WO2023109207A1 - 一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用 - Google Patents

一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用 Download PDF

Info

Publication number
WO2023109207A1
WO2023109207A1 PCT/CN2022/117783 CN2022117783W WO2023109207A1 WO 2023109207 A1 WO2023109207 A1 WO 2023109207A1 CN 2022117783 W CN2022117783 W CN 2022117783W WO 2023109207 A1 WO2023109207 A1 WO 2023109207A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonyl
conjugated polymer
substituted
benzodithiophene
formula
Prior art date
Application number
PCT/CN2022/117783
Other languages
English (en)
French (fr)
Inventor
王晓晨
赵瑞
李永舫
Original Assignee
陕西师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西师范大学 filed Critical 陕西师范大学
Publication of WO2023109207A1 publication Critical patent/WO2023109207A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/125Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one oxygen atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • C08G2261/1432Side-chains containing nitrogen containing amide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3222Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more oxygen atoms as the only heteroatom, e.g. furan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3224Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more Si atoms as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3225Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more Se atoms as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of conjugated polymer materials, in particular to a carbonyl-substituted benzodithiophene conjugated polymer and its preparation method and application.
  • Conjugated polymer semiconductor materials can be processed in the form of solution at room temperature by methods such as spin coating, inkjet printing, and slot-die coating to prepare large-area flexible devices.
  • This enables polymer solar cells to be used in large-area curved and irregular surfaces ranging from portable devices such as calculators and mobile phones to large buildings, as well as flexible foldable and rollable devices.
  • high-efficiency polymer donor materials are almost all based on benzodithiophene units with thiophene substituents.
  • the photoelectric conversion efficiency of solar cells based on the polymer material PM6 substituted by thiophene benzodithiophene units exceeds 15% [Joule 2019, 3(4), 1140-1151].
  • the synthesis of such materials is complicated, the process is difficult, and the cost is high.
  • the synthesis of benzodithiophenes substituted by ester groups and acyl groups is relatively simple.
  • the material should be easy to synthesize, have good solubility, processing and film-forming properties, show good photoelectric properties, especially high photoelectric conversion efficiency, and good stability.
  • the polymer donor photovoltaic material should have: the absorption spectrum complementary to the acceptor material, which can absorb sunlight effectively; flow separation.
  • the inventors of the present invention have found that these objects can be achieved by providing a polymer as described below comprising carbonyl substituted benzodithiophene units and copolymerized units.
  • the present invention provides a carbonyl-substituted benzodithiophene conjugated polymer, its preparation method and application.
  • the present invention provides a carbonyl-substituted benzodithiophene conjugated polymer, the structural formula of which is shown in formula I:
  • R 1 and R 2 are the same or different, independently alkyl, substituted alkyl, alkoxy, alkylthio, silyl, amino, aryl, heterocyclic or two of the above substituents one or a combination of two or more;
  • Ar is any of the following groups:
  • n is a positive integer.
  • the present invention provides a carbonyl-substituted benzodithiophene conjugated polymer in a second aspect, the carbonyl-substituted benzodithiophene conjugated polymer is formed by the same or different repeating units of the following formula IV:
  • the carbonyl-substituted benzodithiophene conjugated polymer is a homopolymer or copolymer comprising repeating units of formula IV, and may have any structure as shown below, but is not limited to the following structure:
  • R 1 , R 1-1 , and R 2-1 have the meaning of R 1 given by formula I
  • R 2 , R 1-2 and R 2-2 have the meaning of R 2 given by formula I
  • Ar, Ar 1 and Ar 2 have the meaning given to Ar in formula I
  • m and n are natural numbers and are not zero at the same time.
  • the present invention provides a method for preparing the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect of the present invention, the carbonyl-substituted benzodithiophene conjugated polymer is prepared in the following manner become:
  • X 1 and X 2 are the same or different, independently hydrogen, fluorine, chlorine, bromine, iodine, benzenesulfonyloxy, alkylbenzenesulfonyloxy, fluoroalkylbenzenesulfonyloxy, alkyl Sulfonyloxy, fluoroalkylsulfonyloxy, phosphate, alkylfluorosilyl, boronic acid, boronic acid ester, trialkylstannyl or zinc halide; Y1 and Y2 with X1 and X2 match.
  • the present invention provides a method for preparing the carbonyl-substituted benzodithiophene conjugated polymer described in the second aspect of the present invention.
  • the carbonyl-substituted benzodithiophene conjugated polymer is prepared in the following manner: become:
  • the compound shown in formula II a is copolymerized with the compound shown in formula III a and formula III b under the action of a catalyst to obtain the carbonyl-substituted benzodithiophene shown in formula I a Class conjugated polymer, the reaction formula is as follows:
  • X and Y respectively have the meanings of X1 and Y1 given in the third aspect of the present invention, and m and n are natural numbers and are not zero at the same time.
  • the present invention provides another preparation method of the carbonyl-substituted benzodithiophene conjugated polymer described in the second aspect of the present invention, the carbonyl-substituted benzodithiophene conjugated polymer is obtained through the following steps: Prepared by:
  • X and Y respectively have the meanings of X and Y given in the fourth aspect of the present invention, and m and n are natural numbers and are not zero at the same time.
  • the present invention provides a polymer blend, the polymer blend comprising the carbonyl-substituted benzodithiophene conjugated polymer described in the first or second aspect of the present invention and a photoelectric Functional material; preferably, the photoelectric functional material is one of organic or inorganic substances with semiconductor, charge transport, electron/hole transport, electron/hole blocking, conductive, photoconductive, photosensitive, photovoltaic or luminescent properties or more.
  • the present invention provides a composition, which comprises the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention or the conjugated polymer described in the sixth aspect of the present invention.
  • the eighth aspect of the present invention provides the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention or the polymer blend described in the sixth aspect of the present invention or the present invention
  • the application of the composition described in the seventh aspect as a photoelectric active material in optics, electronics, electronics, photodetection, electroluminescence, photoluminescence, optoelectronics or photovoltaic devices; preferably, the photoelectric active material comprises One or more of semiconductor materials, charge transport materials, photoconductive materials, conductive materials, luminescent materials, photosensitive materials or photovoltaic materials.
  • the ninth aspect of the present invention provides a device, which comprises the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention or the conjugated polymer described in the sixth aspect of the present invention A polymer blend or the composition described in the seventh aspect of the present invention; preferably, the device is an optical device, an optoelectronic device, an electronic device, an electroluminescence device, a photoluminescence device, a photodetection device or Photovoltaic devices.
  • the present invention provides a photoactive layer, the photoactive layer comprising the carbonyl-substituted benzodithiophene conjugated polymer described in the first or second aspect of the present invention and an n-type electron acceptor body.
  • the present invention provides the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention or the photoactive layer described in the tenth aspect of the present invention in a thin-film semiconductor device , photodetection devices, organic photovoltaic devices, polymer solar cell devices or applications in optoelectronic devices.
  • a twelfth aspect of the present invention provides a polymer solar cell device, comprising a first electrode, a second electrode spaced apart from the first electrode, and a At least one semiconductor layer of the present invention, the semiconductor layer comprises the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention or the photoactive layer described in the tenth aspect of the present invention.
  • the present invention has at least the following beneficial effects:
  • the carbonyl-substituted benzodithiophene medium-bandgap conjugated polymer material provided by the present invention shows great complementarity with the narrow-bandgap n-type electron acceptor material in absorption, and has good With excellent charge transport performance and suitable energy level, it can be used as an electron donor material matched with a narrow bandgap n-type electron acceptor material and applied to polymer solar cell devices.
  • FIG. 1 shows the absorption spectra of polymers P1 and P7 prepared in Example 1 and Example 7 of the present invention and the absorption spectrum of small molecule acceptor Y6.
  • Fig. 2 is the corresponding cyclic voltammetry curves of the polymers P1 and P7 prepared in Example 1 and Example 7 of the present invention.
  • Fig. 3 is a thermogravimetric graph corresponding to the polymer P1 and the polymer P7 prepared in Example 1 and Example 7 of the present invention.
  • Fig. 4 is a current density-voltage (J-V) curve of a polymer solar cell device prepared by blending polymers P1 and P7 prepared in Example 1 and Example 7 of the present invention with a small molecule acceptor Y6.
  • the present invention provides a carbonyl-substituted benzodithiophene conjugated polymer in a first aspect, the structural formula of the carbonyl-substituted benzodithiophene conjugated polymer is shown in formula I:
  • R 1 and R 2 are the same or different, independently alkyl, substituted alkyl, alkoxy, alkylthio, silyl, aryl, heterocyclic or two or both of the above substituents more than one combination;
  • Ar is any of the following groups:
  • n is a positive integer.
  • the alkyl group, substituted alkyl group, alkoxy group, alkylthio group, silyl group or amine group independently have 1-50 carbon atoms;
  • the substituent contained in the substituted alkyl group is Alkoxy, alkylthio, silyl, acyl, acyloxy, acylthio, ester, amine, amido, imide, alkenyl, alkynyl, carboxyl, cyano, sulfone, sulfide Sulfone group, aryl group, heterocyclic group or a combination of two or more of the above substituents;
  • the aryl or heterocyclic group is unsubstituted or has one or more substituents;
  • the R 1 , R 2 and one or more hydrogen atoms in each substituent may be independently substituted by fluorine, chlorine, bromine, iodine or cyano.
  • the aromatic ring described in 1), the aromatic ring system described in 2) or the conjugated system described in 3) contains a substituent, preferably, the substituent is hydrogen atom, fluorine atom, alkyl, substituted alkyl, alkoxy, alkylthio, aryl, aralkyl, heterocyclic aralkyl, aryloxy, arylthio, acyl, acyloxy, acylthio , ester group, amine group, amide group, imide group, alkenyl group, alkynyl group, carboxyl group, cyano group or a combination of two or more of the above substituents; the carbon of the substituent contained in the Ar
  • the number of atoms is 1-50; one or more hydrogen atoms in the substituent contained in Ar may be independently substituted by fluorine, chlorine, bromine, iodine or cyano.
  • n ⁇ 1 preferably 5 ⁇ n ⁇ 500.
  • the present invention provides a carbonyl-substituted benzodithiophene conjugated polymer, the carbonyl-substituted benzodithiophene conjugated polymer is formed by the same or different repeating units of the following formula IV:
  • R 1 , R 2 , Ar have the meanings given in formula I;
  • the carbonyl-substituted benzodithiophene conjugated polymer is a homopolymer or copolymer comprising repeating units of formula IV; preferably Yes, the copolymer is a combination of one or more of statistical copolymers, alternating copolymers, random copolymers, block copolymers and graft copolymers.
  • the carbonyl-substituted benzodithiophene conjugated polymer is a copolymer comprising repeating units of formula IV, and has any of the following structures, but is not limited to the following structures:
  • R 1 , R 1-1 , R 2-1 have the meaning of R 1 given in formula I of the present invention
  • R 2 , R 1-2 , R 2-2 have the meaning of R 2 given in formula I Meaning
  • Ar, Ar 1 , Ar 2 have the meaning of Ar given in Formula I
  • m and n are natural numbers and are not zero at the same time.
  • Ar, Ar 1 and Ar 2 have any of the structures shown below, but are not limited to the following structures:
  • R 3 , R 4 , R 5 , and R 6 are the same or different, and independently represent a hydrogen atom, a fluorine atom, a chlorine atom, an alkyl group, an alkoxy group, an alkylthio group, an aralkyl group, an acyl group, an acyloxy group, Acylthio, ester, amine, amide, imide, alkenyl, alkynyl, carboxyl, cyano, sulfone, sulfoxide, aryl, heterocyclic or two of the above substituents or a combination of two or more;
  • R 7 and R 8 are the same or different, independently alkyl, alkoxy, aryl, aryloxy, ester, acyl, or two or more of the above substituents Combination;
  • the number of carbon atoms in the substituents of each of the above-mentioned Ar units is 1-50, and one or more hydrogen atoms in the substituents in the
  • the carbonyl-substituted benzodithiophene conjugated polymer has any structure as shown below, but is not limited to the following structure:
  • R 1 and R 2 have the meaning given in formula I of the present invention
  • R 1-1 and R 2-1 have the meaning of R 1 given in formula I
  • R 1-2 and R 2-2 have The meaning of R 2 given in formula I
  • m and n are positive integers, have the meaning given in formula I and V a of the present invention
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 Have the meaning of the substituents given in the Ar unit structure of the present invention; specifically, R 1 , R 2 , R 1-1 , R 1-2 , R 2-1 , R 2-2 are the same or different, independently is alkyl, substituted alkyl, alkoxy, alkylthio, silyl, amino, aryl, heterocyclic or a combination of two or more of the above substituents; R 3 , R 4 , R 5.
  • R 6 are the same or different, independently hydrogen atom, fluorine atom, chlorine atom, alkyl group, alkoxy group, alkylthio group, aralkyl group, acyl group, acyloxy group, acylthio group, ester group, amine group , amide group, imide group, alkenyl group, alkynyl group, carboxyl group, cyano group, sulfone group, sulfoxide group, aryl group, heterocyclic group or a combination of two or more of the above substituents; R 7 , R 8 are the same or different, independently alkyl, alkoxy, aryl, aryloxy, ester, acyl, or a combination of two or more of the above substituents;
  • the number of carbon atoms in Ar is 1-50, and one or more hydrogen atoms in the substituent contained in Ar may be optionally substituted by fluorine, chlorine, bromine, iodine or cyano.
  • the carbonyl-substituted benzodithiophene conjugated polymer is any polymer shown in the following formulas P1 to P12, but not limited to the polymers shown below:
  • n and n are positive integers.
  • the monomers and intermediates used in the synthesis of the carbonyl-substituted benzodithiophene conjugated polymer represented by formula I and the repeating unit represented by formula IV of the present invention can be prepared according to methods known to those skilled in the art or obtained through commercial channels .
  • the carbonyl-substituted benzodithiophene conjugated polymer is prepared by aryl-aryl coupling reaction; preferably, the aryl-aryl coupling reaction is Negishi coupling Coupling reaction, Suzuki coupling reaction, Stille coupling reaction or direct arylation Direct Arylation coupling reaction.
  • the present invention provides a method for preparing the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect of the present invention, the carbonyl-substituted benzodithiophene conjugated polymer is prepared in the following manner become:
  • R 1 , R 2 , Ar and n have the meanings given in the aforementioned formula I;
  • X 1 and X 2 are the same or different, independently hydrogen, fluorine, chlorine, bromine, iodine, benzenesulfonyloxy, Alkylbenzenesulfonyloxy, fluoroalkylbenzenesulfonyloxy, alkylsulfonyloxy, fluoroalkylsulfonyloxy, phosphate, alkylfluorosilyl, boronic acid, borate ester , trialkylstannyl group or zinc halide group, etc.; Y 1 and Y 2 match X 1 and X 2 , specifically, for example, Y 1 and Y 2 are made according to X 1 and X 2 groups and reaction conditions Select accordingly.
  • the selection of groups Y1 and Y2 in formula III depends on the selection of groups X1 and X2 in formula II: when X1 and X2 are independently chlorine, bromine, iodine, benzene When sulfonyloxy, alkylbenzenesulfonyloxy, fluoroalkylbenzenesulfonyloxy, alkylsulfonyloxy or fluoroalkylsulfonyloxy, etc., Y1 and Y2 are hydrogen, boronic acid group, borate group, trialkylstannyl group or zinc halide group, etc.; when X1 and X2 are independently hydrogen, borate group, borate group, trialkylstannyl group or zinc halide When the group is the same, Y1 and Y2 are chlorine, bromine, iodine, benzenesulfonyloxy, alkylbenzenesulfonyloxy,
  • the preparation of the carbonyl-substituted benzodithiophene conjugated polymer is carried out in any of the following ways (a)-(d), but not limited to the following ways:
  • the solvent is tetrahydrofuran
  • the catalyst is [1,2-bis(diphenylphosphino)ethane] nickel dichloride, and the addition amount of the catalyst is the total molar weight of the compound shown in formula II and the compound shown in formula III 0.005%-10%;
  • the molar ratio of the compound shown in formula II to the compound shown in formula III is 1: (0.8 ⁇ 1.5);
  • the reaction time is 10 minutes to 72 hours;
  • the bis(zinc halide) arene compound may specifically be a bis(bromozinc) arene, and the arene dihalide may specifically be an arene dibromide;
  • the solvent is tetrahydrofuran and/or toluene
  • the catalyst is tetrakis(triphenylphosphine)palladium
  • the addition amount of the catalyst is 0.005%-10% of the total molar weight of the compound shown in formula II and the compound shown in formula III
  • the base is Potassium carbonate, sodium carbonate or sodium bicarbonate, the addition amount is 2-20 times of the molar weight of the compound shown in formula II;
  • the molar ratio of the compound shown in formula II to the compound shown in formula III is 1: (0.8-1.5);
  • the reaction time is 0.5-120 hours.
  • the solvent is one or more of tetrahydrofuran, toluene, chlorobenzene, dimethylformamide DMF
  • the catalyst is tetrakis(triphenylphosphine)palladium, bis(triphenylphosphine)palladium dichloride, palladium dichloride , palladium acetate and other transition metal catalysts, the amount of the catalyst added is 0.005%-10% of the total molar weight of the compound shown in formula II and the compound shown in formula III;
  • the molar ratio of the compound represented by formula II to the compound represented by formula III is 1: (0.8-1.5);
  • the reaction time is 5 minutes to 72 hours;
  • the bis(trialkyltin-based) arene compound may specifically be bis(trimethyltin-based) arene, and the arene dihalide may specifically be arene dibromide.
  • the solvent is one or more of N,N-dimethylacetamide, N,N-dimethylformamide, tetrahydrofuran, toluene, xylene, and chlorobenzene
  • the catalyst is tris(dibenzylideneacetone) di Palladium and/or palladium acetate, the amount of the catalyst added is 0.005%-10% of the total molar weight of the compound shown in formula II and the compound shown in formula III;
  • the alkali is carbonate, acetate or phosphate, and the amount added is 2-30 times the molar amount of the compound shown in formula II;
  • tert-valeric acid can be added as additives, and the amount added is 0.05-5 times the molar amount of the compound shown in formula II;
  • Phosphine ligands can be added, such as tri(o-methoxyphenyl)phosphine, tri-tert-butylphosphine, tricyclohexylphosphine, methyldi-tert-butylphosphine, or phosphine compound salts, and the amount added is the compound shown in formula II 0.005%-10% of the total molar weight of the compound represented by formula III;
  • the molar ratio of the compound shown in formula II to the compound shown in formula III is 1: (0.8 ⁇ 1.5);
  • the reaction temperature is 0-200°C, and the reaction time is 5 minutes-72 hours;
  • the arene dihalide may specifically be arene dibromide or diiodide.
  • the present invention provides a method for preparing the carbonyl-substituted benzodithiophene conjugated polymer described in the second aspect of the present invention.
  • the carbonyl-substituted benzodithiophene conjugated polymer is prepared in the following manner: become:
  • the compound shown in formula II a is copolymerized with the compound shown in formula III a and formula III b under the action of a catalyst to obtain the carbonyl-substituted benzodithiophene shown in formula I a Class conjugated polymer, the reaction formula is as follows:
  • X and Y respectively have the meanings of X1 and Y1 given in the third aspect of the present invention; specifically, X is independently hydrogen, fluorine, chlorine, bromine, iodine, benzenesulfonyloxy, alkylbenzene Sulfonyloxy, fluoroalkylbenzenesulfonyloxy, alkylsulfonyloxy, fluoroalkylsulfonyloxy, phosphate, alkylfluorosilyl, boronic acid, borate ester, trioxane Base stannyl group or zinc halide group, etc.; Y and X match, specifically, for example, Y makes corresponding choices according to X group and reaction conditions; the choice of group Y in formula III a and III b depends on formula II The choice of group X in a : when X is independently chlorine, bromine, iodine, benzenesulfonyloxy, alkylbenz
  • Y is chlorine, bromine, iodine, benzenesulfonyloxy, alkylbenzenesulfonyloxy, fluoroalkylbenzenesulfonyloxy, alkane, etc. Sulfonyloxy or fluoroalkylsulfonyloxy, etc.; m and n are natural numbers and not zero at the same time.
  • the present invention provides another preparation method of the carbonyl-substituted benzodithiophene conjugated polymer described in the second aspect of the present invention, the carbonyl-substituted benzodithiophene conjugated polymer is obtained through the following steps: Prepared by:
  • X and Y respectively have the meanings of X and Y given in the fourth aspect of the present invention; m and n are natural numbers and are not zero at the same time.
  • the present invention further relates to a composition
  • a composition comprising one or more carbonyl-substituted benzodithiophene conjugated polymers, copolymers or polymer blends according to the present invention, and one or more solvents, wherein the solvent Organic solvents are preferred.
  • the present invention further relates to the carbonyl-substituted benzodithiophene conjugated polymers, copolymers, polymer blends and compositions according to the present invention in optics, optoelectronics, electronics, photodetection, electroluminescence, light Use as photosensitive, photoconductive, luminescent, photodetective, conductive, photovoltaic, semiconductor or charge transport in luminescent or photovoltaic devices or components.
  • the present invention further relates to charge transport, semiconductor, conductive, photoconductive, Materials or components that emit light, detect light, or photovoltaics.
  • the present invention further relates to optical, optoelectronic, electronic, photodetection, electroluminescent, photoluminescent or photovoltaic devices or components, which comprise one or more carbonyl-substituted benzodithiophene co- Conjugated polymers, copolymers, polymer blends, compositions, materials or components.
  • Optical, optoelectronics, electronics, light detection, electroluminescence, photoluminescence and photovoltaic devices or components including but not limited to: organic field effect transistor OFET, thin film transistor TFT, integrated circuit IC, logic circuit, capacitor, radio frequency identification RFID Labels, Components or Devices, Organic Light Emitting Diode OLED, Organic Light Emitting Transistor OLET, Flat Panel Display, Display Backlighting, Organic Photovoltaic Device OPV, Bulk Heterojunction BHJ Organic Photovoltaic OPV Device, Polymer Solar Cell PSCs, Solar Cell, Organic Photodetection OPD, photodetector PD, laser diode, photoconductor, photodetector, electrophotographic device, electrophotographic recording device, biological memory device, sensing device, charge injection layer, charge transport layer, charge blocking layer, polymer light emitting diode Interlayer or charge transport layer in PLED, organic plasmon emission diode OPED, Schottky diode, planarization
  • the present invention provides a polymer blend, the polymer blend comprising the carbonyl-substituted benzodithiophene conjugated polymer described in the first or second aspect of the present invention and a photoelectric Functional material; preferably, the photoelectric functional material is one of organic or inorganic substances with semiconductor, charge transport, electron/hole transport, electron/hole blocking, conductive, photoconductive, photosensitive, photovoltaic or luminescent properties or more.
  • the present invention provides a composition, which comprises the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention or the conjugated polymer described in the sixth aspect of the present invention.
  • said polymer blend ; and one or more solvents; said solvent is preferably an organic solvent.
  • the eighth aspect of the present invention provides the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention or the polymer blend described in the sixth aspect of the present invention or the present invention
  • the application of the composition described in the seventh aspect as a photoelectric active material in optics, electronics, electronics, photodetection, electroluminescence, photoluminescence, optoelectronics or photovoltaic devices; preferably, the photoelectric active material comprises One or more of semiconductor materials, charge transport materials, photoconductive materials, conductive materials, luminescent materials, photosensitive materials, and photovoltaic materials.
  • the ninth aspect of the present invention provides a device or component, the device or the component comprising the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention or the The polymer blend described in the sixth aspect or the composition described in the seventh aspect of the present invention; preferably, the device is an optical device, an optoelectronic device, an electronic device, a photodetector device, or an electroluminescent device , a photoluminescent device or a photovoltaic device; more preferably, the device is an organic field-effect transistor OFET, a thin film transistor TFT, an integrated circuit IC, a logic circuit, a capacitor, a radio frequency identification RFID tag, an organic light-emitting diode OLED, an organic light-emitting diode Transistors OLET, flat panel displays, display backlighting, organic photovoltaic OPV devices, bulk heterojunction BHJ organic photovoltaic OPV devices, polymer solar cells P
  • the present invention provides a photoactive layer, the photoactive layer comprising the carbonyl-substituted benzodithiophene conjugated polymer described in the first or second aspect of the present invention and an n-type electron acceptor
  • the photoactive layer is composed of carbonyl-substituted benzodithiophene conjugated polymers and n-type electron acceptors described in the first or second aspect of the present invention; preferred Yes, the n-type electron acceptor is a small molecule compound or a polymer, more preferably, the n-type electron acceptor is an A-D-A type small molecule compound with an electron-withdrawing unit at the end or an electron-withdrawing unit at the end A polymer of A-D-A type small molecular compounds of units.
  • the mass ratio of the carbonyl-substituted benzodithiophene conjugated polymer to the n-type electron acceptor is 1: (0.2-5) (for example, 1:0.2, 1:0.3, 1:0.4, 1:0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.9, 1:1, 1:1.2, 1:1.5, 1:1.8, 1:2, 1:2.2, 1: 2.5, 1:2.8, 1:3, 1:3.5, 1:4, 1:4.5 or 1:5), preferably 1: (0.5 ⁇ 2) (such as 1:0.5, 1:0.8, 1:1, 1:1.2, 1:1.5, 1:1.8 or 1:2), more preferably 1:1.
  • the photoactive layer is formed by a photoactive layer solution
  • the preparation of the photoactive layer solution is: using toluene, xylene, trimethylbenzene, anisole, methyl tetrahydrofuran, chloroform, chlorobenzene , at least one solvent in dichlorobenzene or a mixture containing at least one solvent wherein the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention and the n-type electron acceptor
  • the mixture is uniformly mixed to obtain the photoactive layer solution; preferably, the concentration of the carbonyl-substituted benzodithiophene conjugated polymer contained in the photoactive layer solution is 0.5 to 80 mg/mL (for example, 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70 or 80 mg/mL), more preferably 4-20 mg/mL (eg 4, 8, 10, 12, 15 , 18 or 20 mg
  • the present invention provides the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention or the photoactive layer described in the tenth aspect of the present invention in a thin-film semiconductor device , photodetection devices, organic photovoltaic devices, polymer solar cell devices or applications in optoelectronic devices.
  • a twelfth aspect of the present invention provides a polymer solar cell device, comprising a first electrode, a second electrode spaced apart from the first electrode, and a At least one semiconductor layer of the present invention, the semiconductor layer comprises the carbonyl-substituted benzodithiophene conjugated polymer described in the first aspect or the second aspect of the present invention or the photoactive layer described in the tenth aspect of the present invention.
  • Embodiment 1 the synthesis of polymer shown in formula P1
  • reaction equation take 0.3mmol each of monomers M1 and M2, dissolve them in a mixed solvent of toluene (6mL) and DMF (1mL), exhaust the air with argon for 5 minutes, and then add the catalyst tetrakis (triphenyl After phosphine) palladium (8 mg), continue to exhaust the air for 10 minutes, and then stop heating after reacting at the reflux temperature of the reaction system for 48 hours.
  • the reaction mixture was cooled to room temperature, and slowly added dropwise to methanol (50 mL), and the precipitated solid polymer was washed thoroughly with methanol, n-hexane and chloroform successively in a Soxhlet extractor.
  • Embodiment 2 the synthesis of polymer shown in formula P2
  • Embodiment 3 the synthesis of polymer shown in formula P3
  • reaction equation take 0.3mmol each of monomers M4 and M5, 1mmol of sodium bicarbonate, add toluene (10mL) and deionized water (4mL), exhaust the air with nitrogen for 5 minutes, and then add catalyst tetrakis (triphenylphosphine ) palladium (12mg) and continue to exhaust the air for 10 minutes, then stop heating after reacting at the reflux temperature of the reaction system for 48 hours.
  • the reaction mixture was cooled to room temperature, and slowly dropped into methanol (50 mL). After the precipitated solid polymer was fully washed with methanol, it was then fully washed with methanol, n-hexane and chloroform in a Soxhlet extractor.
  • Embodiment 4 the synthesis of polymkeric substance shown in formula P4
  • Embodiment 5 the synthesis of polymer shown in formula P5
  • reaction equation take 0.3mmol of each monomer M8 and M9, dissolve it in a mixed solvent of toluene (6mL) and DMF (1mL), exhaust the air with argon for 5 minutes, and then add the catalyst tetrakis (triphenyl After phosphine) palladium (8 mg), continue to exhaust the air for 10 minutes, and then stop heating after reacting at the system reflux temperature for 30 hours.
  • the reaction mixture was cooled to room temperature, and slowly dropped into methanol (50 mL), and the precipitated solid polymer was washed thoroughly with methanol, n-hexane and chloroform successively in a Soxhlet extractor.
  • Embodiment 6 the synthesis of polymkeric substance shown in formula P6
  • reaction equation take 0.3mmol each of monomers M10 and M11, dissolve them in a mixed solvent of toluene (6mL) and DMF (1mL), exhaust the air with argon for 5 minutes, and then add the catalyst tetrakis (triphenyl After phosphine) palladium (8 mg), continue to exhaust the air for 10 minutes, then stop heating after reacting at the reflux temperature of the reaction system for 8 hours.
  • the reaction mixture was cooled to room temperature, diluted with chloroform and slowly dropped into methanol (50 mL), and the precipitated solid polymer was washed thoroughly with methanol, n-hexane and chloroform successively in a Soxhlet extractor.
  • Embodiment 7 the synthesis of polymkeric substance shown in formula P7
  • Embodiment 8 the synthesis of polymkeric substance shown in formula P8
  • reaction equation take 0.3mmol each of monomers M14 and M15, dissolve them in a mixed solvent of toluene (6mL) and DMF (1mL), exhaust the air with argon for 5 minutes, and then add the catalyst tetrakis (triphenyl After phosphine) palladium (8 mg), continue to exhaust the air for 10 minutes, and then stop heating after reacting at the reflux temperature of the reaction system for 36 hours.
  • the reaction mixture was cooled to room temperature, and slowly dropped into methanol (50 mL), and the precipitated solid polymer was washed thoroughly with methanol, n-hexane and chloroform successively in a Soxhlet extractor.
  • the chloroform solution is dripped into methanol after being concentrated, and the precipitate produced is filtered by suction and vacuum-dried for one day to obtain a deep red solid powder that is a carbonyl-substituted benzodithiophene conjugated polymer shown in formula P8 (abbreviation is polymer P8) with a yield of 90%.
  • Embodiment 9 the synthesis of polymer shown in formula P9
  • reaction equation take 0.3mmol each of monomers M16 and M17, dissolve them in a mixed solvent of toluene (6mL) and DMF (1mL), exhaust the air with nitrogen for 5 minutes, and then add the catalyst tetrakis (triphenylphosphine) ) palladium (8mg) and continue to exhaust the air for 10 minutes, then stop heating after reacting at the reflux temperature of the reaction system for 36 hours.
  • the reaction mixture was cooled to room temperature, and was slowly dropped into methanol (50 mL), and the precipitated solid polymer was thoroughly washed successively with methanol, n-hexane and chloroform in a Soxhlet extractor.
  • Embodiment 10 the synthesis of polymer shown in formula P10
  • Embodiment 11 the synthesis of polymer shown in formula P11
  • Embodiment 12 the synthesis of polymer shown in formula P12
  • Example 13 Solubility and film-forming tests of carbonyl-substituted benzodithiophene conjugated polymers according to the present invention
  • polymers P1 to P12 prepared in Examples 1 to 12 into several common organic solvents, such as chlorobenzene, dichlorobenzene, chloroform, trichlorobenzene, toluene, methanol, etc.
  • Polymers P1 to P12 were found to have good solubility in chlorinated solvents but insoluble in methanol.
  • High-quality films can be prepared by spin-coating any chlorobenzene solution of polymers P1 to P12 on a quartz plate.
  • Example 14 Determination of the absorption spectrum and optical bandgap of the carbonyl-substituted benzodithiophene conjugated polymer of the present invention by means of an ultraviolet spectrometer
  • the polymers P1 and P7 prepared in Example 1 and Example 7 were dissolved in chloroform, and a thin film was prepared by spin coating, and the absorption spectrum thereof is shown in FIG. 1 .
  • Table 1 Optical properties of polymer P1 and polymer P7 films.
  • the maximum absorption ( ⁇ max ) of the polymer P1 and polymer P7 films prepared in Example 1 and Example 7 are 626nm and 550nm respectively, the absorption edges ( ⁇ edge ) are 671nm and 678nm respectively, and the corresponding optical band gaps are respectively 1.85 eV and 1.83eV.
  • the results show that both the polymer P1 and the polymer P7 prepared by the present invention are typical medium-bandgap conjugated polymer materials. Other polymers in the embodiments of the present invention can obtain corresponding absorption spectra and optical band gaps in the same manner.
  • Example 15 Using electrochemical cyclic voltammetry to determine the energy level of the carbonyl-substituted benzodithiophene conjugated polymer of the present invention
  • Polymer P1 and polymer P7 (about 0.5 mg) prepared in Example 1 and Example 7 were dissolved in chloroform, and then the solution was dropped onto a working electrode such as a platinum sheet to form a polymer film; use 0.1mol/L tetrabutylene
  • a working electrode such as a platinum sheet to form a polymer film
  • the acetonitrile solution of ammonium hexafluorophosphate was used as the electrolyte
  • the platinum wire was used as the counter electrode
  • the silver/silver ion electrode was used as the reference electrode
  • the polymerization was calculated by measuring the oxidation and reduction onset potentials of polymer P1 and polymer P7.
  • the cyclic voltammetry curves of the polymers P1 and P7 prepared in Example 1 and Example 7 of the present invention are shown in FIG. 2 .
  • the HOMO energy levels of polymers P1 and polymer P7 prepared in Example 1 and Example 7 of the present invention are respectively -5.48eV and -5.26eV, and the LUMO energy levels are respectively -3.65eV and -3.44eV.
  • the suitable molecular energy levels of the polymers P1 and P7 prepared in Example 1 and Example 7 of the present invention ensure their application as donor materials in polymer solar cells.
  • Other polymers in the embodiments of the present invention can obtain their corresponding HOMO and LUMO energy levels in the same manner.
  • Example 16 Determination of the thermal stability of the carbonyl-substituted benzodithiophene conjugated polymer of the present invention by thermogravimetric analysis (TGA)
  • the thermal weight loss of the polymers P1 and P7 prepared in Examples 1 and 7 of the present invention in the temperature range from room temperature to 800° C. (nitrogen atmosphere) was measured by a thermogravimetric analyzer, and the test result curves are shown in FIG. 3 .
  • the thermal decomposition temperatures (5% weight loss) of polymer P1 and polymer P7 prepared in Example 1 and Example 7 of the present invention are 366°C and 342°C respectively, indicating that polymer P1 and polymer P7 have good thermal stability, It can be applied to a variety of optoelectronic devices, such as solar cells, light-emitting devices and photodetectors.
  • the thermal stability of other polymers in the examples of the present invention can be characterized in the same way.
  • Example 17 Testing the Photovoltaic Performance of the Carbonyl-Substituted Benzodithiophene Conjugated Polymers of the Present Invention by a Polymer Solar Cell Device with a Conventional Structure
  • the polymer P1 and polymer P7 prepared in Example 1 and Example 7 of the present invention were blended with the commercialized small molecule acceptor Y6 at a weight ratio of 1:1 and dissolved in chloroform to prepare a total concentration of 12 mg/ mL of photoactive layer solution.
  • Polymer solar cell devices were fabricated on transparent indium tin oxide (ITO) conductive glass substrates.
  • ITO transparent indium tin oxide
  • PEDOT:PSS poly(3,4-ethylenedioxythiophene: polystyrene sulfonic acid
  • the above photoactive layer solution was spin-coated to prepare a photoactive layer thin film (the thickness of the active layer was about 100 nm). Then, under the pressure (absolute pressure) of 10 -4 Pa, calcium (20nm) and aluminum (80nm) electrode layers are successively evaporated to obtain a polymer solar cell device with a conventional structure ITO/PEDOT:PSS/photoactive layer/Ca/Al .
  • the characteristic parameters of the prepared polymer solar cell devices such as open circuit voltage, short circuit current, fill factor and energy conversion efficiency (ie, photoelectric conversion efficiency) were investigated using a solar simulator under the condition of AM1.5G (100mW/cm 2 ). Test; the structural formula of the small molecule receptor Y6 is:
  • the current density-voltage (JV) curves of polymer solar cell devices prepared by blending the polymers P1 and P7 prepared in Examples 1 and 7 of the present invention with the small molecule acceptor Y6 are shown in FIG. 4 .
  • the open-circuit voltage of the polymer solar cell device corresponding to the polymer P1 is 0.83V
  • the short-circuit current is 27.32mA/cm 2
  • the fill factor is 0.71
  • the energy conversion efficiency is 16.10%.
  • the open-circuit voltage of the polymer solar cell device corresponding to the polymer P7 is 0.60V
  • the short-circuit current is 20.02mA/cm 2
  • the fill factor is 0.68
  • the energy conversion efficiency is 8.18%.
  • Other polymers in the embodiments of the present invention can obtain corresponding photovoltaic properties in the same or similar manner. The results are shown in Table 2.
  • Table 2 Photovoltaic performance parameters of polymer solar cell devices corresponding to polymers P1 to P12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明涉及一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用。本发明提供了一种羰基取代苯并二噻吩类中等带隙共轭聚合物材料,所述材料与窄带隙n-型电子受体材料在太阳光吸收上表现出互补性,并且具有合适的能级和良好的电荷传输性能,因此能够作为电子给体材料与窄带隙n-型电子受体材料匹配应用于聚合物太阳能电池器件。由于本发明中羰基取代苯并二噻吩类共轭聚合物合成简单,产率高,成本低,并且制备的聚合物太阳能电池器件光谱响应范围宽,短路电流高,光电转换效率高,有望在聚合物太阳能电池的商业化中得到广泛的应用。

Description

一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用 技术领域
本发明属于共轭聚合物材料技术领域,尤其涉及一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用。
背景技术
共轭聚合物半导体材料可以在室温下、以溶液形式,通过旋转涂膜、喷墨打印、狭缝涂布Slot-Die等方法加工,制备大面积柔性器件。这使得聚合物太阳能电池可以用于从便携式设备如计算器、手机等到大型建筑等的大面积曲面和不规则表面以及制成柔性可折叠、可收卷器件。由于共轭聚合物材料这些优良的性能和巨大的应用潜力,二十多年来各国化学家、物理学家和材料科学家从材料的设计、合成与器件的优化等方面对聚合物太阳能电池做了深入的研究,在性能和应用方面取得了巨大的进展。
在现有技术中,高效聚合物给体材料几乎都是基于带有噻吩取代基的苯并二噻吩单元,例如基于噻吩取代苯并二噻吩单元的聚合物材料PM6的太阳能电池光电转换效率超过了15%[Joule 2019,3(4),1140-1151]。然而,该类材料合成复杂、工艺难度大、成本高昂。酯基和酰基取代的苯并二噻吩合成较简单,有论文[Macromolecules 2014,47,4987-4993,Dyes and Pigments 2019,162,120-125]和专利[WO2012156022A1/US20140061538A1/CN103534259A,WO2013135339A2/CN104169347B,WO2011085004A2/US20140124035A1/WO2011131280A1/CN102844312B]报道了将带有酯基或酰基取代基的苯并二噻吩单元用于聚合物光伏材料,但现有技术中的这些材料结构复杂且光伏性能差。
因此,仍然需要开发不具有现有技术材料的缺点,并适用于光伏器件的聚合物光伏材料。
材料应当易于合成,具有良好的溶解性和加工、成膜性能,显示出良好的光电性能尤其是高光电转换效率,以及良好的稳定性。对于在聚合物太阳能电池中 的应用,聚合物给体光伏材料应当具有:与受体材料相互补的吸收光谱,能够有效地吸收太阳光;合适的能级,能够与受体材料实现有效的载流子分离。
本发明的目的在于提供用作聚合物太阳能电池的聚合物给体光伏材料,其显示上述有利的性质,并且不显示上述现有技术材料的缺点。本发明的另一个目的是扩展技术人员可用的聚合物光伏材料的范围。本发明的其它目的从下列详细说明中是一目了然的。
本发明的发明人已经发现这些目的可以通过提供如下描述的聚合物来实现,其包含羰基取代的苯并二噻吩单元和共聚单元。
发明内容
为了解决现有技术中存在的一个或者多个技术问题,本发明提供了一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用。
本发明在第一方面提供了一种羰基取代苯并二噻吩类共轭聚合物,结构式如式I所示:
Figure PCTCN2022117783-appb-000001
式I中,R 1、R 2相同或不同,独立地为烷基、取代烷基、烷氧基、烷硫基、硅烷基、胺基、芳基、杂环基或上述取代基中的两种或两种以上的的组合;
式I中,Ar为以下任一种基团:
1)苯环、噻吩、呋喃、硒吩或碲吩;
2)苯环、噻吩、呋喃、硒吩或碲吩中的两个或两个以上同种或不同种芳环之间直接或通过桥连单元构筑的芳环体系;
3)由1)或2)中所述的单元之间以键连形式构筑的共轭体系;
式I中,n为正整数。
本发明在第二方面提供了一种羰基取代苯并二噻吩类共轭聚合物,所述羰基取代苯并二噻吩类共轭聚合物由如下式Ⅳ的相同或不同的重复单元形成:
Figure PCTCN2022117783-appb-000002
所述羰基取代苯并二噻吩类共轭聚合物为包含式Ⅳ重复单元的均聚物或共聚物,可具有如下所示的任一种结构,但不局限于如下结构:
Figure PCTCN2022117783-appb-000003
其中,R 1、R 1-1、和R 2-1具有式I给出R 1的含义,R 2、R 1-2和R 2-2具有式I给出R 2的含义;Ar、Ar 1和Ar 2具有式I中给出Ar的含义,m和n为自然数且不同时为零。
本发明在第三方面提供了本发明在第一方面所述的羰基取代苯并二噻吩类共轭聚合物的制备方法,所述羰基取代苯并二噻吩类共轭聚合物通过以下方式制备而成:
在氮气或惰性气体保护下,使式II所示化合物与式III所示化合物在催化剂的作用下发生共聚反应,得到结构式如式I所示的羰基取代苯并二噻吩类共轭聚合物,反应式如下:
Figure PCTCN2022117783-appb-000004
其中,X 1、X 2相同或不同,独立地为氢、氟、氯、溴、碘、苯磺酰氧基、烷基苯磺酰氧基、氟代烷基苯磺酰氧基、烷基磺酰氧基、氟代烷基磺酰氧基、磷酸酯、烷基氟硅基、硼酸基、硼酸酯基、三烷基甲锡烷基或卤化锌基团;Y 1和Y 2与X 1和X 2相匹配。
本发明在第四方面提供了本发明在第二方面所述的羰基取代苯并二噻吩类共轭聚合物的制备方法,所述羰基取代苯并二噻吩类共轭聚合物通过以下方式制备而成:
在氮气或惰性气体保护下,使式II a所示化合物与式III a和式III b所示化合物在催化剂的作用下发生共聚反应,得到结构式如式I a所示的羰基取代苯并二噻吩类共轭聚合物,反应式如下:
Figure PCTCN2022117783-appb-000005
其中,X、Y分别具有如本发明在第三方面所给出X 1与Y 1的含义,m和n为自然数且不同时为零。
本发明在第五方面提供了本发明在第二方面所述的羰基取代苯并二噻吩类共轭聚合物的另一种制备方法,所述羰基取代苯并二噻吩类共轭聚合物通过以下方式制备而成:
在氮气或惰性气体保护下,使式II b和II c所示化合物与式III c所示化合物在催化剂的作用下发生共聚反应,得到结构式如式I b所示的羰基取代苯并二噻吩类共轭聚合物,反应式如下:
Figure PCTCN2022117783-appb-000006
其中,X、Y分别具有本发明在第四方面所给出X与Y的含义,m和n为自然数且不同时为零。
本发明在第六方面提供了一种聚合物共混物,所述聚合物共混物包含本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物和光电功能材料;优选的是,所述光电功能材料为具有半导体、电荷传输、电子/空穴传输、电子/空穴阻挡、导电、光导、光敏、光伏或发光性质的有机物或无机物中的一种或多种。
本发明在第七方面提供了一种组合物,所述组合物包含本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物或本发明在第六方面所述的聚合物共混物;与一种或多种溶剂。
本发明在第八方面提供了本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物或本发明在第六方面所述的聚合物共混物或本发明在第七方面所述的组合物在光学、电子学、电子、光探测、电致发光、光致发光、光电或者光伏器件中作为光电活性材料的应用;优选的是,所述光电活性材料包括半导体材料、电荷传输材料、光导材料、导电材料、发光材料、光敏材料或光伏材料中的一种或多种。
本发明在第九方面提供了一种器件,所述器件包含本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物或本发明在第六方面所述的聚合物共混物或本发明在第七方面所述的组合物;优选的是,所述器件为光学器件、光电学器件、电子器件、电致发光器件、光致发光器件、光探测器件或光伏器件。
本发明在第十方面提供了一种光活性层,所述光活性层包含本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物和n-型电子受体。
本发明在第十一方面提供了本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物或本发明在第十方面所述的光活性层在薄膜半导体器件、光探测器件、有机光伏器件、聚合物太阳能电池器件或光电器件中的应用。
本发明在第十二方面提供了一种聚合物太阳能电池器件,包括第一电极、与所述第一电极间隔开的第二电极以及在所述第一电极和所述第二电极之间设置的至少一层半导体层,所述半导体层包含本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物或本发明在第十方面所述的光活性层。
本发明与现有技术相比至少具有如下有益效果:
(1)本发明提供的羰基取代苯并二噻吩类中等带隙共轭聚合物材料,所述材料与窄带隙n-型电子受体材料在吸收上表现出很大的互补性,并且具有良好的电荷传输性能以及合适的能级,能够作为电子给体材料与窄带隙n-型电子受体材料匹配,应用于聚合物太阳能电池器件。
(2)本发明中的羰基取代苯并二噻吩类共轭聚合物合成简单、产率高、成本 低,并且制备的聚合物太阳能电池器件光谱响应范围宽,短路电流高,光电转换效率高,有望在聚合物太阳能电池的商业化中得到广泛的应用。
附图说明
图1为本发明实施例1和实施例7制备得到的聚合物P1和聚合物P7的吸收光谱以及小分子受体Y6的吸收光谱。
图2为本发明实施例1和实施例7制备得到的聚合物P1和聚合物P7对应的循环伏安曲线图。
图3为本发明实施例1和实施例7制备得到的聚合物P1和聚合物P7对应的热失重曲线图。
图4为本发明实施例1和实施例7制备得到的聚合物P1和聚合物P7与小分子受体Y6共混制成的聚合物太阳能电池器件的电流密度-电压(J-V)曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明在第一方面提供了一种羰基取代苯并二噻吩类共轭聚合物,所述羰基取代苯并二噻吩类共轭聚合物的结构式如式I所示:
Figure PCTCN2022117783-appb-000007
式I中,R 1、R 2相同或不同,独立地为烷基、取代烷基、烷氧基、烷硫基、硅烷基、芳基、杂环基或上述取代基中的两种或两种以上的组合;
式I中,Ar为以下任一种基团:
1)苯环、噻吩、呋喃、硒吩或碲吩;
2)苯环、噻吩、呋喃、硒吩或碲吩中的两个或两个以上同种或不同种芳环之间直接或通过桥连单元构筑的芳环体系;
3)由1)或2)中所述的单元之间以键连形式构筑的共轭体系;
式I中,n为正整数。
根据一些优选的实施方式,所述烷基、取代烷基、烷氧基、烷硫基、硅烷基或胺基独立地具有1-50个碳原子;所述取代烷基中含有的取代基为烷氧基、烷硫基、硅烷基、酰基、酰氧基、酰硫基、酯基、胺基、酰胺基、酰亚胺基、烯基、炔基、羧基、氰基、砜基、亚砜基、芳基、杂环基或上述取代基中的两种或两种以上的组合;所述芳基或杂环基为未被取代或者带有一个或多个取代基;所述R 1、R 2和各取代基中的一个或多个氢原子可独立地被氟、氯、溴、碘或氰基取代。
根据一些优选的实施方式,1)中所述的芳环、2)中所述的芳环体系或3)中所述的共轭体系中含有取代基,优选的是,所述取代基为氢原子、氟原子、烷基、取代烷基、烷氧基、烷硫基、芳基、芳烷基、杂环芳烷基、芳氧基、芳硫基、酰基、酰氧基、酰硫基、酯基、胺基、酰胺基、酰亚胺基、烯基、炔基、羧基、氰基或上述取代基中的两种或两种以上的组合;所述Ar中含有的取代基的碳原子数为1-50;所述Ar中含有的取代基中的一个或多个氢原子可独立地被氟、氯、溴、碘或氰基取代。
根据一些优选的实施方式,式I中,n≥1,优选为5≤n≤500。
本发明在第二方面提供一种羰基取代苯并二噻吩类共轭聚合物,所述羰基取代苯并二噻吩类共轭聚合物由如下式Ⅳ的相同或不同的重复单元形成:
Figure PCTCN2022117783-appb-000008
在式IV中,R 1、R 2、Ar具有式I中给出的含义;所述羰基取代苯并二噻吩类共轭聚合物为包含式Ⅳ重复单元的均聚物或共聚物;优选的是,所述共聚物为统计共聚物、交替共聚物、无规共聚物、嵌段共聚物和接枝共聚物中的一种或多种 的组合。
根据一些优选的实施方式,所述羰基取代苯并二噻吩类共轭聚合物为包含式Ⅳ重复单元的共聚物,且具有如下所示的任一种结构,但不局限于如下结构:
Figure PCTCN2022117783-appb-000009
其中,R 1、R 1-1、R 2-1具有本发明式I中给出的R 1的含义;R 2、R 1-2、R 2-2具有式I中给出的R 2的含义,Ar、Ar 1、Ar 2具有式I中给出的Ar的含义,m和n为自然数且不同时为零。
根据一些优选的实施方式,本发明的式I、式Ⅳ、式Ⅴ a和式Ⅴ b中,Ar、Ar 1和Ar 2具有如下所示的任一种结构,但不局限于以下结构:
Figure PCTCN2022117783-appb-000010
其中,R 3、R 4、R 5、R 6相同或不同,独立地为氢原子、氟原子、氯原子、烷基、烷氧基、烷硫基、芳烷基、酰基、酰氧基、酰硫基、酯基、胺基、酰胺基、酰亚胺基、烯基、炔基、羧基、氰基、砜基、亚砜基、芳基、杂环基或上述取代基中的两种或两种以上的组合;R 7、R 8相同或不同,独立地为烷基、烷氧基、芳基、芳氧基、酯基、酰基或上述取代基中的两种或两种以上的组合;在一些优选的实施例中,上述各Ar单元的取代基中的碳原子数为1-50,并且取代基中的一个或多个氢原子可任选地被氟、氯、溴、碘或氰基取代。
根据一些优选的实施方式,所述羰基取代苯并二噻吩类共轭聚合物具有如下 所示的任一种结构,但不局限于以下结构:
Figure PCTCN2022117783-appb-000011
其中,R 1和R 2具有本发明在式I中给出的含义,R 1-1、R 2-1具有式I中给出的R 1的含义,R 1-2、R 2-2具有式I中给出的R 2的含义,m和n为正整数,具有本发明在式I和Ⅴ a中给出的含义,R 3,R 4,R 5,R 6,R 7,R 8具有本发明在Ar单元结构中给出的取代基的含义;具体地,R 1、R 2、R 1-1、R 1-2、R 2-1、R 2-2相同或不同,独立地为烷基、取代烷基、烷氧基、烷硫基、硅烷基、胺基、芳基、杂环基或上述取代基中的两种或两种以上的组合;R 3、R 4、R 5、R 6相同或不同,独立地为氢原子、氟原子、氯原子、烷基、烷氧基、烷硫基、芳烷基、酰基、酰氧基、酰硫基、酯基、胺基、酰胺基、酰亚胺基、烯基、炔基、羧基、氰基、砜基、亚砜基、芳基、杂环基或上述取代基中的两种或两种以上的组合;R 7、R 8相同或不同,独立地为烷基、烷氧基、芳基、芳氧基、酯基、酰基或上述取代基中的两种或两种以上的组合;上述Ar单元的取代基中的碳原子数为1-50,并且Ar中含有的取代基中的一个或多个氢原子可任选地被氟、氯、溴、碘或氰基取代。
根据一些优选的实施方式,所述羰基取代苯并二噻吩类共轭聚合物为如下式P1至式P12所示的任一种聚合物,但不局限于如下所示的聚合物:
Figure PCTCN2022117783-appb-000012
Figure PCTCN2022117783-appb-000013
其中,m和n为正整数。
本发明式I所示的羰基取代苯并二噻吩类共轭聚合物和式Ⅳ所示的重复单元合成所用的单体和中间体可根据本领域技术人员已知的方法制备或通过商业途径 获得。
根据一些优选的实施方式,所述羰基取代苯并二噻吩类共轭聚合物通过芳基-芳基偶联反应制备而成;优选的是,所述芳基-芳基偶联反应为Negishi偶联反应、Suzuki偶联反应、Stille偶联反应或直接芳基化Direct Arylation偶联反应。
本发明在第三方面提供了本发明在第一方面所述的羰基取代苯并二噻吩类共轭聚合物的制备方法,所述羰基取代苯并二噻吩类共轭聚合物通过以下方式制备而成:
在氮气或惰性气体保护下,使式II所示化合物与式III所示化合物在催化剂的作用下发生共聚反应,得到结构式如式I所示的羰基取代苯并二噻吩类共轭聚合物,反应式如下:
Figure PCTCN2022117783-appb-000014
其中,R 1、R 2、Ar和n具有在前述式I中给出的含义;X 1、X 2相同或不同,独立地为氢、氟、氯、溴、碘、苯磺酰氧基、烷基苯磺酰氧基、氟代烷基苯磺酰氧基、烷基磺酰氧基、氟代烷基磺酰氧基、磷酸酯、烷基氟硅基、硼酸基、硼酸酯基、三烷基甲锡烷基或卤化锌基团等;Y 1和Y 2与X 1和X 2相匹配,具体地,例如Y 1和Y 2根据X 1和X 2基团和反应条件作出相应选择。
根据一些优选的实施方式,式III中基团Y 1和Y 2的选择依赖于式Ⅱ中基团X 1和X 2的选择:当X 1和X 2独立地为氯、溴、碘、苯磺酰氧基、烷基苯磺酰氧基、氟代烷基苯磺酰氧基、烷基磺酰氧基或氟代烷基磺酰氧基等时,Y 1和Y 2为氢、硼酸基、硼酸酯基、三烷基甲锡烷基或卤化锌基团等;当X 1和X 2独立地为氢、硼酸基、硼酸酯基、三烷基甲锡烷基或卤化锌基团等时,Y 1和Y 2为氯、溴、碘、苯磺酰氧基、烷基苯磺酰氧基、氟代烷基苯磺酰氧基、烷基磺酰氧基或氟代烷基磺酰氧基等。
根据一些具体的实施方式,所述羰基取代苯并二噻吩类共轭聚合物的制备通 过如下(a)-(d)中的任一种方式进行,但不局限于以下方式:
(a)当式Ⅱ或式III所示化合物为二(卤化锌基)芳烃化合物,相应的式III或式Ⅱ所示化合物为芳烃二卤化物时,采用Negishi偶联法制备式I所示羰基取代苯并二噻吩类共轭聚合物;
所述Negishi偶联法中各条件如下:
溶剂为四氢呋喃,催化剂为[1,2-双(二苯基膦基)乙烷]二氯化镍,所述催化剂的加入量为式Ⅱ所示化合物与式III所示化合物的总摩尔量的0.005%-10%;
式Ⅱ所示化合物与式III所示化合物的摩尔比为1:(0.8~1.5);
在0℃至溶剂回流的温度下进行反应;
反应时间为10分钟-72小时;
所述二(卤化锌基)芳烃化合物具体可为二(溴锌基)芳烃,所述芳烃二卤化物具体可为芳烃二溴化物;
(b)当式Ⅱ或式III所示化合物为芳烃二硼酸化合物或芳烃二硼酸酯化合物,相应的式III或式Ⅱ所示化合物为芳烃二卤化物时,采用Suzuki偶联法制备式I所示羰基取代苯并二噻吩类共轭聚合物;
所述Suzuki偶联法中各条件如下:
溶剂为四氢呋喃和/或甲苯,催化剂为四(三苯基膦)钯,所述催化剂的加入量为式Ⅱ所示化合物与式III所示化合物的总摩尔量的0.005%-10%;碱为碳酸钾、碳酸钠或碳酸氢钠,加入量为式Ⅱ所示化合物摩尔量的2-20倍;
式Ⅱ所示化合物与式III所示化合物的摩尔比为1:(0.8~1.5);
在0℃至溶剂回流的温度下进行反应;
反应时间为0.5-120小时。
(c)当式Ⅱ或式III所示化合物为二(三烷基锡基)芳烃化合物,相应的式III或式Ⅱ所示化合物为芳烃二卤化物时,采用Stille偶联法制备式I所示羰基取代苯并二噻吩类共轭聚合物;
所述Stille偶联法中各条件如下:
溶剂为四氢呋喃、甲苯、氯苯、二甲基甲酰胺DMF中的一种或多种,催化剂为四(三苯基膦)钯,二(三苯基膦)二氯化钯、二氯化钯、醋酸钯等过渡金属催化剂 中的一种或多种,所述催化剂的加入量为式Ⅱ所示化合物与式III所示化合物的总摩尔量的0.005%-10%;
式Ⅱ示化合物与式III所示化合物的摩尔比为1:(0.8~1.5);
在0℃至溶剂回流的温度下进行反应;
反应时间为5分钟-72小时;
所述二(三烷基锡基)芳烃化合物具体可为二(三甲基锡基)芳烃,所述芳烃二卤化物具体可为芳烃二溴化物。
(d)当式Ⅱ或式III所示化合物无预活化基团(取代基为氢原子),相应的式III或式Ⅱ所示化合物为芳烃二卤化物时,采用直接芳基化Direct Arylation偶联反应法制备式I所示羰基取代苯并二噻吩类共轭聚合物;
所述直接芳基化Direct Arylation偶联法中各条件如下:
溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、四氢呋喃、甲苯、二甲苯、氯苯中的一种或多种,催化剂为三(二亚苄基丙酮)二钯和/或醋酸钯,所述催化剂的加入量为式Ⅱ所示化合物与式III所示化合物的总摩尔量的0.005%-10%;
碱为碳酸盐、乙酸盐或磷酸盐,加入量为式Ⅱ所示化合物摩尔量的2-30倍;
可加入叔戊酸等作为添加剂,加入量为式Ⅱ所示化合物摩尔量的0.05-5倍;
可加入膦配体,如三(邻甲氧基苯基)膦、三叔丁基膦、三环己基膦、甲基二叔丁基膦,或膦化合物盐,加入量为式Ⅱ所示化合物与式III所示化合物的总摩尔量的0.005%-10%;
式Ⅱ所示化合物与式III所示化合物的摩尔比为1:(0.8~1.5);
反应温度为0-200℃,反应时间为5分钟-72小时;
所述芳烃二卤化物具体可为芳烃二溴化物或二碘化物。
本发明在第四方面提供了本发明在第二方面所述的羰基取代苯并二噻吩类共轭聚合物的制备方法,所述羰基取代苯并二噻吩类共轭聚合物通过以下方式制备而成:
在氮气或惰性气体保护下,使式II a所示化合物与式III a和式III b所示化合物在催化剂的作用下发生共聚反应,得到结构式如式I a所示的羰基取代苯并二噻吩类共轭聚合物,反应式如下:
Figure PCTCN2022117783-appb-000015
其中,X、Y分别具有本发明在第三方面所给出X 1与Y 1的含义;具体地,X独立地为氢、氟、氯、溴、碘、苯磺酰氧基、烷基苯磺酰氧基、氟代烷基苯磺酰氧基、烷基磺酰氧基、氟代烷基磺酰氧基、磷酸酯、烷基氟硅基、硼酸基、硼酸酯基、三烷基甲锡烷基或卤化锌基团等;Y与X相匹配,具体地,例如Y根据X基团和反应条件作出相应选择;式III a、III b中基团Y的选择依赖于式Ⅱ a中基团X的选择:当X独立地为氯、溴、碘、苯磺酰氧基、烷基苯磺酰氧基、氟代烷基苯磺酰氧基、烷基磺酰氧基或氟代烷基磺酰氧基等时,Y为氢、硼酸基、硼酸酯基、三烷基甲锡烷基或卤化锌基团等;当X独立地为氢、硼酸基、硼酸酯基、三烷基甲锡烷基或卤化锌基团等时,Y为氯、溴、碘、苯磺酰氧基、烷基苯磺酰氧基、氟代烷基苯磺酰氧基、烷基磺酰氧基或氟代烷基磺酰氧基等;m和n为自然数且不同时为零。
本发明在第五方面提供了本发明在第二方面所述的羰基取代苯并二噻吩类共轭聚合物的另一种制备方法,所述羰基取代苯并二噻吩类共轭聚合物通过以下方式制备而成:
在氮气或惰性气体保护下,使式II b和II c所示化合物与式III c所示化合物在催化剂的作用下发生共聚反应,得到结构式如式I b所示的羰基取代苯并二噻吩类共轭聚合物,反应式如下:
Figure PCTCN2022117783-appb-000016
其中,X、Y分别具有如本发明在第四方面所给出X与Y的含义;m和n为自然数且不同时为零。
本发明进一步涉及包含一种或者多种根据本发明所述的羰基取代苯并二噻吩类共轭聚合物、共聚物或聚合物共混物,与一种或多种溶剂的组合物,其中溶剂 优选有机溶剂。
本发明进一步涉及根据本发明的所述的羰基取代苯并二噻吩类共轭聚合物、共聚物、聚合物共混物和组合物在光学、光电学、电子、光探测、电致发光、光致发光或光伏器件或组件中作为光敏、光导、发光、光探测、导电、光伏、半导体或电荷传输等的用途。
本发明进一步涉及包含一种或者多种根据本发明的所述的羰基取代苯并二噻吩类共轭聚合物、共聚物、聚合物共混物或组合物的电荷传输、半导体、导电、光导、发光、光探测或光伏的材料或者组件。
本发明进一步涉及光学、光电学、电子学、光探测、电致发光、光致发光或光伏的器件或组件,其包含一种或多种根据本发明所述的羰基取代苯并二噻吩类共轭聚合物、共聚物、聚合物共混物、组合物、材料或者组件。
光学、光电学、电子、光探测、电致发光、光致发光和光伏器件或组件包括但不限于:有机场效应晶体管OFET、薄膜晶体管TFT、集成电路IC、逻辑电路、电容器、无线电射频识别RFID标签、元件或器件、有机发光二极管OLED、有机发光晶体管OLET、平板显示器、显示器背光照明、有机光伏器件OPV、体异质结BHJ有机光伏OPV器件、聚合物太阳能电池PSCs、太阳能电池、有机光电探测器OPD、光电探测器PD、激光二极管、光导体、光检测器、电子照相器件、电子照相记录器件、生物记忆器件、感应器件、电荷注入层、电荷传输层、电荷阻挡层、聚合物发光二极管PLED中的夹层或电荷传输层、有机等离子体激元发射二极管OPED、肖特基二极管、平面化层、抗静电膜、聚合物电解质膜PEM、导电基底、导电图案、电极材料、配向层、生物传感器、生物芯片、生物成像、安全标识、安全器件、以及用于检测和区别DNA序列的器件或组件。
本发明在第六方面提供了一种聚合物共混物,所述聚合物共混物包含本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物和光电功能材料;优选的是,所述光电功能材料为具有半导体、电荷传输、电子/空穴传输、电子/空穴阻挡、导电、光导、光敏、光伏或发光性质的有机物或无机物中的一种或多种。
本发明在第七方面提供了一种组合物,所述组合物包含本发明在第一方面或 第二方面所述的羰基取代苯并二噻吩类共轭聚合物或本发明在第六方面所述的聚合物共混物;与一种或多种溶剂;所述溶剂优选为有机溶剂。
本发明在第八方面提供了本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物或本发明在第六方面所述的聚合物共混物或本发明在第七方面所述的组合物在光学、电子学、电子、光探测、电致发光、光致发光、光电或者光伏器件中作为光电活性材料的应用;优选的是,所述光电活性材料包括半导体材料、电荷传输材料、光导材料、导电材料、发光材料、光敏材料、光伏材料中的一种或多种。
本发明在第九方面提供了一种器件或者组件,所述器件或者所述组件包含本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物或本发明在第六方面所述的聚合物共混物或本发明在第七方面所述的组合物;优选的是,所述器件为光学器件、光电学器件、电子器件、光探测器件、电致发光器件、光致发光器件或光伏器件;更优选的是,所述器件为有机场效应晶体管OFET、薄膜晶体管TFT、集成电路IC、逻辑电路、电容器、无线电射频识别RFID标签、有机发光二极管OLED、有机发光晶体管OLET、平板显示器、显示器背光照明、有机光伏OPV器件、体异质结BHJ有机光伏OPV器件、聚合物太阳能电池PSCs、太阳能电池、有机光电探测器OPD、光电探测器PD、激光二极管、光导体、光检测器、电子照相器件、电子照相记录器件、生物记忆器件、感应器件、电荷注入层、电荷传输层、电荷阻挡层、聚合物发光二极管PLED中的活性层或电荷传输层、有机等离子体激元发射二极管OPED、肖特基二极管、平面化层、抗静电膜、聚合物电解质膜PEM、导电基底、导电图案、电极材料、配向层、生物传感器、生物芯片、生物成像、安全标识、安全器件或用于检测和区别DNA序列的器件;进一步优选的是,所述器件为有机光伏OPV器件、聚合物太阳能电池PSCs或有机光电探测器OPD。
本发明在第十方面提供了一种光活性层,所述光活性层包含本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物和n-型电子受体;在一些优选的实施方式中,所述光活性层由本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物和n-型电子受体组成;优选的是,所述n-型电子受体 为小分子化合物或聚合物,更优选的是,所述n-型电子受体为末端带有吸电子单元的A-D-A型小分子化合物或末端带有吸电子单元的A-D-A型小分子化合物的聚合物。
根据一些优选的实施方式,所述羰基取代苯并二噻吩类共轭聚合物与所述n-型电子受体的质量比为1:(0.2~5)(例如1:0.2、1:0.3、1:0.4、1:0.5、1:0.6、1:0.7、1:0.8、1:0.9、1:1、1:1.2、1:1.5、1:1.8、1:2、1:2.2、1:2.5、1:2.8、1:3、1:3.5、1:4、1:4.5或1:5),优选为1:(0.5~2)(例如1:0.5、1:0.8、1:1、1:1.2、1:1.5、1:1.8或1:2),更优选为1:1。
根据一些优选的实施方式,所述光活性层由光活性层溶液形成,所述光活性层溶液的配制为:采用甲苯、二甲苯、三甲苯、苯甲醚、甲基四氢呋喃、氯仿、氯苯、二氯苯中的至少一种溶剂或包含其中至少一种溶剂的混合物将本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物和n-型电子受体混合均匀,得到所述光活性层溶液;优选的是,所述光活性层溶液中含有的所述羰基取代苯并二噻吩类共轭聚合物的浓度为0.5~80mg/mL(例如0.5、1、5、10、15、20、25、30、35、40、45、50、60、70或80mg/mL),更优选为4~20mg/mL(例如4、8、10、12、15、18或20mg/mL),所述光活性层溶液中含有的所述n-型电子受体的浓度为0.5~60mg/mL(例如0.5、1、5、10、15、20、25、30、35、40、45、50、55或60mg/mL),更优选为3~20mg/mL(例如3、8、10、12、15、18或20mg/mL)。
本发明在第十一方面提供了本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物或本发明在第十方面所述的光活性层在薄膜半导体器件、光探测器件、有机光伏器件、聚合物太阳能电池器件或光电器件中的应用。
本发明在第十二方面提供了一种聚合物太阳能电池器件,包括第一电极、与所述第一电极间隔开的第二电极以及在所述第一电极和所述第二电极之间设置的至少一层半导体层,所述半导体层包含本发明在第一方面或第二方面所述的羰基取代苯并二噻吩类共轭聚合物或本发明在第十方面所述的光活性层。
下文将通过举例的方式对本发明进行进一步的说明,但是本发明的保护范围不限于这些实施例。本发明还可有其它多种实施例,在不背离本发明精神及其实 质的情况下,熟悉本领域的技术人员可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
下述实施例中所使用的实验方法未详细说明部分为本领域技术人员公知技术。
以下实施例中,努力确保所用数字(包括量、温度、反应时间等)的准确性,但应考虑到一些实验误差和偏差。除非另外指出,在以下实施例中所用的压力为大气压或接近大气压。所用溶剂都是以HPLC级购得,并且所有反应都是在氮气或氩气惰性气氛下进行,除非另外指出,所有试剂和原料可从商业途径获得或可根据本领域技术人员已知的方法制备。
实施例1:式P1所示聚合物的合成
Figure PCTCN2022117783-appb-000017
按照上述反应方程式进行,取单体M1和M2各0.3mmol,将其溶于甲苯(6mL)和DMF(1mL)的混合溶剂后,用氩气排空气5分钟,再加入催化剂四(三苯基膦)钯(8mg)后继续排空气10分钟,然后在反应体系回流温度下反应48小时后停止加热。将反应混合物冷却至室温,慢慢滴加到甲醇(50mL)中,沉析出的固体聚合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经过浓缩后,滴加到甲醇中,产生的沉淀经过抽滤,真空干燥一天后得到深色有金属光泽固体即为式P1所示的羰基取代苯并二噻吩类共轭聚合物(简记为聚合物P1),产率为96%。
实施例2:式P2所示聚合物的合成
Figure PCTCN2022117783-appb-000018
按照上述反应方程式进行,取单体M1和M3各0.3mmol,将其溶于甲苯(6mL)和DMF(1mL)的混合溶剂后,用氩气排空气5分钟,再加入催化剂四(三苯基膦)钯(12mg)后继续排空气10分钟,然后在体系回流温度下反应30小时后停止加热。将反应混合物冷却至室温,慢慢滴入到甲醇(50mL)中,沉析出的固体聚合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天后得到深色固体粉末即为式P2所示的羰基取代苯并二噻吩类共轭聚合物(简记为聚合物P2),产率为95%。
实施例3:式P3所示聚合物的合成
Figure PCTCN2022117783-appb-000019
按照上述反应方程式进行,取单体M4和M5各0.3mmol、碳酸氢钠1mmol,加入甲苯(10mL)和去离子水(4mL),用氮气排空气5分钟,再加入催化剂四(三苯基膦)钯(12mg)后继续排空气10分钟,然后在反应体系回流温度下反应48小时后停止加热。将反应混合物冷却至室温,慢慢滴入到甲醇(50mL)中,沉析出的固体聚合物经甲醇充分洗涤后,在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后,滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天得到深红色固体粉末即式P3所示的羰基取代苯并二噻吩类共轭聚合物(简 记为聚合物P3),产率为82%。
实施例4:式P4所示聚合物的合成
Figure PCTCN2022117783-appb-000020
按照上述反应方程式进行,取单体M6和M7各0.3mmol,0.15mmol叔戊酸、1mmol碳酸钾、0.015mmol三(二亚苄基丙酮)二钯、0.03mmol三(邻甲氧基苯基)膦,加入2mL邻二甲苯,通过冷冻-抽气-解冻用氮气净化体系三次。然后在100℃下反应24小时后停止加热。冷却至室温后,将反应混合物用10mL三氯甲烷稀释后,慢慢滴入到甲醇(50mL)中,沉析出的固体聚合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天得到深色固体粉末即为式P4所示的羰基取代苯并二噻吩类共轭聚合物(简记为聚合物P4),产率为97%。
实施例5:式P5所示聚合物的合成
Figure PCTCN2022117783-appb-000021
按照上述反应方程式进行,取单体M8和M9各0.3mmol,将其溶于甲苯(6mL)和DMF(1mL)的混合溶剂后,用氩气排空气5分钟,再加入催化剂四(三苯基膦)钯(8mg)后继续排空气10分钟,然后在体系回流温度下反应30小时后停止加热。将反应混合物冷却至室温,慢慢滴入到甲醇(50mL)中,沉析出的固体聚合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天后得到深红色固体粉末即为式P5所示的羰基取代苯并二噻吩类共轭聚合物(简记为聚合物P5),产率为88%。
实施例6:式P6所示聚合物的合成
Figure PCTCN2022117783-appb-000022
按照上述反应方程式进行,取单体M10和M11各0.3mmol,将其溶于甲苯(6mL)和DMF(1mL)的混合溶剂后,用氩气排空气5分钟,再加入催化剂四(三苯基膦)钯(8mg)后继续排空气10分钟,然后在反应体系回流温度下反应8小时后停止加热。将反应混合物冷却至室温,用三氯甲烷稀释后慢慢滴入到甲醇(50mL)中,沉析出的固体聚合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天后得到深色固体粉末即为P6所示的羰基取代苯并二噻吩类共轭聚合物(简记为聚合物P6),产率为81%。
实施例7:式P7所示聚合物的合成
Figure PCTCN2022117783-appb-000023
按照上述反应方程式进行,取单体M12和M13各0.3mmol,将其溶于甲苯(6mL)和DMF(0.5mL)的混合溶剂后,用氮气排空气5分钟,再加入催化剂四(三苯基膦)钯(8mg)后继续排空气10分钟,然后在反应体系回流温度下反应12小时后停止加热。将反应混合物冷却至室温后用三氯甲烷稀释,混合液慢慢滴入到甲醇(50mL)中,沉析出的固体聚合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天后得到深红色固体粉末即式P7所示的羰基取代苯并二噻吩类共轭聚合物(简记 为聚合物P7),产率为86%。
实施例8:式P8所示聚合物的合成
Figure PCTCN2022117783-appb-000024
按照上述反应方程式进行,取单体M14和M15各0.3mmol,将其溶于甲苯(6mL)和DMF(1mL)的混合溶剂后,用氩气排空气5分钟,再加入催化剂四(三苯基膦)钯(8mg)后继续排空气10分钟,然后在反应体系回流温度下反应36小时后停止加热。将反应混合物冷却至室温,慢慢滴入到甲醇(50mL)中,沉析出的固体聚合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天后得到深红色固体粉末即式P8所示的羰基取代苯并二噻吩类共轭聚合物(简记为聚合物P8),产率为90%。
实施例9:式P9所示聚合物的合成
Figure PCTCN2022117783-appb-000025
按照上述反应方程式进行,取单体M16和M17各0.3mmol,将其溶于甲苯(6mL)和DMF(1mL)的混合溶剂后,用氮气排空气5分钟,再加入催化剂四(三苯基膦)钯(8mg)后继续排空气10分钟,然后在反应体系回流温度下反应36小时后停止加热。将反应混合物冷却至室温,慢慢滴入到甲醇(50mL)中,沉析出的固体聚 合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天得到深色固体粉末即式P9所示的羰基取代苯并二噻吩类共轭聚合物(简记为聚合物P9),产率为92%。
实施例10:式P10所示聚合物的合成
Figure PCTCN2022117783-appb-000026
按照上述反应方程式进行,取单体M18和M19各0.3mmol,将其溶于甲苯(6mL)和DMF(0.6mL)的混合溶剂后,用氮气排空气5分钟,再加入催化剂四(三苯基膦)钯(8mg)后继续排空气10分钟,然后在反应体系回流温度下反应36小时后停止加热。将反应混合物冷却至室温后,慢慢滴入到甲醇(50mL)中,沉析出的固体聚合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天得到深红色固体粉末即式P10所示的羰基取代苯并二噻吩类共轭聚合物(简记为聚合物P10),产率为93%。
实施例11:式P11所示聚合物的合成
Figure PCTCN2022117783-appb-000027
按照上述反应方程式进行,取单体M1(0.3mmol)、M2(0.15mmol)和M3(0.15mmol),溶于甲苯(6mL)和DMF(1mL)的混合溶剂后,用氩气排空气5分钟,再加入催化剂四(三苯基膦)钯(8mg)后继续排空气10分钟,然后在反应体系回流温度下反应36小时后停止加热。将反应混合物冷却至室温,慢慢滴入到甲醇(50mL)中,沉析出的固体聚合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天得到 深色固体粉末即式P11所示的羰基取代苯并二噻吩类共轭聚合物(简记为聚合物P11),产率为89%。
实施例12:式P12所示聚合物的合成
Figure PCTCN2022117783-appb-000028
按照上述反应方程式进行,取单体M1(0.2mmol)、M2(0.3mmol)和M20(0.1mmol),溶于甲苯(6mL)和DMF(1mL)的混合溶剂后,用氩气排空气5分钟,再加入催化剂四(三苯基膦)钯(8mg)后继续排空气10分钟,然后在反应体系回流温度下反应36小时后停止加热。将反应混合物冷却至室温,慢慢滴入到甲醇(50mL)中,沉析出的固体聚合物在索氏提取器内依次用甲醇、正己烷和三氯甲烷充分洗涤。三氯甲烷溶液经浓缩后滴入到甲醇中,产生的沉淀经抽滤后,真空干燥一天得到深色固体粉末即式P12所示的羰基取代苯并二噻吩类共轭聚合物(简记为聚合物P12),产率为86%。
实施例13:本发明所述的羰基取代苯并二噻吩类共轭聚合物的溶解性和成膜性测试
将实施例1至实施例12制备的聚合物P1至P12分别放入常见的几种有机溶剂中,如氯苯、二氯苯、氯仿、三氯苯、甲苯、甲醇等。发现聚合物P1至P12在氯化溶剂中具有良好的溶解性,但在甲醇中不可溶。将聚合物P1至P12的任一种的氯苯溶液旋涂在石英片上,均可制得高品质的薄膜。
实施例14:利用紫外光谱仪测定本发明所述的羰基取代苯并二噻吩类共轭聚合物的吸收光谱和光学带隙
将实施例1和实施例7制备的聚合物P1和聚合物P7溶于氯仿,通过旋涂制备薄膜,其吸收光谱如图1所示。聚合物的光学带隙可由公式(E g opt=1240/λ edge)计算并示于表1中。
表1:聚合物P1和聚合物P7薄膜的光学性能。
聚合物 λ max(nm) λ edge(nm) E g opt(eV)
P1 626 671 1.85
P7 550 678 1.83
实施例1和实施例7制备的聚合物P1和聚合物P7薄膜的最大吸收(λ max)分别为626nm和550nm,吸收边(λ edge)分别为671nm和678nm,对应的光学带隙分别为1.85eV和1.83eV。结果表明本发明制备的聚合物P1和聚合物P7均为典型的中等带隙共轭聚合物材料。本发明实施例中的其它聚合物可以采用相同的方式获得相应的吸收光谱和光学带隙。
实施例15:利用电化学循环伏安法测定本发明所述的羰基取代苯并二噻吩类共轭聚合物的能级
将实施例1和实施例7制备的聚合物P1和聚合物P7(约0.5mg)溶解在氯仿中,然后将该溶液滴至工作电极如铂片上形成聚合物薄膜;使用0.1mol/L四丁基六氟磷酸铵的乙腈溶液作为电解液;以铂丝作为对电极;以银/银离子电极作为参比电极,通过测定聚合物P1和聚合物P7的氧化和还原起始电位,计算该聚合物的最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)能级。本发明实施例1和实施例7制备的聚合物P1和聚合物P7的循环伏安曲线如图2所示。本发明实施例1和实施例7制备的聚合物P1和聚合物P7的HOMO能级分别为-5.48eV和-5.26eV,LUMO能级分别为-3.65eV和-3.44eV。本发明实施例1和实施例7制备的聚合物P1和聚合物P7合适的分子能级保证了其在聚合物太阳能电池中作为给体材料的应用。本发明实施例中的其它聚合物可以采用相同的方式获得其相应的HOMO和LUMO能级。
实施例16:利用热重分析法(TGA)测定本发明所述的羰基取代苯并二噻吩类共轭聚合物的热稳定性
采用热重分析仪测定了本发明实施例1和实施例7制备的聚合物P1和聚合物P7在室温到800℃温度范围内(氮气气氛)的热失重情况,测试结果曲线示于图3。本发明实施例1和实施例7制备的聚合物P1和聚合物P7的热分解温度(5%失重)分别为366℃和342℃,表明聚合物P1和聚合物P7具有良好的热稳定性,可 以应用于多种光电器件,比如太阳能电池、发光器件和光电探测器等。本发明实施例中的其它聚合物可以采用相同的方式表征其热稳定性能。
实施例17:通过常规结构的聚合物太阳能电池器件测试本发明所述的羰基取代苯并二噻吩类共轭聚合物的光伏性能
将本发明实施例1和实施例7所制得的聚合物P1和聚合物P7分别与商业化的小分子受体Y6以重量比为1:1共混溶解于氯仿中制备总浓度为12mg/mL的光活性层溶液。在透明氧化铟锡(ITO)导电玻璃衬底上制备聚合物太阳能电池器件。将常用的阳极修饰层聚3,4-亚乙基二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)旋涂在ITO表面进行修饰,PEDOT:PSS层的厚度为30nm。随后旋涂上述光活性层溶液制备光活性层薄膜(活性层厚度约为100nm)。然后在10 -4Pa的压力(绝对压力)下相继蒸镀钙(20nm)和铝(80nm)电极层,得到常规结构ITO/PEDOT:PSS/光活性层/Ca/Al的聚合物太阳能电池器件。使用太阳光模拟器在AM1.5G(100mW/cm 2)条件下对所制备的聚合物太阳能电池器件的特性参数,如开路电压、短路电流、填充因子和能量转换效率(即光电转换效率)进行测试;小分子受体Y6的结构式为:
Figure PCTCN2022117783-appb-000029
本发明实施例1和实施例7制备得到的聚合物P1和聚合物P7与小分子受体Y6共混制成的聚合物太阳能电池器件的电流密度-电压(J-V)曲线如图4所示。聚合物P1对应的聚合物太阳能电池器件的开路电压为0.83V,短路电流为27.32mA/cm 2,填充因子为0.71,能量转换效率为16.10%。聚合物P7对应的聚合物太阳能电池器件的开路电压为0.60V,短路电流为20.02mA/cm 2,填充因子为0.68,能量转换效率为8.18%。本发明实施例中的其它聚合物可以采用相同或类似的方式获得相应的光伏性能。结果如表2所示。
表2:聚合物P1至P12对应的聚合物太阳能电池器件的光伏性能参数。
Figure PCTCN2022117783-appb-000030
本发明未详细说明部分为本领域技术人员公知技术。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (21)

  1. 一种羰基取代苯并二噻吩类共轭聚合物,其特征在于,结构式如式I所示:
    Figure PCTCN2022117783-appb-100001
    式I中,R 1、R 2相同或不同,独立地为烷基、取代烷基、烷氧基、烷硫基、硅烷基、胺基、芳基、杂环基或上述取代基中的两种或两种以上的组合;
    式I中,Ar为以下任一种基团:
    1)苯环、噻吩、呋喃、硒吩或碲吩;
    2)苯环、噻吩、呋喃、硒吩或碲吩中的两个或两个以上同种或不同种芳环之间直接或通过桥连单元构筑的芳环体系;
    3)由1)或2)中所述的单元之间以键连形式构筑的共轭体系;
    式I中,n为正整数。
  2. 根据权利要求1所述的羰基取代苯并二噻吩类共轭聚合物,其特征在于:
    所述烷基、取代烷基、烷氧基、烷硫基、硅烷基或胺基独立地具有1-50个碳原子;
    所述取代烷基中含有的取代基为烷氧基、烷硫基、硅烷基、酰基、酰氧基、酰硫基、酯基、胺基、酰胺基、酰亚胺基、烯基、炔基、羧基、氰基、砜基、亚砜基、芳基、杂环基或上述取代基中的两种或两种以上的组合;
    所述芳基或杂环基为未被取代或者带有一个或多个取代基;
    所述R 1、R 2和各取代基中的一个或多个氢原子可独立地被氟、氯、溴、碘或氰基取代。
  3. 根据权利要求1所述的羰基取代苯并二噻吩类共轭聚合物,其特征在于:
    1)中的芳环、2)中所述的芳环体系或3)中所述的共轭体系中含有取代基,优选的是,所述取代基为氢原子、氟原子、烷基、取代烷基、烷氧基、烷硫基、芳基、芳烷基、杂环芳烷基、芳氧基、芳硫基、酰基、酰氧基、酰硫基、酯基、 胺基、酰胺基、酰亚胺基、烯基、炔基、羧基、氰基或上述取代基中的两种或两种以上的组合;
    所述Ar中含有的烷基的碳原子数为1-50;
    所述Ar中含有的取代基中的一个或多个氢原子可独立地被氟、氯、溴、碘或氰基取代;
    式I中,n≥1,优选为5≤n≤500。
  4. 根据权利要求1所述的羰基取代苯并二噻吩类共轭聚合物,其特征在于,式I中,Ar具有如下所示的任一种结构,但不局限于以下结构:
    Figure PCTCN2022117783-appb-100002
    其中,R 3、R 4、R 5、R 6相同或不同,独立地为氢原子、氟原子、氯原子、烷基、烷氧基、烷硫基、芳烷基、酰基、酰氧基、酰硫基、酯基、胺基、酰胺基、酰亚胺基、烯基、炔基、羧基、氰基、砜基、亚砜基、芳基、杂环基或上述取代基中的两种或两种以上的组合;R 7、R 8相同或不同,独立地为烷基、烷氧基、芳基、芳氧基、酯基、酰基或上述取代基中的两种或两种以上的组合。
  5. 根据权利要求1或4所述的羰基取代苯并二噻吩类共轭聚合物,其特征在于,所述羰基取代苯并二噻吩类共轭聚合物具有如下所示的任一种结构,但不局限于以下结构:
    Figure PCTCN2022117783-appb-100003
    其中,R 1、R 2、R 1-1、R 1-2、R 2-1、R 2-2相同或不同,独立地为烷基、取代烷基、烷氧基、烷硫基、硅烷基、胺基、芳基、杂环基或上述取代基中的两种或两种以上的组合;R 3、R 4、R 5、R 6、R 7、R 8具有权利要求4中给出的含义;m、n为正整数。
  6. 根据权利要求1所述的羰基取代苯并二噻吩类共轭聚合物,其特征在于,所述羰基取代苯并二噻吩类共轭聚合物为如下式P1至式P10所示的任一种聚合物,但不局限于如下所示的聚合物:
    Figure PCTCN2022117783-appb-100004
    Figure PCTCN2022117783-appb-100005
    Figure PCTCN2022117783-appb-100006
    其中,n为正整数。
  7. 根据权利要求1所述的羰基取代苯并二噻吩类共轭聚合物,其特征在于:
    所述羰基取代苯并二噻吩类共轭聚合物通过芳基-芳基偶联反应制备而成;
    优选的是,所述芳基-芳基偶联反应为Suzuki偶联反应、Stille偶联反应、Negishi偶联反应或直接芳基化Direct Arylation偶联反应。
  8. 一种羰基取代苯并二噻吩类共轭聚合物,其特征在于,所述羰基取代苯并二噻吩类共轭聚合物由如下式Ⅳ的相同或不同的重复单元形成:
    Figure PCTCN2022117783-appb-100007
    所述羰基取代苯并二噻吩类共轭聚合物为包含式Ⅳ重复单元的均聚物或共聚物;
    优选的是,所述共聚物为统计共聚物、交替共聚物、无规共聚物、嵌段共聚物和接枝共聚物中的一种或多种的组合;
    更优选的是,所述羰基取代苯并二噻吩类共轭聚合物为包含式Ⅳ重复单元的共聚物,且具有如下所示的任一种结构,但不局限于如下结构:
    Figure PCTCN2022117783-appb-100008
    其中,R 1、R 1-1和R 2-1具有如权利要求1或2所给出R 1的含义,R 2、R 1-2和R 2-2具有如权利要求1或2所给出R 2的含义;Ar、Ar 1和Ar 2具有如权利要求1或3所给出Ar的含义;m、n为自然数且不同时为零。
  9. 根据权利要求8所述的羰基取代苯并二噻吩类共轭聚合物,其特征在于,所述羰基取代苯并二噻吩类共轭聚合物为如下式P11或式P12所示的聚合物,但不局限于如下所示的聚合物:
    Figure PCTCN2022117783-appb-100009
    其中,m、n为正整数。
  10. 根据权利要求8所述的羰基取代苯并二噻吩类共轭聚合物,其特征在于:
    所述羰基取代苯并二噻吩类共轭聚合物通过芳基-芳基偶联反应制备而成;
    优选的是,所述芳基-芳基偶联反应为Suzuki偶联反应、Stille偶联反应、Negishi偶联反应或直接芳基化Direct Arylation偶联反应。
  11. 根据权利要求1至7中任一项所述的羰基取代苯并二噻吩类共轭聚合物的制备方法,其特征在于,所述羰基取代苯并二噻吩类共轭聚合物通过以下方式制备而成:
    在氮气或惰性气体保护下,使式II所示化合物与式III所示化合物在催化剂的作用下发生共聚反应,得到结构式如式I所示的羰基取代苯并二噻吩类共轭聚合 物,反应式如下:
    Figure PCTCN2022117783-appb-100010
    其中,X 1、X 2相同或不同,独立地为氢、氟、氯、溴、碘、苯磺酰氧基、烷基苯磺酰氧基、氟代烷基苯磺酰氧基、烷基磺酰氧基、氟代烷基磺酰氧基、磷酸酯、烷基氟硅基、硼酸基、硼酸酯基、三烷基甲锡烷基或卤化锌基团;Y 1和Y 2与X 1和X 2相匹配;
    优选的是,当X 1和X 2独立地为氯、溴、碘、苯磺酰氧基、烷基苯磺酰氧基、氟代烷基苯磺酰氧基、烷基磺酰氧基或氟代烷基磺酰氧基时,Y 1和Y 2为氢、硼酸基、硼酸酯基、三烷基甲锡烷基或卤化锌基团;当X 1和X 2独立地为氢、硼酸基、硼酸酯基、三烷基甲锡烷基或卤化锌基团时,Y 1和Y 2为氯、溴、碘、苯磺酰氧基、烷基苯磺酰氧基、氟代烷基苯磺酰氧基、烷基磺酰氧基或氟代烷基磺酰氧基。
  12. 根据权利要求8至10中任一项所述的羰基取代苯并二噻吩类共轭聚合物的制备方法,其特征在于,所述羰基取代苯并二噻吩类共轭聚合物通过以下方式制备而成:
    在氮气或惰性气体保护下,使式II a所示化合物与式III a和式III b所示化合物在催化剂的作用下发生共聚反应,得到结构式如式I a所示的羰基取代苯并二噻吩类共轭聚合物,反应式如下:
    Figure PCTCN2022117783-appb-100011
    其中,X、Y分别具有如权利要求11所给出X 1与Y 1的含义;m、n为自然数 且不同时为零。
  13. 根据权利要求8至10中任一项所述的羰基取代苯并二噻吩类共轭聚合物的制备方法,其特征在于,所述羰基取代苯并二噻吩类共轭聚合物通过以下方式制备而成:
    在氮气或惰性气体保护下,使式II b和式II c所示化合物与式III c所示化合物在催化剂的作用下发生共聚反应,得到结构式如式I b所示的羰基取代苯并二噻吩类共轭聚合物,反应式如下:
    Figure PCTCN2022117783-appb-100012
    其中,X、Y分别具有如权利要求12所给出X和Y的含义;m、n为自然数且不同时为零。
  14. 一种聚合物共混物,其特征在于,所述聚合物共混物包含权利要求1至7中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求8至10中任一项所述的羰基取代苯并二噻吩类共轭聚合物和光电功能材料;
    优选的是,所述光电功能材料为具有半导体、电荷传输、电子/空穴传输、电子/空穴阻挡、导电、光导、光敏、光伏或发光性质的有机物或无机物中的一种或多种。
  15. 一种组合物,其特征在于,所述组合物包含权利要求1至7中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求8至10中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求14所述的聚合物共混物;与一种或多种溶剂。
  16. 权利要求1至7中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求8至10中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求14所述的聚合物共混物或权利要求15所述的组合物在光学、电子学、电子、光探测、电致发光、光致发光、光电或者光伏器件中作为光电活性材料的应用;
    优选的是,所述光电活性材料包括半导体材料、电荷传输材料、光导材料、 导电材料、发光材料、光敏材料或光伏材料中的一种或多种。
  17. 一种器件,其特征在于,所述器件包含权利要求1至7中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求8至10中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求14所述的聚合物共混物或权利要求15所述的组合物;
    优选的是,所述器件为光学器件、光电学器件、电子器件、电致发光器件、光致发光器件、光探测器件或光伏器件;
    更优选的是,所述器件为有机场效应晶体管OFET、薄膜晶体管TFT、集成电路IC、逻辑电路、电容器、无线电射频识别RFID标签、有机发光二极管OLED、有机发光晶体管OLET、平板显示器、显示器背光照明、有机光伏OPV器件、体异质结BHJ有机光伏OPV器件、聚合物太阳能电池PSCs、太阳能电池、有机光电探测器OPD、光电探测器PD、激光二极管、光导体、光检测器、电子照相器件、电子照相记录器件、生物记忆器件、感应器件、电荷注入层、电荷传输层、电荷阻挡层、聚合物发光二极管PLED中的活性层或电荷传输层、有机等离子体激元发射二极管OPED、肖特基二极管、平面化层、抗静电膜、聚合物电解质膜PEM、导电基底、导电图案、电极材料、配向层、生物传感器、生物芯片、生物成像、安全标识、安全器件或用于检测和区别DNA序列的器件;
    进一步优选的是,所述器件为有机光伏OPV器件、聚合物太阳能电池PSCs或有机光电探测器OPD。
  18. 一种光活性层,其特征在于:所述光活性层包含权利要求1至7中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求8至10中任一项所述的羰基取代苯并二噻吩类共轭聚合物和n-型电子受体。
  19. 根据权利要求18所述的光活性层,其特征在于:
    所述n-型电子受体为小分子化合物或聚合物;优选的是,所述n-型电子受体为末端带有吸电子单元的A-D-A型小分子化合物或末端带有吸电子单元的A-D-A型小分子化合物的聚合物;和/或
    所述羰基取代苯并二噻吩类共轭聚合物与所述n-型电子受体的质量比为1:(0.2~5),优选为1:(0.5~2),更优选为1:1;和/或
    所述光活性层由光活性层溶液形成,所述光活性层溶液的配制为:采用溶剂将权利要求1至7中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求8至10中任一项所述的羰基取代苯并二噻吩类共轭聚合物和n-型电子受体混合均匀,得到所述光活性层溶液;
    所述溶剂优选为甲苯、二甲苯、三甲苯、苯甲醚、甲基四氢呋喃、氯仿、氯苯、二氯苯中的至少一种溶剂或包含其中至少一种溶剂的混合物;
    所述光活性层溶液中含有的所述羰基取代苯并二噻吩类共轭聚合物中浓度优选为0.5~80mg/mL,更优选为4~20mg/mL,所述光活性层溶液中含有的所述n-型电子受体的浓度为0.5~60mg/mL,更优选为3~20mg/mL。
  20. 权利要求1至7中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求8至10中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求18或19所述的光活性层在薄膜半导体器件、光探测器件、有机光伏器件、聚合物太阳能电池器件或光电器件中的应用。
  21. 一种聚合物太阳能电池器件,其特征在于,包括第一电极、与所述第一电极间隔开的第二电极以及在所述第一电极和所述第二电极之间设置的至少一层半导体层,所述半导体层包含权利要求1至7中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求8至10中任一项所述的羰基取代苯并二噻吩类共轭聚合物或权利要求18或19所述的光活性层。
PCT/CN2022/117783 2021-12-17 2022-09-08 一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用 WO2023109207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111555373.1 2021-12-17
CN202111555373.1A CN114195988B (zh) 2021-12-17 2021-12-17 一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023109207A1 true WO2023109207A1 (zh) 2023-06-22

Family

ID=80655146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117783 WO2023109207A1 (zh) 2021-12-17 2022-09-08 一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114195988B (zh)
WO (1) WO2023109207A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195988B (zh) * 2021-12-17 2023-05-23 陕西师范大学 一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用
CN117603227B (zh) * 2024-01-23 2024-04-05 内蒙古大学 一种近红外二区有机荧光化合物在制备生物成像造影剂和在血管荧光成像中的应用
CN117757044B (zh) * 2024-02-22 2024-05-24 橙子(辽宁)材料科技有限公司 一种聚合物光伏材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103249799A (zh) * 2010-09-02 2013-08-14 默克专利股份有限公司 含新型光活性聚合物的光伏电池
CN103502228A (zh) * 2011-04-28 2014-01-08 默克专利股份有限公司 新颖光敏聚合物
US20140124035A1 (en) * 2010-01-05 2014-05-08 Merck Patent Gmbh Photovoltaic cell with benzodithiophene-containing polymer
CN104105734A (zh) * 2012-02-15 2014-10-15 默克专利股份有限公司 共轭聚合物
JP2016157009A (ja) * 2015-02-25 2016-09-01 国立大学法人 筑波大学 発光素子およびそれを備えたレーザーデバイス
CN109791987A (zh) * 2016-10-05 2019-05-21 默克专利有限公司 有机半导体化合物
CN113527641A (zh) * 2021-07-31 2021-10-22 常州大学 一类基于酯基侧链取代喹喔啉衍生物的聚合物材料及应用
CN114195988A (zh) * 2021-12-17 2022-03-18 陕西师范大学 一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140043387A (ko) * 2011-05-16 2014-04-09 메르크 파텐트 게엠베하 공액 중합체

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124035A1 (en) * 2010-01-05 2014-05-08 Merck Patent Gmbh Photovoltaic cell with benzodithiophene-containing polymer
CN103249799A (zh) * 2010-09-02 2013-08-14 默克专利股份有限公司 含新型光活性聚合物的光伏电池
CN103502228A (zh) * 2011-04-28 2014-01-08 默克专利股份有限公司 新颖光敏聚合物
CN104105734A (zh) * 2012-02-15 2014-10-15 默克专利股份有限公司 共轭聚合物
JP2016157009A (ja) * 2015-02-25 2016-09-01 国立大学法人 筑波大学 発光素子およびそれを備えたレーザーデバイス
CN109791987A (zh) * 2016-10-05 2019-05-21 默克专利有限公司 有机半导体化合物
CN113527641A (zh) * 2021-07-31 2021-10-22 常州大学 一类基于酯基侧链取代喹喔啉衍生物的聚合物材料及应用
CN114195988A (zh) * 2021-12-17 2022-03-18 陕西师范大学 一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUSHIDA SOH, BRAAM DANIEL, DAO THANG DUY, SAITO HITOSHI, SHIBASAKI KOSUKE, ISHII SATOSHI, NAGAO TADAAKI, SAEKI AKINORI, KUWABARA J: "Conjugated Polymer Blend Microspheres for Efficient, Long-Range Light Energy Transfer", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 10, no. 5, 24 May 2016 (2016-05-24), US , pages 5543 - 5549, XP093071958, ISSN: 1936-0851, DOI: 10.1021/acsnano.6b02100 *
SHIBASAKI KOSUKE, TABATA KENICHI, YAMAMOTO YOHEI, YASUDA TAKESHI, KIJIMA MASASHI: "Syntheses and Photovoltaic Properties of Narrow Band Gap Donor–Acceptor Copolymers with Carboxylate-Substituted Benzodithiophene as Electron Acceptor Unit", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 47, no. 15, 12 August 2014 (2014-08-12), US , pages 4987 - 4993, XP093071955, ISSN: 0024-9297, DOI: 10.1021/ma501078e *

Also Published As

Publication number Publication date
CN114195988A (zh) 2022-03-18
CN114195988B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2023109207A1 (zh) 一种羰基取代苯并二噻吩类共轭聚合物及其制备方法和应用
Wu et al. Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications
Zhang et al. Bulk-heterojunction solar cells with benzotriazole-based copolymers as electron donors: largely improved photovoltaic parameters by using PFN/Al bilayer cathode
EP2762514B1 (en) Composition having changeable solubility, hole transport material composition, and organic electronic element produced using each of said compositions
Beaujuge et al. Green Dioxythiophene-Benzothiadiazole Donor− Acceptor Copolymers for Photovoltaic Device Applications
TWI490250B (zh) 高分子化合物、含有該化合物之薄膜及印墨組成物
Sonar et al. Thiophene–benzothiadiazole–thiophene (D–A–D) based polymers: effect of donor/acceptor moieties adjacent to D–A–D segment on photophysical and photovoltaic properties
JP5762745B2 (ja) 光電子デバイス
WO2013018951A1 (ko) 3,6-카바졸을 포함하는 전도성 고분자 및 이를 이용한 유기태양전지
TWI518106B (zh) 具有碳簇構造之高分子化合物及使用該化合物之有機裝置
Lai et al. Syntheses of New 3, 6‐Carbazole‐Based Donor/Acceptor Conjugated Copolymers for Optoelectronic Device Applications
JP2016534544A (ja) 有機電子デバイスの電子注入層における使用のための改善された電子移動組成物
US9150696B2 (en) Process for the preparation of polymers containing benzohetero [1,3] diazole units
US20080083455A1 (en) Organic photovoltaic cell and manufacturing method therefor
Tamilavan et al. Synthesis of N-[4-Octylphenyl] dithieno [3, 2-b: 2′, 3′-d] pyrrole-based broad absorbing polymers and their photovoltaic applications
Lozano-Hernández et al. Structurally simple OLEDs based on a new fluorinated poly (oxindolylidenearylene)
Zhang et al. Direct Arylation Polycondensation of β-Fluorinated Bithiophenes to Polythiophenes: Effect of Side Chains in C–Br Monomers
Lu et al. Conjugated polymers containing sulfonic acid fluorene unit for achieving multiple interfacial modifications in fullerene-free organic solar cells
Gao et al. Cyclometalated Pt complex based random terpolymers as electron acceptors for all polymer solar cells
Scaria et al. Synthesis of fluorene based two acceptor random copolymers for organic solar cell applications
Do et al. Indenofluorene-based-copolymers: Influence of electron-deficient benzothiadiazole (BT) and benzooxadiazole (BO) moieties on light emitting devices
US8519077B2 (en) N-type conjugated compounds containing diborylene units, methods of making, and a device comprising the compound
Lian et al. Synthesis and photovoltaic properties of silafluorene copolymers substituted by carbazole and triphenylamine pendants
Lee et al. A new intramolecular donor–acceptor polyfluorene copolymer for bulk heterojunction solar cells
Lee et al. A new narrow bandgap polyfluorene copolymer containing 2, 6-bis-(3-hexyl-thiophen-2-yl)-anthraquinone unit for solar cell applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE