WO2023109044A1 - 一种含二氧化碳捕集吸收剂的废液的处理系统及方法 - Google Patents

一种含二氧化碳捕集吸收剂的废液的处理系统及方法 Download PDF

Info

Publication number
WO2023109044A1
WO2023109044A1 PCT/CN2022/098647 CN2022098647W WO2023109044A1 WO 2023109044 A1 WO2023109044 A1 WO 2023109044A1 CN 2022098647 W CN2022098647 W CN 2022098647W WO 2023109044 A1 WO2023109044 A1 WO 2023109044A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste liquid
carbon dioxide
membrane
separation device
ceramic membrane
Prior art date
Application number
PCT/CN2022/098647
Other languages
English (en)
French (fr)
Inventor
郑棹方
郜时旺
刘练波
牛红伟
郭东方
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能国际电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能国际电力股份有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023109044A1 publication Critical patent/WO2023109044A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the application belongs to the technical field of waste liquid treatment, and in particular relates to a waste liquid treatment system and method containing a carbon dioxide capture absorbent.
  • pre-combustion decarbonization post-combustion decarbonization
  • post-combustion flue gas carbon dioxide capture technology oxygen-enriched combustion technology.
  • the pre-combustion capture technology based on IGCC may be the route with the lowest energy consumption, but there is no commercial IGCC power station in my country, and more than 600 million kilowatts of power generation installed capacity are traditional coal-fired power stations.
  • the post-combustion flue gas carbon dioxide capture technology is the most suitable technology for traditional coal-fired power plants and has achieved commercial demonstration.
  • the post-combustion flue gas carbon dioxide capture technology has become one of the most effective means to reduce unit carbon emissions.
  • alkaline chemical absorption liquid is usually used to absorb carbon dioxide, such as amines such as alcohol amine, potassium alkali and ammonia water.
  • the power plant When the power plant uses chemical absorption to capture carbon dioxide, it will use a variety of devices. After carbon dioxide capture is adopted, a small amount of carbon dioxide capture absorbent will remain in these devices. In this field, tap water or reclaimed water is usually used to flush these devices. During the production process, a large amount of flushing waste liquid of carbon dioxide absorbent is produced. Flushing the waste liquid after the carbon dioxide capture absorbent becomes one of the difficulties faced by the power plant. At present, the combustion method is generally used for the treatment of waste liquid with very little content of carbon dioxide capture absorbent, but this method will pollute the environment and is only suitable for small amount of waste liquid, not suitable for treating large amount of waste liquid. low efficiency.
  • the technical problem to be solved in this application is to overcome the low efficiency of using the combustion method to treat the flushing waste liquid of the carbon dioxide capture absorbent in the prior art.
  • This method is not suitable for treating a large amount of waste liquid and causes pollution to the environment. , thereby providing a treatment system and method for waste liquid containing carbon dioxide capture absorbent.
  • the application provides a waste liquid treatment system containing carbon dioxide capture absorbent, comprising:
  • a flocculation device in which the waste liquid and the flocculant are mixed to form a mixed liquid
  • a membrane separation device communicated with the flocculation device; a plurality of ceramic membrane modules are arranged in the membrane separation device, and the ceramic membrane modules are arranged vertically; the ceramic membrane modules include ceramic membranes, and the flow direction of the mixed liquid is vertical on the ceramic membrane.
  • the area of the ceramic membrane is 45-55m 2 , the porosity is 30-40%, the pore diameter is 60nm, and the membrane flux is 90-110L/(m 2 ⁇ h).
  • the shape of the ceramic membrane module is flat.
  • the composition of the material of the ceramic membrane includes aluminum oxide and/or titanium oxide.
  • the top of the membrane separation device is provided with a mixed liquid inlet, and the mixed liquid is passed into the membrane separation device.
  • the top of the membrane separation device is provided with a clean water discharge outlet, and the clean water discharge outlet is arranged on both sides of the membrane separation device opposite to the mixed liquid inlet.
  • the present application also provides a processing method for the above-mentioned processing system, comprising the following steps,
  • the waste liquid is mixed with the flocculant to form a mixed liquid
  • the mixed solution is separated by membrane to obtain clean water
  • the flocculant is polyaluminum chloride.
  • the amount of flocculant in the mixed solution is 20-30mg/L.
  • the molar concentration of the carbon dioxide capture absorbent in the waste liquid is not more than 0.2mol/L;
  • the carbon dioxide capture absorbent is an organic amine solution
  • the organic amine solution is at least one of monoethanolamine, methyldiethanolamine and piperazine.
  • the pressure of the membrane separation is 0.2-0.3MPa.
  • the waste liquid treatment system containing carbon dioxide capture absorbent provided by the application, the treatment system includes a flocculation device and a membrane separation device, the waste liquid and the flocculant are mixed in the flocculation device to form a mixed liquid, and the membrane separation device and the described
  • the flocculation device is connected;
  • the membrane separation device includes a plurality of ceramic membrane modules, and the ceramic membrane modules are arranged vertically;
  • the ceramic membrane module includes ceramic membranes, and the flow direction of the mixed liquid is perpendicular to the ceramic membranes.
  • the treatment system is suitable for treating the flushing waste liquid with extremely low content of carbon dioxide absorbent (the molar concentration of carbon dioxide capture absorbent in the waste liquid is less than 0.2mol/L), and has a large processing capacity (the daily processing scale of each ceramic membrane can reach 150m 2 ), high efficiency; the treatment system also has the advantages of high pressure resistance, heat resistance, good chemical stability, and operating costs.
  • the treatment system When treating waste liquid containing carbon dioxide capture absorbent, no harmful substances will be produced, which is environmentally friendly Sex is extremely high.
  • the treatment system of this application combines the flocculation device and the membrane separation device, which can effectively remove the carbon dioxide capture absorbent in the waste liquid.
  • the flocculation device performs micro-flocculation treatment on the waste liquid.
  • the organic colloids are destabilized to form flocs with larger particle sizes, which can be intercepted by the ceramic membrane, effectively reducing the organic matter in the water.
  • the cooperation between the flocculation device and the membrane separation device can greatly remove waste liquid. of organic matter.
  • a large number of particles, flocs, and organic colloids form a filter cake layer on the surface of the ceramic membrane.
  • the filter cake layer can remove organic matter with a large molecular weight through adsorption and sieving, which further improves the removal rate of particles and organic molecules.
  • the waste liquid treatment system containing carbon dioxide capture absorbent provided by this application can further improve the removal effect of carbon dioxide absorbent in waste liquid by controlling the parameters such as the pore size, membrane area, and membrane flux of the ceramic membrane.
  • the mixed liquid enters through the top of the membrane separation device, allowing the flocculation process and the membrane separation process to proceed simultaneously, improving the removal rate of particulate matter and organic molecules, and also increasing the reaction time between the waste liquid and the flocculant.
  • the method for treating waste liquid containing carbon dioxide capture absorbent comprises: mixing the waste liquid with a flocculant to form a mixed liquid, and the mixed liquid is separated by a membrane to obtain clean water, and the flocculant is aluminum chloride.
  • the method can treat waste liquid with extremely low content of carbon dioxide capture absorbent, and has high treatment efficiency.
  • the daily treatment scale of each ceramic membrane can reach 150m 2 .
  • This treatment method uses polyaluminum chloride as a flocculant, combines micro-flocculation and membrane separation, and uses the coagulation principle of compression double layer and adsorption electric neutralization to remove carbon dioxide capture absorbent (organic carbon dioxide) in waste liquid. amine molecule), suitable for treating waste liquid with a molar concentration of carbon dioxide capture absorbent lower than 0.2mol/L.
  • Figure 1 is a treatment system for waste liquid containing carbon dioxide capture absorbent in Example 1 of the present application.
  • 1-Flocculation device 2-Boost pump; 3-Flow meter; 4-First pressure gauge; 5-Membrane separation device; 6-Clean water tank; 7-First valve; 8-Second pressure gauge; 9- second valve;
  • 5-1-ceramic membrane module 5-1-ceramic membrane module; 5-2-mixed liquid inlet; 5-3-clean water outlet;
  • This embodiment provides a waste liquid treatment system containing carbon dioxide capture absorbent, as shown in Figure 1, including,
  • the flocculation device 1 is equipped with a stirrer 1-1 for uniformly mixing waste liquid and flocculant to obtain a mixed liquid; the waste liquid is waste water containing carbon dioxide capture absorbent.
  • the membrane separation device 5 communicates with the flocculation device 1; the membrane separation device 5 is provided with a plurality of ceramic membrane modules 5-1, the ceramic membrane modules 5-1 are vertically arranged in the membrane separation device 5, and the top of the membrane separation device 5 is provided with The mixed solution inlet 5-2 and the purified water outlet 5-3, the mixed solution inlet 5-2 and the purified water outlet 5-3 are relatively arranged on both sides of the membrane separation device 5, and the ceramic membrane module 5-1 is provided with a ceramic
  • the membrane 5-1-1 is also provided with a ceramic membrane support for placing the ceramic membrane.
  • the top of the ceramic membrane module 5-1 is provided with a clean water outlet 5-1-2.
  • the number of ceramic membrane assemblies 5-1 in the membrane separation device 5 can be 2, 3, 4, 5, etc., the number is not specifically limited, the shape of the ceramic membrane module can be but not limited to a flat shape; the material of the ceramic membrane 5-1-1 can be but not limited to alumina, or It is a mixed material of alumina and titanium oxide.
  • the area of the ceramic membrane is 45-55m 2 , the porosity is 30-40%, the pore diameter is 60-70nm, and the membrane flux is 90-110L/(m 2 ⁇ h).
  • the treatment system also includes a booster pump 2, which is arranged between the flocculation device 1 and the membrane separation device 5, to pressurize the mixed liquid and improve the efficiency of membrane separation.
  • the treatment system also includes a clean water tank 6, which communicates with the membrane separation device 5, and is used for containing the separated clean water.
  • the processing system also includes a flow meter 3 for monitoring the flow of the mixed liquid.
  • the treatment system also includes a first pressure gauge 4, a second pressure gauge 8, a first valve 7 and a second valve 9, the first pressure gauge is used to monitor the pressure of the mixed liquid entering the membrane separation device, and the second pressure gauge The meter is used to monitor the pressure of the clean water discharged from the membrane separation device, the first valve is used to control whether the mixed liquid flows out, and the second valve is used to control whether the clean water is discharged.
  • This embodiment provides a waste liquid treatment system containing carbon dioxide capture absorbent, including:
  • the flocculation device 1 is equipped with a stirrer 1-1 for uniformly mixing waste liquid and flocculant to obtain a mixed liquid; the waste liquid is waste water containing carbon dioxide capture absorbent.
  • the membrane separation device 5 communicates with the flocculation device 1; the membrane separation device 5 is provided with four ceramic membrane modules 5-1, the ceramic membrane modules 5-1 are vertically arranged in the membrane separation device 5, and the top of the membrane separation device 5 is provided with a mixing
  • the liquid inlet 5-2 and the clean water discharge port 5-3, the mixed liquid inlet 5-2 and the clean water discharge port 5-3 are relatively arranged on both sides of the membrane separation device 5, and a ceramic membrane module 5-1 is provided with a
  • the ceramic membrane 5-1-1 is also provided with a ceramic membrane support for placing the ceramic membrane.
  • the top of the ceramic membrane module is provided with a clean water outlet 5-1-2.
  • the ceramic membrane module 5-1 After the mixed solution enters the ceramic membrane module 5-1, its flow The direction is perpendicular to the ceramic membrane, and purified water is obtained after being separated by the ceramic membrane.
  • the purified water is first discharged from the ceramic membrane module through the purified water outlet 5-1-2, merged with the purified water discharged from other ceramic membrane modules, and then passes through the purified water outlet 5-3 is discharged from the membrane separation device 5; the shape of the ceramic membrane module is flat, wherein the material of the ceramic membrane is alumina, the area of the ceramic membrane is 50m 2 , the porosity is 35%, the pore diameter is 65nm, and the membrane flux It is 100L/(m 2 ⁇ h).
  • the booster pump 2 is arranged between the flocculation device 1 and the membrane separation device 5 to pressurize the mixed liquid and improve the efficiency of membrane separation.
  • the clean water tank 6 communicates with the membrane separation device 5 and is used to contain the separated clean water.
  • the flow meter 3 is used to monitor the flow of the mixed liquid.
  • the first pressure gauge 4, the second pressure gauge 8, the first valve 7 and the second valve 9 the first pressure gauge is used to monitor the pressure of the mixed liquid entering the membrane separation device, and the second pressure gauge is used to monitor the pressure from the membrane separation device
  • the pressure of the discharged clean water, the first valve is used to control whether the mixed liquid flows out, and the second valve is used to control whether the clean water is discharged.
  • This embodiment provides a treatment method for waste liquid containing carbon dioxide capture absorbent, using the treatment system provided in Example 2, the treatment method includes the following steps,
  • waste liquid Take 1 L of waste liquid and 25 mg of polyaluminum chloride and mix them uniformly in the flocculation device 1 to form a mixed liquid at a stirring speed of 400 r/min; the waste liquid is waste water containing monoethanolamine, and the molar concentration of monoethanolamine is 0.1mol/min. L.
  • the mixed liquid is pressurized and enters the membrane separation device 5 for separation to obtain clean water.
  • the pressure of the mixed liquid after pressurization is 0.3 MPa.
  • This comparative example provides a treatment method for waste liquid containing carbon dioxide capture absorbent. Only the membrane separation device in the treatment system of Example 2 is used, the flocculation device is removed, and the waste liquid is directly transported to the inside of the membrane separation device. The method includes the following steps,
  • the waste liquid After being pressurized, the waste liquid enters the membrane separation device 5 for separation to obtain clean water, and the pressure of the mixed liquid after the pressurization is 0.3 MPa.
  • the waste liquid is waste water containing monoethanolamine, and the molar concentration of monoethanolamine is 0.1mol/L.
  • This test example provides the performance test of purified water after separation in Example 3 and Comparative Example 1.
  • the test method is as follows, and the test results are shown in Table 1.
  • the test method for COD in waste liquid and purified water is the potassium dichromate method.
  • test method of ammonia nitrogen in waste liquid and purified water is distillation-neutralization titration method, refer to HJ 537-2009.
  • the design influent refers to the waste liquid entering the treatment system
  • the designed effluent refers to the expected purified water obtained after being treated by the treatment system
  • the actual effluent refers to the purified water actually obtained after being treated by the treatment system.

Abstract

本申请属于废液处理技术领域,具体涉及一种含二氧化碳捕集吸收剂的废液的处理系统及方法。该处理系统包括絮凝装置和膜分离装置,废液与絮凝剂在絮凝装置中混合形成混合液,膜分离装置与絮凝装置连通;膜分离装置中包括多个陶瓷膜组件,陶瓷膜组件垂直设置;陶瓷膜组件包括陶瓷膜,混合液的流动方向垂直于所述陶瓷膜。该处理系统适于处理二氧化碳吸收剂含量极低的冲洗废液,且处理量大(每个陶瓷膜日处理规模可达150m 2),效率高;该处理系统还具有耐高压、耐热,化学稳定性好,运行成本等优点,在处理含二氧化碳捕集吸收剂的废液时,不会产生对环境有害的物质,环保性极高。

Description

一种含二氧化碳捕集吸收剂的废液的处理系统及方法
相关申请的交叉引用
本申请要求在2021年12月16日提交中国专利局、申请号为202111543469.6、发明名称为“一种含二氧化碳捕集吸收剂的废液的处理系统及方法”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请属于废液处理技术领域,具体涉及一种含二氧化碳捕集吸收剂的废液的处理系统及方法。
背景技术
我国有近40-50%的二氧化碳排放来自燃煤发电,在电厂开展二氧化碳捕集是我国最重要的碳减排技术路径之一。目前,电厂二氧化碳捕集技术路线主要有三种:燃烧前脱碳、燃烧后脱碳(燃烧后烟气二氧化碳捕集技术)和富氧燃烧技术。其中基于IGCC的燃烧前捕集技术可能是能耗最低的路线,但我国没有商业化的IGCC电站,且超过6亿千瓦的发电装机是传统燃煤电站。而燃烧后烟气二氧化碳捕集技术是最适合传统燃煤电厂并且已经实现商业化示范的技术,燃烧后烟气二氧化碳捕集技术成为降低单位碳排放量的最有效手段之一。
化学吸收法可以处理大体积的废气,即使在低二氧化碳浓度下(从各种来源排放的燃烧废气中二氧化碳含量范围为8-15%)也具有很高的清除效率。因此,基于化学吸收法吸收燃烧后烟气中的二氧化碳是目前主流的碳捕集技术手段。在工业上,通常选用呈碱性的化学吸收液来吸收二氧化碳,如醇胺、钾碱和氨水等胺类。
电厂采用化学吸收法对二氧化碳进行捕集时会用到多种装置,采用二氧化碳捕集后,这些装置中会残留少量的二氧化碳捕集吸收剂。本领域通常采用自来水或中水对这些装置进行冲洗,在生产过程中产生大量的二氧化碳吸收剂的冲洗废液,这些废液是稀释的有机胺溶液,含量极少,处理起来较为困难,如何处理冲洗二氧化碳捕集吸收剂后的废液成为电厂面临的难题之一。目前,对于二氧化碳捕集吸收剂含量极少的废液的处理方法一般采用燃烧法,但是该方法会给环境造成污染,只适用于量少的废液,不适合处理量大的废液,处理效率低。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中采用燃烧法处理二氧化碳捕集吸收剂的冲洗废液的效率低,该方法不适合处理量大的废液,且对环境造成污染等缺陷,从而提供了一种含二氧化碳捕集吸收剂的废液的处理系统及方法。
为此,本申请提供了以下技术方案。
本申请提供了一种含二氧化碳捕集吸收剂的废液的处理系统,包括,
絮凝装置,废液与絮凝剂在所述絮凝装置中混合形成混合液;
膜分离装置,与所述絮凝装置连通;所述膜分离装置内设有多个陶瓷膜组件,所述陶瓷膜组件垂直设置;所述陶瓷膜组件包括陶瓷膜,所述混合液的流动方向垂直于所述陶瓷膜。
所述陶瓷膜的面积为45-55m 2,孔隙率为30-40%,孔径为60nm,膜通量为90-110L/(m 2·h)。
所述陶瓷膜组件的形状为平板状。
所述陶瓷膜的材质的组分包括氧化铝和/或氧化钛。
所述膜分离装置的顶部设有混合液入口,将所述混合液通入膜分离装置。
所述膜分离装置的顶部设有净水排出口,所述净水排出口与所述混合液入口相对设置在膜分离装置的两侧。
本申请还提供了一种上述处理系统的处理方法,包括以下步骤,
废液与絮凝剂混合后形成混合液;
混合液经膜分离后得到净水;
所述絮凝剂为聚合氯化铝。
所述混合液中絮凝剂的用量为20-30mg/L。
所述废液中的二氧化碳捕集吸收剂的摩尔浓度不大于0.2mol/L;
所述二氧化碳捕集吸收剂为有机胺溶液;
所述有机胺溶液为一乙醇胺、甲基二乙醇胺和哌嗪中的至少一种。
所述膜分离的压力为0.2-0.3MPa。
本申请技术方案,具有如下优点:
1.本申请提供的含二氧化碳捕集吸收剂的废液的处理系统,该处理系统包括絮凝装置和膜分离装置,废液与絮凝剂在絮凝装置中混合形成混合液,膜分离装置与所述絮凝装置连通;所述膜分离装置中包括多个陶瓷膜组件,所述陶瓷膜组件垂直设置;所述陶瓷膜组件包括陶瓷膜,所述混合液的流动方向垂直于所述陶瓷膜。该处理系统适于处理二氧化碳吸收剂含量极低的冲洗废液(废液中二氧化碳捕集吸收剂的摩尔浓度小于0.2mol/L),且处理量大(每个陶瓷膜日处理规模可达150m 2),效率高;该处理系统还具有耐高压、耐热,化学稳定性好,运行成本等优点,在处理含二氧化碳捕集吸收剂的废液时,不会产生对环 境有害的物质,环保性极高。
本申请处理系统将絮凝装置和膜分离装置结合起来,可以有效去除废液中的二氧化碳捕集吸收剂。絮凝装置对废液进行微絮凝处理,有机胶体失稳形成较大粒径的絮凝体可被陶瓷膜截留,有效降低水中的有机物,絮凝装置和膜分离装置配合作用可以极大的去除废液中的有机物。此外,大量颗粒、絮凝体、有机胶体在陶瓷膜表面形成滤饼层,滤饼层通过吸附、筛分可以去除分子量较大的有机物,进一步提高了颗粒物和有机分子的去除率。
2.本申请提供的含二氧化碳捕集吸收剂的废液的处理系统,通过控制陶瓷膜的孔径、膜面积、膜通量等参数,可以进一步提高废液中二氧化碳吸收剂的去除效果。
混合液通过膜分离装置顶部进入,可以让絮凝过程与膜分离过程同时进行,提高颗粒物和有机分子的去除率,也能增加废液与絮凝剂的反应时间。
3.本申请提供的含二氧化碳捕集吸收剂的废液的处理方法,该方法包括,废液与絮凝剂混合后形成混合液,混合液经膜分离后得到净水,所述絮凝剂为聚合氯化铝。该方法可以处理二氧化碳捕集吸收剂含量极低的废液,处理效率高,每个陶瓷膜的日处理规模可达150m 2。该处理方法以聚合氯化铝作为絮凝剂,将微絮凝和膜分离两种工艺结合起来,利用压缩双电层和吸附电中和的混凝原理去除废液中的二氧化碳捕集吸收剂(有机胺分子),适用于处理二氧化碳捕集吸收剂摩尔浓度低于0.2mol/L的废液。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中含二氧化碳捕集吸收剂的废液的处理系统。
附图标记:
1-絮凝装置;2-增压泵;3-流量计;4-第一压力表;5-膜分离装置;6-净水池;7-第一阀门;8-第二压力表;9-第二阀门;
1-1-搅拌器;
5-1-陶瓷膜组件;5-2-混合液入口;5-3-净水排出口;
5-1-1-陶瓷膜;5-1-2-净水出口。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语、“上”、“下”、“垂直”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“连通”、“连接”应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之 间未构成冲突就可以相互结合。
实施例1
本实施例提供了一种含二氧化碳捕集吸收剂的废液的处理系统,如图1所示,包括,
絮凝装置1,絮凝装置1内设有搅拌器1-1,用于将废液和絮凝剂混合均匀,得到混合液;废液为含二氧化碳捕集吸收剂的废水。
膜分离装置5,与絮凝装置1连通;膜分离装置5内设有多个陶瓷膜组件5-1,陶瓷膜组件5-1垂直设置在膜分离装置5内,膜分离装置5的顶部设有混合液入口5-2和净水排出口5-3,混合液入口5-2和净水排出口5-3相对设置在膜分离装置5的两侧,陶瓷膜组件5-1内设有陶瓷膜5-1-1,还设置有陶瓷膜支架,用于放置陶瓷膜,陶瓷膜组件5-1的顶部设置有净水出口5-1-2,混合液进入陶瓷膜组件5-1后,其流动方向与陶瓷膜5-1-1垂直,经陶瓷膜5-1-1分离后得到净水,净水先通过净水出口5-1-2从陶瓷膜组件5-1排出,与其它陶瓷膜组件排出的净水汇合,再经净水排出口5-3从膜分离装置5排出;在本实施例中,膜分离装置5内的陶瓷膜组件5-1的数量可以是2个、3个、4个、5个等,对该数量不做具体限定,陶瓷膜组件的形状可以是但不限于平板状;陶瓷膜5-1-1的材质可以是但不限于氧化铝,还可以是氧化铝和氧化钛的混合材料,陶瓷膜的面积为45-55m 2,孔隙率为30-40%,孔径为60-70nm,膜通量为90-110L/(m 2·h)。
进一步地,该处理系统还包括增压泵2,设置在絮凝装置1和膜分离装置5之间,为混合液加压,提高膜分离的效率。
进一步地,该处理系统还包括净水池6,与膜分离装置5连通,用于盛放分离后的净水。
进一步地,该处理系统还包括流量计3,用于监测混合液的流量。
进一步地,该处理系统还包括第一压力表4、第二压力表8、第一阀门7和第二阀门9,第一压力表用于监测进入膜分离装置的混合液的压力,第二压力表用于监测从膜分离装置排出的净水的压力,第一阀门用于控制混合液是否流出,第二阀门用于控制净水是否排出。
实施例2
本实施例提供了一种含二氧化碳捕集吸收剂的废液的处理系统,包括,
絮凝装置1,絮凝装置1内设有搅拌器1-1,用于将废液和絮凝剂混合均匀,得到混合液;废液为含二氧化碳捕集吸收剂的废水。
膜分离装置5,与絮凝装置1连通;膜分离装置5内设有4个陶瓷膜组件5-1,陶瓷膜组件5-1垂直设置在膜分离装置5内,膜分离装置5顶部设有混合液入口5-2和净水排出口5-3,混合液入口5-2和净水排出口5-3相对设置在膜分离装置5的两侧,陶瓷膜组件5-1内设有1块陶瓷膜5-1-1,还设置有陶瓷膜支架,用于放置陶瓷膜,陶瓷膜组件的顶部设置有净水出口5-1-2,混合液进入陶瓷膜组件5-1后,其流动方向与陶瓷膜垂直,经陶瓷膜分离后得到净水,净水先通过净水出口5-1-2从陶瓷膜组件排出,与其它陶瓷膜组件排出的净水汇合,再经净水排出口5-3从膜分离装置5排出;陶瓷膜组件的形状为平板状,其中,陶瓷膜的材质为氧化铝,陶瓷膜的面积为50m 2,孔隙率为35%,孔径为65nm,膜通量为100L/(m 2·h)。
增压泵2,设置在絮凝装置1和膜分离装置5之间,为混合液加压,提高膜分离的效率。
净水池6,与膜分离装置5连通,用于盛放分离后的净水。
流量计3,用于监测混合液的流量。
第一压力表4、第二压力表8、第一阀门7和第二阀门9,第一压力表用于 监测进入膜分离装置的混合液的压力,第二压力表用于监测从膜分离装置排出的净水的压力,第一阀门用于控制混合液是否流出,第二阀门用于控制净水是否排出。
实施例3
本实施例提供了一种含二氧化碳捕集吸收剂的废液的处理方法,采用实施例2提供的处理系统,该处理方法包括如下步骤,
取1L废液与25mg聚合氯化铝在絮凝装置1中经搅拌混合均匀,形成混合液,搅拌的速度为400r/min;废液为含有一乙醇胺的废水,一乙醇胺的摩尔浓度为0.1mol/L。
混合液经增压后进入到膜分离装置5进行分离,得到净水,增压后的混合液压力为0.3MPa。
对比例1
本对比例提供了一种含二氧化碳捕集吸收剂的废液的处理方法,只采用实施例2处理系统中的膜分离装置,去掉絮凝装置,直接将废液输送至膜分离装置内部,该处理方法包括如下步骤,
废液经增压后进入到膜分离装置5进行分离,得到净水,增压后的混合液压力为0.3MPa。废液为含有一乙醇胺的废水,一乙醇胺的摩尔浓度为0.1mol/L。
试验例
本试验例提供了实施例3和对比例1分离后净水的性能测试,测试方法具体如下,测试结果见表1。
废液和净水中COD的测试方法为重铬酸钾法。
废液和净水中氨氮测试方法为蒸馏-中和滴定法,参照HJ 537-2009。
表1 实施例和对比例的性能测试结果
Figure PCTCN2022098647-appb-000001
注:设计进水是指进入处理系统的废液;设计出水是指预期的经处理系统处理后得到的净水;实际出水是指实际经处理系统处理后得到的净水。
根据表1的结果,可以知道的是本申请提供的处理系统对含二氧化碳捕集吸收剂的废液具有较好的去除效果,有效去除废液中的有机分子和颗粒物和等物质。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种含二氧化碳捕集吸收剂的废液的处理系统,其特征在于,包括,
    絮凝装置,废液与絮凝剂在所述絮凝装置中混合形成混合液;
    膜分离装置,与所述絮凝装置连通;所述膜分离装置内设有多个陶瓷膜组件,所述陶瓷膜组件垂直设置;所述陶瓷膜组件包括陶瓷膜,所述混合液的流动方向垂直于所述陶瓷膜。
  2. 根据权利要求1所述的处理系统,其特征在于,所述陶瓷膜的面积为45-55m 2,孔隙率为30-40%,孔径为60nm,膜通量为90-110L/(m 2·h)。
  3. 根据权利要求1或2所述的处理系统,其特征在于,所述陶瓷膜组件的形状为平板状。
  4. 根据权利要求1-3中任一项所述的处理系统,其特征在于,所述陶瓷膜的材质的组分包括氧化铝和/或氧化钛。
  5. 根据权利要求1-4中任一项所述的处理系统,其特征在于,所述膜分离装置的顶部设有混合液入口,将所述混合液通入膜分离装置。
  6. 根据权利要求5所述的处理系统,其特征在于,所述膜分离装置的顶部 设有净水排出口,所述净水排出口与所述混合液入口相对设置在膜分离装置的两侧。
  7. 一种采用权利要求1-6中任一项所述处理系统的处理方法,其特征在于,包括以下步骤,
    废液与絮凝剂混合后形成混合液;
    混合液经膜分离后得到净水;
    所述絮凝剂为聚合氯化铝。
  8. 根据权利要求7所述的处理方法,其特征在于,所述混合液中絮凝剂的用量为20-30mg/L。
  9. 根据权利要求7或8所述的处理方法,其特征在于,所述废液中的二氧化碳捕集吸收剂的摩尔浓度不大于0.2mol/L;
    所述二氧化碳捕集吸收剂为有机胺溶液;
    所述有机胺溶液为一乙醇胺、甲基二乙醇胺和哌嗪中的至少一种。
  10. 根据权利要求7-9中任一项所述的处理方法,其特征在于,所述膜分离的压力为0.2-0.3MPa。
PCT/CN2022/098647 2021-12-16 2022-06-14 一种含二氧化碳捕集吸收剂的废液的处理系统及方法 WO2023109044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111543469.6 2021-12-16
CN202111543469.6A CN114133072A (zh) 2021-12-16 2021-12-16 一种含二氧化碳捕集吸收剂的废液的处理系统及方法

Publications (1)

Publication Number Publication Date
WO2023109044A1 true WO2023109044A1 (zh) 2023-06-22

Family

ID=80382593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098647 WO2023109044A1 (zh) 2021-12-16 2022-06-14 一种含二氧化碳捕集吸收剂的废液的处理系统及方法

Country Status (2)

Country Link
CN (1) CN114133072A (zh)
WO (1) WO2023109044A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133072A (zh) * 2021-12-16 2022-03-04 中国华能集团清洁能源技术研究院有限公司 一种含二氧化碳捕集吸收剂的废液的处理系统及方法
CN115025751B (zh) * 2022-06-23 2023-10-27 国能国华(北京)电力研究院有限公司 一种二氧化碳吸收剂废液与粉煤灰制备吸附材料的系统以及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216735A (ja) * 1997-02-05 1998-08-18 Nachi Fujikoshi Corp アミン類含有廃液処理の前処理方法及び装置
CN102350220A (zh) * 2011-07-04 2012-02-15 天津凯铂能膜工程技术有限公司 一种用于脱除、回收、富集料液或废水中的氨或有机胺的稳定气态膜装置及方法
CN209721783U (zh) * 2019-01-17 2019-12-03 清华大学深圳研究生院 一种自来水厂中泥水回收处理的一体化设备
CN111217419A (zh) * 2018-11-27 2020-06-02 中国石油化工股份有限公司 N-甲基二乙醇胺废水的处理装置和处理方法
CN111908569A (zh) * 2020-07-20 2020-11-10 广东石油化工学院 一种二乙醇胺废水的处理方法
CN112694186A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 含有机胺的废水的处理方法
CN114133072A (zh) * 2021-12-16 2022-03-04 中国华能集团清洁能源技术研究院有限公司 一种含二氧化碳捕集吸收剂的废液的处理系统及方法
CN216837425U (zh) * 2021-12-16 2022-06-28 中国华能集团清洁能源技术研究院有限公司 一种含二氧化碳捕集吸收剂的废液的处理系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853755B2 (ja) * 2001-09-27 2012-01-11 株式会社ダイセル 洗車排水処理用の凝集剤
WO2012136064A1 (en) * 2011-04-08 2012-10-11 General Electric Company Method for purifying aqueous stream, system and process for oil recovery and process for recycling polymer flood
CN108689517A (zh) * 2017-04-06 2018-10-23 中国石油化工股份有限公司 一种聚乙二醇二甲醚溶液的净化处理方法
CN106882893A (zh) * 2017-04-13 2017-06-23 盛发环保科技(厦门)有限公司 一种利用烟气中的二氧化碳循环软化废水方法与装置
CN107512823A (zh) * 2017-08-09 2017-12-26 清华大学深圳研究生院 一种强化除磷的振动平板陶瓷膜生物反应器工艺及其污水处理系统
CN110813254B (zh) * 2019-11-26 2022-05-10 合肥学院 一种用于从混合金属溶液中选择性分离铜的杂化膜的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216735A (ja) * 1997-02-05 1998-08-18 Nachi Fujikoshi Corp アミン類含有廃液処理の前処理方法及び装置
CN102350220A (zh) * 2011-07-04 2012-02-15 天津凯铂能膜工程技术有限公司 一种用于脱除、回收、富集料液或废水中的氨或有机胺的稳定气态膜装置及方法
CN111217419A (zh) * 2018-11-27 2020-06-02 中国石油化工股份有限公司 N-甲基二乙醇胺废水的处理装置和处理方法
CN209721783U (zh) * 2019-01-17 2019-12-03 清华大学深圳研究生院 一种自来水厂中泥水回收处理的一体化设备
CN112694186A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 含有机胺的废水的处理方法
CN111908569A (zh) * 2020-07-20 2020-11-10 广东石油化工学院 一种二乙醇胺废水的处理方法
CN114133072A (zh) * 2021-12-16 2022-03-04 中国华能集团清洁能源技术研究院有限公司 一种含二氧化碳捕集吸收剂的废液的处理系统及方法
CN216837425U (zh) * 2021-12-16 2022-06-28 中国华能集团清洁能源技术研究院有限公司 一种含二氧化碳捕集吸收剂的废液的处理系统

Also Published As

Publication number Publication date
CN114133072A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2023109044A1 (zh) 一种含二氧化碳捕集吸收剂的废液的处理系统及方法
CN101016175B (zh) 一种脱除含硫酸镁废水溶液中的硫酸镁的方法
CN204051377U (zh) 高效一体化酸碱及有机废气吸附装置
RU2732399C2 (ru) Способ и устройство для удаления диоксида углерода из дымового газа
CN113480080A (zh) 一种高盐有机废水零排放的处理方法及处理装置
CN207645996U (zh) 一种用于臭氧催化氧化方式的工业污水处理设备
CN216837425U (zh) 一种含二氧化碳捕集吸收剂的废液的处理系统
CN217498966U (zh) 一种低能耗涂装前处理废水的处理系统
CN114272726B (zh) 一种基于离子液体混合基质膜高效分离含氨气体的方法
CN215480160U (zh) 一种集成化脱硫废水浓缩减量零排处理装置
WO2023093026A1 (zh) 光助芬顿氧化法处理含二氧化碳捕集吸收剂的废水的方法
CN114471501A (zh) 一种臭氧间歇再生活性炭装置的应用方法
CN103848498A (zh) 雾化曝气池
CN104190229A (zh) 高效一体化酸碱及有机废气吸附装置
CN113694696A (zh) 一种船舶尾气脱硫装置及脱硫方法
CN112694069A (zh) 一种脱除废硫酸中游离氯的方法及其装置
CN203002191U (zh) 紫外光降解废气的管式反应器
CN2908466Y (zh) 硫酸镁溶液的浓缩纳滤、回收装置
CN215667570U (zh) 一种基于光催化板的农村自来水处理装置
CN217732839U (zh) 一种废水处理系统
CN210656518U (zh) 一种污水处理应用的edi装置
CN219259936U (zh) 煤化工二氧化碳尾气分散排放装置
CN216106356U (zh) 一种船舶尾气脱硫装置
CN208990555U (zh) 一种船舶重油燃烧的废气处理设备
CN215855122U (zh) 一种脱除废硫酸中游离氯的装置