WO2023108880A1 - 检测装置和扫地机器人 - Google Patents

检测装置和扫地机器人 Download PDF

Info

Publication number
WO2023108880A1
WO2023108880A1 PCT/CN2022/076228 CN2022076228W WO2023108880A1 WO 2023108880 A1 WO2023108880 A1 WO 2023108880A1 CN 2022076228 W CN2022076228 W CN 2022076228W WO 2023108880 A1 WO2023108880 A1 WO 2023108880A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
detection device
light
housing
transmitting
Prior art date
Application number
PCT/CN2022/076228
Other languages
English (en)
French (fr)
Inventor
张海湘
朱长锋
Original Assignee
美智纵横科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美智纵横科技有限责任公司 filed Critical 美智纵横科技有限责任公司
Publication of WO2023108880A1 publication Critical patent/WO2023108880A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves

Definitions

  • the present application relates to the technical field of distance detection, in particular, to a detection device and a sweeping robot.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • the first aspect of the present application provides a detection device.
  • the second aspect of the present application provides a sweeping robot.
  • the first aspect of the present application provides a detection device, including: a housing assembly, the housing assembly includes a lens; a distance detection module, arranged in the housing assembly, and the distance detection module includes: a transmitting unit, arranged at the bottom of the lens , used to emit structured light; the receiving unit is arranged at the bottom of the lens to receive the reflected light formed by the reflection of the structured light; the control unit is arranged in the housing assembly and is electrically connected with the emitting unit and the receiving unit; A component is located between the transmitting unit and the receiving unit, and at least a part of the shielding component extends into the lens.
  • the detection device proposed in this application includes a housing assembly, a distance detection module and a shield.
  • the housing component includes a lens; the distance detection module is arranged in the housing component and located under the lens, so as to protect the distance detection module through the lens.
  • the distance detection module includes a transmitting unit, a receiving unit and a control unit.
  • the transmitting unit, the receiving unit and the control unit are all arranged under the lens, and the control unit is electrically connected with the receiving unit.
  • the transmitting unit can emit structured light to the outside of the housing assembly.
  • the structured light is reflected after encountering an external object and forms reflected light.
  • the receiving unit can receive the reflected light formed after the structured light is reflected, and the control unit can Calculate the distance between the external object and the detection device according to the structured light and reflected light.
  • a shield is provided between the transmitting unit and the receiving unit, and at least a part of the shield protrudes into the lens.
  • a shield is provided between the transmitting unit and the receiving unit, and it is ensured that at least a part of the shield protrudes into the lens. In this way, on the one hand, it can block the stray light generated by the structured light passing through the lens surface; Thereby, the detection accuracy of the distance detection module is improved.
  • an escape opening is provided on the lens, and the shielding member includes a first extension portion extending toward the lens, and at least a part of the first extension portion protrudes into the escape opening.
  • an escape port is provided on the lens, and the blocking member includes a first extension.
  • the first extension portion of the shielding member extends toward the lens, and at least a part of the first extension portion protrudes into the escape opening, so as to realize at least a part of the shielding member being embedded in the lens.
  • the structured light emitted by the emitting unit will be reflected to a certain extent inside the lens, and the first extension extending into the escape opening can block this part of the reflected light, This prevents the part of the reflected light from being received by the receiving unit, thereby improving the detection accuracy of the distance detection module.
  • this application can not only block the stray light generated by the structured light passing through the surface of the lens, but also block the stray light generated by the structured light passing through the inside of the lens, greatly improving the The detection accuracy of the distance detection module is improved.
  • the lens is also provided with a first light-transmitting part and a second light-transmitting part, the first light-transmitting part is opposite to the position of the transmitting unit, the second light-transmitting part is opposite to the position of the receiving unit, and the escape opening It is located between the first light-transmitting part and the second light-transmitting part.
  • the lens is also provided with a first light-transmitting portion and a second light-transmitting portion.
  • the position of the first light-transmitting part is opposite to that of the emitting unit, and the position of the second light-transmitting part is opposite to that of the receiving unit.
  • the structured light emitted by the transmitting unit can pass through the first light-transmitting part to the outside of the housing assembly, and the reflected light formed by the reflection of the structured light after being reflected by an external object can pass through the second light-transmitting part and go to the receiving unit.
  • the avoidance opening is located between the first light-transmitting part and the second light-transmitting part, so that at least a part of the first extension part protrudes into the avoidance opening and is between the first light-transmitting part and the second light-transmitting part. between the light-transmitting parts to effectively block the reflected light generated by the structured light passing through the lens.
  • first light-transmitting portion and the second light-transmitting portion may be configured as openings.
  • the shielding member further includes a second extension portion extending in a direction away from the lens and located between the transmitting unit and the receiving unit.
  • the shutter also includes a second extension.
  • the second extension portion extends toward a direction away from the lens (specifically, extends toward the bottom of the housing assembly), and the second extension portion is located between the transmitting unit and the receiving unit.
  • the second extension located between the transmitting unit and the receiving unit can not only block the reflected light reflected by the lens surface from entering, but also block the structured light directly emitted by the transmitting unit from entering the receiving unit.
  • the shielding member further includes a mounting portion, the mounting portion is located between the emitting unit and the lens, and the first extension portion and the second extension portion are formed on the mounting portion.
  • the shutter also includes a mounting portion.
  • the installation part is located between the emission unit and the lens, and the installation part covers at least part of the emission unit.
  • both the first extension part and the second extension part are arranged on the installation part.
  • the first extension part is arranged on the top of the installation part
  • the second extension part is arranged on the bottom of the installation part.
  • the receiving unit is located on the top of the control unit; and/or the receiving unit is located between the control unit and the lens.
  • the receiving unit is located on top of the control unit, between the control unit and the lens. That is to say, the present application directly arranges the receiving unit on the top of the control unit, so that the receiving unit does not need to occupy the horizontal space inside the housing assembly, which is conducive to the integrated setting of the distance detection module, and further helps to realize the miniaturization of the detection device design.
  • the detection device proposed in this application can be applied to a sweeping robot.
  • the receiving unit is arranged on the top of the control unit, which reduces the volume of the distance detection module, which in turn helps to reduce the volume of the sweeping robot and facilitates daily storage and use by users.
  • the detection device further includes: an image acquisition module, which is arranged in the housing assembly and used to acquire image information.
  • the detection device also includes an image acquisition module.
  • the image acquisition module is arranged in the shell assembly and is located at the bottom of the lens, and then plays a certain protective role on the image acquisition module through the lens. Furthermore, during the use of the detection device, the image acquisition module can acquire image information of objects outside the housing assembly.
  • the detection device proposed in this application can be applied to a sweeping robot.
  • the application detects the distance between the external object and the detection device through the detection device, and collects the image information of the object through the image acquisition module, thereby realizing the obstacle avoidance function of the sweeping robot.
  • the image acquisition module and the distance detection module are arranged at intervals; the housing assembly further includes a partition, and the partition is located between the image acquisition module and the distance detection module.
  • the image acquisition module and the distance detection module are arranged at intervals, so that the image acquisition module and the distance detection module will not affect each other.
  • the housing assembly also includes a partition. Wherein, the spacer is located between the image acquisition module and the distance detection module, thereby further avoiding the mutual influence between the image acquisition module and the distance detection module.
  • the lens is provided with a third light-transmitting part, and the third light-transmitting part is opposite to the position of the image acquisition module.
  • the lens is provided with a third light-transmitting portion.
  • the third light-transmitting part is opposite to the position of the image acquisition module.
  • the image acquisition module can acquire image information of objects outside the shell assembly through the third light-transmitting portion.
  • the third light-transmitting portion may adopt a through hole.
  • the housing assembly also includes: a first housing, on which the distance detection module and the image acquisition module are arranged; the second housing, connected to the first housing, and the lens on the second case.
  • the housing assembly also includes a first housing and a second housing.
  • the first casing can be used as a bottom plate, and the distance detection module and the image acquisition module are arranged on the first casing; the second casing is connected with the first casing, and the lens is arranged on the second casing physically. In this way, through the cooperation of the first housing and the second housing, the image acquisition module and the distance detection module can be protected.
  • a mounting structure is provided on the first housing, and the entire detection device can be mounted on the cleaning robot through the mounting structure.
  • the detection device further includes: a first sealing member disposed at a connection between the first casing and the second casing.
  • the detection device also includes a first seal.
  • the first sealing member is arranged at the joint between the first housing and the second housing, and seals the joint between the first housing and the second housing to prevent external dust from entering the inside of the housing assembly, and then Ensure the use environment of image acquisition module and distance detection module.
  • the detection device proposed in this application can be used in a sweeping robot.
  • the sweeping robot will clean up the dust during its work.
  • a first seal is provided at the joint between the first housing and the second housing, and the joint between the first housing and the second housing is sealed by the first seal, which can effectively prevent dust from entering the housing the interior of the component.
  • the detection device further includes: a second sealing member disposed at the connection between the lens and the second housing.
  • the detection device also includes a second seal.
  • the second sealing member is arranged at the junction of the lens and the second housing, and seals the junction of the lens and the second housing to prevent external dust from entering the interior of the housing assembly, thereby ensuring that the image acquisition module and the The usage environment of the distance detection module.
  • the detection device proposed in this application can be used in a sweeping robot.
  • the sweeping robot will clean up the dust during its work.
  • a second seal is provided at the joint between the lens and the second casing, and the second seal is used to seal the connection between the lens and the second casing, which can effectively prevent dust from entering the interior of the casing assembly.
  • the detection device further includes: a connection port disposed on the first casing; a third sealing member disposed at the connection port.
  • the detection device also includes a connection port and a third seal.
  • the wiring port is arranged on the first casing, and is used for electrically connecting the distance detection module and the image acquisition module with external devices.
  • the present application is provided with a third sealing member at the position of the wiring port, and then the gap at the wiring port is sealed by the third sealing member, which can effectively prevent dust from entering the interior of the housing assembly.
  • the detection device proposed in this application can be used in a sweeping robot.
  • the sweeping robot will clean up the dust during its work.
  • a third sealing member is provided at the wiring port, and the gap at the wiring port is sealed by the third sealing member, which can effectively prevent dust from entering the interior of the housing assembly.
  • connection port includes a first connection port and a second connection port
  • detection device further includes a first electrical connector and a second electrical connector, the first electrical connector passes through the first connection port, and It is electrically connected with the distance detection module, and the second electrical connector is passed through the second connection port, and is electrically connected with the image acquisition module.
  • connection port includes a first connection port and a second connection port.
  • first wiring port is opposite to the position of the distance detection module
  • second wiring port is opposite to the position of the image acquisition module.
  • detection device also includes a first electrical connector and a second electrical connector. Wherein, the first electrical connector is electrically connected to the distance detection module and passed through the first connection port, and the second electrical connector is electrically connected to the distance detection module and passed through the second connection port.
  • the third sealing member respectively seals the gap between the first connection port and the first electrical connector, and the gap between the second connection port and the second electrical connector.
  • the first electrical connector and the second electrical connector can be flexible circuit boards, and are electrically connected to the controller of the cleaning robot.
  • the image capture module includes a depth camera.
  • the image acquisition module can use a depth camera.
  • the depth camera can obtain a three-dimensional image of the external object of the shell assembly, which is beneficial to the accurate identification of the external object.
  • the second aspect of the present application provides a sweeping robot, including: the detection device according to the first aspect of the present application.
  • the sweeping robot proposed in this application includes the detection device according to the first aspect of this application. Therefore, it has all the beneficial effects of the above detection device, and will not be discussed in detail here.
  • Fig. 1 is the sectional view of the detection device of an embodiment of the present application
  • Fig. 2 is a partial enlarged view at A of the detection device shown in Fig. 1;
  • Fig. 3 is one of the structural schematic diagrams of the second housing in the detection device shown in Fig. 1;
  • Fig. 4 is the second structural diagram of the second housing in the detection device shown in Fig. 1;
  • Fig. 5 is a schematic structural view of the first housing in the detection device shown in Fig. 1 .
  • a detection device and a cleaning robot provided according to some embodiments of the present application will be described below with reference to FIGS. 1 to 5 .
  • the first embodiment of the present application proposes a detection device, which includes a housing assembly 102 , a distance detection module 106 and a shield 114 .
  • the housing assembly 102 includes a lens 104; the distance detection module 106 is arranged in the housing assembly, and is positioned under the lens 104, so that the distance detection module 106 can be protected to a certain extent by the lens 104 effect.
  • the distance detection module 106 includes a transmitting unit 108 , a receiving unit 110 and a control unit 112 .
  • the transmitting unit 108 , the receiving unit 110 and the control unit 112 are all disposed under the lens 104 , and the control unit 112 is electrically connected to the receiving unit 110 .
  • the transmitting unit 108 can emit structured light to the outside of the housing assembly 102, and the structured light is reflected after encountering an external object to form reflected light, and the receiving unit 110 can receive the reflected light formed after the structured light is reflected, and control
  • the unit 112 can calculate the distance between the external object and the detection device according to the structured light and the reflected light.
  • a shielding member 114 is provided between the transmitting unit 108 and the receiving unit 110 , and at least a part of the shielding member 114 protrudes into the lens 104 .
  • the structured light emitted by the emitting unit 108 passes through the lens 104, since the surface of the lens 104 is relatively smooth, and the lens 104 has a certain thickness, certain reflected light (the Part of the reflected light can be regarded as stray light), and the part of the reflected light going to the receiving unit 110 will affect the measurement result of the distance.
  • a blocking member 114 is provided between the transmitting unit 108 and the receiving unit 110 , and it is ensured that at least a part of the blocking member 114 protrudes into the lens 104 . In this way, on the one hand, it can block the stray light generated by the structured light passing through the surface of the lens 104;
  • the receiving unit 110 further improves the detection accuracy of the distance detection module 106 .
  • the detection device proposed in this application can be applied to a sweeping robot.
  • the transmitting unit 108 can emit structured light to the outside of the housing assembly 102, the structured light is reflected after encountering an external object and forms reflected light, and the receiving unit 110 can receive the reflected light formed after the structured light is reflected , the control unit 112 can calculate the distance between the external obstacle and the detection device according to the structured light and the reflected light.
  • a shield 114 is added between the transmitting unit 108 and the receiving unit 110 of the distance detection module 106 in the detection device as a physical partition, and the structured light emitted by the transmitting unit 108 is blocked by the shield 114 and the stray light reflected by the mirror 104 is blocked.
  • the receiving unit 110 from being affected by reflected stray light, thereby improving the detection accuracy of the distance detection module 106 .
  • the sweeping robot has the ability to detect obstacles in front, so that the sweeping robot can accurately obtain the actual situation on the scene and perform appropriate reaction actions, thereby reducing the risk of collision or trapping of the sweeping robot.
  • the second embodiment of the present application proposes a detection device, on the basis of the first embodiment, further:
  • the lens 104 is provided with an escape opening 116
  • the shield 114 includes a first extension 118 .
  • the first extension portion 118 of the blocking member 114 extends toward the lens 104 , at least a part of the first extending portion 118 protrudes into the escape opening 116 , so that at least a part of the blocking member 114 is embedded in the lens 104 .
  • the structured light emitted by the emitting unit 108 will be reflected to a certain extent inside the mirror 104, and the first extension 118 protruding into the avoidance opening 116 can reflect this part. The light is blocked, thereby preventing the part of the reflected light from being received by the receiving unit 110 , thereby improving the detection accuracy of the distance detection module 106 .
  • the detection accuracy of the distance detection module 106 is improved.
  • the detection device proposed in this embodiment has all the beneficial effects of the detection device proposed in the first embodiment. On the one hand, it can block the stray light generated by the structured light passing through the surface of the lens 104; on the other hand, it can block the structured light passing through the lens.
  • the stray light generated inside 104 effectively prevents the stray light generated by the structured light from passing through the lens 104 from reaching the receiving unit 110 , thereby improving the detection accuracy of the distance detection module 106 , which will not be discussed in detail here.
  • the third embodiment of the present application proposes a detection device, on the basis of the second embodiment, further:
  • the lens 104 is further provided with a first light-transmitting portion 120 and a second light-transmitting portion 122 .
  • the first light-transmitting portion 120 is opposite to the transmitting unit 108
  • the second light-transmitting portion 122 is opposite to the receiving unit 110 .
  • the structured light emitted by the transmitting unit 108 can pass through the first light-transmitting part 120 to the outside of the housing assembly 102, and the reflected light formed by the reflection of the structured light after being reflected by an external object can pass through the second light-transmitting part 122 and go to the receiving unit 110. .
  • the avoidance opening 116 is located between the first light-transmitting portion 120 and the second light-transmitting portion 122 , so that at least a part of the first extension portion 118 protrudes behind the avoidance opening 116 It is located between the first light-transmitting part 120 and the second light-transmitting part 122 to effectively block the reflected light generated by the structured light passing through the lens 104 .
  • the first light-transmitting portion 120 and the second light-transmitting portion 122 may be configured as openings.
  • the detection device proposed in this embodiment has all the beneficial effects of the detection device proposed in the first embodiment. On the one hand, it can block the stray light generated by the structured light passing through the surface of the lens 104; on the other hand, it can block the structured light passing through the lens.
  • the stray light generated inside 104 effectively prevents the stray light generated by the structured light from passing through the lens 104 from reaching the receiving unit 110 , thereby improving the detection accuracy of the distance detection module 106 , which will not be discussed in detail here.
  • the fourth embodiment of the present application proposes a detection device, on the basis of the second embodiment and the third embodiment, further:
  • the shield 114 further includes a second extension 124 .
  • the second extension portion 124 extends away from the lens 104 (specifically, extends toward the bottom of the housing assembly 102 ), and the second extension portion 124 is located between the transmitting unit 108 and the receiving unit 110 .
  • the second extension 124 located between the transmitting unit 108 and the receiving unit 110 can not only block the reflected light formed by the surface reflection of the lens 104 from entering, but also block the structured light directly emitted by the transmitting unit 108 from entering the receiving unit. 110.
  • the shield 114 further includes a mounting portion 126 .
  • the mounting portion 126 is located between the emitting unit 108 and the lens 104 , and the mounting portion 126 covers at least part of the emitting unit 108 . In this way, on the one hand, a stable position of the shielding member 114 inside the housing assembly 102 can be ensured; on the other hand, the structured light directly emitted by the transmitting unit 108 can be shielded from the receiving unit 110 through the mounting portion 126 .
  • both the first extension portion 118 and the second extension portion 124 are disposed on the mounting portion 126 .
  • the first extension portion 118 is disposed on the top of the installation portion 126
  • the second extension portion 124 is disposed on the bottom of the installation portion 126 .
  • the first extension part 118 , the second extension part 124 and the installation part 126 are integrated structures.
  • the above-mentioned first extension part 118 , second extension part 124 and installation part 126 can be directly manufactured during the manufacturing process of the shielding part 114 .
  • the one-piece structural design is beneficial to simplify the structure of the shielding member 114, reduce the use of connectors, and reduce the corresponding assembly process.
  • the detection device proposed in this embodiment has all the beneficial effects of the detection device proposed in the first embodiment. On the one hand, it can block the stray light generated by the structured light passing through the surface of the lens 104; on the other hand, it can block the structured light passing through the lens.
  • the stray light generated inside 104 effectively prevents the stray light generated by the structured light from passing through the lens 104 from reaching the receiving unit 110 , thereby improving the detection accuracy of the distance detection module 106 , which will not be discussed in detail here.
  • the fifth embodiment of the present application proposes a detection device.
  • the second embodiment, the third embodiment and the fourth embodiment further:
  • the receiving unit 110 is located on the top of the control unit 112 and between the control unit 112 and the lens 104 . That is, the present application directly arranges the receiving unit 110 on the top of the control unit 112, so that the receiving unit 110 does not need to occupy the horizontal space inside the housing assembly 102, which is conducive to the integrated setting of the distance detection module 106, and further facilitates the realization of Miniaturized design of the detection device.
  • the detection device proposed in this application can be applied to a sweeping robot.
  • the receiving unit 110 is arranged on the top of the control unit 112 to reduce the volume of the distance detection module 106, which in turn helps to reduce the volume of the sweeping robot and facilitates daily storage and use by users.
  • the detection device proposed in this embodiment has all the beneficial effects of the detection device proposed in the first embodiment. On the one hand, it can block the stray light generated by the structured light passing through the surface of the lens 104; on the other hand, it can block the structured light passing through the lens.
  • the stray light generated inside 104 effectively prevents the stray light generated by the structured light from passing through the lens 104 from reaching the receiving unit 110 , thereby improving the detection accuracy of the distance detection module 106 , which will not be discussed in detail here.
  • the sixth embodiment of the present application proposes a detection device.
  • the first embodiment, the second embodiment, the third embodiment, the fourth embodiment and the fifth embodiment further :
  • the detection device further includes an image acquisition module 128 .
  • the image acquisition module 128 is arranged in the housing assembly 102 and located at the bottom of the lens 104 , and the image acquisition module 128 is protected to a certain extent by the lens 104 . Furthermore, during the use of the detection device, the image acquisition module 128 can acquire image information of objects outside the housing assembly 102 .
  • the detection device proposed in this application can be applied to a sweeping robot.
  • the application detects the distance between an external object and the detection device through the detection device, and collects the image information of the object through the image acquisition module 128, thereby realizing the obstacle avoidance function of the sweeping robot.
  • the lens 104 is provided with a third light-transmitting portion 132 .
  • the third light-transmitting portion 132 is opposite to the position of the image capture module 128 .
  • the image acquisition module 128 can acquire image information of objects outside the housing assembly 102 through the third light-transmitting portion 132 .
  • the third light-transmitting portion 132 may adopt a through hole.
  • the image acquisition module 128 and the distance detection module 106 are spaced apart, so that the image acquisition module 128 and the distance detection module 106 will not affect each other.
  • the housing assembly 102 also includes a divider 130 . Wherein, the spacer 130 is located between the image acquisition module 128 and the distance detection module 106 , so as to further prevent the image acquisition module 128 from interfering with the distance detection module 106 .
  • the detection device proposed in this embodiment has all the beneficial effects of the detection device proposed in the first embodiment. On the one hand, it can block the stray light generated by the structured light passing through the surface of the lens 104; on the other hand, it can block the structured light passing through the lens.
  • the stray light generated inside 104 effectively prevents the stray light generated by the structured light from passing through the lens 104 from reaching the receiving unit 110 , thereby improving the detection accuracy of the distance detection module 106 , which will not be discussed in detail here.
  • the seventh embodiment of the present application proposes a detection device, on the basis of the sixth embodiment, further:
  • the housing assembly 102 further includes a first housing 134 and a second housing 136 .
  • the first housing 134 can be used as a bottom plate, and the distance detection module 106 and the image acquisition module 128 are arranged on the first housing 134; the second housing 136 is connected with the first housing 134, and the The lens 104 is disposed on the second housing 136 . In this way, the image acquisition module 128 and the distance detection module 106 can be protected through the cooperation of the first housing 134 and the second housing 136 .
  • first housing 134 and the second housing 136 may be connected by fasteners 150 .
  • the escape opening 116 , the first light-transmitting portion 120 , the second light-transmitting portion 122 and the third light-transmitting portion 132 are disposed on the second casing 136 . More specifically, the first light-transmitting portion 120 , the second light-transmitting portion 122 and the third light-transmitting portion 132 may be openings provided on the second casing 136 .
  • the first housing 134 is provided with an installation structure (not shown in the figure), and the entire detection device can be installed on the cleaning robot through the installation structure.
  • the detection device further includes a first sealing member 138 .
  • the first sealing member 138 is arranged at the junction of the first casing 134 and the second casing 136, and seals the junction of the first casing 134 and the second casing 136, preventing external dust from entering the casing
  • the interior of the component 102 further ensures the use environment of the image acquisition module 128 and the distance detection module 106 .
  • the first sealing member 138 may use a sealant (such as back glue).
  • the detection device proposed in this application can be used in a sweeping robot.
  • the sweeping robot will clean up the dust during its work.
  • the present application sets the first seal 138 at the joint between the first housing 134 and the second housing 136, and seals the joint between the first housing 134 and the second housing 136 through the first seal 138, which can effectively Prevent dust from entering the inside of the housing assembly 102 .
  • the detection device further includes a second sealing member 140 .
  • the second sealing member 140 is arranged at the junction of the lens 104 and the second housing 136, and seals the junction of the lens 104 and the second housing 136, preventing external dust from entering the interior of the housing assembly 102, and further Ensure the use environment of the image acquisition module 128 and the distance detection module 106.
  • the second sealing member 140 may use a sealant (such as back glue).
  • the detection device proposed in this application can be used in a sweeping robot.
  • the sweeping robot will clean up the dust during its work.
  • a second seal 140 is provided at the connection between the lens 104 and the second housing 136, and the connection between the lens 104 and the second housing 136 is sealed by the second seal 140, which can effectively prevent dust from entering the housing The interior of assembly 102.
  • the detection device proposed in this embodiment has all the beneficial effects of the detection device proposed in the first embodiment. On the one hand, it can block the stray light generated by the structured light passing through the surface of the lens 104; on the other hand, it can block the structured light passing through the lens.
  • the stray light generated inside 104 effectively prevents the stray light generated by the structured light from passing through the lens 104 from reaching the receiving unit 110 , thereby improving the detection accuracy of the distance detection module 106 , which will not be discussed in detail here.
  • the eighth embodiment of the present application proposes a detection device, on the basis of the seventh embodiment, further:
  • the detection device further includes a connection port (including the first connection port 142 and the second connection port 144 ) and a third sealing member (not shown in the figure).
  • the wiring port is provided on the first casing 134 and is used for electrically connecting the distance detection module 106 and the image acquisition module 128 with external devices.
  • the present application provides a third sealing member at the position of the wiring port, and then uses the third sealing member to seal the gap at the wiring port, which can effectively prevent dust from entering the interior of the housing assembly 102 .
  • the third sealing member can use a rubber plug and sealant.
  • the detection device proposed in this application can be used in a sweeping robot.
  • the sweeping robot will clean up the dust during its work.
  • a third sealing member is provided at the connection port, and the gap at the connection port is sealed by the third sealing member, which can effectively prevent dust from entering the interior of the housing assembly 102 .
  • connection ports include a first connection port 142 and a second connection port 144 .
  • the first connection port 142 is opposite to the distance detection module 106
  • the second connection port 144 is opposite to the image acquisition module 128 .
  • the detection device further includes a first electrical connector 146 and a second electrical connector 148 .
  • the first electrical connector 146 is electrically connected to the distance detection module 106 and passed through the first wiring port 142
  • the second electrical connector 148 is electrically connected to the distance detection module 106 and passed through the second wiring port 144.
  • the third sealing member respectively seals the gap between the first wiring opening 142 and the first electrical connector 146 and the gap between the second wiring opening 144 and the second electrical connector 148 .
  • the first electrical connector 146 and the second electrical connector 148 can use flexible circuit boards, and are electrically connected to the controller of the cleaning robot.
  • the detection device proposed in this embodiment has all the beneficial effects of the detection device proposed in the first embodiment. On the one hand, it can block the stray light generated by the structured light passing through the surface of the lens 104; on the other hand, it can block the structured light passing through the lens.
  • the stray light generated inside 104 effectively prevents the stray light generated by the structured light from passing through the lens 104 from reaching the receiving unit 110 , thereby improving the detection accuracy of the distance detection module 106 , which will not be discussed in detail here.
  • the image acquisition module 128 used in this application may be a depth camera (RGB camera).
  • the depth camera can obtain a three-dimensional image of the external object of the shell assembly 102, which is beneficial to the precise identification of the external object.
  • RGB camera RGB camera
  • the image acquisition module 128 adopted in the present application may be an iTof module (Indirect Time-of-Flight).
  • iTof module Indirect Time-of-Flight
  • the ninth embodiment of the present application proposes a sweeping robot (not shown in the figure), including the detection device according to any one of the above embodiments.
  • the sweeping robot proposed in this application includes the detection device according to any one of the above embodiments. Therefore, with all the beneficial effects of the above-mentioned detection device, on the one hand, it can block the stray light generated by the structured light passing through the surface of the lens 104; The stray light generated by the lens 104 is directed to the receiving unit 110 , thereby improving the detection accuracy of the distance detection module 106 , which will not be discussed in detail here.
  • the sweeping robot also includes a seat body, a walking mechanism, and a rolling brush.
  • the walking mechanism is set on the base body, and can realize the moving function of the sweeping robot;
  • the rolling brush is set on the base body, and cleans impurities during operation;
  • the detection device is set on the base body, so that the sweeping robot has the ability to detect obstacles in front .
  • the cleaning robot may be collided or even damaged.
  • the sweeping robot cannot accurately identify objects, and has great limitations and detection deviations in the detection of obstacles ahead, resulting in large deviations in the path automatically planned by the sweeping robot.
  • the situation and the corresponding response actions are prone to collision or trapping.
  • the present application is equipped with a detection device in the sweeping robot, and in the detection device, a shield 114 is added between the transmitting unit 108 and the receiving unit 110 of the distance detection module 106 as a physical partition, and the shield 114 is used to block the detection by the transmitting unit 108.
  • the stray light reflected by the emitted structured light through the lens 104 prevents the receiving unit 110 from being affected by the reflected stray light, thereby improving the detection accuracy of the distance detection module 106 .
  • the image acquisition module 128 in the detection device can acquire image information of objects outside the housing assembly 102 .
  • the first extension 118 of the shield 114 extends toward the lens 104 , at least a part of the first extension 118 protrudes into the avoidance opening 116 , so that at least a part of the shield 114 is embedded in the lens 104 .
  • the structured light emitted by the emitting unit 108 will be reflected to a certain extent inside the lens 104, and the first extension 118 extending into the avoidance opening 116 can reflect light on this part. Blocking is performed to prevent the part of the reflected light from being received by the receiving unit 110 , thereby improving the detection accuracy of the distance detection module 106 .
  • the sweeping robot proposed in this application can measure the distance from the external obstacle to the sweeping robot through the distance detection module 106, and the image information of the external obstacle can be obtained through the image acquisition module 128, so that the sweeping robot has an obstacle ahead.
  • the ability to detect objects enables the sweeping robot to accurately obtain the actual situation on the spot and perform appropriate response actions, thereby reducing the risk of collision or trapping of the sweeping robot.
  • the tenth embodiment of the present application proposes a detection device that adds a physical partition between the transmitting unit 108 and the receiving unit 110 of the distance detection module 106 to block the structure emitted by the transmitting unit 108
  • the stray light reflected by the mirror 104 prevents the receiving unit 110 from being affected by the reflected stray light, thereby improving the detection accuracy of the distance detection module 106 , which will not be discussed in detail here.
  • the present application sets a first sealing member 138 at the connection between the first housing 134 and the second housing 136, and a third sealing member at the connection port to achieve a certain Waterproof and dustproof sealing effect.
  • the detection device includes a lens 104, a distance detection module 106, a shield 114, an image acquisition module 128, a first housing 134, a second housing 136, a second seal 140, a third Structures such as seals.
  • the distance detection module 106 includes a transmitting unit 108 , a receiving unit 110 and a control unit 112 .
  • the application provides a shield 114 between the transmitting unit 108 and the receiving unit 110 , and an escape opening 116 is provided on the lens 104 , so that the first extension 118 of the shield 114 At least a part of it extends into the avoidance port 116.
  • the stray light generated by the structured light passing through the surface of the lens 104 can be blocked, but also the stray light generated by the structured light passing through the inside of the lens 104 can be blocked, which greatly improves the detection accuracy of the distance detection module 106 .
  • the shield 114 further includes a second extension portion 124 and a mounting portion 126 .
  • the second extension portion 124 extends away from the lens 104 and is located between the transmitting unit 108 and the receiving unit 110 .
  • the mounting portion 126 is located between the emitting unit 108 and the lens 104 , and the mounting portion 126 covers at least part of the emitting unit 108 . Both the first extending portion 118 and the second extending portion 124 are disposed on the mounting portion 126 .
  • the present application sets a first seal 138 at the junction of the first housing 134 and the second housing 136 , and seals the first housing 134 and the second housing 134 through the first seal 138 .
  • the connection of the casing 136 can effectively prevent dust from entering the inside of the casing assembly 102 .
  • the present application provides a third sealing member at the position of the wiring port, and then uses the third sealing member to seal the gap at the wiring port, which can effectively prevent dust from entering the interior of the housing assembly 102 .
  • the detection device proposed in this application can be used in a sweeping robot.
  • the present application can accurately detect the distance from the sweeping robot to the obstacle through the setting of the distance detection module 106 .
  • the present application can accurately collect the image information of obstacles through the setting of the image collection module 128.
  • the sweeping robot proposed in this application has the ability to detect obstacles ahead, and can identify obstacles, so that the sweeping robot can automatically plan the movement path, and perform corresponding actions according to the actual situation of the site during the work process, ensuring cleaning. effects while avoiding collisions or being trapped.
  • the blocking member 114 can block the stray light generated by the structured light passing through the surface of the lens 104;
  • the stray light generated by 104 is irradiated to the receiving unit 110, thereby improving the detection accuracy of the distance detection module 106, and also improving the intelligence of the cleaning robot.
  • connection refers to two or more than two.
  • connection can be fixed connection, detachable connection, or integral connection; it can be directly connected or through an intermediate The medium is indirectly connected.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种检测装置和扫地机器人,检测装置包括:壳体组件(102),壳体组件(102)包括镜片(104);距离检测模组(106),设置于壳体组件(102)内,距离检测模组(106)包括:发射单元(108),设置于镜片(104)的底部,用于发射结构光;接收单元(110),设置于镜片(104)的底部,用于接收结构光经反射后形成的反射光;控制单元(112),设置于壳体组件(102)内,并与发射单元(108)和接收单元(110)电连接;遮挡件(114),位于发射单元(108)与接收单元(110)之间,遮挡件(114)的至少一部分伸入镜片(104)内。该检测装置可遮挡结构光经镜片(104)表面所产生的杂光,另一方面能够遮挡结构光经镜片(104)内部所产生的杂光,有效阻挡了结构光经镜片(104)所产生的杂光射向接收单元(110),进而提升距离检测模组(106)的检测精度。

Description

检测装置和扫地机器人
本申请要求于2021年12月16日提交到中国国家知识产权局、申请号为“2021115472753”、发明名称为“检测装置和扫地机器人”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及距离检测技术领域,具体而言,涉及一种检测装置和扫地机器人。
背景技术
相关技术中,距离检测模组的发射单元所发出的结构光经过镜片是会出现一定的反射现象(一部分在镜片的表面发生反射,一部分在镜片的内部发生发射)。这样,经过反射形成的杂光射向距离检测模组的接收单元,对距离的测量结果造成影响,导致测量结果不准确。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请第一方面提供了一种检测装置。
本申请第二方面提供了一种扫地机器人。
本申请第一方面提供了一种检测装置,包括:壳体组件,壳体组件包括镜片;距离检测模组,设置于壳体组件内,距离检测模组包括:发射单元,设置于镜片的底部,用于发射结构光;接收单元,设置于镜片的底部,用于接收结构光经反射后形成的反射光;控制单元,设置于壳体组件内,并与发射单元和接收单元电连接;遮挡件,位于发射单元与接收单元之间,遮挡件的至少一部分伸入镜片内。
本申请提出的检测装置包括壳体组件、距离检测模组和遮挡件。其中,壳体组件包括镜片;距离检测模组设置在壳体组件内,并位于镜片的下方,以通过镜片对距离检测模组起到一定的保护作用。此外,距离检测模组包括发 射单元、接收单元和控制单元。其中,发射单元、接收单元和控制单元均设置在镜片的下方,并且控制单元与接收单元电连接。在使用过程中,发射单元能够向壳体组件外部发射结构光,结构光在遇到外部物体后发生反射并形成反射光,接收单元能够接收结构光经反射后形成的反射光,控制单元即可根据结构光和反射光计算得到外部物体到检测装置之间的距离。
进一步地,本申请在发射单元与所述接收单元之间设置有遮挡件,并且遮挡件的至少一部分伸入所述镜片内。特别地,在发射单元发出的结构光经过镜片时,由于镜片的表面较为光滑,并且镜片具有一定的厚度,导致该部分结构光遇到镜片时会产生一定的反射光(该部分反射光可视为杂光),而该部分反射光射向接收单元会对距离的测量结果造成影响。因此,本申请在发射单元与所述接收单元之间设置有遮挡件,并且保证遮挡件的至少一部分伸入所述镜片内。这样,一方面可遮挡结构光经镜片表面所产生的杂光,另一方面能够遮挡结构光经镜片内部所产生的杂光,有效阻挡了结构光经镜片所产生的杂光射向接收单元,进而提升距离检测模组的检测精度。
在一些可能的设计中,镜片上设置有避让口,遮挡件包括第一延伸部,第一延伸部朝向镜片延伸,所述第一延伸部的至少一部分伸入避让口内。
在该设计中,镜片上设置有避让口,遮挡件包括第一延伸部。其中,遮挡件的第一延伸部朝向镜片延伸,所述第一延伸部的至少一部分伸入到避让口中,以实现遮挡件的至少一部分嵌入于镜片内。特别地,在检测装置使用过程中,发射单元所发射的结构光在镜片内部会在一定程度上发生反射,而伸入到避让口内部的第一延伸部即可对该部分反射光进行阻挡,进而避免该部分反射光被接收单元接收,进而提升了距离检测模组的检测精度。
因此,本申请通过上述第一延伸部的设置,不仅可以对结构光经镜片表面所产生的杂光进行遮挡,还能够对结构光经镜片内部所产生的杂光进行遮挡,极大程度上提升了距离检测模组的检测精度。
在一些可能的设计中,镜片上还设置有第一透光部和第二透光部,第一透光部与发射单元的位置相对,第二透光部与接收单元的位置相对,避让口位于第一透光部和第二透光部之间。
在该设计中,镜片上还设置有第一透光部和第二透光部。其中,第一透 光部与发射单元的位置相对,第二透光部与接收单元的位置相对。这样,发射单元发出的结构光能够通过第一透光部射向壳体组件外部,结构光经外部物体后发生反射形成的反射光能够通过第二透光部射向接收单元。
进一步地,避让口位于所述第一透光部和所述第二透光部之间,以使得第一延伸部的至少一部分伸入到避让口后处于第一透光部和所述第二透光部之间,以有效遮挡结构光经由镜片所产生的反射光。
具体地,第一透光部和第二透光部可以设置为通口。
在一些可能的设计中,遮挡件还包括第二延伸部,第二延伸部朝向背离镜片的方向延伸,并位于发射单元与接收单元之间。
在该设计中,遮挡件还包括第二延伸部。其中,第二延伸部朝向背离镜片的方向延伸(具体朝向壳体组件的底部延伸),同时第二延伸部位于发射单元与接收单元之间。此时,位于发射单元与接收单元之间第二延伸部不仅能够阻挡经由镜片表面反射形成的反射光射入,还能够遮挡直接由发射单元直接发出的结构光射向接收单元。
在一些可能的设计中,遮挡件还包括安装部,安装部位于发射单元与镜片之间,第一延伸部和第二延伸部形成于安装部上。
在该设计中,遮挡件还包括安装部。其中,安装部位于发射单元与镜片之间,并且安装部盖设发射单元的至少部分位置。这样,一方面能够保证遮挡件在壳体组件内部的稳定位置,另一方面还能够通过安装部遮挡直接由发射单元直接发出的结构光射向接收单元。
进一步地,第一延伸部和第二延伸部均设置在安装部。其中,第一延伸部设置在安装部的顶部,第二延伸部设置在安装部的底部。
在一些可能的设计中,接收单元位于控制单元的顶部;和/或接收单元位于控制单元和镜片之间。
在该设计中,接收单元位于控制单元的顶部,并处于控制单元和镜片之间。也即,本申请直接将接收单元设置在控制单元的顶部,进而使得接收单元不需要占用壳体组件内部的横向空间,有利于距离检测模组的集成设置,进而有利于实现检测装置的小型化设计。
进一步地,本申请提出的检测装置可以应用于扫地机器人。本申请将 接收单元设置在控制单元的顶部,减小距离检测模组的体积,进而有利于减小扫地机器人的体积,便于用户日常收纳和使用。
在一些可能的设计中,检测装置还包括:图像采集模组,设置于壳体组件内,并用于获取图像信息。
在该设计中,检测装置还包括图像采集模组。其中,图像采集模组设置在壳体组件内,并位于镜片的底部,进而通过镜片对图像采集模组起到一定的保护作用。进一步地,在检测装置使用过程中,图像采集模组能够获取到壳体组件外部物体的图像信息。
进一步地,本申请提出的检测装置可以应用于扫地机器人。本申请通过检测装置检测外部物体与检测装置的距离,并通过图像采集模组采集该物体的图像信息,进而实现了扫地机器人的避障功能。
在一些可能的设计中,图像采集模组与距离检测模组间隔设置;壳体组件还包括分隔件,分隔件位于图像采集模组与距离检测模组之间。
在该设计中,图像采集模组与距离检测模组间隔设置,进而使得图像采集模组与距离检测模组不会相互影响。此外,壳体组件还包括分隔件。其中,分隔件位于图像采集模组与距离检测模组之间,进而进一步避免图像采集模组与距离检测模组相互影响。
在一些可能的设计中,镜片上设置有第三透光部,第三透光部与图像采集模组的位置相对。
在该设计中,镜片上设置有第三透光部。其中,第三透光部与图像采集模组的位置相对。这样,图像采集模组能够通过第三透光部获取壳体组件外部物体的图像信息。具体地,第三透光部可采用通口。
在一些可能的设计中,壳体组件还包括:第一壳体,距离检测模组和图像采集模组设置于第一壳体上;第二壳体,与第一壳体相连接,镜片设置于第二壳体上。
在该设计中,壳体组件还包括第一壳体和第二壳体。其中,第一壳体可作为底板使用,并将距离检测模组和图像采集模组设置在第一壳体上;第二壳体与第一壳体相连接,并将镜片设置在第二壳体上。这样,通过第一壳体和第二壳体的配合,能够对图像采集模组和距离检测模组进行保护。
进一步地,第一壳体上设置有安装结构,整个检测装置能够通过安装结构安装到扫地机器人上。
在一些可能的设计中,检测装置还包括:第一密封件,设置于第一壳体与第二壳体的连接处。
在该设计中,检测装置还包括第一密封件。其中,第一密封件设置在第一壳体与第二壳体的连接处,并对第一壳体与第二壳体的连接处进行密封,避免外部灰尘进入到壳体组件的内部,进而保证图像采集模组和距离检测模组的使用环境。
具体地,本申请提出的检测装置可用于扫地机器人。扫地机器人在工作过程中会清理灰尘。本申请在第一壳体与第二壳体的连接处设置第一密封件,并通过第一密封件来密封第一壳体与第二壳体的连接处,可有效避免灰尘进入到壳体组件的内部。
在一些可能的设计中,检测装置还包括:第二密封件,设置于镜片与第二壳体的连接处。
在该设计中,检测装置还包括第二密封件。其中,第二密封件设置在镜片与第二壳体的连接处,并对镜片与第二壳体的连接处进行密封,避免外部灰尘进入到壳体组件的内部,进而保证图像采集模组和距离检测模组的使用环境。
具体地,本申请提出的检测装置可用于扫地机器人。扫地机器人在工作过程中会清理灰尘。本申请在镜片与第二壳体的连接处设置第二密封件,并通过第二密封件来密封镜片与第二壳体的连接处,可有效避免灰尘进入到壳体组件的内部。
在一些可能的设计中,检测装置还包括:接线口,设置于第一壳体上;第三密封件,设置于接线口处。
在该设计中,检测装置还包括接线口和第三密封件。其中,接线口设置在第一壳体上,并用于距离检测模组和图像采集模组与外部装置电连接。此外,本申请在接线口的位置设置有第三密封件,进而通过第三密封件来密封接线口处的空隙,可有效避免灰尘进入到壳体组件的内部。
具体地,本申请提出的检测装置可用于扫地机器人。扫地机器人在工作过 程中会清理灰尘。本申请在接线口处设置第三密封件,并通过第三密封件来密封接线口处的空隙,可有效避免灰尘进入到壳体组件的内部。
在一些可能的设计中,接线口包括第一接线口和第二接线口;检测装置还包括第一电连接件和第二电连接件,第一电连接件穿设于第一接线口,并与距离检测模组电连接,第二电连接件穿设于第二接线口,并与图像采集模组电连接。
在该设计中,接线口包括第一接线口和第二接线口。其中,第一接线口与距离检测模组的位置相对,第二接线口与图像采集模组的位置相对。此外,检测装置还包括第一电连接件和第二电连接件。其中,第一电连接件与距离检测模组电连接,并穿设于第一接线口,第二电连接件与距离检测模组电连接,并穿设于第二接线口。
进一步地,第三密封件分别密封第一接线口与第一电连接件之间的空隙、以及第二接线口与第二电连接件之间的空隙。
具体地,第一电连接件和第二电连接件可以采用柔性线路板,并且电连接于扫地机器人的控制器。
在一些可能的设计中,图像采集模组包括深度相机。
在该设计中,图像采集模组可采用深度相机。其中,深度相机能够获取到壳体组件外部物体的三维图像,进而有利于对外部物体的精准识别。
本申请第二方面提出了一种扫地机器人,包括:如本申请第一方面的检测装置。
本申请提出的扫地机器人,包括如本申请第一方面的检测装置。因此,具有上述检测装置的全部有益效果,在此不再详细论述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例的检测装置的剖视图;
图2是图1所示检测装置的A处局部放大图;
图3是图1所示检测装置中第二壳体的结构示意图之一;
图4是图1所示检测装置中第二壳体的结构示意图之二;
图5是图1所示检测装置中第一壳体的结构示意图。
其中,图1至图5中附图标记与部件名称之间的对应关系为:
102壳体组件,104镜片,106距离检测模组,108发射单元,110接收单元,112控制单元,114遮挡件,116避让口,118第一延伸部,120第一透光部,122第二透光部,124第二延伸部,126安装部,128图像采集模组,130分隔件,132第三透光部,134第一壳体,136第二壳体,138第一密封件,140第二密封件,142第一接线口,144第二接线口,146第一电连接件,148第二电连接件,150紧固件。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图5来描述根据本申请一些实施例提供的检测装置和扫地机器人。
如图1所示,本申请第一个实施例提出了一种检测装置,包括壳体组件102、距离检测模组106和遮挡件114。
其中,如图1所示,壳体组件102包括镜片104;距离检测模组106设置在壳体组件内,并位于镜片104的下方,以通过镜片104对距离检测模组106起到一定的保护作用。
此外,如图1和图2所示,距离检测模组106包括发射单元108、接收单元110和控制单元112。其中,发射单元108、接收单元110和控制单元112均设置在镜片104的下方,并且控制单元112与接收单元110电连接。在使用 过程中,发射单元108能够向壳体组件102外部发射结构光,结构光在遇到外部物体后发生反射并形成反射光,接收单元110能够接收结构光经反射后形成的反射光,控制单元112即可根据结构光和反射光计算得到外部物体到检测装置之间的距离。
进一步地,如图1和图2所示,本申请在发射单元108与所述接收单元110之间设置有遮挡件114,并且遮挡件114的至少一部分伸入所述镜片104内。特别地,在发射单元108发出的结构光经过镜片104时,由于镜片104的表面较为光滑,并且镜片104具有一定的厚度,导致该部分结构光遇到镜片104时会产生一定的反射光(该部分反射光可视为杂光),而该部分反射光射向接收单元110会对距离的测量结果造成影响。
因此,本申请在发射单元108与所述接收单元110之间设置有遮挡件114,并且保证遮挡件114的至少一部分伸入所述镜片104内。这样,一方面可遮挡结构光经镜片104表面所产生的杂光,另一方面能够遮挡结构光经镜片104内部所产生的杂光,有效阻挡了结构光经镜片104所产生的杂光射向接收单元110,进而提升距离检测模组106的检测精度。
具体地,本申请提出的检测装置可以应用于扫地机器人。在扫地机器人工作过程中,发射单元108能够向壳体组件102外部发射结构光,结构光在遇到外部物体后发生反射并形成反射光,接收单元110能够接收结构光经反射后形成的反射光,控制单元112即可根据结构光和反射光计算得到外部障碍物到检测装置之间的距离。并且,检测装置中距离检测模组106的发射单元108和接收单元110之间增加遮挡件114作为物理隔断,通过遮挡件114来阻挡由发射单元108发射出来的结构光经过镜片104反射的杂光,避免接收单元110受到反射杂光的影响,进而提升距离检测模组106的检测精度。这样,进而使得该扫地机器人具有前方障碍物的探测能力,使得该扫地机器人能够精确的获取现场实际情况并进行相适应的反应动作,进而降低了扫地机器人发生碰撞或被困的风险。
本申请第二个实施例提出了一种检测装置,在第一个实施例的基础上,进一步地:
如图1和图2所示,镜片104上设置有避让口116,遮挡件114包括第 一延伸部118。其中,遮挡件114的第一延伸部118朝向镜片104延伸,所述第一延伸部118的至少一部分伸入到避让口116中,以实现遮挡件114的至少一部分嵌入于镜片104内。特别地,在检测装置使用过程中,发射单元108所发射的结构光在镜片104内部会在一定程度上发生反射,而伸入到避让口116内部的第一延伸部118即可对该部分反射光进行阻挡,进而避免该部分反射光被接收单元110接收,进而提升了距离检测模组106的检测精度。
因此,本申请通过上述第一延伸部118的设置,不仅可以对结构光经镜片104表面所产生的杂光进行遮挡,还能够对结构光经镜片104内部所产生的杂光进行遮挡,极大程度上提升了距离检测模组106的检测精度。
此外,本实施例提出的检测装置,具有第一个实施例提出的检测装置的全部有益效果,一方面可遮挡结构光经镜片104表面所产生的杂光,另一方面能够遮挡结构光经镜片104内部所产生的杂光,有效阻挡了结构光经镜片104所产生的杂光射向接收单元110,进而提升距离检测模组106的检测精度,在此不再详细论述。
本申请第三个实施例提出了一种检测装置,在第二个实施例的基础上,进一步地:
如图3和图4所示,镜片104上还设置有第一透光部120和第二透光部122。其中,第一透光部120与发射单元108的位置相对,第二透光部122与接收单元110的位置相对。这样,发射单元108发出的结构光能够通过第一透光部120射向壳体组件102外部,结构光经外部物体后发生反射形成的反射光能够通过第二透光部122射向接收单元110。
进一步地,如图3所示,避让口116位于所述第一透光部120和所述第二透光部122之间,以使得第一延伸部118的至少一部分伸入到避让口116后处于第一透光部120和所述第二透光部122之间,以有效遮挡结构光经由镜片104所产生的反射光。
具体地,如图3和图4所示,第一透光部120和第二透光部122可以设置为通口。
此外,本实施例提出的检测装置,具有第一个实施例提出的检测装置的全部有益效果,一方面可遮挡结构光经镜片104表面所产生的杂光,另一 方面能够遮挡结构光经镜片104内部所产生的杂光,有效阻挡了结构光经镜片104所产生的杂光射向接收单元110,进而提升距离检测模组106的检测精度,在此不再详细论述。
本申请第四个实施例提出了一种检测装置,在第二个实施例和第三个实施例的基础上,进一步地:
如图2所示,遮挡件114还包括第二延伸部124。其中,第二延伸部124朝向背离镜片104的方向延伸(具体朝向壳体组件102的底部延伸),同时第二延伸部124位于发射单元108与接收单元110之间。此时,位于发射单元108与接收单元110之间第二延伸部124不仅能够阻挡经由镜片104表面反射形成的反射光射入,还能够遮挡直接由发射单元108直接发出的结构光射向接收单元110。
在该实施例中,进一步地,如图2所示,遮挡件114还包括安装部126。其中,安装部126位于发射单元108与镜片104之间,并且安装部126盖设发射单元108的至少部分位置。这样,一方面能够保证遮挡件114在壳体组件102内部的稳定位置,另一方面还能够通过安装部126遮挡直接由发射单元108直接发出的结构光射向接收单元110。
具体地,如图2所示,第一延伸部118和第二延伸部124均设置在安装部126。其中,第一延伸部118设置在安装部126的顶部,第二延伸部124设置在安装部126的底部。
在该实施例中,进一步地,如图2所示,第一延伸部118、第二延伸部124和安装部126为一体式结构。这样,可以在制造遮挡件114的过程中直接制造出上述第一延伸部118、第二延伸部124和安装部126。并且,一体式的结构设计有利于简化遮挡件114的结构,并且减少了连接件的使用,减少了相对应的组装工序。
此外,本实施例提出的检测装置,具有第一个实施例提出的检测装置的全部有益效果,一方面可遮挡结构光经镜片104表面所产生的杂光,另一方面能够遮挡结构光经镜片104内部所产生的杂光,有效阻挡了结构光经镜片104所产生的杂光射向接收单元110,进而提升距离检测模组106的检测精度,在此不再详细论述。
本申请第五个实施例提出了一种检测装置,在第一个实施例、第二个实施例、第三个实施例和第四个实施例的基础上,进一步地:
如图1所示,接收单元110位于控制单元112的顶部,并处于控制单元112和镜片104之间。也即,本申请直接将接收单元110设置在控制单元112的顶部,进而使得接收单元110不需要占用壳体组件102内部的横向空间,有利于距离检测模组106的集成设置,进而有利于实现检测装置的小型化设计。
进一步地,本申请提出的检测装置可以应用于扫地机器人。本申请将接收单元110设置在控制单元112的顶部,减小距离检测模组106的体积,进而有利于减小扫地机器人的体积,便于用户日常收纳和使用。
此外,本实施例提出的检测装置,具有第一个实施例提出的检测装置的全部有益效果,一方面可遮挡结构光经镜片104表面所产生的杂光,另一方面能够遮挡结构光经镜片104内部所产生的杂光,有效阻挡了结构光经镜片104所产生的杂光射向接收单元110,进而提升距离检测模组106的检测精度,在此不再详细论述。
本申请第六个实施例提出了一种检测装置,在第一个实施例、第二个实施例、第三个实施例、第四个实施例和第五个实施例的基础上,进一步地:
如图1所示,检测装置还包括图像采集模组128。其中,图像采集模组128设置在壳体组件102内,并位于镜片104的底部,进而通过镜片104对图像采集模组128起到一定的保护作用。进一步地,在检测装置使用过程中,图像采集模组128能够获取到壳体组件102外部物体的图像信息。
进一步地,本申请提出的检测装置可以应用于扫地机器人。本申请通过检测装置检测外部物体与检测装置的距离,并通过图像采集模组128采集该物体的图像信息,进而实现了扫地机器人的避障功能。
在该实施例中,进一步地,如图3和图4所示,镜片104上设置有第三透光部132。其中,第三透光部132与图像采集模组128的位置相对。这样,图像采集模组128能够通过第三透光部132获取壳体组件102外部物体的图像信息。具体地,第三透光部132可采用通口。
在该实施例中,进一步地,如图1所示,图像采集模组128与距离检测 模组106间隔设置,进而使得图像采集模组128与距离检测模组106不会相互影响。此外,壳体组件102还包括分隔件130。其中,分隔件130位于图像采集模组128与距离检测模组106之间,进而进一步避免图像采集模组128与距离检测模组106相互影响。
此外,本实施例提出的检测装置,具有第一个实施例提出的检测装置的全部有益效果,一方面可遮挡结构光经镜片104表面所产生的杂光,另一方面能够遮挡结构光经镜片104内部所产生的杂光,有效阻挡了结构光经镜片104所产生的杂光射向接收单元110,进而提升距离检测模组106的检测精度,在此不再详细论述。
本申请第七个实施例提出了一种检测装置,在第六个实施例的基础上,进一步地:
如图1所示,壳体组件102还包括第一壳体134和第二壳体136。其中,第一壳体134可作为底板使用,并将距离检测模组106和图像采集模组128设置在第一壳体134上;第二壳体136与第一壳体134相连接,并将镜片104设置在第二壳体136上。这样,通过第一壳体134和第二壳体136的配合,能够对图像采集模组128和距离检测模组106进行保护。
具体地,如图1所示,第一壳体134与第二壳体136可采用紧固件150连接。
具体地,如图1所示,避让口116、第一透光部120、第二透光部122和第三透光部132设置在第二壳体136上。更具体地,上述第一透光部120、第二透光部122和第三透光部132可以是设置在第二壳体136上的通口。
进一步地,第一壳体134上设置有安装结构(图中未示出),整个检测装置能够通过安装结构安装到扫地机器人上。
在该实施例中,进一步地,如图1所示,检测装置还包括第一密封件138。其中,第一密封件138设置在第一壳体134与第二壳体136的连接处,并对第一壳体134与第二壳体136的连接处进行密封,避免外部灰尘进入到壳体组件102的内部,进而保证图像采集模组128和距离检测模组106的使用环境。具体的,第一密封件138可采用密封胶(例如背胶)。
具体地,本申请提出的检测装置可用于扫地机器人。扫地机器人在工作过 程中会清理灰尘。本申请在第一壳体134与第二壳体136的连接处设置第一密封件138,并通过第一密封件138来密封第一壳体134与第二壳体136的连接处,可有效避免灰尘进入到壳体组件102的内部。
在该实施例中,进一步地,如图1所示,检测装置还包括第二密封件140。其中,第二密封件140设置在镜片104与第二壳体136的连接处,并对镜片104与第二壳体136的连接处进行密封,避免外部灰尘进入到壳体组件102的内部,进而保证图像采集模组128和距离检测模组106的使用环境。具体的,第二密封件140可采用密封胶(例如背胶)。
具体地,本申请提出的检测装置可用于扫地机器人。扫地机器人在工作过程中会清理灰尘。本申请在镜片104与第二壳体136的连接处设置第二密封件140,并通过第二密封件140来密封镜片104与第二壳体136的连接处,可有效避免灰尘进入到壳体组件102的内部。
此外,本实施例提出的检测装置,具有第一个实施例提出的检测装置的全部有益效果,一方面可遮挡结构光经镜片104表面所产生的杂光,另一方面能够遮挡结构光经镜片104内部所产生的杂光,有效阻挡了结构光经镜片104所产生的杂光射向接收单元110,进而提升距离检测模组106的检测精度,在此不再详细论述。
本申请第八个实施例提出了一种检测装置,在第七个实施例的基础上,进一步地:
如图5所示,检测装置还包括接线口(包括第一接线口142和第二接线口144)和第三密封件(图中未示出)。其中,接线口设置在第一壳体134上,并用于距离检测模组106和图像采集模组128与外部装置电连接。此外,本申请在接线口的位置设置有第三密封件,进而通过第三密封件来密封接线口处的空隙,可有效避免灰尘进入到壳体组件102的内部。具体的,第三密封件可采用橡胶塞和密封胶。
具体地,本申请提出的检测装置可用于扫地机器人。扫地机器人在工作过程中会清理灰尘。本申请在接线口处设置第三密封件,并通过第三密封件来密封接线口处的空隙,可有效避免灰尘进入到壳体组件102的内部。
在该实施例中,进一步地,如图5所示,接线口包括第一接线口142和 第二接线口144。其中,第一接线口142与距离检测模组106的位置相对,第二接线口144与图像采集模组128的位置相对。此外,检测装置还包括第一电连接件146和第二电连接件148。其中,第一电连接件146与距离检测模组106电连接,并穿设于第一接线口142,第二电连接件148与距离检测模组106电连接,并穿设于第二接线口144。
进一步地,如图5所示,第三密封件分别密封第一接线口142与第一电连接件146之间的空隙、以及第二接线口144与第二电连接件148之间的空隙。
具体地,如图5所示,第一电连接件146和第二电连接件148可以采用柔性线路板,并且电连接于扫地机器人的控制器。
此外,本实施例提出的检测装置,具有第一个实施例提出的检测装置的全部有益效果,一方面可遮挡结构光经镜片104表面所产生的杂光,另一方面能够遮挡结构光经镜片104内部所产生的杂光,有效阻挡了结构光经镜片104所产生的杂光射向接收单元110,进而提升距离检测模组106的检测精度,在此不再详细论述。
在上述任一实施例的基础上,进一步地,如图1所示,本申请所采用的图像采集模组128可以为深度相机(RGB相机)。其中,深度相机能够获取到壳体组件102外部物体的三维图像,进而有利于对外部物体的精准识别。具体地,关于深度相机的工作原理,本领域技术人员是可以理解的,在此并不详细展看论述。
在上述任一实施例的基础上,进一步地,如图1所示,本申请所采用的本申请所采用的图像采集模组128可以为iTof模组(Indirect Time-of-Flight)。具体地,关于iTof模组的工作原理,本领域技术人员是可以理解的,在此并不详细展看论述。
本申请第九个实施例提出了一种扫地机器人(图中未示出),包括如上述任一实施例的检测装置。
本申请提出的扫地机器人,包括如上述任一实施例的检测装置。因此,具有上述检测装置的全部有益效果,一方面可遮挡结构光经镜片104表面所产生的杂光,另一方面能够遮挡结构光经镜片104内部所产生的杂光,有效阻挡了结构光经镜片104所产生的杂光射向接收单元110,进而提升距离检测模组 106的检测精度,在此不再详细论述。
此外,扫地机器人还包括座体、行走机构、滚刷。其中,行走机构设置在座体上,并能够实现扫地机器人的移动功能;滚刷设置在座体上,并在运行时清理杂质;检测装置设置在座体上,使得该扫地机器人具有前方障碍物的探测能力。
具体地,在扫地机器人工作过程中,其所处的空间内可能存在障碍物(例如花盆、桌椅等)。当上述障碍物存在于扫地机器人的行进路线时,会使得扫地机器人发生碰撞甚至损坏。
相关技术中,扫地机器人不能精确识别物体,对前方障碍物的探测具有很大的局限性和探测偏差,导致扫地机器人自动规划的路径具有较大偏差,同时在运行过程中无法精确的获取现场实际情况并进行相适应的反应动作,容易发生碰撞或被困等现象。
因此,本申请在扫地机器人内设置有检测装置,并且检测装置中距离检测模组106的发射单元108和接收单元110之间增加遮挡件114作为物理隔断,通过遮挡件114来阻挡由发射单元108发射出来的结构光经过镜片104反射的杂光,避免接收单元110受到反射杂光的影响,进而提升距离检测模组106的检测精度。进一步地,检测装置中图像采集模组128能够获取到壳体组件102外部物体的图像信息。
具体地,遮挡件114的第一延伸部118朝向镜片104延伸,所述第一延伸部118的至少一部分伸入到避让口116中,以实现遮挡件114的至少一部分嵌入于镜片104内。这样,在扫地机器人使用过程中,发射单元108所发射的结构光在镜片104内部会在一定程度上发生反射,而伸入到避让口116内部的第一延伸部118即可对该部分反射光进行阻挡,进而避免该部分反射光被接收单元110接收,进而提升了距离检测模组106的检测精度。
这样,本申请提出的扫地机器人能够通过距离检测模组106来测量外部障碍物到扫地机器人的距离,通过图像采集模组128能够获取到外部障碍物的图像信息,进而使得该扫地机器人具有前方障碍物的探测能力,使得该扫地机器人能够精确的获取现场实际情况并进行相适应的反应动作,进而降低了扫地机器人发生碰撞或被困的风险。
如图1所示,本申请第十个实施例提出了一种检测装置,在距离检测模组106的发射单元108和接收单元110之间增加物理隔断,来阻挡由发射单元108发射出来的结构光经过镜片104反射的杂光,避免接收单元110受到反射杂光的影响,进而提升距离检测模组106的检测精度,在此不再详细论述。并且,如图1和图5所示,本申请在第一壳体134与所述第二壳体136的连接处设置第一密封件138,在接线口处设置第三密封件,达到一定的防水防尘密封效果。
其中,如图1所示,检测装置包括镜片104、距离检测模组106、遮挡件114、图像采集模组128、第一壳体134、第二壳体136、第二密封件140、第三密封件等结构。其中,距离检测模组106包括发射单元108、接收单元110和控制单元112。
进一步地,如图2所示,本申请在发射单元108与所述接收单元110之间设置有遮挡件114,并且在镜片104上设置有避让口116,使得遮挡件114的第一延伸部118的至少一部分伸入到避让口116中。这样,不仅可以对结构光经镜片104表面所产生的杂光进行遮挡,还能够对结构光经镜片104内部所产生的杂光进行遮挡,极大程度上提升了距离检测模组106的检测精度。
进一步地,如图2所示,遮挡件114还包括第二延伸部124和安装部126。第二延伸部124朝向背离镜片104的方向延伸,并位于发射单元108与接收单元110之间。此外,安装部126位于发射单元108与镜片104之间,并且安装部126盖设发射单元108的至少部分位置,第一延伸部118和第二延伸部124均设置在安装部126。
进一步地,如图1所示,本申请在第一壳体134与第二壳体136的连接处设置第一密封件138,并通过第一密封件138来密封第一壳体134与第二壳体136的连接处,可有效避免灰尘进入到壳体组件102的内部。
进一步地,如图5所示,本申请在接线口的位置设置有第三密封件,进而通过第三密封件来密封接线口处的空隙,可有效避免灰尘进入到壳体组件102的内部。
具体地,本申请提出的检测装置可用于扫地机器人。本申请通过距离检测模组106的设置,能准确检测出扫地机器人到障碍物的距离。并且,本 申请通过图像采集模组128的设置,能够准确采集到障碍物的图像信息。这样,本申请提出的扫地机器人具备前方障碍物的探测能力,并且能够对障碍物进行识别,使得扫地机器人能够自动规划移动路径,并在工作过程中根据场地实际情况执行相应的动作,在保证清理效果的同时避免出现碰撞或被困的情况。
并且,由于上述遮挡件114的设置,一方面可遮挡结构光经镜片104表面所产生的杂光,另一方面能够遮挡结构光经镜片104内部所产生的杂光,有效阻挡了结构光经镜片104所产生的杂光射向接收单元110,进而提升距离检测模组106的检测精度,也提升了扫地机器人的智能性。
在本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种检测装置,其中,包括:
    壳体组件,所述壳体组件包括镜片;
    距离检测模组,设置于所述壳体组件内,所述距离检测模组包括:
    发射单元,设置于所述镜片的底部,用于发射结构光;
    接收单元,设置于所述镜片的底部,用于接收所述结构光经反射后形成的反射光;
    控制单元,设置于所述壳体组件内,并与所述发射单元和所述接收单元电连接;
    遮挡件,位于所述发射单元与所述接收单元之间,所述遮挡件的至少一部分伸入所述镜片内。
  2. 根据权利要求1所述的检测装置,其中,
    所述镜片上设置有避让口,所述遮挡件包括第一延伸部,所述第一延伸部朝向所述镜片延伸,所述第一延伸部的至少一部分伸入所述避让口内。
  3. 根据权利要求2所述的检测装置,其中,
    所述镜片上还设置有第一透光部和第二透光部,所述第一透光部与所述发射单元的位置相对,所述第二透光部与所述接收单元的位置相对,所述避让口位于所述第一透光部和所述第二透光部之间。
  4. 根据权利要求2所述的检测装置,其中,
    所述遮挡件还包括第二延伸部,所述第二延伸部朝向背离所述镜片的方向延伸,并位于所述发射单元与所述接收单元之间。
  5. 根据权利要求4所述的检测装置,其中,
    所述遮挡件还包括安装部,所述安装部位于所述发射单元与所述镜片之间,所述第一延伸部和所述第二延伸部形成于所述安装部上。
  6. 根据权利要求1至5中任一项所述的检测装置,其中,
    所述接收单元位于所述控制单元的顶部;和/或
    所述接收单元位于所述控制单元和所述镜片之间。
  7. 根据权利要求1至5中任一项所述的检测装置,其中,还包括:
    图像采集模组,设置于所述壳体组件内,并用于获取图像信息。
  8. 根据权利要求7所述的检测装置,其中,
    所述图像采集模组与所述距离检测模组间隔设置;
    所述壳体组件还包括分隔件,所述分隔件位于所述图像采集模组与所述距离检测模组之间。
  9. 根据权利要求7所述的检测装置,其中,
    所述镜片上设置有第三透光部,所述第三透光部与所述图像采集模组的位置相对。
  10. 根据权利要求7所述的检测装置,其中,所述壳体组件还包括:
    第一壳体,所述距离检测模组和所述图像采集模组设置于所述第一壳体上;
    第二壳体,与所述第一壳体相连接,所述镜片设置于所述第二壳体上。
  11. 根据权利要求10所述的检测装置,其中,还包括:
    第一密封件,设置于所述第一壳体与所述第二壳体的连接处;和/或
    第二密封件,设置于所述镜片与所述第二壳体的连接处。
  12. 根据权利要求10所述的检测装置,其中,还包括:
    接线口,设置于所述第一壳体上;
    第三密封件,设置于所述接线口处。
  13. 根据权利要求12所述的检测装置,其中,
    所述接线口包括第一接线口和第二接线口;
    所述检测装置还包括第一电连接件和第二电连接件,所述第一电连接件穿设于所述第一接线口,并与所述距离检测模组电连接,所述第二电连接件穿设于所述第二接线口,并与所述图像采集模组电连接。
  14. 根据权利要求7所述的检测装置,其中,
    所述图像采集模组包括深度相机。
  15. 一种扫地机器人,其中,包括:
    如权利要求1至14中任一项所述的检测装置。
PCT/CN2022/076228 2021-12-16 2022-02-14 检测装置和扫地机器人 WO2023108880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111547275.3A CN114305220B (zh) 2021-12-16 2021-12-16 检测装置和扫地机器人
CN202111547275.3 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023108880A1 true WO2023108880A1 (zh) 2023-06-22

Family

ID=81051645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076228 WO2023108880A1 (zh) 2021-12-16 2022-02-14 检测装置和扫地机器人

Country Status (2)

Country Link
CN (1) CN114305220B (zh)
WO (1) WO2023108880A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201035149Y (zh) * 2007-01-19 2008-03-12 南京德朔实业有限公司 激光测距仪
CN104634313A (zh) * 2015-02-04 2015-05-20 金华马卡科技有限公司 一种测距仪
CN206863211U (zh) * 2017-06-06 2018-01-09 保定市天河电子技术有限公司 一种小型化激光雷达
CN109932728A (zh) * 2017-12-18 2019-06-25 保定市天河电子技术有限公司 一种微型化激光脉冲测距扫描装置
CN111948661A (zh) * 2019-04-30 2020-11-17 科沃斯机器人股份有限公司 一种自移动设备及探测装置
JP2021148667A (ja) * 2020-03-19 2021-09-27 株式会社リコー 光学装置及び測距装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387515B (zh) * 2008-08-28 2011-10-05 上海科勒电子科技有限公司 距离检测感应装置
KR102020210B1 (ko) * 2013-04-11 2019-11-05 삼성전자주식회사 센서 모듈 및 이를 구비하는 로봇 청소기
CN109849056A (zh) * 2017-11-30 2019-06-07 科沃斯机器人股份有限公司 激光测距模块、应用激光测距模块的机器人及其控制方法
CN210871316U (zh) * 2019-07-29 2020-06-30 广东洲光源红外半导体有限公司 一种应用于扫地机器人的地检装置
CN214259197U (zh) * 2020-11-25 2021-09-24 深圳市杉川机器人有限公司 Tof模组、摄像头组件及扫地机器人
CN112932339B (zh) * 2021-02-10 2022-08-05 江西欧迈斯微电子有限公司 3d模组及扫地机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201035149Y (zh) * 2007-01-19 2008-03-12 南京德朔实业有限公司 激光测距仪
CN104634313A (zh) * 2015-02-04 2015-05-20 金华马卡科技有限公司 一种测距仪
CN206863211U (zh) * 2017-06-06 2018-01-09 保定市天河电子技术有限公司 一种小型化激光雷达
CN109932728A (zh) * 2017-12-18 2019-06-25 保定市天河电子技术有限公司 一种微型化激光脉冲测距扫描装置
CN111948661A (zh) * 2019-04-30 2020-11-17 科沃斯机器人股份有限公司 一种自移动设备及探测装置
JP2021148667A (ja) * 2020-03-19 2021-09-27 株式会社リコー 光学装置及び測距装置

Also Published As

Publication number Publication date
CN114305220A (zh) 2022-04-12
CN114305220B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
CN108828558B (zh) 一种激光雷达
WO2021196467A1 (zh) 清洁机器人
US8902410B2 (en) Optical ranging device and electronic equipment installed with the same
WO2020052289A1 (zh) 深度获取模组及电子装置
WO2023108880A1 (zh) 检测装置和扫地机器人
CN211087008U (zh) 清洁机器人
WO2020038056A1 (zh) 飞行时间组件及电子设备
CN214259197U (zh) Tof模组、摄像头组件及扫地机器人
CN218456748U (zh) 一种自移动设备
WO2022052386A1 (zh) 智能机器人
CN210075369U (zh) 光学投影模块及移动终端
TW202020480A (zh) 移動機器人上的感測器外殼
CN211066440U (zh) 移动机器人
CN113573620B (zh) 机器人清扫器
CN215298028U (zh) 清洁机器人
CN216718701U (zh) 检测模组、避障模组、防卡模组、地检模组及移动机器人
CN213282754U (zh) 智能机器人
WO2022036791A1 (zh) 扫地机器人
CN113848563A (zh) 一种检测模组、避障模组、防卡模组、地检模组及机器人
CN220778237U (zh) 传感装置及清洁机器人
CN213918359U (zh) 前撞组件和智能机器人
CN112519910A (zh) 智能机器人
CN216209903U (zh) 检测模组、多功能模组以及移动机器人
CN212630677U (zh) 智能机器人
JP7430886B2 (ja) 距離測定装置、レーザレーダ及び移動ロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905652

Country of ref document: EP

Kind code of ref document: A1