CN108958289A - 基于相对速度障碍的集群无人机避碰方法 - Google Patents

基于相对速度障碍的集群无人机避碰方法 Download PDF

Info

Publication number
CN108958289A
CN108958289A CN201810849450.6A CN201810849450A CN108958289A CN 108958289 A CN108958289 A CN 108958289A CN 201810849450 A CN201810849450 A CN 201810849450A CN 108958289 A CN108958289 A CN 108958289A
Authority
CN
China
Prior art keywords
unmanned plane
speed
collision prevention
attitude
indicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810849450.6A
Other languages
English (en)
Other versions
CN108958289B (zh
Inventor
田栢苓
马宇昕
鲁瀚辰
刘丽红
崔婕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810849450.6A priority Critical patent/CN108958289B/zh
Publication of CN108958289A publication Critical patent/CN108958289A/zh
Application granted granted Critical
Publication of CN108958289B publication Critical patent/CN108958289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • G05D1/0825Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability using mathematical models

Abstract

本发明涉及无人机飞行器避碰技术领域,为实现无人机编队在任务过程中,保证编队内部不发生碰撞,并且在避碰之后能够回到先前的预定航路上。本发明提出的策略,通过建立四旋翼无人机轨迹姿态模型、设计协同控制策略及集群无人机避碰算法,实现集群无人机从初始位置到目标位置的安全飞行。为此,本发明采用的技术方案是,基于相对速度障碍的集群无人机避碰方法,步骤如下:第一部分,基于牛顿–欧拉方程的四旋翼无人机轨迹姿态模型建立;第二部分,分布式串级比例积分PID控制器设计;第三部分,集群无人机避碰算法设计:对控制器产生的期望速度进行优化,根据邻机的位置和速度产生新的避碰期望速度。本发明主要应用于无人机控制场合。

Description

基于相对速度障碍的集群无人机避碰方法
技术领域
本发明涉及无人机飞行器避碰技术领域,尤其涉及集群无人机避碰方法领域。
背景技术
无人机(Unmanned Aerial Vehicle,UAV)是一种近年来备受研究者关注的无人驾驶飞行器,其在执行搜索救援、监督执法、空中测绘和航空摄影等方面的潜在价值逐渐被挖掘利用。多无人机协同自主编队飞行是近年来的一个前沿领域,可充分利用有限单机资源,共同执行复杂任务。避碰问题是无人机编队(Unmanned Aerial Vehicle Team,UAV Team)执行任务时必须要解决的关键问题之一,是无人机获得航空监管部门授权,飞入通用空域的关键,也是无人机自主化进程中的关键环节。因此,世界各国正在大力推进相关技术的研究,包括美国空军和美国国防研究协会主导以协调无人机系统航空空域飞行为重点的重大项目,英国以航空工业界为主导的“自主系统技术相关空中评估”项目,以及由欧洲防务局组织实施的欧洲研究计划等。这些重大研究计划项目的核心便是无人机的避碰技术。
目前,国内外相关学者提出的集群无人机避碰方法主要有人工势场法、混合整数序列规划法和搜索论法。1)人工势场法:人工势场法的算法理念起源于物理学中的电场力作用原理,即将无人机个体看作存在于电场中的电子,无人机之间存在相互排斥的作用力从而保证期望的机间距离,无人机的运动方向和轨迹就是其所受到合力的方向。人工势场法于1986年一经提出,便得到了广泛的应用与关注。然而,人工势场法易陷入“局部困扰”。所谓“局部困扰”是指:对势场方程的简单选取极易使无人机在面对多架邻机时失去合力作用,进而在缺少驱动作用的情况下,使无人机的运动行为停滞或深陷于局部中无限徘徊。该种情况的发生即意味着无人机避碰失效。2)混合整数序列规划法:混合整数序列规划提前为每架无人机生成最优轨迹,将避碰表示为整数约束。这是一种集中式控制思想,它的局限性是每架无人机都需要知道其它所有无人机的起始位置和目标位置,以此来规划自身轨迹。因此,计算复杂度随无人机数量急剧增加,严重影响了算法的实时性。3)搜索论法:是以搜索论为基础的传统方法,最大化发现概率设计搜索航迹。通常,这样规划的航路是固定的,不具有实时动态规划的能力,一旦突发状况无法及时处理。方法同时存在一定的问题,不能在保证求解问题精度和提高问题的求解速度这两者间做出很好的平衡。
综上所述,使每架无人机在没有全局信息的情况下只依赖邻机信息实现集群无人机间的避碰尤为重要,因为只有这样才能使无人机避碰不受集群规模影响。针对现有避碰策略的不足,本发明首次提出了基于相对速度障碍的集群无人机避碰方法。该方法通过实时计算避碰期望速度,确保集群无人机由指定的起点,能够安全、无碰撞地朝着各自目标点飞行。
发明内容
为克服现有技术的不足,本发明旨在提出一种基于相对速度障碍的集群无人机避碰方法,无人机编队在任务过程中,要求保证编队内部不发生碰撞,即在无人机执行各自任务时,无论是几架无人机同时相遇,都能够协同一致的相互避开,并且在避碰之后能够回到先前的预定航路上。本发明提出的策略,通过建立四旋翼无人机轨迹姿态模型、设计协同控制策略及集群无人机避碰算法,实现集群无人机从初始位置到目标位置的安全飞行。为此,本发明采用的技术方案是,基于相对速度障碍的集群无人机避碰方法,步骤如下:
第一部分,基于牛顿––欧拉方程的四旋翼无人机轨迹姿态模型建立:四旋翼飞行器是具有四个输入和六个自由度可实现垂直起降的欠驱动强耦合旋翼式飞行器,根据牛顿–欧拉方程对四旋翼飞行器进行了动力学建模;
第二部分,分布式串级比例积分PID控制器设计:设计分布式串级比例积分PID控制器,相关技术包括外环位置控制器、姿态解算及内环的姿态控制器设计;
第三部分,集群无人机避碰算法设计:对控制器产生的期望速度进行优化,根据邻机的位置和速度产生新的避碰期望速度。
具体地:
第一部分,基于牛顿––欧拉方程的四旋翼无人机姿态模型建立,四旋翼飞行器是一种能实现垂直起降的非共轴式多旋翼飞行器,只通过调节蝶形分布的四个旋翼的转速,实现对四旋翼飞行器飞行姿态的控制,其中以第i架无人机为例,建立四旋翼无人机的轨迹姿态数学模型如下,其余无人机控制以此类推:
其中,pi=[xi,yi,zi]T∈R3表示惯性坐标系下三个坐标轴方向的位置,表示惯性坐标系下x,y,z三个方向的线速度,表示机体坐标系下的滚转角速率、俯仰角速率及偏航角速率,g=9.8m/s2表示地球重力加速度,ez=[0,0,1]表示常值向量,m表示四旋翼无人机质量,表示无人机的总升力,表示无人机三个方向的控制力矩,I=diag{Ix,Iy,Iz}表示无人机惯性常值矩阵,旋转矩阵Ri和映射函数f(Ωi)定义如下
φiii分别表示惯性坐标系下的滚转角、俯仰角及偏航角,控制量与电机转速之间的关系如下:
其中,d表示旋翼转动中心到无人机中心的距离,kF,kM分别表示旋翼的升力系数和扭矩系数;
第二部分,分布式串级比例积分PID控制器设计:该部分是设计分布式串级比例积分PID控制器,相关技术包括外环位置控制器、姿态解算及内环的姿态控制器设计,进一步地:
A)位置控制器
定义位置跟踪误差
其中,表示第i架无人机期望的位置矢量信息,则期望速度
其中,为常值向量,表示位置控制器位置环比例增益,随后用集群无人机避碰算法根据第i架无人机的期望速度以及邻机的位置和速度优化产生新的避碰期望速度
定义速度跟踪误差
其中vi表示第i架无人机的速度矢量信息,
则期望加速度
其中,为常值向量,分别表示位置控制器速度环比例、积分和微分增益。
外环控制量为
B)姿态解算算法
由于四旋翼无人机无法通过控制力矩直接对飞行轨迹进行控制,因此需要将外环获得的控制指令转化为期望的飞行姿态,具体解算公式为
ri1=ri2×ri3 (14)
其中为期望姿态,rij,(j=1,2,3)为期望姿态矩阵的第j列,ψd为期望偏航角;
C)姿态控制器
定义姿态跟踪误差
其中f-1为映射函数f(Ωi)的逆映射,期望角速度设计为
其中,为常值向量,表示姿态控制器姿态环比例增益,
定义角速度跟踪误差
内环控制量设计为
其中,为常值向量,分别表示姿态控制器姿态角速率环比例、积分和微分增益。
第三部分,集群无人机避碰算法设计:实现对控制器产生的期望速度进行优化,根据邻机的位置和速度产生新的避碰期望速度,具体地,对于两架无人机i和j,速度障碍是导致i与j在时间τ之前发生碰撞的相对速度集合:
其中,r表示每架四旋翼无人机的安全半径,时间τ越大,无人机对其他无人机的出现反应越迅速,但在自身速度选择上的自由度越小,令D(p,r)表示以p为中心半径为R的圆盘:
D(p,R)={q|||q-p||<R} (21)
两架无人机i和j的速度障碍为无数个以两架无人机位置中心连线为对称轴的圆盘的交集,并且这些圆有两条过原点的公切线,速度障碍的完整几何形状边界由圆弧和两条公切线共同组成,是关于原点对称的,类似地,二维平面的速度障碍绕对称轴进行旋转可以得到三维平面的速度障碍;
令vi和vj分别是无人机i和j的当前速度,由速度障碍的定义,如果时,则当i与j保持当前速度继续移动时,i与j会在时间τ之前发生碰撞,反之当时,无人机i和j至少在时间τ内保证不会发生碰撞;
表示集合X和Y的闵可夫斯基和:
则对于任意集合Vj,如果vj∈Vj并且则i和j以当前速度至少在时间τ内保证不会碰撞,指定j从集合Vj选择自身速度,引出i的避碰速度集合定义:
并且时,称i和j的一对速度集合Vi和Vj为相互避碰的,当并且时,称Vi和Vj互为最大相互避碰速度集合,
基于上述定义,为i和j选取允许的速度集合Vi和Vj使得并且即Vi和Vj是相互避碰的且互为最大相互避碰速度集合,保证i和j至少在时间τ内不会碰撞。有无数对满足这些要求的集合Vi和Vj,在它们当中选择靠近i和j的当前速度vi和vj的允许速度最多的一对。将i的最优相互避碰速度集合表示为j的最优相互避碰速度集合为并且正式定义如下:
定义使得它们是相互避碰的且互为最大相互避碰速度集合,即并且对所有其它的相互避碰速度集合Vi和Vj,以及所有半径R>0,使得
其中|V|表示集合V的测度,即R2中的面积,这表示分别包含更多靠近vi和vj的速度,另外,允许速度的分布是平均的,即靠近i和j当前速度的速度数量是相等的,
假设i和j处于产生碰撞的轨迹,即令u为从vi-vj指向速度障碍边界上最近一点的向量,
并且令n为在(vi-vj)+u点指向边界外的法向量,则u为i和j在时间τ内避免碰撞所需的相对速度的最小改变量,为了以一个平均的方式在无人机之间分担避碰责任,无人机i至少改变自身速度并且假设无人机j承担另一半。因此i的允许速度集合为在起始点指向n方向的半平面:
对于j对称的定义集合当i和j当前速度没有处于产生碰撞的轨迹,即时,以上等式同样适用,在这种情况下,无人机各自承担一半保持在无碰撞轨迹的责任;
只要无人机能够观测互相的位置,安全半径和当前速度,i和j能够在不互相通信的情况下分别计算
接下来应用最优相互避碰定义在多架无人机之间进行避碰:
每架无人机i以时间步长△t进行感知和运动的连续循环,在每个循环中,无人机获得其他无人机和自身的当前位置和当前速度,根据这个信息,无人机关于其他每架无人机j计算允许速度的半平面i关于所有无人机允许速度的集合为关于其他每架无人机允许速度的半平面的交集,把这个集合表示为
这个定义也包括了无人机i的最大速度约束,
最后,无人机在允许速度区域内的所有速度中选择最靠进自身期望速度的避碰期望速度使无人机解决避碰问题时,偏离预定路线尽可能小:
使用线性规划单纯形法求解上述问题。
本发明的特点及有益效果是:
本发明以理论推导和虚拟仿真技术相结合为主要研究手段,提出一种基于相对速度障碍的集群无人机避碰方法,该方法能够确保集群无人机执行各自任务时,无论是几架无人机同时相遇,都能够协同一致的相互避开,并且在避碰之后能够回到先前的预定航路上。
附图说明:
附图1 12架无人机避碰飞行示意图。
附图2集群无人机避碰方法结构框图。
附图3两架无人机位置。
附图4速度障碍对称轴。
附图5速度障碍完整几何形状。
附图6最优相互避碰半平面。
具体实施方式
本发明涉及四旋翼无人机飞行避碰技术领域。具体来说,首先提出了不同于以往传统集群无人机避碰的基于相对速度障碍的集群无人机避碰方法,该方法通过实时计算避碰速度,只依赖邻机的位置和速度信息,可有效避免传统集群无人机为每架无人机规划轨迹的不足,集群无人机的避碰通过无人机期望速度的实时优化得到。随后通过设置飞行场景,对本发明提出策略的有效性进行验证。
本发明以理论推导和虚拟仿真技术相结合为主要研究手段,提出一种基于相对速度障碍的集群无人机避碰方法,该方法能够确保集群无人机执行各自任务时,无论是几架无人机同时相遇,都能够协同一致的相互避开,并且在避碰之后能够回到先前的预定航路上。
本发明提出的基于相对速度障碍的集群无人机避碰方法,主要包括以下三部分:
第一部分,基于牛顿––欧拉方程的四旋翼无人机轨迹姿态模型建立:四旋翼飞行器是一种具有四个输入和六个自由度可实现垂直起降的欠驱动强耦合旋翼式飞行器。为了解决四旋翼飞行器的飞行控制问题,根据牛顿–欧拉方程对四旋翼飞行器进行了动力学建模。
第二部分,分布式串级PID控制器设计:该部分主要目的是设计分布式串级PID控制器,相关技术包括外环位置控制器、姿态解算及内环的姿态控制器设计。
第三部分,集群无人机避碰算法设计:该部分主要对控制器产生的期望速度进行优化,根据邻机的位置和速度产生新的避碰期望速度。
最后,为了验证本发明提出的基于相对速度障碍的集群无人机避碰方法的有效性,在MATLAB\Simulink仿真平台上搭建集群无人机避碰系统,通过设置飞行场景,对本发明提出策略的有效性进行验证。
本发明提出的基于相对速度障碍的集群无人机避碰方法,在MATLAB/Simulink环境下完成了集成设计及验证,具体过程如下:
(1)参数设置
1)四旋翼无人机物理参数:质量m=1.1kg,惯性参数Ix=1.431×10-2kgm2,Iy=1.431×10-3kgm2,Iz=2.721×10-3kgm2,旋翼转动中心到无人机中心的距离d=0.225m,旋翼的升力系数kF=9.832×10-6Nms2/rad2,旋翼的扭矩系数kM=1.32×10-7Ns2/rad2
2)控制器参数:位置控制器位置环比例增益速度环比例增益积分增益微分增益姿态解算算法期望偏航角ψd=0。姿态控制器姿态环比例增益姿态角速率环比例增益积分增益微分增益
3)其它参数设置:每架四旋翼无人机的安全半径r=0.65m,无人机i的最大速度仿真测试验证过程中,采样时间设置为定步长20毫秒。
(2)仿真结果及性能分析
以12架四旋翼无人机为例,对上述提出的分布式串级PID控制器及集群无人机避碰算法的有效性进行数值仿真验证。基于本发明提出的策略,通过设定正方形编队的12架无人机垂直起飞后向各自关于正方形编队中心对称的位置飞行的场景,在MATLAB环境中,利用本发明提出的算法对飞行场景中的集群无人机避碰问题进行求解,能够很好的满足无人机避碰实时性要求。用于12架四旋翼无人机避碰飞行的示意图如图1所示,从中可以看出基于本发明给出的策略,能实现多无人机的自主避碰飞行。进一步,表1中的数表示其行列指数对应的两架无人机在整个飞行过程中的最小距离,从中可以看出集群无人机飞行过程中任意两架无人机之间的最小距离为1.04m,依然大于安全距离1m,因此可以实现集群无人机从初始位置到目标位置的安全飞行。
表1任意两架无人机之间最小距离
以下结合附图对本发明作进一步详述。
基于相对速度障碍的集群无人机避碰方法总体结构图如图2所示。具体实现
步骤如下:
第一步,基于牛顿––欧拉方程的四旋翼无人机姿态模型建立。四旋翼飞行器是一种能实现垂直起降的非共轴式多旋翼飞行器,可以只通过调节蝶形分布的四个旋翼的转速,实现对四旋翼飞行器飞行姿态的控制。为了解决四旋翼飞行器的飞行控制问题,以第i架无人机为例,建立四旋翼无人机的轨迹姿态数学模型如下
其中,pi=[xi,yi,zi]T∈R3表示惯性坐标系下三个坐标轴方向的位置,表示惯性坐标系下x,y,z三个方向的线速度,表示机体坐标系下的滚转角速率、俯仰角速率及偏航角速率。g=9.8m/s2表示地球重力加速度,ez=[0,0,1]表示常值向量,m表示四旋翼无人机质量,表示无人机的总升力,表示无人机三个方向的控制力矩,I=diag{Ix,Iy,Iz}表示无人机惯性常值矩阵,旋转矩阵Ri和映射函数f(Ωi)定义如下
φiii分别表示惯性坐标系下的滚转角、俯仰角及偏航角。控制量与电机转速之间的关系如下:
其中,d表示旋翼转动中心到无人机中心的距离,kF,kM分别表示旋翼的升力系数和扭矩系数。
第二步,分布式串级PID控制器设计:该部分主要目的是设计分布式串级PID控制器,相关技术包括外环位置控制器、姿态解算及内环的姿态控制器设计。
D)位置控制器
定义位置跟踪误差
其中表示第i架无人机期望的位置矢量信息,则期望速度
其中,为常值向量,表示位置控制器位置环比例增益。随后用集群无人机避碰算法根据第i架无人机的期望速度以及邻机的位置和速度优化产生新的避碰期望速度具体步骤将在下一部分详细说明。
定义速度跟踪误差
其中vi表示第i架无人机的速度矢量信息。
则期望加速度
其中,为常值向量,分别表示位置控制器速度环比例、积分和微分增益。
外环控制量为
E)姿态解算算法
由于四旋翼无人机无法通过控制力矩直接对飞行轨迹进行控制,因此需要将外环获得的控制指令转化为期望的飞行姿态,具体解算公式为
ri1=ri2×ri3 (14)
其中为期望姿态,rij,(j=1,2,3)为期望姿态矩阵的第j列,ψd为期望偏航角。
F)姿态控制器
定义姿态跟踪误差
其中f-1为映射函数f(Ωi)的逆映射。期望角速度设计为
其中,为常值向量,表示姿态控制器姿态环比例增益。
定义角速度跟踪误差
内环控制量设计为
其中,为常值向量,分别表示姿态控制器姿态角速率环比例、积分和微分增益。
第三步,集群无人机避碰算法设计:该部分主要对控制器产生的期望速度进行优化,根据邻机的位置和速度产生新的避碰期望速度。
对于两架无人机i和j,速度障碍是导致i与j在时间τ之前发生碰撞的相对速度集合。
其中,r表示每架四旋翼无人机的安全半径,时间τ越大,无人机对其他无人机的出现反应越迅速,但在自身速度选择上的自由度越小。令D(p,r)表示以p为中心半径为R的圆盘:
D(p,R)={q|||q-p||<R} (21)
以二维平面为例,当两架无人机i和j的位置如图3所示,速度障碍为无数个以两架无人机位置中心连线为对称轴的圆盘的交集,并且这些圆有两条过原点的公切线,如图4所示,速度障碍的完整几何形状如图5中灰色区域向无穷远平面无限延伸,其边界由圆弧和两条公切线共同组成。注意是关于原点对称的。类似地,二维平面的速度障碍绕对称轴进行旋转可以得到三维平面的速度障碍。
令vi和vj分别是无人机i和j的当前速度,由速度障碍的定义,如果时,则当i与j保持当前速度继续移动时,i与j会在时间τ之前发生碰撞。反之当时,无人机i和j至少在时间τ内保证不会发生碰撞。
表示集合X和Y的闵可夫斯基和:
则对于任意集合Vj,如果vj∈Vj并且则i和j以当前速度至少在时间τ内保证不会碰撞。指定j从集合Vj选择自身速度,引出i的避碰速度集合定义:
并且时,称i和j的一对速度集合Vi和Vj为相互避碰的。当并且时,称Vi和Vj互为最大相互避碰速度集合。
基于上述定义,为i和j选取允许的速度集合Vi和Vj使得并且即Vi和Vj是相互避碰的且互为最大相互避碰速度集合,保证i和j至少在时间τ内不会碰撞。有无数对满足这些要求的集合Vi和Vj,在它们当中选择靠近i和j的当前速度vi和vj的允许速度最多的一对。将i的最优相互避碰速度集合表示为j的最优相互避碰速度集合为并且正式定义如下。
定义使得它们是相互避碰的且互为最大相互避碰速度集合,即并且对所有其它的相互避碰速度集合Vi和Vj,以及所有半径R>0,使得
其中|V|表示集合V的测度(即R2中的面积)。这表示分别包含更多靠近vi和vj的速度。另外,允许速度的分布是平均的,即靠近i和j当前速度的速度数量是相等的。
假设i和j处于产生碰撞的轨迹,即令u为从vi-vj指向速度障碍边界上最近一点的向量,如图6所示
并且令n为在(vi-vj)+u点指向边界外的法向量。则u为i和j在时间τ内避免碰撞所需的相对速度的最小改变量。为了以一个平均的方式在无人机之间分担避碰责任,无人机i至少改变自身速度并且假设无人机j承担另一半。因此i的
允许速度集合为在起始点指向n方向的半平面。
对于j对称的定义集合如图6所示。当i和j当前速度没有处于产生碰撞的轨迹,即时,以上等式同样适用。在这种情况下,无人机各自承担一半保持在无碰撞轨迹的责任。
可以看出如上构造的实际上是最优的。只要无人机能够观测互相的位置,安全半径和当前速度,i和j能够在不互相通信的情况下分别计算
接下来应用最优相互避碰定义在多架无人机之间进行避碰。
每架无人机i以时间步长△t进行感知和运动的连续循环。在每个循环中,无人机获得其他无人机和自身的当前位置和当前速度。根据这个信息,无人机关于其他每架无人机j计算允许速度的半平面i关于所有无人机允许速度的集合为关于其他每架无人机允许速度的半平面的交集。把这个集合表示为
注意这个定义也包括了无人机i的最大速度约束。
最后,无人机在允许速度区域内的所有速度中选择最靠进自身期望速度的避碰期望速度使无人机解决避碰问题时,偏离预定路线尽可能小:
使用线性规划单纯形法求解上述问题。
基于以上三步,完成了基于相对速度障碍的集群无人机避碰方法的全部设计流程。

Claims (2)

1.一种基于相对速度障碍的集群无人机避碰方法,其特征是,步骤如下:
第一部分,基于牛顿––欧拉方程的四旋翼无人机轨迹姿态模型建立:四旋翼飞行器是具有四个输入和六个自由度可实现垂直起降的欠驱动强耦合旋翼式飞行器,根据牛顿–欧拉方程对四旋翼飞行器进行了动力学建模;
第二部分,分布式串级比例积分PID控制器设计:设计分布式串级比例积分PID控制器,相关技术包括外环位置控制器、姿态解算及内环的姿态控制器设计;
第三部分,集群无人机避碰算法设计:对控制器产生的期望速度进行优化,根据邻机的位置和速度产生新的避碰期望速度。
2.如权利要求1所述的基于相对速度障碍的集群无人机避碰方法,其特征是,具体地:
第一部分,基于牛顿––欧拉方程的四旋翼无人机姿态模型建立,四旋翼飞行器是一种能实现垂直起降的非共轴式多旋翼飞行器,只通过调节蝶形分布的四个旋翼的转速,实现对四旋翼飞行器飞行姿态的控制,其中以第i架无人机为例,建立四旋翼无人机的轨迹姿态数学模型如下,其余无人机控制以此类推:
其中,pi=[xi,yi,zi]T∈R3表示惯性坐标系下三个坐标轴方向的位置,表示惯性坐标系下x,y,z三个方向的线速度,表示机体坐标系下的滚转角速率、俯仰角速率及偏航角速率,g=9.8m/s2表示地球重力加速度,ez=[0,0,1]表示常值向量,m表示四旋翼无人机质量,表示无人机的总升力,表示无人机三个方向的控制力矩,I=diag{Ix,Iy,Iz}表示无人机惯性常值矩阵,旋转矩阵Ri和映射函数f(Ωi)定义如下
φiii分别表示惯性坐标系下的滚转角、俯仰角及偏航角,控制量与电机转速之间的关系如下:
其中,d表示旋翼转动中心到无人机中心的距离,kF,kM分别表示旋翼的升力系数和扭矩系数;
第二部分,分布式串级比例积分PID控制器设计:该部分是设计分布式串级比例积分PID控制器,相关技术包括外环位置控制器、姿态解算及内环的姿态控制器设计,进一步地:
A)位置控制器
定义位置跟踪误差
其中,表示第i架无人机期望的位置矢量信息,则期望速度
其中,为常值向量,表示位置控制器位置环比例增益,随后用集群无人机避碰算法根据第i架无人机的期望速度以及邻机的位置和速度优化产生新的避碰期望速度
定义速度跟踪误差
其中vi表示第i架无人机的速度矢量信息,
则期望加速度
其中,为常值向量,分别表示位置控制器速度环比例、积分和微分增益。
外环控制量为
B)姿态解算算法
由于四旋翼无人机无法通过控制力矩直接对飞行轨迹进行控制,因此需要将外环获得的控制指令转化为期望的飞行姿态,具体解算公式为
ri1=ri2×ri3 (14)
其中为期望姿态,rij,(j=1,2,3)为期望姿态矩阵的第j列,ψd为期望偏航角;
C)姿态控制器
定义姿态跟踪误差
其中f-1为映射函数f(Ωi)的逆映射,期望角速度设计为
其中,为常值向量,表示姿态控制器姿态环比例增益,
定义角速度跟踪误差
内环控制量设计为
其中,为常值向量,分别表示姿态控制器姿态角速率环比例、积分和微分增益。
第三部分,集群无人机避碰算法设计:实现对控制器产生的期望速度进行优化,根据邻机的位置和速度产生新的避碰期望速度,具体地,对于两架无人机i和j,速度障碍是导致i与j在时间τ之前发生碰撞的相对速度集合:
其中,r表示每架四旋翼无人机的安全半径,时间τ越大,无人机对其他无人机的出现反应越迅速,但在自身速度选择上的自由度越小,令D(p,r)表示以p为中心半径为R的圆盘:
D(p,R)={q|||q-p||<R} (21)
两架无人机i和j的速度障碍为无数个以两架无人机位置中心连线为对称轴的圆盘的交集,并且这些圆有两条过原点的公切线,速度障碍的完整几何形状边界由圆弧和两条公切线共同组成,是关于原点对称的,类似地,二维平面的速度障碍绕对称轴进行旋转可以得到三维平面的速度障碍;
令vi和vj分别是无人机i和j的当前速度,由速度障碍的定义,如果时,则当i与j保持当前速度继续移动时,i与j会在时间τ之前发生碰撞,反之当时,无人机i和j至少在时间τ内保证不会发生碰撞;
表示集合X和Y的闵可夫斯基和:
则对于任意集合Vj,如果vj∈Vj并且则i和j以当前速度至少在时间τ内保证不会碰撞,指定j从集合Vj选择自身速度,引出i的避碰速度集合定义:
并且时,称i和j的一对速度集合Vi和Vj为相互避碰的,当并且时,称Vi和Vj互为最大相互避碰速度集合,
基于上述定义,为i和j选取允许的速度集合Vi和Vj使得并且即Vi和Vj是相互避碰的且互为最大相互避碰速度集合,保证i和j至少在时间τ内不会碰撞。有无数对满足这些要求的集合Vi和Vj,在它们当中选择靠近i和j的当前速度vi和vj的允许速度最多的一对。将i的最优相互避碰速度集合表示为j的最优相互避碰速度集合为并且正式定义如下:
定义使得它们是相互避碰的且互为最大相互避碰速度集合,即并且对所有其它的相互避碰速度集合Vi和Vj,以及所有半径R>0,使得
其中|V|表示集合V的测度,即R2中的面积,这表示分别包含更多靠近vi和vj的速度,另外,允许速度的分布是平均的,即靠近i和j当前速度的速度数量是相等的,
假设i和j处于产生碰撞的轨迹,即令u为从vi-vj指向速度障碍边界上最近一点的向量,
并且令n为在(vi-vj)+u点指向边界外的法向量,则u为i和j在时间τ内避免碰撞所需的相对速度的最小改变量,为了以一个平均的方式在无人机之间分担避碰责任,无人机i至少改变自身速度并且假设无人机j承担另一半。因此i的允许速度集合为在起始点指向n方向的半平面:
对于j对称的定义集合当i和j当前速度没有处于产生碰撞的轨迹,即时,以上等式同样适用,在这种情况下,无人机各自承担一半保持在无碰撞轨迹的责任;
只要无人机能够观测互相的位置,安全半径和当前速度,i和j能够在不互相通信的情况下分别计算
接下来应用最优相互避碰定义在多架无人机之间进行避碰:
每架无人机i以时间步长△t进行感知和运动的连续循环,在每个循环中,无人机获得其他无人机和自身的当前位置和当前速度,根据这个信息,无人机关于其他每架无人机j计算允许速度的半平面i关于所有无人机允许速度的集合为关于其他每架无人机允许速度的半平面的交集,把这个集合表示为
这个定义也包括了无人机i的最大速度约束,
最后,无人机在允许速度区域内的所有速度中选择最靠进自身期望速度的避碰期望速度使无人机解决避碰问题时,偏离预定路线尽可能小:
使用线性规划单纯形法求解上述问题。
CN201810849450.6A 2018-07-28 2018-07-28 基于相对速度障碍的集群无人机避碰方法 Active CN108958289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810849450.6A CN108958289B (zh) 2018-07-28 2018-07-28 基于相对速度障碍的集群无人机避碰方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810849450.6A CN108958289B (zh) 2018-07-28 2018-07-28 基于相对速度障碍的集群无人机避碰方法

Publications (2)

Publication Number Publication Date
CN108958289A true CN108958289A (zh) 2018-12-07
CN108958289B CN108958289B (zh) 2021-08-13

Family

ID=64466031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810849450.6A Active CN108958289B (zh) 2018-07-28 2018-07-28 基于相对速度障碍的集群无人机避碰方法

Country Status (1)

Country Link
CN (1) CN108958289B (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110515391A (zh) * 2019-08-20 2019-11-29 西南石油大学 一种基于梯度函数的无人机编队三维避障方法
CN110554607A (zh) * 2019-09-17 2019-12-10 山东大学 多欧拉-拉格朗日系统带有避障护航任务的协同控制方法及系统
CN110825108A (zh) * 2019-11-11 2020-02-21 浙江理工大学 一种在同一空域内多架跟踪无人机的协同防碰撞方法
CN111338369A (zh) * 2020-03-19 2020-06-26 南京理工大学 一种基于非线性逆补偿的多旋翼飞行控制方法
CN111487995A (zh) * 2020-04-30 2020-08-04 湖南科技大学 基于三维简化虚拟模型的群无人机多目标搜索协作方法
CN111522319A (zh) * 2020-05-29 2020-08-11 南京航空航天大学 一种基于扩散模型使无人系统生成群集性的分布式控制方法
CN111552310A (zh) * 2019-02-08 2020-08-18 沃科波特有限公司 飞行器及其运动规划方法和系统
CN111650963A (zh) * 2020-06-03 2020-09-11 中国人民解放军军事科学院国防科技创新研究院 一种面向垂直起降固定翼无人机的视觉集群编队控制方法
CN111665870A (zh) * 2020-06-24 2020-09-15 深圳市道通智能航空技术有限公司 一种轨迹跟踪方法及无人机
CN112083727A (zh) * 2020-09-06 2020-12-15 东南大学 基于速度障碍物的多自主体系统分布式避碰编队控制方法
CN112306090A (zh) * 2020-10-26 2021-02-02 中国人民解放军军事科学院国防科技创新研究院 基于相对位移和速度矢量合成的无人机即时快速避障方法
CN112833773A (zh) * 2021-01-13 2021-05-25 无锡卡尔曼导航技术有限公司 一种高精度的作业实时计亩方法
CN112925342A (zh) * 2021-01-20 2021-06-08 北京工商大学 基于改进相互速度障碍法的无人机动态避障方法
CN113031636A (zh) * 2021-03-01 2021-06-25 之江实验室 无人机控制方法、装置、电子设备、无人机和存储介质
CN113359831A (zh) * 2021-06-16 2021-09-07 天津大学 基于任务逻辑调度的集群四旋翼无人机路径生成方法
CN113436276A (zh) * 2021-07-13 2021-09-24 天津大学 基于视觉相对定位的多无人机编队方法
CN113515142A (zh) * 2020-04-10 2021-10-19 北京三快在线科技有限公司 无人机轨迹跟踪控制方法、装置、无人机和存储介质
CN113614669A (zh) * 2019-03-22 2021-11-05 沃尔沃卡车集团 用于在沿路线的任务中控制车辆的方法
CN113885562A (zh) * 2021-10-08 2022-01-04 北京理工大学 一种基于速度障碍的感知约束下多无人机协同避碰方法
CN113925490A (zh) * 2021-10-14 2022-01-14 河北医科大学 空间定向障碍分类方法
WO2022067759A1 (zh) * 2020-09-30 2022-04-07 深圳市大疆创新科技有限公司 飞行控制方法、飞行器、控制终端及可读存储介质
CN114721423A (zh) * 2022-03-15 2022-07-08 北京理工大学 考虑避碰约束的多无人机协同到达预置目标的分配方法
CN114995514A (zh) * 2022-07-13 2022-09-02 中国人民解放军国防科技大学 二维平面下多旋翼无人机分布式飞行避碰方法和装置
CN116090097A (zh) * 2022-12-30 2023-05-09 北京机电工程研究所 基于等效撞水设计的近水面流固耦合有限元高效计算方法
CN116300409A (zh) * 2023-05-17 2023-06-23 季华实验室 一种轨迹跟踪控制方法、装置、电子设备及存储介质
CN116804883A (zh) * 2023-08-25 2023-09-26 北京科技大学 无人机避障方法及装置
CN116048120B (zh) * 2023-01-10 2024-04-16 中国建筑一局(集团)有限公司 一种未知动态环境下小型四旋翼无人机自主导航系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039589A (zh) * 2009-10-16 2011-05-04 李路 模块化的灾害救援机器人
WO2013025552A1 (en) * 2011-08-12 2013-02-21 Aerovironment, Inc. Bi-stable, sub-commutated, direct-drive, sinusoidal motor controller for precision position control
CN103365215A (zh) * 2013-06-29 2013-10-23 天津大学 一种四旋翼无人飞行器半实物仿真实验系统及实验方法
US20140236391A1 (en) * 2008-06-27 2014-08-21 Raytheon Company Apparatus and method for controlling an unmanned vehicle
CN106444423A (zh) * 2016-09-30 2017-02-22 天津大学 室内多无人机编队飞行仿真验证平台及其实现方法
CN106843253A (zh) * 2017-02-28 2017-06-13 华南农业大学 一种不规则多旋翼无人机悬停状态受力中心位置检测方法
CN106886148A (zh) * 2017-01-18 2017-06-23 中国南方电网有限责任公司超高压输电公司广州局 一种基于蚁群算法固定翼无人机pid参数控制方法
CN106933238A (zh) * 2017-02-28 2017-07-07 华南农业大学 一种对称布局多旋翼无人机动态受力中心位置的检测方法
CN107957730A (zh) * 2017-11-01 2018-04-24 华南理工大学 一种无人飞行器稳定飞行控制方法
CN108388270A (zh) * 2018-03-21 2018-08-10 天津大学 面向安全域的集群无人机轨迹姿态协同控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140236391A1 (en) * 2008-06-27 2014-08-21 Raytheon Company Apparatus and method for controlling an unmanned vehicle
CN102039589A (zh) * 2009-10-16 2011-05-04 李路 模块化的灾害救援机器人
WO2013025552A1 (en) * 2011-08-12 2013-02-21 Aerovironment, Inc. Bi-stable, sub-commutated, direct-drive, sinusoidal motor controller for precision position control
CN103365215A (zh) * 2013-06-29 2013-10-23 天津大学 一种四旋翼无人飞行器半实物仿真实验系统及实验方法
CN106444423A (zh) * 2016-09-30 2017-02-22 天津大学 室内多无人机编队飞行仿真验证平台及其实现方法
CN106886148A (zh) * 2017-01-18 2017-06-23 中国南方电网有限责任公司超高压输电公司广州局 一种基于蚁群算法固定翼无人机pid参数控制方法
CN106843253A (zh) * 2017-02-28 2017-06-13 华南农业大学 一种不规则多旋翼无人机悬停状态受力中心位置检测方法
CN106933238A (zh) * 2017-02-28 2017-07-07 华南农业大学 一种对称布局多旋翼无人机动态受力中心位置的检测方法
CN107957730A (zh) * 2017-11-01 2018-04-24 华南理工大学 一种无人飞行器稳定飞行控制方法
CN108388270A (zh) * 2018-03-21 2018-08-10 天津大学 面向安全域的集群无人机轨迹姿态协同控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAXIN QIU 等: "《Multiple UAV distributed close formation control based on in-flight leadership hierarchies of pigeon flocks》", 《AEROSPACE SCIENCE AND TECHNOLOGY》 *
张博渊 等: "《基于hp自适应伪谱法的四旋翼无人机》", 《科技导报》 *
杨小川 等: "《Pixhawk开源飞控项目概述及其航空应用展望》", 《无人机》 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552310B (zh) * 2019-02-08 2023-09-29 沃科波特有限公司 飞行器及其运动规划方法和系统
CN111552310A (zh) * 2019-02-08 2020-08-18 沃科波特有限公司 飞行器及其运动规划方法和系统
CN113614669A (zh) * 2019-03-22 2021-11-05 沃尔沃卡车集团 用于在沿路线的任务中控制车辆的方法
CN113614669B (zh) * 2019-03-22 2024-04-05 沃尔沃卡车集团 用于在沿路线的任务中控制车辆的方法
CN110515391B (zh) * 2019-08-20 2022-04-15 西南石油大学 一种基于梯度函数的无人机编队三维避障方法
CN110515391A (zh) * 2019-08-20 2019-11-29 西南石油大学 一种基于梯度函数的无人机编队三维避障方法
CN110554607A (zh) * 2019-09-17 2019-12-10 山东大学 多欧拉-拉格朗日系统带有避障护航任务的协同控制方法及系统
CN110825108A (zh) * 2019-11-11 2020-02-21 浙江理工大学 一种在同一空域内多架跟踪无人机的协同防碰撞方法
CN110825108B (zh) * 2019-11-11 2023-03-14 浙江理工大学 一种在同一空域内多架跟踪无人机的协同防碰撞方法
CN111338369A (zh) * 2020-03-19 2020-06-26 南京理工大学 一种基于非线性逆补偿的多旋翼飞行控制方法
CN111338369B (zh) * 2020-03-19 2022-08-12 南京理工大学 一种基于非线性逆补偿的多旋翼飞行控制方法
CN113515142A (zh) * 2020-04-10 2021-10-19 北京三快在线科技有限公司 无人机轨迹跟踪控制方法、装置、无人机和存储介质
CN111487995A (zh) * 2020-04-30 2020-08-04 湖南科技大学 基于三维简化虚拟模型的群无人机多目标搜索协作方法
CN111522319A (zh) * 2020-05-29 2020-08-11 南京航空航天大学 一种基于扩散模型使无人系统生成群集性的分布式控制方法
CN111650963B (zh) * 2020-06-03 2023-08-18 中国人民解放军军事科学院国防科技创新研究院 一种面向垂直起降固定翼无人机的视觉集群编队控制方法
CN111650963A (zh) * 2020-06-03 2020-09-11 中国人民解放军军事科学院国防科技创新研究院 一种面向垂直起降固定翼无人机的视觉集群编队控制方法
CN111665870A (zh) * 2020-06-24 2020-09-15 深圳市道通智能航空技术有限公司 一种轨迹跟踪方法及无人机
CN112083727A (zh) * 2020-09-06 2020-12-15 东南大学 基于速度障碍物的多自主体系统分布式避碰编队控制方法
WO2022067759A1 (zh) * 2020-09-30 2022-04-07 深圳市大疆创新科技有限公司 飞行控制方法、飞行器、控制终端及可读存储介质
CN112306090A (zh) * 2020-10-26 2021-02-02 中国人民解放军军事科学院国防科技创新研究院 基于相对位移和速度矢量合成的无人机即时快速避障方法
CN112833773A (zh) * 2021-01-13 2021-05-25 无锡卡尔曼导航技术有限公司 一种高精度的作业实时计亩方法
CN112925342B (zh) * 2021-01-20 2022-07-01 北京工商大学 基于改进相互速度障碍法的无人机动态避障方法
CN112925342A (zh) * 2021-01-20 2021-06-08 北京工商大学 基于改进相互速度障碍法的无人机动态避障方法
CN113031636A (zh) * 2021-03-01 2021-06-25 之江实验室 无人机控制方法、装置、电子设备、无人机和存储介质
CN113031636B (zh) * 2021-03-01 2024-02-20 之江实验室 无人机控制方法、装置、电子设备、无人机和存储介质
CN113359831A (zh) * 2021-06-16 2021-09-07 天津大学 基于任务逻辑调度的集群四旋翼无人机路径生成方法
CN113436276A (zh) * 2021-07-13 2021-09-24 天津大学 基于视觉相对定位的多无人机编队方法
CN113885562A (zh) * 2021-10-08 2022-01-04 北京理工大学 一种基于速度障碍的感知约束下多无人机协同避碰方法
CN113885562B (zh) * 2021-10-08 2023-01-10 北京理工大学 一种基于速度障碍的感知约束下多无人机协同避碰方法
CN113925490A (zh) * 2021-10-14 2022-01-14 河北医科大学 空间定向障碍分类方法
CN113925490B (zh) * 2021-10-14 2023-06-27 河北医科大学 空间定向障碍分类方法
CN114721423A (zh) * 2022-03-15 2022-07-08 北京理工大学 考虑避碰约束的多无人机协同到达预置目标的分配方法
CN114995514A (zh) * 2022-07-13 2022-09-02 中国人民解放军国防科技大学 二维平面下多旋翼无人机分布式飞行避碰方法和装置
CN114995514B (zh) * 2022-07-13 2024-04-05 中国人民解放军国防科技大学 二维平面下多旋翼无人机分布式飞行避碰方法和装置
CN116090097A (zh) * 2022-12-30 2023-05-09 北京机电工程研究所 基于等效撞水设计的近水面流固耦合有限元高效计算方法
CN116048120B (zh) * 2023-01-10 2024-04-16 中国建筑一局(集团)有限公司 一种未知动态环境下小型四旋翼无人机自主导航系统及方法
CN116300409B (zh) * 2023-05-17 2023-08-15 季华实验室 一种轨迹跟踪控制方法、装置、电子设备及存储介质
CN116300409A (zh) * 2023-05-17 2023-06-23 季华实验室 一种轨迹跟踪控制方法、装置、电子设备及存储介质
CN116804883A (zh) * 2023-08-25 2023-09-26 北京科技大学 无人机避障方法及装置
CN116804883B (zh) * 2023-08-25 2023-12-01 北京科技大学 无人机避障方法及装置

Also Published As

Publication number Publication date
CN108958289B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN108958289A (zh) 基于相对速度障碍的集群无人机避碰方法
CN108459612B (zh) 基于人工势场法的无人机编队控制方法及装置
Lupashin et al. A simple learning strategy for high-speed quadrocopter multi-flips
CN112241125B (zh) 一种基于微分平坦特性的无人机轨迹跟踪方法
CN108388270A (zh) 面向安全域的集群无人机轨迹姿态协同控制方法
CN110825113A (zh) 一种适用于四旋翼无人机集群飞行的队形保持方法
Lu et al. Real-time simulation system for UAV based on Matlab/Simulink
CN109542110A (zh) 涵道式多旋翼系留无人机的控制器设计方法
CN109947126A (zh) 四旋翼无人机的控制方法、装置、设备及可读介质
CN113311859A (zh) 一种无人机集群有限时间仿射编队飞行控制方法
CN112684705B (zh) 一种四旋翼飞行器编队追踪控制方法
Malaek et al. Dynamic based cost functions for TF/TA flights
Yu et al. Design and implementation of a hardware-in-the-loop simulation system for a tilt trirotor UAV
Öner et al. LQR and SMC stabilization of a new unmanned aerial vehicle
Kim et al. Control of multi-agent collaborative fixed-wing UASs in unstructured environment
Keshmiri et al. Flight test validation of collision and obstacle avoidance in fixed-wing UASs with high speeds using morphing potential field
Kumar et al. Differential flatness based hybrid PID/LQR flight controller for complex trajectory tracking in quadcopter UAVs
Wang et al. Robust trajectory planning for spatial-temporal multi-drone coordination in large scenes
Zhang et al. Hardware-in-the-loop simulation platform for unmanned aerial vehicle swarm system: Architecture and application
Benzaid et al. A generalized dynamical model and control approach applied to multirotor aerial systems
Jiao et al. Fault tolerant control algorithm of hexarotor UAV
Chen et al. Model of UAV and downwash for multi-UAV path planning
Chakraborty et al. A simulation-based aircraft-centric assessment of the circular/endless runway concept
Tingting et al. Formation control of multiple UAVs via pigeon inspired optimisation
de Oliveira et al. Dynamic modelling and control of unmanned aerial vehicle of the quadrotor type

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant