CN114236663A - 大面积单片集成的平坦化多通道滤光片阵列及制备方法 - Google Patents

大面积单片集成的平坦化多通道滤光片阵列及制备方法 Download PDF

Info

Publication number
CN114236663A
CN114236663A CN202111531044.3A CN202111531044A CN114236663A CN 114236663 A CN114236663 A CN 114236663A CN 202111531044 A CN202111531044 A CN 202111531044A CN 114236663 A CN114236663 A CN 114236663A
Authority
CN
China
Prior art keywords
layer
filter array
substrate
optical filter
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111531044.3A
Other languages
English (en)
Inventor
何赛灵
郭庭彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202111531044.3A priority Critical patent/CN114236663A/zh
Priority to PCT/CN2021/139431 priority patent/WO2023108665A1/zh
Publication of CN114236663A publication Critical patent/CN114236663A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Filters (AREA)

Abstract

本发明公开了一种大面积单片集成的平坦化多通道滤光片阵列及制备方法。从下到上依次包括基底、下层反射膜、介质层、上层反射膜、上包层;所述的基底、下层反射膜、介质层、上层反射膜构成FP腔结构;FP腔结构上涂覆上包层,使滤波片阵列平坦化;所述的介质层呈台阶状。该滤波片阵列可以支持透射或者反射模式,且其上下表面平整,非常适合同其他器件进行集成。本发明提出的器件,可以通过一次曝光工艺,实现不同滤波片的大面积单片集成,可以极大的简化工艺流程,降低生产成本,且通过平坦化技术,使得该滤波片表面平整,经久耐用,方便与其他器件进行集成。

Description

大面积单片集成的平坦化多通道滤光片阵列及制备方法
技术领域
本发明涉及一种大面积单片集成的平坦化多通道滤光片阵列及制备方法,适用于显示、光谱成像、防伪、全息成像、数据存储、3D打印、传感等领域。
背景技术
干涉式滤光片是一种非常常见的滤光器件,因其具有中心波长、带宽、截止深度可调等优点而被广泛应用于显示成像、光谱测量、激光防护等领域。
多层膜干涉式滤光片可以实现透射或者反射式的窄带滤波,其基本结构由多个周期的高低折射率的介质膜交替组合构成。其中,单层膜的厚度约为1/4个中心波长。通过改变多层膜的厚度或者折射率,可以调节滤光片的滤波波长。为了实现较好的滤波效果,多层膜的层数通常多达几十层,这就意味着为实现多层膜干涉式滤光片,需要几十次的沉积工艺。另外,现有的工艺一般只能实现单个基片上单个颜色的滤波功能,不同颜色滤波片的单片集成,往往涉及到利用光刻等技术进行多次图案化处理,而这会使得工艺复杂度大大增加。同时,需要结合多次沉积工艺实现不同滤波片的集成,这大大限制了这类滤波片的实际应用。因而,市售的滤波片基本都是单一颜色的滤波片。基于金属-介质-金属的法布里珀罗(FP)腔结构的滤波器是另一种常见的干涉式滤波片,通过改变介质层的厚度,可以精确的调节滤波器的中心波长。同多层膜结构滤光片类似,由于中心波长由介质层厚度决定,要实现不同颜色滤波片的集成,需要利用光刻等工艺进行图案化。
发明内容
为了克服现有技术中的问题,本发明的目的是提出一种大面积单片集成的平坦化多通道滤光片阵列及制备方法。
本发明的技术方案是:
一种大面积单片集成的平坦化多通道滤光片阵列的制备方法,所述的多通道滤光片阵列从下到上依次包括基底、下层反射膜、介质层、上层反射膜、上包层;
1)通过溅射或蒸镀长膜工艺在基底上生长下层反射膜;
2)在下层反射膜上涂覆一层介质层,利用灰度曝光工艺对介质层进行曝光,通过控制曝光功率、曝光时间、曝光剂量,控制介质层的厚度,实现台阶状的介质层;
3)在所述介质层上制作上层反射膜,完成FP腔结构;
4)在FP腔结构上涂覆一上包层,对滤波片阵列进行平坦化处理。
所述的介质层由SU8聚合物构成,利用旋涂法或者辊涂法制备,不同滤波片通道的介质层厚度不同,且滤波片呈马赛克分布。
所述的FP腔结构选择透射或者反射模式;透射模式中,上下两层反射膜厚度均不超过30 nm,使得光线可以透射出;反射模式中,其中下层反射膜的厚度需大于等于100 nm,以实现完全反射。
所述FP腔结构的反射膜选自金属材料,包括金、银、铝,或者选自半导体材料,包括硅、锗、二氧化钛、氮化硅。
所述的基底采用适用于红外/紫外波段的基底材料和上下层反射膜,所述的基底材料包括氮化硅、氧化铝、氟化钙,从而实现红外/紫外波段的多通道滤光片的单片集成。
所述的基底采用商用CCD、CMOS成像芯片,在制作过程中,将该多通道滤光片阵列直接集成在成像芯片上;或通过对准工艺,将制作好的多通道滤光片阵列绑定到CCD、CMOS成像芯片上。
一种大面积单片集成的平坦化多通道滤光片阵列,从下到上依次包括基底、下层反射膜、介质层、上层反射膜、上包层;所述的基底、下层反射膜、介质层、上层反射膜构成FP腔结构;FP腔结构上涂覆上包层,使滤波片阵列平坦化;
所述的介质层呈台阶状。
所述的FP腔结构选择透射或者反射模式;透射模式中,上下两层反射膜厚度均不超过30 nm,使得光线可以透射出;反射模式中,其中下层反射膜的厚度需大于等于100 nm,以实现完全反射。
所述的基底采用适用于红外/紫外波段的基底材料和上下层反射膜,从而实现红外/紫外波段的多通道滤光片的单片集成。
所述的基底采用商用CCD、CMOS成像芯片,在制作过程中,将该多通道滤光片阵列直接集成在成像芯片上;或通过对准工艺,将制作好的多通道滤光片阵列绑定到CCD、CMOS成像芯片上。
本发明的有益效果在于:
1)精确控制FP腔中介质层的厚度,可以精确调控滤光片的中心波长,从而实现不同透射/反射式的滤光片。
2)只需单次灰度曝光工艺,可以实现大面积的多通道滤光片阵列的集成与制备。
3)使用平坦化技术,可以使得该结构表面平整,更容易与其他结构集成。
附图说明
图1是本发明涉及的一种大面积单片集成的反射式平坦化多通道滤光片阵列的结构示意图。
图2是仿真得到的不同介质层厚度的反射式滤光片阵列的反射谱。
图3是本发明涉及的一种大面积单片集成的透射式平坦化多通道滤光片阵列的示意图。
图4是仿真得到的不同介质层厚度的透射式滤光片阵列的反射谱。
附图标记说明:基底1、下层反射膜2、介质层3、上层反射膜4、上包层5。
具体实施方式
下面,结合附图和实施例对发明做进一步的详细描述。
实施例1
由图1所示,为本发明一具体实施方案的反射式单片集成多通道滤光片阵列。参照图1,入射光由上向下进入上包层5,通过不同滤光片,由下层反射膜2反射,最后上包层5出射。具体制作流程如下:
参照图1,在干净的基底1上,生长一层下层反射膜2,下层反射膜2可由金、银、铝等高反射材料组成,厚度需达到穿透深度以上以达到阻挡光线的目的,典型的厚度为100 nm。
在下层反射层2上涂覆一层介质层3,介质层3由SU8聚合物构成,可以利用旋涂法或者辊涂法制备。
利用灰度曝光工艺,在介质层3上曝光所需要的结构,曝光剂量、曝光时间、曝光功率等,直接影响最终介质层3的厚度,而介质层3厚度则决定了滤光片的中心波长。通过显影等方法,将多余的介质去掉,留下需要的介质结构,从而形成台阶状介质层3。
在做好图案的介质层3上,生长上层反射膜4,上层反射膜4可以采用常见的高损耗金属材料,如钛、铝、铬、铁、铜、钨等,其典型厚度为10-20 nm;亦可由常见半导体材料替代,如硅、锗、氮化钛、二氧化钛等,其典型厚度为10-20 nm。
在上层反射膜4上涂覆上包层5,可以通过沉积、溅射、蒸镀等制备稳定性好的介质膜如二氧化硅、氧化铝等,亦可以采用旋涂等工艺制作一层稳定性好的聚合物材料如BCB膜、聚酰亚胺膜等,使得表面平坦化,亦可起到保护滤光片的作用。
图2为仿真得到的不同厚度中间介质层的滤光片反射谱。其上层反射膜为金属Ti,下层反射膜为金属银。
实施例2
由图3所示,为本发明一具体实施方案的透射式单片集成多通道滤光片阵列。
参照图3,入射光从上进入包层5,透过不同滤光片,从基底1出射,具体制作流程如下:
在干净的基底1上,生长下层反射膜2,下层反射膜2可由常见金属如金、银、铝等组成,亦可由半导体材料硅、锗、氮化钛、二氧化钛等构成,典型厚度为10-20 nm,以实现部分透光的目的。
在下层反射层2上涂覆一层介质层3,介质层3采用SU8聚合物构成,可以利用旋涂法或者辊涂法制备。
利用灰度曝光工艺,在介质层3上曝光所需要的结构,曝光剂量、曝光时间、曝光功率等,直接影响最终的介质层3的厚度,而介质层3的厚度则决定了滤光片的中心波长。通过显影等方法,将多余的介质去掉,留下需要的介质结构,从而形成台阶状介质层3。
在做好图案的介质层3上,生长上层反射膜4,上层反射膜4可以采用常见的金属材料,如金、银、铝等,亦可由常见半导体材料替代,如硅、锗、氮化钛、二氧化钛等,其典型厚度为10-20 nm。
在上层反射膜4上涂覆上包层5,可以通过沉积、溅射、蒸镀等制备稳定性好的介质膜如二氧化硅、氧化铝等,亦可以采用旋涂等工艺制作一层稳定性好的聚合物材料如BCB、聚酰亚胺等,使得表面平坦化,亦可起到保护滤光片的作用。
图4为仿真得到的不同厚度中间介质层的滤光片透射谱。其上层反射膜为硅材料,下层反射膜为金属银。
本发明公开了一种大面积单片集成的平坦化多通道滤光片阵列器件。采用FP腔结构,通过调节介质层和上下层反射膜的材料及厚度,可以分别实现透射式与反射式的滤光片阵列。利用单次灰度曝光工艺,可以实现在同一基片上同时制备不同厚度、不同滤波性能的滤光片阵列。该方法工艺简单,摒弃了传统干涉式多色滤光片阵列中需要的冗杂沉积与光刻工艺,理论上可以实现晶圆大小的多通道滤光片阵列的制备;另外,通过在滤光片上涂覆一层上包层介质,可以实现滤光片阵列的平坦化,使得该滤光片与其他器件的集成成为可能。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种大面积单片集成的平坦化多通道滤光片阵列的制备方法,其特征在于:所述的多通道滤光片阵列从下到上依次包括基底、下层反射膜、介质层、上层反射膜、上包层;
1)通过溅射或蒸镀长膜工艺在基底上生长下层反射膜;
2)在下层反射膜上涂覆一层介质层,利用灰度曝光工艺对介质层进行曝光,通过控制曝光功率、曝光时间、曝光剂量,控制介质层的厚度,实现台阶状的介质层;
3)在所述介质层上制作上层反射膜,完成FP腔结构;
4)在FP腔结构上涂覆一上包层,对滤波片阵列进行平坦化处理。
2.根据权利要求1所述的制备方法,其特征在于:所述的介质层由SU8聚合物构成,利用旋涂法或者辊涂法制备,不同滤波片通道的介质层厚度不同,且滤波片呈马赛克分布。
3.根据权利要求1所述的制备方法,其特征在于:所述的FP腔结构选择透射或者反射模式;透射模式中,上下两层反射膜厚度均不超过30 nm,使得光线可以透射出;反射模式中,其中下层反射膜的厚度需大于等于100 nm,以实现完全反射。
4.根据权利要求1所述的制备方法,其特征在于:所述FP腔结构的反射膜选自金属材料,包括金、银、铝,或者选自半导体材料,包括硅、锗、二氧化钛、氮化硅。
5.根据权利要求1所述的制备方法,其特征在于:所述的基底采用适用于红外/紫外波段的基底材料和上下层反射膜,所述的基底材料包括氮化硅、氧化铝、氟化钙,从而实现红外/紫外波段的多通道滤光片的单片集成。
6.根据权利要求1所述的制备方法,其特征在于:所述的基底采用商用CCD、CMOS成像芯片,在制作过程中,将该多通道滤光片阵列直接集成在成像芯片上;或通过对准工艺,将制作好的多通道滤光片阵列绑定到CCD、CMOS成像芯片上。
7.一种大面积单片集成的平坦化多通道滤光片阵列,其特征在于:从下到上依次包括基底、下层反射膜、介质层、上层反射膜、上包层;所述的基底、下层反射膜、介质层、上层反射膜构成FP腔结构;FP腔结构上涂覆上包层,使滤波片阵列平坦化;所述的介质层呈台阶状。
8.根据权利要求7所述的多通道滤光片阵列,其特征在于:所述的FP腔结构选择透射或者反射模式;透射模式中,上下两层反射膜厚度均不超过30 nm,使得光线可以透射出;反射模式中,其中下层反射膜的厚度需大于等于100 nm,以实现完全反射。
9.根据权利要求7所述的多通道滤光片阵列,其特征在于:所述的基底采用适用于红外/紫外波段的基底材料和上下层反射膜,从而实现红外/紫外波段的多通道滤光片的单片集成。
10.根据权利要求7所述的多通道滤光片阵列,其特征在于:所述的基底采用商用CCD、CMOS成像芯片,在制作过程中,将该多通道滤光片阵列直接集成在成像芯片上;或通过对准工艺,将制作好的多通道滤光片阵列绑定到CCD、CMOS成像芯片上。
CN202111531044.3A 2021-12-15 2021-12-15 大面积单片集成的平坦化多通道滤光片阵列及制备方法 Pending CN114236663A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111531044.3A CN114236663A (zh) 2021-12-15 2021-12-15 大面积单片集成的平坦化多通道滤光片阵列及制备方法
PCT/CN2021/139431 WO2023108665A1 (zh) 2021-12-15 2021-12-18 大面积单片集成的平坦化多通道滤光片阵列及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111531044.3A CN114236663A (zh) 2021-12-15 2021-12-15 大面积单片集成的平坦化多通道滤光片阵列及制备方法

Publications (1)

Publication Number Publication Date
CN114236663A true CN114236663A (zh) 2022-03-25

Family

ID=80756099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111531044.3A Pending CN114236663A (zh) 2021-12-15 2021-12-15 大面积单片集成的平坦化多通道滤光片阵列及制备方法

Country Status (2)

Country Link
CN (1) CN114236663A (zh)
WO (1) WO2023108665A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116105862A (zh) * 2023-04-13 2023-05-12 中国科学院长春光学精密机械与物理研究所 基于靶面分割和像素级分光的光谱探测系统及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287191A (ja) * 2003-03-24 2004-10-14 Seiko Epson Corp カラーフィルタアレイおよび空間光変調装置および投射型表示装置
CN101246230B (zh) * 2007-12-18 2010-12-15 深圳南玻伟光导电膜有限公司 一种半透彩色滤光片
CN103675978A (zh) * 2013-12-18 2014-03-26 深圳市华星光电技术有限公司 波长选择型彩色滤光片及使用该波长选择型彩色滤光片的显示结构
CN104793278A (zh) * 2015-05-15 2015-07-22 京东方科技集团股份有限公司 滤光结构,偏光及滤光装置和显示面板
EP3182079B1 (en) * 2015-12-14 2023-08-23 ams AG Optical sensing device and method for manufacturing an optical sensing device
CN109031491A (zh) * 2018-08-30 2018-12-18 西安工业大学 一种阵列f-p腔滤光片的制备方法
US10962694B2 (en) * 2018-11-02 2021-03-30 Viavi Solutions Inc. Stepped structure optical filter
US10840391B1 (en) * 2019-04-26 2020-11-17 Visera Technologies Company Limited Light filter structure
US20210231889A1 (en) * 2020-01-06 2021-07-29 Attonics Systems Pte Ltd Optical arrays, filter arrays, optical devices and method of fabricating same
CN111300163B (zh) * 2020-02-29 2021-03-02 湖南大学 一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116105862A (zh) * 2023-04-13 2023-05-12 中国科学院长春光学精密机械与物理研究所 基于靶面分割和像素级分光的光谱探测系统及其制备方法

Also Published As

Publication number Publication date
WO2023108665A1 (zh) 2023-06-22

Similar Documents

Publication Publication Date Title
US11506538B2 (en) Optical filter, optical filter system, spectrometer and method of fabrication thereof
Chen et al. Nanophotonic image sensors
CN110146949B (zh) 一种窄带光谱滤波结构及其制作方法
JP5022221B2 (ja) 波長分割画像計測装置
EP1739751B1 (en) Color image sensor
WO2006130164A2 (en) Chip-scale optical spectrum analyzers with enhanced resolution
US20040239869A1 (en) Narrow band tunable filter with integrated detector
JP2005308871A (ja) 干渉カラーフィルター
CA2649772A1 (en) Micro-structured spectral filter and image sensor
KR20140031899A (ko) 최소의 각 의존성을 갖는 표시 장치들 및 이미징을 위한 스펙트럼 필터링
US4929063A (en) Nonlinear tunable optical bandpass filter
CN114236663A (zh) 大面积单片集成的平坦化多通道滤光片阵列及制备方法
CN109798979A (zh) 宽光谱范围的半导体工艺兼容高光谱成像芯片设计方法
US20050205765A1 (en) Color photodetector array
JP2000180621A (ja) オンチップカラーフィルタ及びこれを用いた固体撮像素子
CN111811652A (zh) 基于亚波长高对比度光栅的光谱芯片、光谱仪及制备方法
CN216434428U (zh) 大面积单片集成的平坦化多通道滤光片阵列
US20240004257A1 (en) Multispectral filter matrix with curved fabry-perot filters and methods for manufacturing the same
US7508567B1 (en) Metal etalon with enhancing stack
US10818711B2 (en) Narrowband light filters
CN212458658U (zh) 基于亚波长高对比度光栅的光谱芯片及光谱仪
WO2022033353A1 (zh) 基于不同形状单元的微型光谱芯片以及其中的微纳结构阵列的生成方法
CN113820013A (zh) 一种基于Fabry–Pérot腔的透射式超构表面多光谱成像仪
JP7364066B2 (ja) 撮像素子及び撮像装置
US20050207044A1 (en) Color filter and method for fabricating the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination