to-noise ratio of
  • the second frequency spectrum of x 1 is the signal-to-noise ratio of a single described first frequency spectrum;
  • the frequency determination module is configured to determine the frequency of the difference frequency signal according to the second frequency spectrum.
  • the embodiment of the present application provides an OPA lidar, including a memory, a processor, and a computer program stored in the memory and operable on the processor, and the processor executes the computer program When implementing the steps of the signal enhancement method described in the first aspect above.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the signal enhancement method as described in the first aspect above is implemented A step of.
  • the embodiment of the present application provides a computer program product, which, when the computer program product runs on the OPA lidar, enables the OPA lidar to perform the steps of the signal enhancement method described in the first aspect above.
  • this scheme can enhance the signal strength by obtaining the first frequency spectrum corresponding to each of the N difference frequency signals for the target detection object, and performing a dot multiplication operation on the spectrum amplitudes with the same spectrum number in the N first frequency spectrum , the signal-to-noise ratio is obtained as The second frequency spectrum of , compared to the single first frequency spectrum, the signal-to-noise ratio of the second frequency spectrum is improved times, according to the signal-to-noise ratio improved times the second frequency spectrum, the frequency measurement of the beat frequency signal can be performed more accurately, and the accuracy of the frequency measurement result of the beat frequency signal is improved.
  • FIG. 1 is a schematic diagram of the implementation flow of the signal enhancement method provided in Embodiment 1 of the present application;
  • Figure 2a is an example diagram of a single first frequency spectrum
  • Figure 2b is an example diagram of a second frequency spectrum
  • FIG. 3 is a schematic diagram of the implementation flow of the signal enhancement method provided in Embodiment 2 of the present application.
  • FIG. 4 is a schematic diagram of the implementation flow of the signal enhancement method provided in Embodiment 3 of the present application.
  • FIG. 5 is a schematic structural diagram of a signal enhancement device provided in Embodiment 4 of the present application.
  • FIG. 6 is a schematic structural diagram of the OPA lidar provided in Embodiment 5 of the present application.
  • the term “if” may be construed, depending on the context, as “when” or “once” or “in response to determining” or “in response to detecting “.
  • the phrase “if determined” or “if [the described condition or event] is detected” may be construed, depending on the context, to mean “once determined” or “in response to the determination” or “once detected [the described condition or event] ]” or “in response to detection of [described condition or event]”.
  • references to "one embodiment” or “some embodiments” or the like in the specification of the present application means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • FIG. 1 it is a schematic diagram of the implementation flow of the signal enhancement method provided in Embodiment 1 of the present application, and the signal enhancement method is applied to OPA lidar.
  • the signal enhancement method may include the following steps:
  • step 101 first frequency spectra corresponding to each of the N difference frequency signals for the target detection object are obtained, and the first frequency spectrum includes a frequency spectrum number and a frequency spectrum amplitude corresponding to the frequency spectrum number.
  • N is an integer greater than 1.
  • the target detection object may be a static object or a moving object, such as a vehicle, a pedestrian, a drone, etc.
  • the present application does not limit the specific type of the target detection object.
  • the OPA lidar can transmit detection signals to the target detection object, and the target detection object can reflect the echo signal to the OPA lidar based on the detection signal. After the OPA lidar receives the echo signal, it mixes the echo signal with the current local oscillator signal , the difference frequency signal can be obtained. Among them, the detection signal can be understood as the emission signal of the OPA lidar.
  • the OPA lidar includes a transmitting array, and the optical signal is transmitted through the transmitting unit in the transmitting array. After the optical signal passes through a beam splitter (such as a 1 ⁇ 2 beam splitter), it can be divided into two signals, namely the local oscillator signal and the detection signal. .
  • the local oscillator signal is used for mixing with the echo signal to obtain a difference frequency signal.
  • the i-th difference frequency signal is any one of the N difference frequency signals, and the i-th difference frequency signal can be obtained by performing fast Fourier transform on the i-th difference frequency signal The first frequency spectrum corresponding to the i beat frequency signals.
  • the present application does not limit the specific number of sampling points in the frequency domain of the fast Fourier transform, but requires the same number of sampling points in the frequency domain when the N difference frequency signals are subjected to the fast Fourier transform, in order to calculate the frequency of step 102 Spectrum dot product accumulation.
  • the spectrum number is related to the spectrum analysis length of the Fourier transform, and each spectrum number corresponds to a spectrum amplitude. For example, if the spectrum analysis length is 4096, then the spectrum number ranges from 0 to 4095, and the frequency spectrum includes 4096 spectrum numbers and the spectrum amplitudes corresponding to the 4096 spectrum numbers.
  • Step 102 perform dot multiplication operation on the frequency spectrum amplitudes with the same frequency spectrum number in the N first frequency spectrums, and obtain the signal-to-noise ratio as
  • the second frequency spectrum of , x 1 is the signal-to-noise ratio of a single first frequency spectrum.
  • the dot product accumulation of the N first frequency spectra can be realized, thereby enhancing the signal strength and improving the signal-to-noise ratio times the second frequency spectrum.
  • Figure 2a is an example diagram of a single first frequency spectrum
  • Figure 2b is an example diagram of a second frequency spectrum.
  • the signal strength of the second frequency spectrum in Fig. 2b is enhanced, and the noise strength is weakened, thereby achieving an increase in the signal-to-noise ratio.
  • the spectrum amplitude in the frequency spectrum corresponds to the signal strength.
  • the dot multiplication operation is performed on the frequency spectrum amplitudes with the same frequency spectrum number in the N first frequency spectrums, and the signal-to-noise ratio is obtained as
  • the second frequency spectrum includes:
  • x N is the signal-to-noise ratio of the second frequency spectrum
  • a 2N is the signal power of the second frequency spectrum
  • A is the amplitude of the echo signal
  • ⁇ 2 is the single noise power.
  • the OPA lidar can realize the dot product accumulation of the N first frequency spectrums by performing dot multiplication operation on the spectrum amplitudes with the same spectrum number in the N first frequency spectrums to obtain the second frequency spectrum. According to the signal of the second frequency spectrum The power and the noise power of the second frequency spectrum can be calculated to obtain the signal-to-noise ratio of the second frequency spectrum.
  • the echo signal is a complex signal polluted by additive noise
  • the power of the noise that is, the power of a single noise
  • the signal-to-noise ratio of the single first frequency spectrum can be understood as the signal-to-noise ratio of a single echo signal.
  • e represents the natural exponent
  • j represents the imaginary unit.
  • N difference frequency signals correspond to N echo signals, and since the noise parts of N echo signals are independent of each other, the noise power of the second frequency spectrum is the accumulation of single noise power
  • Step 103 determine the frequency of the difference frequency signal according to the second frequency spectrum.
  • the frequency measurement of the beat frequency signal can be performed more accurately, and the accuracy of the frequency measurement result of the beat frequency signal is improved.
  • the frequency of the difference frequency signal obtained by measuring the second frequency spectrum twice as high can accurately obtain the distance between the target detection object and the OPA lidar, and improve the ranging capability of the OPA lidar.
  • Table 1 is the experimental data of three distance measurements. It can be seen from Table 1 that the distance measured based on the cumulative point product of the three first frequency spectra is closer to the actual distance, indicating that this embodiment can improve the ranging capability of the OPA lidar and obtain a more accurate distance.
  • determining the frequency of the difference frequency signal includes:
  • the second maximum value refers to the maximum value in the spectrum amplitudes corresponding to each spectrum serial number in the second frequency spectrum
  • the frequency of the difference frequency signal is determined according to the frequency spectrum number corresponding to the second maximum value.
  • the second maximum value is the peak value of the second frequency spectrum.
  • the signal strength can be enhanced to obtain SNR is
  • the second frequency spectrum of compared to the single first frequency spectrum, the signal-to-noise ratio of the second frequency spectrum is improved times, according to the signal-to-noise ratio improved times the second frequency spectrum, the frequency measurement of the beat frequency signal can be performed more accurately, and the accuracy of the frequency measurement result of the beat frequency signal is improved.
  • FIG. 3 it is a schematic diagram of the implementation flow of the signal enhancement method provided by Embodiment 2 of the present application.
  • the signal enhancement method is applied to the OPA lidar.
  • the OPA lidar includes N sets of antenna arrays, and N is an integer greater than 1.
  • the signal enhancement method may include the following steps:
  • a detection signal is transmitted to the target detection object once, and the detection signal is used to instruct the target detection object to reflect an echo signal.
  • the target detection object may be a static object or a moving object, such as a vehicle, a pedestrian, a drone, etc.
  • the present application does not limit the specific type of the target detection object.
  • the OPA lidar includes a transmitting array, and transmits optical signals through the transmitting units in the transmitting array, and the optical signals can be divided into local oscillator signals and detection signals after a 1 ⁇ 2 beam splitter.
  • the local oscillator signal is used for mixing with the echo signal to obtain a difference frequency signal.
  • Step 302 acquiring echo signals received by N sets of antenna arrays at the same time, and obtaining N echo signals.
  • the OPA lidar includes multiple sets of antenna arrays, and the antenna arrays are used to receive signals.
  • the N groups of antenna arrays may be all antenna arrays of the OPA lidar, or may be some antenna arrays of the OPA lidar, which are not limited herein.
  • the OPA lidar can transmit detection signals to the target detection object, and the target detection object can reflect the echo signal to the OPA lidar based on the detection signal, and the OPA lidar can receive the echo signal through N sets of antenna arrays at the same time to obtain N echoes Signal.
  • Each group of antenna arrays corresponds to one echo signal, so N groups of antenna arrays correspond to N echo signals.
  • This embodiment is based on the multi-group antenna array structure of the OPA laser radar, and can quickly obtain N echo signals by sending and receiving multiple times (that is, sending a detection signal once and receiving N echo signals at the same time), and will not Affects the scanning frequency of the OPA lidar.
  • Step 303 Mix the N echo signals with the current local oscillator signal respectively to obtain difference frequency signals corresponding to the N echo signals.
  • the jth echo signal is any one of the N echo signals, and the jth echo signal can be obtained by mixing the jth echo signal with the current local oscillator signal The difference frequency signal corresponding to the echo signal.
  • Step 304 respectively perform fast Fourier transform on the N difference frequency signals to obtain first frequency spectrums corresponding to the N difference frequency signals.
  • the i-th difference frequency signal is any one of the N difference frequency signals, and the i-th difference frequency signal can be obtained by performing fast Fourier transform on the i-th difference frequency signal The first frequency spectrum corresponding to the signal.
  • step 305 the dot multiplication operation is performed on the frequency spectrum amplitudes with the same frequency spectrum number in the N first frequency spectrums, and the signal-to-noise ratio is obtained as
  • the second frequency spectrum of , x 1 is the signal-to-noise ratio of a single first frequency spectrum.
  • step 102 is the same as step 102, for details, please refer to the relevant description of step 102, which will not be repeated here.
  • Step 306 Determine the frequency of the difference frequency signal according to the second frequency spectrum.
  • step 103 is the same as step 103, for details, please refer to the related description of step 103, which will not be repeated here.
  • N echo signals can be obtained quickly without affecting the scanning frequency of the OPA lidar.
  • FIG. 4 it is a schematic diagram of the implementation flow of the signal enhancement method provided in Embodiment 3 of the present application, and the signal enhancement method is applied to OPA lidar.
  • the signal enhancement method may include the following steps:
  • Step 401 Transmit a detection signal to the target detection object once, and the detection signal is used to instruct the target detection object to reflect the echo signal.
  • the target detection object may be a static object or a moving object, such as a vehicle, a pedestrian, a drone, etc.
  • the present application does not limit the specific type of the target detection object.
  • the OPA lidar includes a transmitting array, and transmits optical signals through the transmitting units in the transmitting array. After the optical signals pass through a 1 ⁇ 2 beam splitter, they can be divided into two signals, which are local oscillator signals and detection signals. The local oscillator signal is used for frequency mixing.
  • the OPA lidar can transmit a detection signal to the target detection object, and the target detection object can reflect the echo signal to the OPA lidar based on the detection signal.
  • Step 402 acquiring a single echo signal.
  • the OPA lidar includes multiple sets of antenna arrays, and the antenna arrays are used to receive signals.
  • the OPA lidar can receive echo signals through a group of antenna arrays to obtain a single echo signal.
  • Step 403 Mix the echo signal with the current local oscillator signal to obtain a difference frequency signal corresponding to the echo signal.
  • Step 404 performing fast Fourier transform on the difference frequency signal to obtain a first frequency spectrum corresponding to the difference frequency signal.
  • Step 405 judging whether the spectrum amplitude of the first frequency spectrum is smaller than the amplitude threshold.
  • the intensity of the echo signal can be judged; if the spectrum amplitude of the first frequency spectrum is less than the amplitude threshold, it is determined that the intensity of the echo signal is weak.
  • the proposed scheme performs signal enhancement to improve the ranging capability of OPA lidar; if the spectrum amplitude of the first frequency spectrum is greater than or equal to the amplitude threshold, it is determined that the intensity of the echo signal is stronger, and the echo signal with stronger intensity can be used To measure the distance more accurately, there is no need to implement the solution of the present application.
  • the magnitude threshold can be obtained by actual testing.
  • the intensity of the echo signal may be weak due to reasons such as long distance measurement and weak reflective surfaces.
  • N first frequency spectrums may be obtained by returning to perform steps 401 to 404 for N-1 times.
  • N first frequency spectrums can be obtained by repeating sending and receiving N times.
  • this embodiment further includes:
  • the first maximum value refers to the maximum value in the spectrum amplitudes corresponding to each spectrum serial number in the first frequency spectrum
  • the first maximum value is determined as the spectral magnitude of the first frequency spectrum.
  • the first maximum value is the peak value of the first frequency spectrum.
  • the signal intensity corresponding to the peak of the first frequency spectrum is the strongest. If the spectrum amplitude of the first frequency spectrum is less than the amplitude threshold, it means that the spectrum amplitudes corresponding to all the spectrum numbers in the first spectrum are less than the amplitude threshold, indicating the strength of the echo signal. weaker.
  • Step 406 in the case of obtaining N first frequency spectra, perform dot product operation on the frequency spectrum amplitudes with the same frequency spectrum number in the N first frequency spectra, and obtain the signal-to-noise ratio as
  • the second frequency spectrum of , x 1 is the signal-to-noise ratio of a single first frequency spectrum.
  • step 102 is partly the same as step 102, and for the same part, refer to the relevant description of step 102 for details, and details are not repeated here.
  • Step 407 Determine the frequency of the difference frequency signal according to the second frequency spectrum.
  • step 103 is the same as step 103, for details, please refer to the related description of step 103, which will not be repeated here.
  • Embodiment 1 on the basis of Embodiment 1, when the strength of the echo signal is relatively weak, based on the multi-group antenna array structure of the OPA laser radar, it is possible to obtain N first frequency spectrum. In addition, since the intensity of the echo signal is weak, the signal-to-noise ratio of the echo signal is low. Under the condition of low signal-to-noise ratio, the OPA lidar can be used to measure the frequency of the difference frequency signal more accurately through this embodiment. , thereby improving the ranging capability of the OPA lidar.
  • FIG. 5 shows a structural block diagram of a signal enhancement device provided in Embodiment 4 of the present application, and the signal enhancement device can be applied to an OPA lidar.
  • the signal enhancement device can be applied to an OPA lidar.
  • OPA lidar For ease of description, only the parts related to the embodiment of the present application are shown.
  • the above-mentioned signal booster includes:
  • the frequency spectrum acquisition module 51 is used to acquire the first frequency spectrum corresponding to each of the N difference frequency signals for the target detection object, the first frequency spectrum includes the spectrum number and the spectrum amplitude corresponding to the spectrum number, and N is an integer greater than 1;
  • the dot multiplication module 52 is used to carry out dot multiplication with the same frequency spectrum amplitudes of the N first frequency spectrums to obtain a signal-to-noise ratio of
  • the second frequency spectrum of x 1 is the signal-to-noise ratio of a single first frequency spectrum
  • the frequency determination module 53 is configured to determine the frequency of the difference frequency signal according to the second frequency spectrum.
  • the OPA lidar includes N groups of antenna arrays, and the frequency spectrum acquisition module 51 is specifically used for:
  • the above-mentioned frequency spectrum acquisition module 51 is specifically used for:
  • the spectrum amplitude of the first frequency spectrum is less than the amplitude threshold, return to execute a detection signal to the target detection object, obtain a single echo signal, mix the echo signal with the current local oscillator signal to obtain the difference frequency signal and compare the difference The step of performing fast Fourier transform on the frequency signal to obtain the first frequency spectrum corresponding to the difference frequency signal until N first frequency spectrums are obtained.
  • the detection points on the target detection object targeted by the N detection signals remain unchanged.
  • the above-mentioned frequency spectrum acquisition module 51 is also used for:
  • the first maximum value refers to the maximum value in the frequency spectrum amplitudes corresponding to each frequency spectrum number in the first frequency spectrum
  • the first maximum value is determined as the spectral magnitude of the first frequency spectrum.
  • the difference frequency signal is determined by the echo signal reflected by the target detection object, and the above-mentioned point multiplication operation module 52 is specifically used for:
  • x N is the signal-to-noise ratio of the second frequency spectrum
  • a 2N is the signal power of the second frequency spectrum
  • A is the amplitude of the echo signal
  • ⁇ 2 is the single noise power.
  • the above-mentioned frequency determination module 53 is specifically used for:
  • the second maximum value refers to the maximum value in the spectrum amplitudes corresponding to each spectrum serial number in the second frequency spectrum
  • the frequency of the difference frequency signal is determined according to the frequency spectrum number corresponding to the second maximum value.
  • FIG. 6 is a schematic structural diagram of the OPA lidar provided in Embodiment 5 of the present application.
  • the OPA laser radar 6 of this embodiment comprises: one or more processors 60 (only one is shown in the figure), memory 61 and be stored in described memory 61 and can be in described processor 60 A computer program 62 running on it.
  • processors 60 executes the computer program 62, the steps in the above embodiments of the various signal enhancement methods are realized.
  • the OPA lidar may include, but not limited to, a processor 60 and a memory 61 .
  • FIG. 6 is only an example of the OPA laser radar 6, and does not constitute a limitation to the OPA laser radar 6. It may include more or less components than those shown in the illustration, or combine certain components, or be different.
  • the components, for example, the OPA lidar may also include input and output devices, network access devices, buses, and the like.
  • the OPA lidar further includes an antenna array, a transmitting array, an electro-optical modulator, a beam splitter, and the like.
  • the so-called processor 60 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory 61 may be an internal storage unit of the OPA lidar 6 , such as a hard disk or memory of the OPA lidar 6 . Described memory 61 also can be the external storage device of described OPA lidar 6, for example the plug-in type hard disk that is equipped on described OPA lidar 6, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc. Further, the memory 61 may also include both an internal storage unit of the OPA lidar 6 and an external storage device. The memory 61 is used to store the computer program and other programs and data required by the OPA lidar. The memory 61 can also be used to temporarily store data that has been output or will be output.
  • Described memory 61 also can be the external storage device of described OPA lidar 6, for example the plug-in type hard disk that is equipped on described OPA lidar 6, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card),
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be realized.
  • the embodiment of the present application also provides a computer program product.
  • the OPA lidar can implement the steps in the above method embodiments when it is executed.
  • the disclosed device/OPA lidar and method can be implemented in other ways.
  • the device/OPA lidar embodiment described above is only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the methods of the above embodiments in the present application can also be completed by instructing related hardware through computer programs.
  • the computer programs can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps in the above-mentioned various method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (Read-Only Memory, ROM) , random access memory (Random Access Memory, RAM), electric carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electric carrier signal telecommunication signal and software distribution medium, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请适用于信号处理技术领域,提供了一种信号增强方法、装置、OPA激光雷达及存储介质。其中,所述信号增强方法包括:获取针对目标探测物的N个差频信号各自对应的第一频率谱,所述第一频率谱包含频谱序号和所述频谱序号对应的频谱幅度,N为大于1的整数;将N个所述第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为x1 N的第二频率谱,x1为单个所述第一频率谱的信噪比;根据第二频率谱,确定所述差频信号的频率。通过本申请可提高差频信号的频率测量结果的准确性。

Description

信号增强方法、装置、OPA激光雷达及存储介质
本申请要求于2021年12月16日在中国专利局提交的、申请号为202111544889.6、发明名称为“信号增强方法、装置、OPA激光雷达及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于激光雷达信号处理技术领域,尤其涉及一种信号增强方法、装置、OPA激光雷达及存储介质。
背景技术
光学相控阵(Optical Phased Array,OPA)激光雷达的发射信号在空间传递时,若遇到障碍物则可以形成回波信号,回波信号与当前本振信号进行混频后产生差频信号,根据差频信号的频率,可以得到障碍物与OPA激光雷达的距离。然而,回波信号中通常存在噪声,导致回波信号的信噪比较低,降低了差频信号的频率测量结果的准确性。
发明内容
本申请实施例提供了一种信号增强方法、装置、OPA激光雷达及存储介质,以提高差频信号的频率测量结果的准确性。
第一方面,本申请实施例提供了一种信号增强方法,应用于OPA激光雷达,所述信号增强方法包括:
获取针对目标探测物的N个差频信号各自对应的第一频率谱,所述第一频率谱包含频谱序号和所述频谱序号对应的频谱幅度,N为大于1的整数;
将N个所述第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
Figure PCTCN2022130634-appb-000001
的第二频率谱,x 1为单个所述第一频率谱的信噪比;
根据第二频率谱,确定所述差频信号的频率。
第二方面,本申请实施例提供了一种信号增强装置,应用于OPA激光雷达,所述信号增强装置包括:
频率谱获取模块,用于获取针对目标探测物的N个差频信号各自对应的第一频率谱,所述第一频率谱包含频谱序号和所述频谱序号对应的频谱幅度,N为大于1的整数;
点乘运算模块,用于将N个所述第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
Figure PCTCN2022130634-appb-000002
的第二频率谱,x 1为单个所述第一频率谱的信 噪比;
频率确定模块,用于根据第二频率谱,确定所述差频信号的频率。
第三方面,本申请实施例提供了一种OPA激光雷达,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面所述信号增强方法的步骤。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述信号增强方法的步骤。
第五方面,本申请实施例提供了一种计算机程序产品,当所述计算机程序产品在OPA激光雷达上运行时,使得所述OPA激光雷达执行如上述第一方面所述信号增强方法的步骤。
由上可见,本方案通过获取针对目标探测物的N个差频信号各自对应的第一频率谱,并将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,可以增强信号强度,得到信噪比为
Figure PCTCN2022130634-appb-000003
的第二频率谱,相比于单个第一频率谱,第二频率谱的信噪比提高了
Figure PCTCN2022130634-appb-000004
倍,根据信噪比提高了
Figure PCTCN2022130634-appb-000005
倍的第二频率谱,能够较为准确地对差频信号进行频率测量,提高了差频信号的频率测量结果的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的信号增强方法的实现流程示意图;
图2a是单个第一频率谱的示例图;
图2b是第二频率谱的示例图;
图3是本申请实施例二提供的信号增强方法的实现流程示意图;
图4是本申请实施例三提供的信号增强方法的实现流程示意图;
图5是本申请实施例四提供的信号增强装置的结构示意图;
图6是本申请实施例五提供的OPA激光雷达的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示 所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
应理解,本实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
参见图1,是本申请实施例一提供的信号增强方法的实现流程示意图,该信号增强方法应用于OPA激光雷达。如图1所示,该信号增强方法可以包括以下步骤:
步骤101,获取针对目标探测物的N个差频信号各自对应的第一频率谱,第一频率谱包含频谱序号和频谱序号对应的频谱幅度。
其中,N为大于1的整数。
目标探测物可以为静态物体,也可以为运动中的物体,例如车辆、行人、无人机等,本申请对目标探测物的具体类型不做限定。
OPA激光雷达可以向目标探测物发射探测信号,目标探测物基于探测信号可以向OPA激光雷达反射回波信号,OPA激光雷达接收到回波信号之后,将回波信号与当前本振信号进行混频,可以得到差频信号。其中,探测信号可以理解为OPA激光雷达的发射信号。
OPA激光雷达包括发射阵列,通过发射阵列中的发射单元发射光信号,光信号通过分束器(例如1×2分束器)后,可以分为两路信号,分别为本振信号和探测信号。本振信号用于和回波信号进行混频以得到差频信号。
对于目标探测物的第i个差频信号,第i个差频信号为N个差频信号中的 任一差频信号,可以通过对第i个差频信号进行快速傅里叶变换,得到第i个差频信号对应的第一频率谱。其中,本申请对快速傅里叶变换的频域采样点数的具体数量不做限定,但要求N个差频信号进行快速傅里叶变换时的频域采样点数相同,以便于计算步骤102的频率谱的点乘累积。
频谱序号与傅里叶变换的频谱分析长度有关,每个频谱序号均对应有频谱幅度。例如,频谱分析长度为4096,那么频谱序号的取值为0至4095,频率谱包括4096个频谱序号和4096个频谱序号各自对应的频谱幅度。
步骤102,将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
Figure PCTCN2022130634-appb-000006
的第二频率谱,x 1为单个第一频率谱的信噪比。
通过将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,可以实现对N个第一频率谱的点乘累积,从而增强信号强度,得到信噪比提高了
Figure PCTCN2022130634-appb-000007
倍的第二频率谱。
如图2a所示是单个第一频率谱的示例图;如图2b所示是第二频率谱的示例图。相比于图2a,图2b中第二频率谱的信号强度增强了,噪声强度减弱了,从而实现了信噪比的提高。其中,频率谱中的频谱幅度对应信号强度。
在一个实施例中,将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
Figure PCTCN2022130634-appb-000008
的第二频率谱包括:
将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到第二频率谱的信号功率;
根据单个噪声功率,确定第二频率谱的噪声功率;
根据第二频率谱的信号功率和第二频率谱的噪声功率,计算第二频率谱的信噪比;
其中,
Figure PCTCN2022130634-appb-000009
x N为第二频率谱的信噪比,A 2N为第二频率谱的信号功率,A为回波信号的幅值,
Figure PCTCN2022130634-appb-000010
为第二频率谱的噪声功率,σ 2为单个噪声功率。
OPA激光雷达通过将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,可以实现对N个第一频率谱的点乘累积,得到第二频率谱,根据第二频率谱的信号功率和第二频率谱的噪声功率,可以得到计算得到第二频率谱的信噪比。
假设回波信号是一个由加性噪声污染的复信号
Figure PCTCN2022130634-appb-000011
噪声的功率(即单个噪声的功率)为σ 2,那么单个第一频率谱的信噪比
Figure PCTCN2022130634-appb-000012
其中,单个第一频率谱的信噪比可以理解为单个回波信号的信噪比。
Figure PCTCN2022130634-appb-000013
表示回波信号的相位,e表示自然指数,j表示虚数单位。
由于一个差频信号对应一个回波信号,那么N个差频信号对应N个回波信号,由于N个回波信号的噪声部分彼此独立,那么第二频率谱的噪声功率为单个噪声功率的累积
Figure PCTCN2022130634-appb-000014
步骤103,根据第二频率谱,确定差频信号的频率。
根据信噪比提高了
Figure PCTCN2022130634-appb-000015
倍的第二频率谱,能够较为准确地对差频信号进行频率测量,提高了差频信号的频率测量结果的准确性。
根据信噪比提高了
Figure PCTCN2022130634-appb-000016
倍的第二频率谱测量得到的差频信号的频率,能够较为准确地得到目标探测物与OPA激光雷达之间的距离,提高OPA激光雷达的测距能力。
如表1所示是基于单个第一频率谱测量的距离和基于三个第一频率谱的点乘累积测量的距离。
Figure PCTCN2022130634-appb-000017
表1是三次测量距离的实验数据。由表1可知,基于三个第一频率谱的点乘累积测量的距离更接近实际距离,说明本实施例可以提高OPA激光雷达的测距能力,获得较为精准的距离。
在一个实施例中,根据第二频率谱,确定差频信号的频率包括:
比较第二频率谱中各频谱序号对应的频谱幅度,得到第二最大值,第二最大值是指第二频率谱中各频谱序号对应的频谱幅度中的最大值;
根据第二最大值对应的频谱序号,确定差频信号的频率。
其中,第二最大值为第二频率谱的峰值。
根据第二最大值对应的频谱序号、快速傅里叶变换的采样频率和频谱分析长度,可以计算得到差频信号的频率=(采样频率*频谱序号)/频谱分析长度。
本申请实施例通过获取针对目标探测物的N个差频信号各自对应的第一频率谱,并将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,可以增强信号强度,得到信噪比为
Figure PCTCN2022130634-appb-000018
的第二频率谱,相比于单个第一频率谱,第二频率谱的信噪比提高了
Figure PCTCN2022130634-appb-000019
倍,根据信噪比提高了
Figure PCTCN2022130634-appb-000020
倍的第二频率谱,能够较为准确地对差频信号进行频率测量,提高了差频信号的频率测量结果的准确性。
参见图3,是本申请实施例二提供的信号增强方法的实现流程示意图,该信号增强方法应用于OPA激光雷达,OPA激光雷达包括N组天线阵列,N为大于1的整数。如图3所示,该信号增强方法可以包括以下步骤:
步骤301,向目标探测物发射一次探测信号,探测信号用于指示目标探测物反射回波信号。
目标探测物可以为静态物体,也可以为运动中的物体,例如车辆、行人、无人机等,本申请对目标探测物的具体类型不做限定。
OPA激光雷达包括发射阵列,通过发射阵列中的发射单元发射光信号, 光信号1×2分束器后,可以分为本振信号和探测信号。本振信号用于与回波信号进行混频以得到差频信号。
步骤302,获取N组天线阵列在同一时间接收的回波信号,得到N个回波信号。
其中,OPA激光雷达包括多组天线阵列,天线阵列用于接收信号。N组天线阵列可以为OPA激光雷达的所有天线阵列,也可以为OPA激光雷达的部分天线阵列,在此不做限定。
OPA激光雷达可以向目标探测物发射探测信号,目标探测物基于探测信号可以向OPA激光雷达反射回波信号,OPA激光雷达在同一时间可以通过N组天线阵列接收回波信号,得到N个回波信号。每组天线阵列各自对应一个回波信号,故N组天线阵列对应N个回波信号。
本实施例基于OPA激光雷达的多组天线阵列结构,通过一发多收(即发射一次探测信号,同时接收到N个回波信号)的方式,可以快速获得N个回波信号,且不会对OPA激光雷达的扫描频率造成影响。
步骤303,将N个回波信号分别与当前本振信号进行混频,得到N个回波信号各自对应的差频信号。
对于第j个回波信号,第j个回波信号为N个回波信号中的任一回波信号,通过将第j个回波信号与当前本振信号进行混频,可以得到第j个回波信号对应的差频信号。
步骤304,对N个差频信号分别进行快速傅里叶变换,得到N个差频信号各自对应的第一频率谱。
对于第i个差频信号,第i个差频信号为N个差频信号中的任一差频信号,通过对第i个差频信号进行快速傅里叶变换,可以得到第i个差频信号对应的第一频率谱。
步骤305,将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
Figure PCTCN2022130634-appb-000021
的第二频率谱,x 1为单个第一频率谱的信噪比。
该步骤与步骤102相同,具体可参见步骤102的相关描述,在此不再赘述。
步骤306,根据第二频率谱,确定差频信号的频率。
该步骤与步骤103相同,具体可参见步骤103的相关描述,在此不再赘述。
本实施例在实施例一的基础上,基于OPA激光雷达的多组天线阵列结构,能够在不影响OPA激光雷达的扫描频率的情况下,快速获得N个回波信号。
参见图4,是本申请实施例三提供的信号增强方法的实现流程示意图,该信号增强方法应用于OPA激光雷达。如图4所示,该信号增强方法可以包括以下步骤:
步骤401,向目标探测物发射一次探测信号,探测信号用于指示目标探测物反射回波信号。
目标探测物可以为静态物体,也可以为运动中的物体,例如车辆、行人、 无人机等,本申请对目标探测物的具体类型不做限定。
OPA激光雷达包括发射阵列,通过发射阵列中的发射单元发射光信号,光信号通过1×2分束器后,可以分为两路信号,分别为本振信号和探测信号。本振信号用于混频。
OPA激光雷达可以向目标探测物发射探测信号,目标探测物基于探测信号可以向OPA激光雷达反射回波信号。
步骤402,获取单个回波信号。
OPA激光雷达包括多组天线阵列,天线阵列用于接收信号。
在本实施例中,OPA激光雷达可以通过一组天线阵列接收回波信号,得到单个回波信号。
步骤403,将回波信号与当前本振信号进行混频,得到回波信号对应的差频信号。
步骤404,对差频信号进行快速傅里叶变换,得到差频信号对应的第一频率谱。
步骤405,判断第一频率谱的频谱幅度是否小于幅度阈值。
通过判断第一频率谱的频谱幅度是否小于幅度阈值,可以判断回波信号的强度的强弱;若第一频率谱的频谱幅度小于幅度阈值,则判定回波信号的强度较弱,需要通过本申请的方案进行信号增强,提高OPA激光雷达的测距能力;若第一频率谱的频谱幅度大于或等于幅度阈值,则判定回波信号的强度较强,根据强度较强的回波信号即可较为准确地测量距离,无需执行本申请的方案。其中,幅度阈值可以由实际测试所得。在一些实施例中,测距较远、弱反射面等原因均可能导致回波信号的强度较弱。
在第一频率谱的频谱幅度小于幅度阈值的情况下,可以通过返回执行N-1次步骤401至步骤404,得到N个第一频率谱。
本实施例在回波信号的强度较弱的情况下,基于OPA激光雷达的多组天线阵列结构,可以通过一发一收(即发射一次探测信号,接收到单个回波信号)的方式获得单个第一频率谱,通过重复执行N次一发一收,可以得到N个第一频率谱。
重复执行N次一发一收,则需要向目标探测物发射N次探测信号,为了减少频率和距离的测量误差,需要将N次探测信号针对的目标探测物上的探测点保持不变,即OPA激光雷达在发射N次探测信号时,探测到的目标探测物上的点(即探测点)相同。
可选地,在判断所述第一频率谱的频谱幅度是否小于幅度阈值之前,本实施例还包括:
比较第一频率谱中各频谱序号对应的频谱幅度,得到第一最大值,第一最大值是指所述第一频率谱中各频谱序号对应的频谱幅度中的最大值;
确定第一最大值为第一频率谱的频谱幅度。
其中,第一最大值为第一频率谱的峰值。第一频率谱的峰值对应的信号强度最强,若第一频率谱的频谱幅度小于幅度阈值,则表示第一频谱谱中所有频 谱序号对应的频谱幅度均小于幅度阈值,说明回波信号的强度较弱。
步骤406,在得到N个第一频率谱的情况下,将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
Figure PCTCN2022130634-appb-000022
的第二频率谱,x 1为单个第一频率谱的信噪比。
该步骤与步骤102部分相同,相同部分具体可参见步骤102的相关描述,在此不再赘述。
步骤407,根据第二频率谱,确定差频信号的频率。
该步骤与步骤103相同,具体可参见步骤103的相关描述,在此不再赘述。
本实施例在实施例一的基础上,在回波信号的强度较弱的情况下,基于OPA激光雷达的多组天线阵列结构,可以通过重复执行N次一发一收,得到N个第一频率谱。另外,由于回波信号的强度较弱,那么回波信号的信噪比较低,在低信噪比的条件下,通过本实施例可以使得OPA激光雷达较为准确地对差频信号进行频率测量,进而提高OPA激光雷达的测距能力。
对应于上文实施例的信号增强方法,图5示出了本申请实施例四提供的信号增强装置的结构框图,该信号增加装置可以应用于OPA激光雷达。为了便于说明,仅示出了与本申请实施例相关的部分。
上述信号增强装置包括:
频率谱获取模块51,用于获取针对目标探测物的N个差频信号各自对应的第一频率谱,第一频率谱包含频谱序号和频谱序号对应的频谱幅度,N为大于1的整数;
点乘运算模块52,用于将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
Figure PCTCN2022130634-appb-000023
的第二频率谱,x 1为单个第一频率谱的信噪比;
频率确定模块53,用于根据第二频率谱,确定差频信号的频率。
可选地,OPA激光雷达包括N组天线阵列,上述频率谱获取模块51具体用于:
向目标探测物发射一次探测信号,探测信号用于指示目标探测物反射回波信号;
获取N组天线阵列在同一时间接收的回波信号,得到N个回波信号;
将N个回波信号分别与当前本振信号进行混频,得到N个回波信号各自对应的差频信号;
对N个差频信号分别进行快速傅里叶变换,得到N个差频信号各自对应的第一频率谱。
可选地,上述频率谱获取模块51具体用于:
向目标探测物发射一次探测信号,探测信号用于指示目标探测物反射回波信号;
获取单个回波信号;
将回波信号与当前本振信号进行混频,得到回波信号对应的差频信号;
对差频信号进行快速傅里叶变换,得到差频信号对应的第一频率谱;
判断第一频率谱的频谱幅度是否小于幅度阈值;
若第一频率谱的频谱幅度小于幅度阈值,则返回执行向目标探测物发射一次探测信号、获取单个回波信号、将回波信号与当前本振信号进行混频,得到差频信号以及对差频信号进行快速傅里叶变换,得到差频信号对应的第一频率谱的步骤,直到得到N个第一频率谱。
可选地,N次探测信号针对的目标探测物上的探测点保持不变。
可选地,上述频率谱获取模块51还用于:
比较第一频率谱中各频谱序号对应的频谱幅度,得到第一最大值,第一最大值是指第一频率谱中各频谱序号对应的频谱幅度中的最大值;
确定第一最大值为第一频率谱的频谱幅度。
可选地,差频信号是由目标探测物反射的回波信号确定的,上述点乘运算模块52具体用于:
将N个第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到第二频率谱的信号功率;
根据单个噪声功率,确定第二频率谱的噪声功率;
根据第二频率谱的信号功率和第二频率谱的噪声功率,计算第二频率谱的信噪比;
其中,
Figure PCTCN2022130634-appb-000024
x N为第二频率谱的信噪比,A 2N为第二频率谱的信号功率,A为回波信号的幅值,
Figure PCTCN2022130634-appb-000025
为第二频率谱的噪声功率,σ 2为单个噪声功率。
可选地,上述频率确定模块53具体用于:
比较第二频率谱中各频谱序号对应的频谱幅度,得到第二最大值,第二最大值是指第二频率谱中各频谱序号对应的频谱幅度中的最大值;
根据第二最大值对应的频谱序号,确定差频信号的频率。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
图6是本申请实施例五提供的OPA激光雷达的结构示意图。如图6所示,该实施例的OPA激光雷达6包括:一个或多个处理器60(图中仅示出一个)、存储器61以及存储在所述存储器61中并可在所述处理器60上运行的计算机程序62。所述处理器60执行所述计算机程序62时实现上述各个信号增强方法实施例中的步骤。
所述OPA激光雷达可包括,但不仅限于,处理器60、存储器61。本领域技术人员可以理解,图6仅仅是OPA激光雷达6的示例,并不构成对OPA激光雷达6的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或 者不同的部件,例如所述OPA激光雷达还可以包括输入输出设备、网络接入设备、总线等。可选地,所述OPA激光雷达还包括天线阵列、发射阵列、电光调制器、分束器等。
所称处理器60可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器61可以是所述OPA激光雷达6的内部存储单元,例如OPA激光雷达6的硬盘或内存。所述存储器61也可以是所述OPA激光雷达6的外部存储设备,例如所述OPA激光雷达6上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器61还可以既包括所述OPA激光雷达6的内部存储单元也包括外部存储设备。所述存储器61用于存储所述计算机程序以及所述OPA激光雷达所需的其他程序和数据。所述存储器61还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述装置中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例还提供了一种计算机程序产品,当计算机程序产品在OPA激光雷达上运行时,使得OPA激光雷达执行时实现可实现上述各个方法实施例中的步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现 所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/OPA激光雷达和方法,可以通过其它的方式实现。例如,以上所描述的装置/OPA激光雷达实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种信号增强方法,其特征在于,应用于OPA激光雷达,所述信号增强方法包括:
    获取针对目标探测物的N个差频信号各自对应的第一频率谱,所述第一频率谱包含频谱序号和所述频谱序号对应的频谱幅度,N为大于1的整数;
    将N个所述第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
    Figure PCTCN2022130634-appb-100001
    的第二频率谱,x 1为单个所述第一频率谱的信噪比;
    根据第二频率谱,确定所述差频信号的频率。
  2. 如权利要求1所述的信号增强方法,其特征在于,所述OPA激光雷达包括N组天线阵列,所述获取针对目标探测物的N个差频信号各自对应的第一频率谱包括:
    向所述目标探测物发射一次探测信号,所述探测信号用于指示所述目标探测物反射回波信号;
    获取N组所述天线阵列在同一时间接收的所述回波信号,得到N个所述回波信号;
    将N个所述回波信号分别与当前本振信号进行混频,得到N个所述回波信号各自对应的差频信号;
    对N个所述差频信号分别进行快速傅里叶变换,得到N个所述差频信号各自对应的第一频率谱。
  3. 如权利要求1所述的信号增强方法,其特征在于,所述获取针对目标探测物的N个差频信号各自对应的第一频率谱包括:
    向所述目标探测物发射一次探测信号,所述探测信号用于指示所述目标探测物反射回波信号;
    获取单个所述回波信号;
    将所述回波信号与当前本振信号进行混频,得到所述回波信号对应的差频信号;
    对所述差频信号进行快速傅里叶变换,得到所述差频信号对应的第一频率谱;
    判断所述第一频率谱的频谱幅度是否小于幅度阈值;
    若所述第一频率谱的频谱幅度小于所述幅度阈值,则返回执行向所述目标探测物发射一次探测信号、获取单个所述回波信号、将所述回波信号与当前本振信号进行混频,得到差频信号以及对所述差频信号进行快速傅里叶变换,得到所述差频信号对应的第一频率谱的步骤,直到得到N个所述第一频率谱;
    其中,N次所述探测信号针对的所述目标探测物上的探测点保持不变。
  4. 如权利要求3所述的信号增强方法,其特征在于,在判断所述第一频率谱的频谱幅度是否小于幅度阈值之前,还包括:
    比较所述第一频率谱中各频谱序号对应的频谱幅度,得到第一最大值,所述第一最大值是指所述第一频率谱中各频谱序号对应的频谱幅度中的最大值;
    确定第一最大值为所述第一频率谱的频谱幅度。
  5. 如权利要求1至4任一项所述的信号增强方法,其特征在于,所述差频信号是由所述目标探测物反射的回波信号确定的,所述将N个所述第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
    Figure PCTCN2022130634-appb-100002
    的第二频率谱包括:
    将N个所述第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到所述第二频率谱的信号功率;
    根据单个噪声功率,确定所述第二频率谱的噪声功率;
    根据所述第二频率谱的信号功率和所述第二频率谱的噪声功率,计算所述第二频率谱的信噪比;
    其中,
    Figure PCTCN2022130634-appb-100003
    x N为所述第二频率谱的信噪比,A 2N为所述第二频率谱的信号功率,A为所述回波信号的幅值,
    Figure PCTCN2022130634-appb-100004
    为所述第二频率谱的噪声功率,σ 2为单个噪声功率。
  6. 如权利要求1至4任一项所述的信号增强方法,其特征在于,所述根据第二频率谱,确定所述差频信号的频率包括:
    比较所述第二频率谱中各频谱序号对应的频谱幅度,得到第二最大值,所述第二最大值是指所述第二频率谱中各频谱序号对应的频谱幅度中的最大值;
    根据所述第二最大值对应的频谱序号,确定所述差频信号的频率。
  7. 一种信号增强装置,其特征在于,应用于OPA激光雷达,所述信号增强装置包括:
    频率谱获取模块,用于获取针对目标探测物的N个差频信号各自对应的第一频率谱,所述第一频率谱包含频谱序号和所述频谱序号对应的频谱幅度,N为大于1的整数;
    点乘运算模块,用于将N个所述第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
    Figure PCTCN2022130634-appb-100005
    的第二频率谱,x 1为单个所述第一频率谱的信噪比;
    频率确定模块,用于根据第二频率谱,确定所述差频信号的频率。
  8. 一种OPA激光雷达,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现以下步骤:
    获取针对目标探测物的N个差频信号各自对应的第一频率谱,所述第一频率谱包含频谱序号和所述频谱序号对应的频谱幅度,N为大于1的整数;
    将N个所述第一频率谱中频谱序号相同的频谱幅度进行点乘运算,得到信噪比为
    Figure PCTCN2022130634-appb-100006
    的第二频率谱,x 1为单个所述第一频率谱的信噪比;
    根据第二频率谱,确定所述差频信号的频率。
  9. 如权利要求8所述的OPA激光雷达,其特征在于,所述OPA激光雷达包括N组天线阵列,所述处理器执行所述计算机程序时,所述获取针对目 标探测物的N个差频信号各自对应的第一频率谱包括:
    向所述目标探测物发射一次探测信号,所述探测信号用于指示所述目标探测物反射回波信号;
    获取N组所述天线阵列在同一时间接收的所述回波信号,得到N个所述回波信号;
    将N个所述回波信号分别与当前本振信号进行混频,得到N个所述回波信号各自对应的差频信号;
    对N个所述差频信号分别进行快速傅里叶变换,得到N个所述差频信号各自对应的第一频率谱。
  10. 如权利要求8所述的OPA激光雷达,其特征在于,所述处理器执行所述计算机程序时,所述获取针对目标探测物的N个差频信号各自对应的第一频率谱包括:
    向所述目标探测物发射一次探测信号,所述探测信号用于指示所述目标探测物反射回波信号;
    获取单个所述回波信号;
    将所述回波信号与当前本振信号进行混频,得到所述回波信号对应的差频信号;
    对所述差频信号进行快速傅里叶变换,得到所述差频信号对应的第一频率谱;
    判断所述第一频率谱的频谱幅度是否小于幅度阈值;
    若所述第一频率谱的频谱幅度小于所述幅度阈值,则返回执行向所述目标探测物发射一次探测信号、获取单个所述回波信号、将所述回波信号与当前本振信号进行混频,得到差频信号以及对所述差频信号进行快速傅里叶变换,得到所述差频信号对应的第一频率谱的步骤,直到得到N个所述第一频率谱;
    其中,每次发射的所述探测信号针对的所述目标探测物上的探测点保持不变。
  11. 如权利要求8至10任一项所述的OPA激光雷达,其特征在于,所述处理器执行所述计算机程序时还实现以下步骤:
    比较所述第一频率谱中各频谱序号对应的频谱幅度,得到第一最大值,所述第一最大值是指所述第一频率谱中各频谱序号对应的频谱幅度中的最大值;
    确定第一最大值为所述第一频率谱的频谱幅度。
  12. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述信号增强方法的步骤。
PCT/CN2022/130634 2021-12-16 2022-11-08 信号增强方法、装置、opa激光雷达及存储介质 WO2023109375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111544889.6 2021-12-16
CN202111544889.6A CN116265982A (zh) 2021-12-16 2021-12-16 信号增强方法、装置、opa激光雷达及存储介质

Publications (1)

Publication Number Publication Date
WO2023109375A1 true WO2023109375A1 (zh) 2023-06-22

Family

ID=86743252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130634 WO2023109375A1 (zh) 2021-12-16 2022-11-08 信号增强方法、装置、opa激光雷达及存储介质

Country Status (2)

Country Link
CN (1) CN116265982A (zh)
WO (1) WO2023109375A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116807439A (zh) * 2023-08-08 2023-09-29 广州承启医学检验有限公司 一种生物体信息检测方法及系统
CN117311103A (zh) * 2023-10-31 2023-12-29 魅杰光电科技(上海)有限公司 套刻误差测量方法、装置、系统及存储介质
CN117669268A (zh) * 2024-01-30 2024-03-08 华南师范大学 电信号波控制方法、装置及电子设备
CN116807439B (zh) * 2023-08-08 2024-06-04 广州承启医学检验有限公司 一种生物体信息检测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156136A (ja) * 2016-02-29 2017-09-07 古野電気株式会社 レーダ装置
CN108872962A (zh) * 2018-05-10 2018-11-23 南京航空航天大学 基于分数阶傅里叶变换的激光雷达微弱信号提取和分解方法
CN109782244A (zh) * 2018-12-29 2019-05-21 西安交通大学 基于单目标三角线性调频连续波雷达信号处理方法
CN111239705A (zh) * 2020-02-12 2020-06-05 北京未感科技有限公司 激光雷达的信号处理方法、装置、设备及存储介质
CN112346069A (zh) * 2019-08-08 2021-02-09 北京一径科技有限公司 激光雷达的回波处理方法及装置、测距方法及装置和激光雷达系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156136A (ja) * 2016-02-29 2017-09-07 古野電気株式会社 レーダ装置
CN108872962A (zh) * 2018-05-10 2018-11-23 南京航空航天大学 基于分数阶傅里叶变换的激光雷达微弱信号提取和分解方法
CN109782244A (zh) * 2018-12-29 2019-05-21 西安交通大学 基于单目标三角线性调频连续波雷达信号处理方法
CN112346069A (zh) * 2019-08-08 2021-02-09 北京一径科技有限公司 激光雷达的回波处理方法及装置、测距方法及装置和激光雷达系统
CN111239705A (zh) * 2020-02-12 2020-06-05 北京未感科技有限公司 激光雷达的信号处理方法、装置、设备及存储介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116807439A (zh) * 2023-08-08 2023-09-29 广州承启医学检验有限公司 一种生物体信息检测方法及系统
CN116807439B (zh) * 2023-08-08 2024-06-04 广州承启医学检验有限公司 一种生物体信息检测方法及系统
CN117311103A (zh) * 2023-10-31 2023-12-29 魅杰光电科技(上海)有限公司 套刻误差测量方法、装置、系统及存储介质
CN117669268A (zh) * 2024-01-30 2024-03-08 华南师范大学 电信号波控制方法、装置及电子设备
CN117669268B (zh) * 2024-01-30 2024-04-26 华南师范大学 电信号波控制方法、装置及电子设备

Also Published As

Publication number Publication date
CN116265982A (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2023109375A1 (zh) 信号增强方法、装置、opa激光雷达及存储介质
US9841497B2 (en) Method, device and system for processing radar signals
CN112965037B (zh) 雷达信号波形不确定度测试系统
WO2024061206A1 (zh) 一种线性调频脉冲雷达的目标探测方法
CN104635216A (zh) 利用代表值的为了检测目标的fmcw雷达系统及其方法
CN103336274A (zh) 一种用于双极化天气雷达的双路多阶相关检测方法
CN116008966A (zh) 一种激光雷达的采集脉宽修正信息的方法及系统
CN111610503A (zh) 基于改进的lvd的线性调频信号参数估计方法
CN112859003A (zh) 干扰信号参数估计方法和探测装置
JP2019194583A (ja) レーダ信号の処理
WO2022000332A1 (zh) 一种雷达探测方法及相关装置
CN114217301A (zh) 一种高精度边坡监测雷达目标检测及测距方法
CN109917371A (zh) 一种基于改进微波波形的微波雷达测量方法
JP2005241602A (ja) レーダ試験方法および装置
CN116008933A (zh) 回波功率的补偿方法、补偿装置、雷达及存储介质
CN116047442A (zh) 一种检测目标角度的方法、装置及电子设备
JP2001221854A (ja) Fm−cwレーダ装置
WO2023279225A1 (zh) 激光雷达的点云处理方法、装置、存储介质及终端设备
CN112083405A (zh) 一种基于混合波形的目标检测方法及相关装置
RU2309428C1 (ru) Способ измерения расстояния радиодальномером с непрерывным излучением частотно-модулированных радиоволн (варианты)
JPH11352213A (ja) パルスレーダ装置
JP7462852B2 (ja) レーダ装置及びレーダ装置の干渉対策検出方法
CN113567950B (zh) 一种毫米波雷达距离速度谱估计方法及系统
CN116699590B (zh) 一种基于5.8g微波雷达的fmcw多目标测距方法和系统
CN114488051B (zh) 阵列雷达的系统延迟估计方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906127

Country of ref document: EP

Kind code of ref document: A1