WO2023108969A1 - 多无人机集成系统的控制方法及装置 - Google Patents

多无人机集成系统的控制方法及装置 Download PDF

Info

Publication number
WO2023108969A1
WO2023108969A1 PCT/CN2022/087713 CN2022087713W WO2023108969A1 WO 2023108969 A1 WO2023108969 A1 WO 2023108969A1 CN 2022087713 W CN2022087713 W CN 2022087713W WO 2023108969 A1 WO2023108969 A1 WO 2023108969A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
optimal
expected
integrated system
optimal control
Prior art date
Application number
PCT/CN2022/087713
Other languages
English (en)
French (fr)
Inventor
王丹丹
张守祥
高海跃
Original Assignee
北京天玛智控科技股份有限公司
北京煤科天玛自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天玛智控科技股份有限公司, 北京煤科天玛自动化科技有限公司 filed Critical 北京天玛智控科技股份有限公司
Priority to AU2022415717A priority Critical patent/AU2022415717A1/en
Publication of WO2023108969A1 publication Critical patent/WO2023108969A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying

Definitions

  • the present disclosure relates to the technical field of unmanned aerial vehicles, in particular to a control method and device for a multi-unmanned aerial vehicle integrated system.
  • multi-rotor aircrafts are widely researched and used because of their fixed-point hovering, vertical take-off and landing, small size, low cost, and simple structure.
  • cluster collaboration multiple UAVs can be integrated into an integrated system, which can realize multiple The task of carrying heavy loads on small UAVs.
  • the first purpose of this application is to propose a control method for a multi-UAV integrated system.
  • the calculation process does not require logical judgment, the method is simple and easy to implement, and the control efficiency is improved.
  • the second purpose of the present application is to propose a control device for a multi-UAV integrated system.
  • the embodiment of the first aspect of the present application proposes a control method for a multi-UAV integrated system, including: obtaining an externally input control command, the control command includes a desired position and a desired attitude; according to the The expected position and the expected posture are based on the optimal control theory, and an optimal control allocation matrix is calculated; an expected optimal rotational speed of each motor in the integrated system is calculated according to the optimal control allocation matrix.
  • the control method of the multi-UAV integrated system proposed in the embodiment of the present application obtains the control command input from the outside, the control command includes the expected position and the expected attitude, and calculates the optimal control allocation according to the expected position and the expected attitude based on the optimal control theory matrix, calculate the desired optimal speed of each motor in the integrated system according to the optimal control assignment matrix.
  • the control method of the multi-UAV integrated system proposed in the embodiment of this application is based on the optimal control theory to calculate the optimal control distribution matrix according to the expected position and expected attitude and obtain the expected optimal speed of each motor.
  • the calculation process does not need logic Judgment, the method is simple and easy to implement, and the control efficiency is improved.
  • the calculating the optimal control allocation matrix based on the optimal control theory according to the expected position and the expected attitude includes: according to the expected position and the expected attitude, based on the integrated
  • the kinematics and dynamics model of the rigid body corresponding to the system, as well as the relational expressions of the pulling force, the pulling moment, and the rotational angular velocity of the motor, are used to calculate the optimal control assignment matrix.
  • the integrated system includes four quadrotor UAVs, and the relationship between the pulling force, pulling torque and motor rotational angular velocity is: Among them, u is the tension moment, c Tk represents the constant thrust coefficient, which can be obtained by experiment, Indicates the rotational angular velocity of the i-th motor of the k-th quadrotor UAV, d represents the distance between the body center and any motor, c M represents the constant thrust coefficient, which can be obtained by experiments, and M 16 is the control efficiency matrix.
  • the calculating the optimal control allocation matrix based on the optimal control theory according to the expected position and the expected attitude includes: according to the expected position and the expected attitude, to minimize the tracking error Or optimal control energy is the control target, and the optimal control distribution matrix is calculated.
  • the optimal control assignment matrix satisfies the following Riccati equation: Among them, P 1 is the optimal control assignment matrix,
  • the following formula is used to calculate the expected optimal speed of each motor in the integrated system: Among them, the ⁇ * is the desired optimal speed,
  • control method of the multi-UAV integrated system further includes: controlling the motor according to the desired optimal rotational speed.
  • the embodiment of the second aspect of the present application proposes a control device for a multi-UAV integrated system, including: an acquisition module, used to acquire externally input control instructions, the control instructions include expected positions and expected Attitude; a first calculation module, used to calculate an optimal control assignment matrix based on the optimal control theory according to the desired position and the desired posture; a second calculation module, used to calculate the optimal control assignment matrix according to the optimal control assignment matrix The desired optimal speed for each motor in the integrated system.
  • the control device of the multi-UAV integrated system proposed in the embodiment of the present application obtains the control command input from the outside, and the control command includes the expected position and the expected attitude, and calculates the optimal control allocation according to the expected position and the expected attitude based on the optimal control theory matrix, calculate the desired optimal speed of each motor in the integrated system according to the optimal control assignment matrix.
  • the control device of the multi-UAV integrated system proposed in the embodiment of this application calculates the optimal control allocation matrix based on the optimal control theory according to the expected position and expected attitude and obtains the expected optimal speed of each motor.
  • the calculation process does not need logic Judgment, the method is simple and easy to implement, and the control efficiency is improved.
  • Fig. 1 is a schematic flow chart of a control method of a multi-UAV integrated system according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a sixteen-rotor UAV integrated system according to a control method of a multi-UAV integrated system according to an embodiment of the present application;
  • FIG. 3 is a schematic flow diagram of a control method of a multi-UAV integrated system according to another embodiment of the present application.
  • Fig. 4 is a control distribution structure diagram based on an optimal idea of a control method of a multi-UAV integrated system according to an embodiment of the present application;
  • Fig. 5 is a block diagram of a control device of a multi-UAV integrated system according to an embodiment of the present application.
  • FIG. 1 is a schematic flow diagram of a control method for a multi-UAV integrated system according to an embodiment of the present application. As shown in Figure 1 , the control method for a multi-UAV integrated system according to an embodiment of the present application may specifically include the following steps:
  • the multi-UAV integrated system obtains externally input control instructions, and the control instructions include the expected position P d and the expected attitude ⁇ d .
  • the multi-UAV integrated system can specifically be a sixteen-rotor UAV integrated system composed of four four-rotors, as shown in Figure 2, in response to the fact that the sixteen-rotor UAV integrated system is a rigid body, and the mass and moment of inertia are different change, the geometric center is consistent with the center of gravity, the integrated system of the sixteen-rotor UAV is only affected by gravity and propeller tension, where the gravity is along the positive direction of the O e Z e axis, and the propeller tension is along the negative direction of the O b Z b axis, and the odd-numbered Propellers rotate counterclockwise, propellers with even numbers rotate clockwise.
  • the optimal control assignment matrix is calculated based on the optimal control theory according to the expected position P d and the expected attitude ⁇ d acquired in step S101 .
  • the following formula is used to calculate the expected optimal speed ⁇ * of each motor in the integrated system:
  • ⁇ * is the desired optimal speed
  • the control method of the multi-UAV integrated system proposed in the embodiment of the present application obtains the control command input from the outside, the control command includes the expected position and the expected attitude, and calculates the optimal control allocation according to the expected position and the expected attitude based on the optimal control theory matrix, calculate the desired optimal speed of each motor in the integrated system according to the optimal control assignment matrix.
  • the control method of the multi-UAV integrated system proposed in the embodiment of this application is based on the optimal control theory to calculate the optimal control distribution matrix according to the expected position and expected attitude and obtain the expected optimal speed of each motor.
  • the calculation process does not need logic Judgment, the method is simple and easy to implement, and the control efficiency is improved.
  • Fig. 3 is a schematic flowchart of a control method of a multi-UAV integrated system according to an embodiment of the present application. As shown in Fig. 3 , on the basis of the embodiment shown in Fig. The control method of the machine integrated system may specifically include the following steps:
  • Step S301 in the embodiment of the present application is the same as step S101 in the above embodiment, and will not be repeated here.
  • the step S102 "calculate the optimal control assignment matrix based on the desired position and posture based on the optimal control theory" in the above embodiment may specifically include the following steps S302-S303.
  • the rigid body kinematics and dynamics model is:
  • the pull force f and torque controller u are designed using the idea of dividing the ring, and the outer ring gives the inner ring the desired attitude angle command to satisfy the following formula:
  • ⁇ d [ ⁇ d , ⁇ d , ⁇ d ] T is the desired attitude angle.
  • the integrated system includes four quadrotor UAVs, and the relationship between the pulling force, pulling torque and motor rotation angular velocity is:
  • u is the tension moment
  • c Tk represents the constant thrust coefficient, which can be obtained by experiment
  • d represents the distance between the body center and any motor
  • c M represents the constant thrust coefficient, which can be obtained by experiments
  • M 16 is the control efficiency matrix.
  • the calculation of the optimal control allocation matrix with the minimum tracking error or the optimal control energy as the control target satisfies the following formula:
  • P 1 is the optimal control allocation matrix
  • P 1 is the optimal control allocation matrix
  • Step S304 in the embodiment of the present application is the same as step S103 in the above embodiment, and will not be repeated here.
  • FIG. 4 is a control distribution structure diagram based on optimal thinking. As shown in FIG. 4 , each motor of the sixteen-rotor carrier aircraft is controlled according to the desired optimal rotational speed calculated in step S304.
  • the control method of the multi-UAV integrated system proposed in the embodiment of the present application obtains the control command input from the outside, the control command includes the expected position and the expected attitude, and calculates the optimal control allocation according to the expected position and the expected attitude based on the optimal control theory matrix, calculate the desired optimal speed of each motor in the integrated system according to the optimal control assignment matrix.
  • the control method of the multi-UAV integrated system proposed in the embodiment of this application is based on the optimal control theory according to the expected position and expected attitude, based on the rigid body kinematics and dynamics model corresponding to the integrated system, as well as the pulling force, pulling torque and motor rotation angular velocity
  • the embodiments of the present application also propose a control device for a multi-UAV integrated system, which can implement the control method for a multi-UAV integrated system in any of the above-mentioned embodiments.
  • the control device 50 of the multi-UAV integrated system proposed in the embodiment of the present application may specifically include: an acquisition 51 , a first calculation module 52 and a second calculation module 53 . in:
  • the acquisition module 51 is configured to acquire an externally input control command, the control command includes a desired position and a desired posture.
  • the first calculation module 52 is configured to calculate an optimal control allocation matrix based on the optimal control theory according to the expected position and the expected attitude.
  • the second calculation module 53 is used for calculating the expected optimal speed of each motor in the integrated system according to the optimal control distribution matrix.
  • the first calculation module 52 includes: a first calculation unit 521, configured to use the rigid body kinematics and dynamics model corresponding to the integrated system, and the tensile force according to the expected position and attitude. , the relational expression of pulling torque and motor rotation angular velocity, and calculate the optimal control distribution matrix.
  • the integrated system includes four quadrotor UAVs, and the relationship between the pulling force, the pulling torque, and the rotational angular velocity of the motor is: Among them, u is the tension moment, c Tk represents the constant thrust coefficient, which can be obtained by experiment, Indicates the rotational angular velocity of the i-th motor of the k-th quadrotor UAV, d represents the distance between the body center and any motor, c M represents the constant thrust coefficient, which can be obtained by experiments, and M 16 is the control efficiency matrix.
  • the first calculation module 52 includes: a second calculation unit 522, configured to calculate the maximum Optimal control assignment matrix.
  • the following formula is used to calculate the optimal control allocation matrix:
  • J is the moment of inertia
  • is the speed of the motor
  • e Xd X d -X
  • Both are weighted positive definite matrices.
  • the optimal control allocation matrix satisfies the following Riccati equation: Among them, P 1 is the optimal control assignment matrix,
  • ⁇ * is the desired optimal speed
  • control device 50 of the multi-UAV integrated system further includes: a control module 54, configured to control the motor according to a desired optimal rotation speed.
  • the control device of the multi-UAV integrated system proposed in the embodiment of the present application obtains the control command input from the outside, and the control command includes the expected position and the expected attitude, and calculates the optimal control allocation according to the expected position and the expected attitude based on the optimal control theory matrix, calculate the desired optimal speed of each motor in the integrated system according to the optimal control assignment matrix.
  • the control device of the multi-UAV integrated system proposed in the embodiment of this application calculates the optimal control allocation matrix based on the optimal control theory according to the expected position and expected attitude and obtains the expected optimal speed of each motor.
  • the calculation process does not need logic Judgment, the method is simple and easy to implement, and the control efficiency is improved.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Feedback Control In General (AREA)

Abstract

一种多无人机集成系统的控制方法及装置,其中,多无人机集成系统的控制方法包括:(S301)获取外部输入的控制指令,控制指令中包括期望位置和期望姿态;(S302)根据期望位置和期望姿态基于最优控制理论,计算最优控制分配矩阵;(S303)根据最优控制分配矩阵计算集成系统中每个电机的期望最优转速。

Description

多无人机集成系统的控制方法及装置
相关申请的交叉引用
本申请要求于2021年12月17日提交的、申请名称为“多无人机集成系统的控制方法及装置”的、中国专利申请号“202111552844.3”的优先权。
技术领域
本公开涉及无人机技术领域,尤其涉及一种多无人机集成系统的控制方法及装置。
背景技术
目前,多旋翼飞行器因其定点悬停、垂直起降、体积小、成本低和结构简单等特点被广泛研究使用,采用集群协同的思想,将多个无人机组成集成系统,可以实现多个小型无人机挂载重物的任务。
发明内容
为此,本申请的第一个目的在于提出一种多无人机集成系统的控制方法,计算过程不需要进行逻辑判断,方法简单易于实现,提高了控制效率。
本申请的第二个目的在于提出一种多无人机集成系统的控制装置。
为达上述目的,本申请第一方面实施例提出了一种多无人机集成系统的控制方法,包括:获取外部输入的控制指令,所述控制指令中包括期望位置和期望姿态;根据所述期望位置和所述期望姿态基于最优控制理论,计算最优控制分配矩阵;根据所述最优控制分配矩阵计算所述集成系统中每个电机的期望最优转速。
本申请实施例提出的多无人机集成系统的控制方法,获取外部输入的控制指令,控制指令中包括期望位置和期望姿态,根据期望位置和期望姿态基于最优控制理论,计算最优控制分配矩阵,根据最优控制分配矩阵计算集成系统中每个电机的期望最优转速。本申请实施例提出的多无人机集成系统的控制方法,基于最优控制理论根据期望位置和期望姿态计算最优控制分配矩阵并得到每个电机的期望最优转速,计算过程不需要进行逻辑判断,方法简单易于实现,提高了控制效率。
根据本申请的一个实施例,所述根据所述期望位置和所述期望姿态基于最优控制理论,计算最优控制分配矩阵,包括:根据所述期望位置和所述期望姿态,基于所述集成系统对应的刚体运动学和动力学模型,以及拉力、拉力力矩和电机旋转角速度的关系式,计算所述最优控制分配矩阵。
根据本申请的一个实施例,所述刚体运动学和动力学模型为:
Figure PCTCN2022087713-appb-000001
其中,
Figure PCTCN2022087713-appb-000002
分别表示所述集成系统在惯性坐标系下的位置、速度、欧拉角和在机体坐标系下的角速度,f,m,J,τ分别为拉力、质量、转动惯量和转动力矩,K a=diag{K 1,K 2,K 3},K b=diag{K 4,K 5,K 6}为阻力系数,G a为陀螺力矩,e 3=[0,0,1] T,R,W分别为旋转矩阵,g为重力加速度。
根据本申请的一个实施例,所述集成系统中包括四个四旋翼无人机,所述拉力、拉力力矩和电机旋转角速度的关系式为:
Figure PCTCN2022087713-appb-000003
其中,u为拉力力矩,c Tk表示常值推力系数,可由实验获取,
Figure PCTCN2022087713-appb-000004
表示第k个四旋翼无人机第i个电机的旋转角速度,d表示机体中心和任一电机的距离,c M表示常值推力系数,可由实验获取,M 16为控制效率矩阵。
根据本申请的一个实施例,所述根据所述期望位置和所述期望姿态基于最优控制理论,计算最优控制分配矩阵,包括:根据所述期望位置和所述期望姿态,以跟踪误差最小或控制能量最优为控制目标,计算所述最优控制分配矩阵。
根据本申请的一个实施例,采用以下公式计算所述最优控制分配矩阵:
Figure PCTCN2022087713-appb-000005
其中,J为转动惯量,ξ为电机的转速,e Xd=X d-X,e Yd=Y d-Y分别为位置跟踪误差和姿态跟踪误差,
Figure PCTCN2022087713-appb-000006
均为加权正 定矩阵。
根据本申请的一个实施例,所述最优控制分配矩阵满足以下黎卡提方程:
Figure PCTCN2022087713-appb-000007
其中,P 1为最优控制分配矩阵,
Figure PCTCN2022087713-appb-000008
Figure PCTCN2022087713-appb-000009
根据本申请的一个实施例,采用以下公式计算所述集成系统中每个电机的期望最优转速:
Figure PCTCN2022087713-appb-000010
其中,所述ξ *为期望最优转速,
Figure PCTCN2022087713-appb-000011
根据本申请的一个实施例,多无人机集成系统的控制方法还包括:根据所述期望最优转速对所述电机进行控制。
为达上述目的,本申请第二方面实施例提出了一种多无人机集成系统的控制装置,包括:获取模块,用于获取外部输入的控制指令,所述控制指令中包括期望位置和期望姿态;第一计算模块,用于根据所述期望位置和所述期望姿态基于最优控制理论,计算最优控制分配矩阵;第二计算模块,用于根据所述最优控制分配矩阵计算所述集成系统中每个电机的期望最优转速。
本申请实施例提出的多无人机集成系统的控制装置,获取外部输入的控制指令,控制指令中包括期望位置和期望姿态,根据期望位置和期望姿态基于最优控制理论,计算最优控制分配矩阵,根据最优控制分配矩阵计算集成系统中每个电机的期望最优转速。本申请实施例提出的多无人机集成系统的控制装置,基于最优控制理论根据期望位置和期望姿态计算最优控制分配矩阵并得到每个电机的期望最优转速,计算过程不需要进行逻辑判断,方法简单易于实现,提高了控制效率。
附图说明
图1是根据本申请一个实施例的多无人机集成系统的控制方法的流程示意图;
图2是根据本申请一个实施例的多无人机集成系统的控制方法的十六旋翼无人机集成系统示意图;
图3是根据本申请另一个实施例的多无人机集成系统的控制方法的流程示意图;
图4是根据本申请一个实施例的多无人机集成系统的控制方法的基于最优思想的控制分配结构图;
图5是根据本申请一个实施例的多无人机集成系统的控制装置的框图。
具体实施方式
本申请所有实施例均可以单独被执行,也可以与其他实施例相结合被执行,均视为本申请要求的保护范围。
下面结合附图来描述本申请实施例的多无人机集成系统的控制方法及装置。
图1是根据本申请一个实施例的多无人机集成系统的控制方法的流程示意图,如图1所示,本申请实施例的多无人机集成系统的控制方法具体可包括以下步骤:
S101,获取外部输入的控制指令,控制指令中包括期望位置和期望姿态。
本申请实施例中,多无人机集成系统获取外部输入的控制指令,控制指令中包括期望位置P d和期望姿态ψ d。多无人机集成系统具体可以为四个四旋翼组成的十六旋翼无人机集成系统,如图2所示,响应于该十六旋翼无人机集成系统是刚体,且质量和转动惯量不变,几何中心与重心一致,十六旋翼无人机集成系统只受重力和螺旋桨拉力,其中重力沿O eZ e轴正方向,而螺旋桨拉力沿O bZ b轴负方向,且奇数标号的螺旋桨为逆时针转动、偶数标号的螺旋桨为顺时针转动。
S102,根据期望位置和期望姿态基于最优控制理论,计算最优控制分配矩阵。
本申请实施例中,根据步骤S101中获取的期望位置P d和期望姿态ψ d基于最优控制理论,计算最优控制分配矩阵。
S103,根据最优控制分配矩阵计算集成系统中每个电机的期望最优转速。
本申请实施例中,根据步骤S102中计算获得的最优控制分配矩阵采用以下公式计算集成系统中每个电机的期望最优转速ξ *
Figure PCTCN2022087713-appb-000012
其中,ξ *为期望最优转速,
Figure PCTCN2022087713-appb-000013
本申请实施例提出的多无人机集成系统的控制方法,获取外部输入的控制指令,控制指令中包括期望位置和期望姿态,根据期望位置和期望姿态基于最优控制理论,计算最优控制分配矩阵,根据最优控制分配矩阵计算集成系统中每个电机的期望最优转速。本申请实施例提出的多无人机集成系统的控制方法,基于最优控制理论根据期望位置和期望姿态计算最优控制分配矩阵并得到每个电机的期望最优转速,计算过程不需要进行逻辑判断,方法简单易于实现,提高了控制效率。
图3是根据本申请一个实施例的多无人机集成系统的控制方法的流程示意图,如图3所示,在上述图1所示的实施例的基础上,本申请实施例的多无人机集成系统的控制方法具体可包括以下步骤:
S301,获取外部输入的控制指令,控制指令中包括期望位置和期望姿态。
本申请实施例中的步骤S301与上述实施例中步骤S101相同,此处不再赘述。
上述实施例中的步骤S102“根据期望位置和期望姿态基于最优控制理论,计算最优控制分配矩阵”具体可包括以下步骤S302-S303。
S302,根据期望位置和期望姿态,基于集成系统对应的刚体运动学和动力学模型,以及拉力、拉力力矩和电机旋转角速度的关系式,计算最优控制分配矩阵。
本申请实施例中,刚体运动学和动力学模型为:
Figure PCTCN2022087713-appb-000014
其中,
Figure PCTCN2022087713-appb-000015
分别表示集成系统在惯性坐标系下的位置、速度、欧拉角和在机体坐标系下的角速度,f,m,J,τ分别为拉力、质量、转动惯量和转动力矩,K a=diag{K 1,K 2,K 3},K b=diag{K 4,K 5,K 6}为阻力系数,G a为陀螺力矩,e 3=[0,0,1] T,R,W分别为旋转矩阵,g为重力加速度。本领域技术人员可以理解,重力加速度g≈9.8N/kg。
针对上述刚体运动学和动力学模型,采用分环思想设计拉力f和力矩控制器u,外环给内环期望姿态角指令满足以下公式:
Figure PCTCN2022087713-appb-000016
Figure PCTCN2022087713-appb-000017
Figure PCTCN2022087713-appb-000018
其中,Θ d=[φ ddd] T为期望姿态角。
本申请实施例中,集成系统中包括四个四旋翼无人机,拉力、拉力力矩和电机旋转角速度的关系式为:
Figure PCTCN2022087713-appb-000019
其中,u为拉力力矩,c Tk表示常值推力系数,可由实验获取,
Figure PCTCN2022087713-appb-000020
表示第k个四旋翼无人机第i个电机的旋转角速度,d表示机体中心和任一电机的距离,c M表示常值推力系数,可由实验获取,M 16为控制效率矩阵。
为给出一般性控制分配方法,定义变量
Figure PCTCN2022087713-appb-000021
系统模型变形为:
Figure PCTCN2022087713-appb-000022
其中,
Figure PCTCN2022087713-appb-000023
Figure PCTCN2022087713-appb-000024
S303,根据期望位置和期望姿态,以跟踪误差最小或控制能量最优为控制目标,计算最优控制分配矩阵。
本申请实施例中,以跟踪误差最小或控制能量最优为控制目标计算最优控制分配矩阵满足以下公式:
Figure PCTCN2022087713-appb-000025
其中,J为转动惯量,ξ为电机的转速,e Xd=X d-X,e Yd=Y d-Y分别为位置跟踪误差和姿态跟踪误差,
Figure PCTCN2022087713-appb-000026
均为加权正定矩阵。且最优控制分配矩阵满足以下黎卡提方程:
Figure PCTCN2022087713-appb-000027
其中,P 1为最优控制分配矩阵,其中,P 1为最优控制分配矩阵,
Figure PCTCN2022087713-appb-000028
Figure PCTCN2022087713-appb-000029
S304,根据最优控制分配矩阵计算集成系统中每个电机的期望最优转速。
本申请实施例中的步骤S304与上述实施例中步骤S103相同,此处不再赘述。
S305,根据期望最优转速对电机进行控制。
本申请实施例中,图4为基于最优思想的控制分配结构图,如图4所示,根据步骤S304中计算获得的期望最优转速对十六旋翼母舰飞行器的每个电机进行控制。
本申请实施例提出的多无人机集成系统的控制方法,获取外部输入的控制指令,控制指令中包括期望位置和期望姿态,根据期望位置和期望姿态基于最优控制理论,计算最优控制分配矩阵,根据最优控制分配矩阵计算集成系统中每个电机的期望最优转速。本申请实施例提出的多无人机集成系统的控制方法,基于最优控制理论根据期望位置和期望姿态,基于集成系统对应的刚体运动学和动力学模型,以及拉力、拉力力矩和电机旋转角速度的关系式,以跟踪误差最小或控制能量最优为控制目标,计算最优控制分配矩阵并得到每个电机的期望最优转速,计算过程不需要进行逻辑判断,方法简单易于实现,提高了控制效率。
为了实现上述实施例,本申请实施例还提出一种多无人机集成系统的控制装置,该控制装置可实现上述任一实施例的多无人机集成系统的控制方法。如图5所示,本申请实施例提出的多无人机集成系统的控制装置50具体可包括:获取51、第一计算模块52和第二计算模块53。其中:
获取模块51,用于获取外部输入的控制指令,控制指令中包括期望位置和期望姿态。
第一计算模块52,用于根据期望位置和期望姿态基于最优控制理论,计算最优控制分配矩阵。
第二计算模块53,用于根据最优控制分配矩阵计算集成系统中每个电机的期望最优转速。
在本申请实施例一种可能的实现方式中,第一计算模块52包括:第一计算单元521,用于根据期望位置和期望姿态,基于集成系统对应的刚体运动学和动力学模型,以及拉力、拉力力矩和电机旋转角速度的关系式,计算最优控制分配矩阵。
在本申请实施例一种可能的实现方式中,刚体运动学和动力学模型为:
Figure PCTCN2022087713-appb-000030
其中,
Figure PCTCN2022087713-appb-000031
分别表示集成系统在惯性坐标系下的位置、速度、欧拉角和在机体坐标系下的角速度,f,m,J,τ分别为拉力、质量、转动惯量和转动力矩,K a=diag{K 1,K 2,K 3},K b=diag{K 4,K 5,K 6}为阻力系数,G a为 陀螺力矩,e 3=[0,0,1] T,R,W分别为旋转矩阵,g为重力加速度。
在本申请实施例一种可能的实现方式中,集成系统中包括四个四旋翼无人机,拉力、拉力力矩和电机旋转角速度的关系式为:
Figure PCTCN2022087713-appb-000032
其中,u为拉力力矩,c Tk表示常值推力系数,可由实验获取,
Figure PCTCN2022087713-appb-000033
表示第k个四旋翼无人机第i个电机的旋转角速度,d表示机体中心和任一电机的距离,c M表示常值推力系数,可由实验获取,M 16为控制效率矩阵。
在本申请实施例一种可能的实现方式中,第一计算模块52包括:第二计算单元522,用于根据期望位置和期望姿态,以跟踪误差最小或控制能量最优为控制目标,计算最优控制分配矩阵。
在本申请实施例一种可能的实现方式中,采用以下公式计算最优控制分配矩阵:
Figure PCTCN2022087713-appb-000034
其中,J为转动惯量,ξ为电机的转速,e Xd=X d-X,e Yd=Y d-Y分别为位置跟踪误差和姿态跟踪误差,
Figure PCTCN2022087713-appb-000035
均为加权正定矩阵。
在本申请实施例一种可能的实现方式中,最优控制分配矩阵满足以下黎卡提方程:
Figure PCTCN2022087713-appb-000036
其中,P 1为最优控制分配矩阵,
Figure PCTCN2022087713-appb-000037
Figure PCTCN2022087713-appb-000038
在本申请实施例一种可能的实现方式中,采用以下公式计算集成系统中每个电机的期望 最优转速:
Figure PCTCN2022087713-appb-000039
其中,ξ *为期望最优转速,
Figure PCTCN2022087713-appb-000040
在本申请实施例一种可能的实现方式中,多无人机集成系统的控制装置50还包括:控制模块54,用于根据期望最优转速对电机进行控制。
需要说明的是,前述对多无人机集成系统的控制方法实施例的解释说明也适用于该实施例的多无人机集成系统的控制装置,此处不再赘述。
本申请实施例提出的多无人机集成系统的控制装置,获取外部输入的控制指令,控制指令中包括期望位置和期望姿态,根据期望位置和期望姿态基于最优控制理论,计算最优控制分配矩阵,根据最优控制分配矩阵计算集成系统中每个电机的期望最优转速。本申请实施例提出的多无人机集成系统的控制装置,基于最优控制理论根据期望位置和期望姿态计算最优控制分配矩阵并得到每个电机的期望最优转速,计算过程不需要进行逻辑判断,方法简单易于实现,提高了控制效率。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个 实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种多无人机集成系统的控制方法,其中,包括:
    获取外部输入的控制指令,所述控制指令中包括期望位置和期望姿态;
    根据所述期望位置和所述期望姿态基于最优控制理论,计算最优控制分配矩阵;
    根据所述最优控制分配矩阵计算所述集成系统中每个电机的期望最优转速。
  2. 根据权利要求1所述的控制方法,其中,所述根据所述期望位置和所述期望姿态基于最优控制理论,计算最优控制分配矩阵,包括:
    根据所述期望位置和所述期望姿态,基于所述集成系统对应的刚体运动学和动力学模型,以及拉力、拉力力矩和电机旋转角速度的关系式,计算所述最优控制分配矩阵。
  3. 根据权利要求2所述的控制方法,其中,所述刚体运动学和动力学模型为:
    Figure PCTCN2022087713-appb-100001
    其中,
    Figure PCTCN2022087713-appb-100002
    分别表示所述集成系统在惯性坐标系下的位置、速度、欧拉角和在机体坐标系下的角速度,f,m,J,τ分别为拉力、质量、转动惯量和转动力矩,K a=diag{K 1,K 2,K 3},K b=diag{K 4,K 5,K 6}为阻力系数,G a为陀螺力矩,e 3=[0,0,1] T,R,W分别为旋转矩阵,g为重力加速度。
  4. 根据权利要求2所述的控制方法,其中,所述集成系统中包括四个四旋翼无人机,所述拉力、拉力力矩和电机旋转角速度的关系式为:
    Figure PCTCN2022087713-appb-100003
    其中,u为拉力力矩,c Tk表示常值推力系数,可由实验获取,
    Figure PCTCN2022087713-appb-100004
    表示第k个四旋翼无人机第i个电机的旋转角速度,d表示机体中心和任一电机的距离,c M表示常值推力系数,可由实验获取,M 16为控制效率矩阵。
  5. 根据权利要求1所述的控制方法,其中,所述根据所述期望位置和所述期望姿态基于最优控制理论,计算最优控制分配矩阵,包括:
    根据所述期望位置和所述期望姿态,以跟踪误差最小或控制能量最优为控制目标,计算所述最优控制分配矩阵。
  6. 根据权利要求5所述的控制方法,其中,采用以下公式计算所述最优控制分配矩阵:
    Figure PCTCN2022087713-appb-100005
    其中,J为转动惯量,ξ为电机的转速,e Xd=X d-X,e Yd=Y d-Y分别为位置跟踪误差和姿态跟踪误差,
    Figure PCTCN2022087713-appb-100006
    均为加权正定矩阵。
  7. 根据权利要求6所述的控制方法,其中,所述最优控制分配矩阵满足以下黎卡提方程:
    Figure PCTCN2022087713-appb-100007
    其中,P 1为最优控制分配矩阵,
    Figure PCTCN2022087713-appb-100008
    Figure PCTCN2022087713-appb-100009
  8. 根据权利要求7所述的控制方法,其中,采用以下公式计算所述集成系统中每个电 机的期望最优转速:
    Figure PCTCN2022087713-appb-100010
    其中,所述ξ *为期望最优转速,
    Figure PCTCN2022087713-appb-100011
  9. 根据权利要求1所述的控制方法,其中,还包括:
    根据所述期望最优转速对所述电机进行控制。
  10. 一种多无人机集成系统的控制装置,其中,包括:
    获取模块,用于获取外部输入的控制指令,所述控制指令中包括期望位置和期望姿态;
    第一计算模块,用于根据所述期望位置和所述期望姿态基于最优控制理论,计算最优控制分配矩阵;
    第二计算模块,用于根据所述最优控制分配矩阵计算所述集成系统中每个电机的期望最优转速。
PCT/CN2022/087713 2021-12-17 2022-04-19 多无人机集成系统的控制方法及装置 WO2023108969A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022415717A AU2022415717A1 (en) 2021-12-17 2022-04-19 Control method and device of multi-unmanned aerial vehicle integrated system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111552844.3 2021-12-17
CN202111552844.3A CN114415715B (zh) 2021-12-17 2021-12-17 多无人机集成系统的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2023108969A1 true WO2023108969A1 (zh) 2023-06-22

Family

ID=81266546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087713 WO2023108969A1 (zh) 2021-12-17 2022-04-19 多无人机集成系统的控制方法及装置

Country Status (3)

Country Link
CN (1) CN114415715B (zh)
AU (1) AU2022415717A1 (zh)
WO (1) WO2023108969A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6539290B1 (en) * 1995-06-07 2003-03-25 Dabulamanzi Holdings, Llc Method, apparatus and design procedure for controlling multi-input, multi-output (MIMO) parameter dependent systems using feedback LTI'zation
CN104699106A (zh) * 2013-12-10 2015-06-10 中国航空工业第六一八研究所 一种八旋翼飞行器的控制分配方法
CN107943089A (zh) * 2017-12-25 2018-04-20 成都纵横自动化技术有限公司 多规格动力系统控制分配方法及相关装置
CN109460052A (zh) * 2019-01-09 2019-03-12 北京明学思机器人科技有限公司 一种可拼组飞行器的控制方法
CN109947126A (zh) * 2019-03-07 2019-06-28 中国科学院深圳先进技术研究院 四旋翼无人机的控制方法、装置、设备及可读介质
CN112034871A (zh) * 2020-08-25 2020-12-04 南京航空航天大学 一种可倾转多旋翼飞行器的全向控制方法
CN112394739A (zh) * 2020-10-29 2021-02-23 南京航空航天大学 主动变形四旋翼飞行器自抗扰飞行控制方法
CN112684805A (zh) * 2021-01-14 2021-04-20 北京航空航天大学 一种考虑姿态约束的高机动微型无人机控制方法
CN113031636A (zh) * 2021-03-01 2021-06-25 之江实验室 无人机控制方法、装置、电子设备、无人机和存储介质
CN113359794A (zh) * 2021-06-04 2021-09-07 北京三快在线科技有限公司 无人机的控制方法、装置、介质、电子设备及无人机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104699108B (zh) * 2013-12-10 2017-12-19 中国航空工业第六一八研究所 一种多旋翼飞行器的控制分配方法
CN110456821B (zh) * 2019-08-22 2022-04-12 安徽大学 基于动态触发机制的飞行器轨迹最优控制方法和系统
CN112650269B (zh) * 2021-01-02 2022-07-26 西北工业大学 一种多无人机协同运输系统的载荷跟踪控制方法
CN113342037B (zh) * 2021-06-07 2023-05-26 广东工业大学 具有输入饱和的多旋翼无人机时变编队控制方法及系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6539290B1 (en) * 1995-06-07 2003-03-25 Dabulamanzi Holdings, Llc Method, apparatus and design procedure for controlling multi-input, multi-output (MIMO) parameter dependent systems using feedback LTI'zation
CN104699106A (zh) * 2013-12-10 2015-06-10 中国航空工业第六一八研究所 一种八旋翼飞行器的控制分配方法
CN107943089A (zh) * 2017-12-25 2018-04-20 成都纵横自动化技术有限公司 多规格动力系统控制分配方法及相关装置
CN109460052A (zh) * 2019-01-09 2019-03-12 北京明学思机器人科技有限公司 一种可拼组飞行器的控制方法
CN109947126A (zh) * 2019-03-07 2019-06-28 中国科学院深圳先进技术研究院 四旋翼无人机的控制方法、装置、设备及可读介质
CN112034871A (zh) * 2020-08-25 2020-12-04 南京航空航天大学 一种可倾转多旋翼飞行器的全向控制方法
CN112394739A (zh) * 2020-10-29 2021-02-23 南京航空航天大学 主动变形四旋翼飞行器自抗扰飞行控制方法
CN112684805A (zh) * 2021-01-14 2021-04-20 北京航空航天大学 一种考虑姿态约束的高机动微型无人机控制方法
CN113031636A (zh) * 2021-03-01 2021-06-25 之江实验室 无人机控制方法、装置、电子设备、无人机和存储介质
CN113359794A (zh) * 2021-06-04 2021-09-07 北京三快在线科技有限公司 无人机的控制方法、装置、介质、电子设备及无人机

Also Published As

Publication number Publication date
CN114415715B (zh) 2024-02-27
AU2022415717A1 (en) 2024-08-08
CN114415715A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
AU2019260589B2 (en) Thrust allocation for aerial vehicle
Gu et al. Development and experimental verification of a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV)
CN107957730B (zh) 一种无人飞行器稳定飞行控制方法
CN110697035B (zh) 一种六自由度独立可控飞行器及其控制方法
EP3725680B1 (en) Multimodal unmanned aerial systems having tiltable wings
NL2017971B1 (en) Unmanned aerial vehicle
CN108958289A (zh) 基于相对速度障碍的集群无人机避碰方法
EP3878736B1 (en) Aircraft having convertible tailboom and landing gear systems
CN106114853B (zh) 一种无人驾驶航空器
US8561937B2 (en) Unmanned aerial vehicle
CN104044734A (zh) 具有可倾斜机翼和旋翼的多旋翼无人机及控制系统和方法
WO2021023187A1 (zh) 一种倾转旋翼无人机的控制方法及倾转旋翼无人机
JP2022509697A (ja) 分離した自由度を有する航空機
JP2017518217A (ja) 固定ロータ推力ベクタリング
WO2021223173A1 (zh) 多旋翼无人机及其控制方法、控制装置和计算机可读存储介质
WO2023108969A1 (zh) 多无人机集成系统的控制方法及装置
CN110077586A (zh) 一种复合式飞行器及其控制方法
CN107908193B (zh) 一种非平面式八旋翼全向飞行器及控制方法
JP2022144002A (ja) 航空機の制御装置
CN116252948A (zh) 一种具有自主解旋功能的低初速空投固定翼无人机
Kuang et al. Flight controller design and demonstration of a thrust-vectored tailsitter
CN117234228A (zh) 一种倾转旋翼无人机倾转过程控制方法
CN110254741B (zh) 一种飞行控制系统的设计方法
Watanabe et al. Discontinuous control and backstepping method for the underactuated control of VTOL aerial robots with four rotors
Wang et al. Design of a symmetrical quad-rotor biplane tail-sitter aircraft without control surfaces and experimental verification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022415717

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022415717

Country of ref document: AU

Date of ref document: 20220419

Kind code of ref document: A