WO2023108665A1 - 大面积单片集成的平坦化多通道滤光片阵列及制备方法 - Google Patents

大面积单片集成的平坦化多通道滤光片阵列及制备方法 Download PDF

Info

Publication number
WO2023108665A1
WO2023108665A1 PCT/CN2021/139431 CN2021139431W WO2023108665A1 WO 2023108665 A1 WO2023108665 A1 WO 2023108665A1 CN 2021139431 W CN2021139431 W CN 2021139431W WO 2023108665 A1 WO2023108665 A1 WO 2023108665A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter array
dielectric layer
reflective film
optical filter
channel
Prior art date
Application number
PCT/CN2021/139431
Other languages
English (en)
French (fr)
Inventor
何赛灵
郭庭彪
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2023108665A1 publication Critical patent/WO2023108665A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters

Definitions

  • the invention relates to a large-area single-chip integrated planarized multi-channel filter array and a preparation method, which are suitable for display, spectral imaging, anti-counterfeiting, holographic imaging, data storage, 3D printing, sensing and other fields.
  • Interference filter is a very common optical filter device, which is widely used in display imaging, spectral measurement, laser protection and other fields because of its advantages such as central wavelength, bandwidth, and cut-off depth.
  • the multilayer interference filter can realize transmissive or reflective narrow-band filtering, and its basic structure is composed of multiple periods of high and low refractive index dielectric films alternately combined.
  • the thickness of the monolayer film is about 1/4 of the central wavelength.
  • the filter wavelength of the filter can be adjusted.
  • the number of layers of the multilayer film is usually up to dozens of layers, which means that dozens of deposition processes are required to realize the multilayer film interference filter.
  • the existing process generally can only realize the filtering function of a single color on a single substrate, and the monolithic integration of filters of different colors often involves multiple patterning processes using lithography and other technologies, which will make the process more complicated.
  • a filter based on a metal-dielectric-metal Fabry-Perot (FP) cavity structure is another common interference filter, and the center wavelength of the filter can be precisely adjusted by changing the thickness of the dielectric layer. Similar to the multi-layer film structure filter, since the central wavelength is determined by the thickness of the dielectric layer, in order to realize the integration of different color filters, it is necessary to use photolithography and other processes for patterning.
  • FP metal-dielectric-metal Fabry-Perot
  • the object of the present invention is to propose a large-area monolithically integrated planarized multi-channel filter array and a preparation method.
  • a method for preparing a large-area single-chip integrated planarized multi-channel filter array sequentially includes a substrate, a lower reflective film, a dielectric layer, an upper reflective film, and an upper cover from bottom to top layer;
  • the dielectric layer is made of SU8 polymer and prepared by spin coating or roller coating.
  • the thickness of the dielectric layer is different for different filter channels, and the filters are distributed in a mosaic pattern.
  • the FP cavity structure selects the transmission or reflection mode; in the transmission mode, the thickness of the upper and lower reflective films is no more than 30nm, so that the light can be transmitted; in the reflective mode, the thickness of the lower reflective film must be greater than or equal to 100nm to achieve Total reflection.
  • the reflective film of the FP cavity structure is selected from metal materials, including gold, silver, and aluminum, or selected from semiconductor materials, including silicon, germanium, titanium dioxide, and silicon nitride.
  • the substrate adopts the substrate material suitable for the infrared/ultraviolet band and the upper and lower reflective films, and the substrate material includes silicon nitride, aluminum oxide, and calcium fluoride, so as to realize the multi-channel filter of the infrared/ultraviolet band Monolithic integration.
  • the substrate adopts commercial CCD and CMOS imaging chips, and during the production process, the multi-channel optical filter array is directly integrated on the imaging chip; or through the alignment process, the prepared multi-channel optical filter array is bound To CCD, CMOS imaging chip.
  • a large-area single-chip integrated planarized multi-channel filter array which sequentially includes a substrate, a lower reflective film, a dielectric layer, an upper reflective film, and an upper cladding layer from bottom to top; the substrate, the lower reflective film, and the medium layer and the upper reflective film constitute the FP cavity structure; the FP cavity structure is coated with an upper cladding layer to flatten the filter array; the dielectric layer is stepped.
  • the FP cavity structure selects the transmission or reflection mode; in the transmission mode, the thickness of the upper and lower reflective films is no more than 30nm, so that the light can be transmitted; in the reflective mode, the thickness of the lower reflective film must be greater than or equal to 100nm to achieve Total reflection.
  • the substrate adopts base materials suitable for infrared/ultraviolet bands and upper and lower reflective films, so as to realize monolithic integration of multi-channel filters for infrared/ultraviolet bands.
  • the substrate adopts commercial CCD and CMOS imaging chips, and during the production process, the multi-channel optical filter array is directly integrated on the imaging chip; or through the alignment process, the prepared multi-channel optical filter array is bound To CCD, CMOS imaging chip.
  • Precisely controlling the thickness of the dielectric layer in the FP cavity can precisely control the central wavelength of the filter, thereby realizing different transmission/reflection filters.
  • FIG. 1 is a schematic structural view of a large-area monolithically integrated reflective planarized multi-channel filter array according to the present invention.
  • FIG. 3 is a schematic diagram of a large-area monolithic integrated transmissive planarized multi-channel filter array according to the present invention.
  • Fig. 4 is the simulated reflection spectrum of the transmissive filter array with different dielectric layer thicknesses.
  • substrate 1 substrate 1 , lower reflective film 2 , dielectric layer 3 , upper reflective film 4 , and upper cladding layer 5 .
  • FIG. 1 it is a reflective single-chip integrated multi-channel filter array of a specific embodiment of the present invention.
  • incident light enters the upper cladding layer 5 from top to bottom, passes through different filters, is reflected by the lower reflective film 2 , and finally exits the upper cladding layer 5 .
  • the specific production process is as follows:
  • the lower reflective film 2 can be composed of high reflective materials such as gold, silver, aluminum, etc., and the thickness needs to be above the penetration depth to achieve the purpose of blocking light, typical The thickness is 100nm.
  • a layer of dielectric layer 3 is coated on the lower reflective layer 2, and the dielectric layer 3 is made of SU8 polymer, which can be prepared by spin coating method or roll coating method.
  • the structure required for exposure on the dielectric layer 3, exposure dose, exposure time, exposure power, etc., directly affect the thickness of the final dielectric layer 3, and the thickness of the dielectric layer 3 determines the central wavelength of the filter .
  • the excess dielectric is removed, leaving the required dielectric structure, so as to form the stepped dielectric layer 3 .
  • the upper reflective film 4 can be made of common high-loss metal materials, such as titanium, aluminum, chromium, iron, copper, tungsten, etc., and its typical thickness is 10-20nm ; It can also be replaced by common semiconductor materials, such as silicon, germanium, titanium nitride, titanium dioxide, etc., and its typical thickness is 10-20nm.
  • Coating the upper cladding layer 5 on the upper reflective film 4 can prepare a stable dielectric film such as silicon dioxide, aluminum oxide, etc. by deposition, sputtering, evaporation, etc.
  • Good polymer materials such as BCB film, polyimide film, etc., make the surface flat, and can also play a role in protecting the filter.
  • Fig. 2 is the reflection spectrum of the optical filter obtained by simulation of intermediate dielectric layers with different thicknesses.
  • the upper reflective film is metallic Ti
  • the lower reflective film is metallic silver.
  • FIG. 3 it is a transmissive single-chip integrated multi-channel filter array of a specific embodiment of the present invention.
  • the incident light enters the cladding 5 from above, passes through different filters, and exits from the substrate 1.
  • the specific manufacturing process is as follows:
  • the lower reflective film 2 can be composed of common metals such as gold, silver, aluminum, etc., or can be composed of semiconductor materials such as silicon, germanium, titanium nitride, titanium dioxide, etc., with a typical thickness of 10- 20nm, in order to achieve the purpose of partial light transmission.
  • a layer of dielectric layer 3 is coated on the lower reflective layer 2, and the dielectric layer 3 is made of SU8 polymer, which can be prepared by spin coating method or roller coating method.
  • the structure required for exposure on the dielectric layer 3, exposure dose, exposure time, exposure power, etc., directly affect the thickness of the final dielectric layer 3, and the thickness of the dielectric layer 3 determines the thickness of the filter. center wavelength.
  • the excess dielectric is removed, leaving the required dielectric structure, so as to form the stepped dielectric layer 3 .
  • the upper reflective film 4 is grown on the patterned dielectric layer 3, an upper reflective film 4 is grown.
  • the upper reflective film 4 can be made of common metal materials, such as gold, silver, aluminum, etc., or can be replaced by common semiconductor materials, such as silicon, germanium, and titanium nitride. , titanium dioxide, etc., with a typical thickness of 10-20nm.
  • Coating the upper cladding layer 5 on the upper reflective film 4 can prepare a stable dielectric film such as silicon dioxide, aluminum oxide, etc. by deposition, sputtering, evaporation, etc.
  • Good polymer materials such as BCB, polyimide, etc., make the surface flat, and can also play a role in protecting the filter.
  • Fig. 4 is the transmission spectrum of the optical filter obtained by simulation with different thicknesses of the intermediate dielectric layer.
  • the upper reflective film is made of silicon material, and the lower reflective film is metallic silver.
  • the invention discloses a large-area single-chip integrated planarized multi-channel optical filter array device.
  • the transmissive and reflective filter arrays can be realized respectively.
  • Using a single grayscale exposure process it is possible to simultaneously prepare filter arrays with different thicknesses and different filtering performances on the same substrate.
  • the method is simple in process, abandons the complicated deposition and photolithography process required in the traditional interferometric multicolor filter array, and can theoretically realize the preparation of a wafer-sized multi-channel filter array; Coating a layer of upper cladding medium can realize the planarization of the optical filter array, making it possible to integrate the optical filter with other devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种大面积单片集成的平坦化多通道滤光片阵列及制备方法,从下到上依次包括基底(1)、下层反射膜(2)、介质层(3)、上层反射膜(4)、上包层(5),基底(1)、下层反射膜(2)、介质层(3)、上层反射膜(4)构成FP腔结构,FP腔结构上涂覆上包层(5),使滤光片阵列平坦化,介质层(3)呈台阶状。滤光片阵列可以支持透射或者反射模式;滤光片阵列可以通过一次曝光工艺,实现不同滤光片的大面积单片集成,可以极大的简化工艺流程,降低生产成本,且通过平坦化技术,使得滤光片阵列表面平整,经久耐用,方便与其他器件进行集成。

Description

大面积单片集成的平坦化多通道滤光片阵列及制备方法 技术领域
本发明涉及一种大面积单片集成的平坦化多通道滤光片阵列及制备方法,适用于显示、光谱成像、防伪、全息成像、数据存储、3D打印、传感等领域。
背景技术
干涉式滤光片是一种非常常见的滤光器件,因其具有中心波长、带宽、截止深度可调等优点而被广泛应用于显示成像、光谱测量、激光防护等领域。
多层膜干涉式滤光片可以实现透射或者反射式的窄带滤波,其基本结构由多个周期的高低折射率的介质膜交替组合构成。其中,单层膜的厚度约为1/4个中心波长。通过改变多层膜的厚度或者折射率,可以调节滤光片的滤波波长。为了实现较好的滤波效果,多层膜的层数通常多达几十层,这就意味着为实现多层膜干涉式滤光片,需要几十次的沉积工艺。另外,现有的工艺一般只能实现单个基片上单个颜色的滤波功能,不同颜色滤波片的单片集成,往往涉及到利用光刻等技术进行多次图案化处理,而这会使得工艺复杂度大大增加。同时,需要结合多次沉积工艺实现不同滤波片的集成,这大大限制了这类滤波片的实际应用。因而,市售的滤波片基本都是单一颜色的滤波片。基于金属-介质-金属的法布里珀罗(FP)腔结构的滤波器是另一种常见的干涉式滤波片,通过改变介质层的厚度,可以精确的调节滤波器的中心波长。同多层膜结构滤光片类似,由于中心波长由介质层厚度决定,要实现不同颜色滤波片的集成,需要利用光刻等工艺进行图案化。
发明内容
为了克服现有技术中的问题,本发明的目的是提出一种大面积单片集成的平坦化多通道滤光片阵列及制备方法。
本发明的技术方案是:
一种大面积单片集成的平坦化多通道滤光片阵列的制备方法,所述的多通道滤光片阵列从下到上依次包括基底、下层反射膜、介质层、上层反射膜、上包层;
1)通过溅射或蒸镀长膜工艺在基底上生长下层反射膜;
2)在下层反射膜上涂覆一层介质层,利用灰度曝光工艺对介质层进行曝光,通过控制曝光功率、曝光时间、曝光剂量,控制介质层的厚度,实现台阶状的介质层;
3)在所述介质层上制作上层反射膜,完成FP腔结构;
4)在FP腔结构上涂覆一上包层,对滤波片阵列进行平坦化处理。
所述的介质层由SU8聚合物构成,利用旋涂法或者辊涂法制备,不同滤波片通道的介质层厚度不同,且滤波片呈马赛克分布。
所述的FP腔结构选择透射或者反射模式;透射模式中,上下两层反射膜厚度均不超过30nm,使得光线可以透射出;反射模式中,其中下层反射膜的厚度需大于等于100nm,以实现完全反射。
所述FP腔结构的反射膜选自金属材料,包括金、银、铝,或者选自半导体材料,包括硅、锗、二氧化钛、氮化硅。
所述的基底采用适用于红外/紫外波段的基底材料和上下层反射膜,所述的基底材料包括氮化硅、氧化铝、氟化钙,从而实现红外/紫外波段的多通道滤光片的单片集成。
所述的基底采用商用CCD、CMOS成像芯片,在制作过程中,将该多通道滤光片阵列直接集成在成像芯片上;或通过对准工艺,将制作好的多通道滤光片阵列绑定到CCD、CMOS成像芯片上。
一种大面积单片集成的平坦化多通道滤光片阵列,从下到上依次包括基底、下层反射膜、介质层、上层反射膜、上包层;所述的基底、下层反射膜、介质层、上层反射膜构成FP腔结构;FP腔结构上涂覆上包层,使滤波片阵列平坦化;所述的介质层呈台阶状。
所述的FP腔结构选择透射或者反射模式;透射模式中,上下两层反射膜厚度均不超过30nm,使得光线可以透射出;反射模式中,其中下层反射膜的厚度需大于等于100nm,以实现完全反射。
所述的基底采用适用于红外/紫外波段的基底材料和上下层反射膜,从而实现红外/紫外波段的多通道滤光片的单片集成。
所述的基底采用商用CCD、CMOS成像芯片,在制作过程中,将该多通道滤光片阵列直接集成在成像芯片上;或通过对准工艺,将制作好的多通道滤光片阵列绑定到CCD、CMOS成像芯片上。
本发明的有益效果在于:
1)精确控制FP腔中介质层的厚度,可以精确调控滤光片的中心波长,从而实现不同透射/反射式的滤光片。
2)只需单次灰度曝光工艺,可以实现大面积的多通道滤光片阵列的集成与制备。
3)使用平坦化技术,可以使得该结构表面平整,更容易与其他结构集成。
附图说明
图1是本发明涉及的一种大面积单片集成的反射式平坦化多通道滤光片阵列的结构示意图。
图2是仿真得到的不同介质层厚度的反射式滤光片阵列的反射谱。
图3是本发明涉及的一种大面积单片集成的透射式平坦化多通道滤光片阵列的示意图。
图4是仿真得到的不同介质层厚度的透射式滤光片阵列的反射谱。
附图标记说明:基底1、下层反射膜2、介质层3、上层反射膜4、上包层5。
具体实施方式
下面,结合附图和实施例对发明做进一步的详细描述。
实施例1
由图1所示,为本发明一具体实施方案的反射式单片集成多通道滤光片阵列。参照图1,入射光由上向下进入上包层5,通过不同滤光片,由下层反射膜2反射,最后上包层5出射。具体制作流程如下:
参照图1,在干净的基底1上,生长一层下层反射膜2,下层反射膜2可由金、银、铝等高反射材料组成,厚度需达到穿透深度以上以达到阻挡光线的目的,典型的厚度为100nm。
在下层反射层2上涂覆一层介质层3,介质层3由SU8聚合物构成,可以利用旋涂法或者辊涂法制备。
利用灰度曝光工艺,在介质层3上曝光所需要的结构,曝光剂量、曝光时间、曝光功率等,直接影响最终介质层3的厚度,而介质层3厚度则决定了滤光片的中心波长。通过显影等方法,将多余的介质去掉,留下需要的介质结构,从而形成台阶状介质层3。
在做好图案的介质层3上,生长上层反射膜4,上层反射膜4可以采用常见的高损耗金属材料,如钛、铝、铬、铁、铜、钨等,其典型厚度为10-20nm;亦可由常见半导体材料替代,如硅、锗、氮化钛、二氧化钛等,其典型厚度为10-20nm。
在上层反射膜4上涂覆上包层5,可以通过沉积、溅射、蒸镀等制备稳定性好的介质膜如二氧化硅、氧化铝等,亦可以采用旋涂等工艺制作一层稳定性好的聚合物材料如BCB膜、聚酰亚胺膜等,使得表面平坦化,亦可起到保护滤光片的作用。
图2为仿真得到的不同厚度中间介质层的滤光片反射谱。其上层反射膜为金属Ti,下层反射膜为金属银。
实施例2
由图3所示,为本发明一具体实施方案的透射式单片集成多通道滤光片阵列。
参照图3,入射光从上进入包层5,透过不同滤光片,从基底1出射,具体制作流程如下:
在干净的基底1上,生长下层反射膜2,下层反射膜2可由常见金属如金、银、铝等组成,亦可由半导体材料硅、锗、氮化钛、二氧化钛等构成,典型厚度为10-20nm,以实现部分透光的目的。
在下层反射层2上涂覆一层介质层3,介质层3采用SU8聚合物构成,可以利用旋涂法或者辊涂法制备。
利用灰度曝光工艺,在介质层3上曝光所需要的结构,曝光剂量、曝光时间、曝光功率等,直接影响最终的介质层3的厚度,而介质层3的厚度则决定了滤光片的中心波长。通过显影等方法,将多余的介质去掉,留下需要的介质结构,从而形成台阶状介质层3。
在做好图案的介质层3上,生长上层反射膜4,上层反射膜4可以采用常见的金属材料,如金、银、铝等,亦可由常见半导体材料替代,如硅、锗、氮化钛、二氧化钛等,其典型厚度为10-20nm。
在上层反射膜4上涂覆上包层5,可以通过沉积、溅射、蒸镀等制备稳定性好的介质膜如二氧化硅、氧化铝等,亦可以采用旋涂等工艺制作一层稳定性好的聚合物材料如BCB、聚酰亚胺等,使得表面平坦化,亦可起到保护滤光片的作用。
图4为仿真得到的不同厚度中间介质层的滤光片透射谱。其上层反射膜为硅材料,下层反射膜为金属银。
本发明公开了一种大面积单片集成的平坦化多通道滤光片阵列器件。采用FP腔结构,通过调节介质层和上下层反射膜的材料及厚度,可以分别实现透射式与反射式的滤光片阵列。利用单次灰度曝光工艺,可以实现在同一基片上同时制备不同厚度、不同滤波性能的滤光片阵列。该方法工艺简单,摒弃了传统干涉式多色滤光片阵列中需要的冗杂沉积与光刻工艺,理论上可以实现晶圆大小的多通道滤光片阵列的制备;另外,通过在滤光片上涂覆一层上包层介质,可以实现滤光片阵列的平坦化,使得该滤光片与其他器件的集成成为可能。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种大面积单片集成的平坦化多通道滤光片阵列的制备方法,其特征在于:所述的多通道滤光片阵列从下到上依次包括基底、下层反射膜、介质层、上层反射膜、上包层;
    1)通过溅射或蒸镀长膜工艺在基底上生长下层反射膜;
    2)在下层反射膜上涂覆一层介质层,利用灰度曝光工艺对介质层进行曝光,通过控制曝光功率、曝光时间、曝光剂量,控制介质层的厚度,实现台阶状的介质层;
    3)在所述介质层上制作上层反射膜,完成FP腔结构;
    4)在FP腔结构上涂覆一上包层,对滤波片阵列进行平坦化处理。
  2. 根据权利要求1所述的制备方法,其特征在于:所述的介质层由SU8聚合物构成,利用旋涂法或者辊涂法制备,不同滤波片通道的介质层厚度不同,且滤波片呈马赛克分布。
  3. 根据权利要求1所述的制备方法,其特征在于:所述的FP腔结构选择透射或者反射模式;透射模式中,上下两层反射膜厚度均不超过30nm,使得光线可以透射出;反射模式中,其中下层反射膜的厚度需大于等于100nm,以实现完全反射。
  4. 根据权利要求1所述的制备方法,其特征在于:所述FP腔结构的反射膜选自金属材料,包括金、银、铝,或者选自半导体材料,包括硅、锗、二氧化钛、氮化硅。
  5. 根据权利要求1所述的制备方法,其特征在于:所述的基底采用适用于红外/紫外波段的基底材料和上下层反射膜,所述的基底材料包括氮化硅、氧化铝、氟化钙,从而实现红外/紫外波段的多通道滤光片的单片集成。
  6. 根据权利要求1所述的制备方法,其特征在于:所述的基底采用商用CCD、CMOS成像芯片,在制作过程中,将该多通道滤光片阵列直接集成在成像芯片上;或通过对准工艺,将制作好的多通道滤光片阵列绑定到CCD、CMOS成像芯片上。
  7. 一种大面积单片集成的平坦化多通道滤光片阵列,其特征在于:从下到上依次包括基底、下层反射膜、介质层、上层反射膜、上包层;所述的基底、下层反射膜、介质层、上层反射膜构成FP腔结构;FP腔结构上涂覆上包层,使滤波片阵列平坦化;所述的介质层呈台阶状。
  8. 根据权利要求7所述的多通道滤光片阵列,其特征在于:所述的FP腔结构选择透射或者反射模式;透射模式中,上下两层反射膜厚度均不超过30nm,使得光线可以透射出;反射模式中,其中下层反射膜的厚度需大于等于100nm,以实现完全反射。
  9. 根据权利要求7所述的多通道滤光片阵列,其特征在于:所述的基底采用适用于红外/紫外波段的基底材料和上下层反射膜,从而实现红外/紫外波段的多通道滤光片的单片集成。
  10. 根据权利要求7所述的多通道滤光片阵列,其特征在于:所述的基底采用商用CCD、CMOS成像芯片,在制作过程中,将该多通道滤光片阵列直接集成在成像芯片上;或通过对准工艺,将制作好的多通道滤光片阵列绑定到CCD、CMOS成像芯片上。
PCT/CN2021/139431 2021-12-15 2021-12-18 大面积单片集成的平坦化多通道滤光片阵列及制备方法 WO2023108665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111531044.3A CN114236663A (zh) 2021-12-15 2021-12-15 大面积单片集成的平坦化多通道滤光片阵列及制备方法
CN202111531044.3 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023108665A1 true WO2023108665A1 (zh) 2023-06-22

Family

ID=80756099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139431 WO2023108665A1 (zh) 2021-12-15 2021-12-18 大面积单片集成的平坦化多通道滤光片阵列及制备方法

Country Status (2)

Country Link
CN (1) CN114236663A (zh)
WO (1) WO2023108665A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116105862B (zh) * 2023-04-13 2023-07-14 中国科学院长春光学精密机械与物理研究所 基于靶面分割和像素级分光的光谱探测系统及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287191A (ja) * 2003-03-24 2004-10-14 Seiko Epson Corp カラーフィルタアレイおよび空間光変調装置および投射型表示装置
CN101246230A (zh) * 2007-12-18 2008-08-20 深圳南玻伟光导电膜有限公司 一种半透彩色滤光片
CN103675978A (zh) * 2013-12-18 2014-03-26 深圳市华星光电技术有限公司 波长选择型彩色滤光片及使用该波长选择型彩色滤光片的显示结构
CN104793278A (zh) * 2015-05-15 2015-07-22 京东方科技集团股份有限公司 滤光结构,偏光及滤光装置和显示面板
CN108780006A (zh) * 2015-12-14 2018-11-09 ams有限公司 光学感测装置和制造光学感测装置的方法
CN109031491A (zh) * 2018-08-30 2018-12-18 西安工业大学 一种阵列f-p腔滤光片的制备方法
CN111142179A (zh) * 2018-11-02 2020-05-12 唯亚威通讯技术有限公司 阶梯结构光滤波器
CN111300163A (zh) * 2020-02-29 2020-06-19 湖南大学 一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法
CN111863977A (zh) * 2019-04-26 2020-10-30 采钰科技股份有限公司 滤光结构
US20210231889A1 (en) * 2020-01-06 2021-07-29 Attonics Systems Pte Ltd Optical arrays, filter arrays, optical devices and method of fabricating same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287191A (ja) * 2003-03-24 2004-10-14 Seiko Epson Corp カラーフィルタアレイおよび空間光変調装置および投射型表示装置
CN101246230A (zh) * 2007-12-18 2008-08-20 深圳南玻伟光导电膜有限公司 一种半透彩色滤光片
CN103675978A (zh) * 2013-12-18 2014-03-26 深圳市华星光电技术有限公司 波长选择型彩色滤光片及使用该波长选择型彩色滤光片的显示结构
CN104793278A (zh) * 2015-05-15 2015-07-22 京东方科技集团股份有限公司 滤光结构,偏光及滤光装置和显示面板
CN108780006A (zh) * 2015-12-14 2018-11-09 ams有限公司 光学感测装置和制造光学感测装置的方法
CN109031491A (zh) * 2018-08-30 2018-12-18 西安工业大学 一种阵列f-p腔滤光片的制备方法
CN111142179A (zh) * 2018-11-02 2020-05-12 唯亚威通讯技术有限公司 阶梯结构光滤波器
CN111863977A (zh) * 2019-04-26 2020-10-30 采钰科技股份有限公司 滤光结构
US20210231889A1 (en) * 2020-01-06 2021-07-29 Attonics Systems Pte Ltd Optical arrays, filter arrays, optical devices and method of fabricating same
CN111300163A (zh) * 2020-02-29 2020-06-19 湖南大学 一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法

Also Published As

Publication number Publication date
CN114236663A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2020019575A1 (zh) 基于介质超表面结构的窄带滤光片及其制作方法
CN109196387A (zh) 用于亚波长分辨率成像的超透镜
JP2005308871A (ja) 干渉カラーフィルター
US7952804B2 (en) Optical filter element, optical filter, and method of manufacturing optical filter
WO2003083525A1 (fr) Substrat a matrices de microlentilles et procede de production, et ecran d'affichage a cristaux liquides de type projection utilisant ces substrats
US20040239869A1 (en) Narrow band tunable filter with integrated detector
TW200947017A (en) Spatial light modulator and manufacturing method thereof
WO2023108665A1 (zh) 大面积单片集成的平坦化多通道滤光片阵列及制备方法
CN110515215A (zh) 一种超薄光学模组及超薄显示装置
CN103460085B (zh) 一种彩色滤光片
CN109491002A (zh) 一种基于多孔氧化铝的入射角度不敏感的彩色滤光片及其制备方法
JP2000180621A (ja) オンチップカラーフィルタ及びこれを用いた固体撮像素子
JPH0894831A (ja) カラーフィルター
JPS6139641B2 (zh)
CN216434428U (zh) 大面积单片集成的平坦化多通道滤光片阵列
JP2024007494A (ja) 湾曲したファブリーペローフィルタを備えたマルチスペクトルフィルタマトリックスおよびそれを製造するための方法
TW200905283A (en) A plasmonic reflection filter
CN113568099B (zh) 基于纳米微腔的可见光分束滤波薄膜及其设计方法
CN112992998B (zh) 显示面板、显示装置及显示面板的制作方法
CN113270037A (zh) 一种石墨烯超像素显示器、其制备方法及石墨烯超像素彩色显示系统
JP2897472B2 (ja) 色分解フィルターの製造方法
JPH0756013A (ja) カラーフィルター
JPS6132802A (ja) 色分離フイルタ
KR102457628B1 (ko) 렌즈 구조체 및 렌즈 구조체 제작 방법
JPH04107505A (ja) くさび型干渉フィルター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967797

Country of ref document: EP

Kind code of ref document: A1