CN116105862A - 基于靶面分割和像素级分光的光谱探测系统及其制备方法 - Google Patents

基于靶面分割和像素级分光的光谱探测系统及其制备方法 Download PDF

Info

Publication number
CN116105862A
CN116105862A CN202310389091.1A CN202310389091A CN116105862A CN 116105862 A CN116105862 A CN 116105862A CN 202310389091 A CN202310389091 A CN 202310389091A CN 116105862 A CN116105862 A CN 116105862A
Authority
CN
China
Prior art keywords
pixel
spectrum
target surface
detector
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310389091.1A
Other languages
English (en)
Other versions
CN116105862B (zh
Inventor
胡长虹
薛栋林
薛旭成
哈清华
肖树林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN202310389091.1A priority Critical patent/CN116105862B/zh
Publication of CN116105862A publication Critical patent/CN116105862A/zh
Application granted granted Critical
Publication of CN116105862B publication Critical patent/CN116105862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • G02B5/0833Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/282Modified CCD or like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

基于靶面分割和像素级分光的光谱探测系统及其制备方法,涉及成像光谱仪领域,包括管壳、与管壳相连的底座、固定在底座上的光谱探测器、固定在管壳上的微透镜阵列;光谱探测器包括目标探测器和集成在目标探测器上的光谱滤光片;目标探测器的靶面被划分为n×n个大小相同的像元区域;微透镜阵列对准光谱滤光片,光谱滤光片具有像素级光谱分光功能;光谱滤光片包括由上至下依次设置的第二反射镜、介质层、第一反射镜和基底,第一反射镜的整个像元区域被划分为n×n个大小相同的子像元区域,第一反射镜上的子像元区域与目标探测器靶面上的像元区域一一对应。本发明提升了光谱探测器的性能,保证了像元通道的完整性。

Description

基于靶面分割和像素级分光的光谱探测系统及其制备方法
技术领域
本发明涉及成像光谱仪技术领域,具体涉及一种基于靶面分割和像素级分光的光谱探测系统及其制备方法。
背景技术
自上世纪80年代以来,光谱成像技术作为一种新型的多维信息获取技术,将传统的光谱技术与成像技术结合到一起,实现对物体的二维空间信息和一维光谱信息的获取,最终得到数据立方。与传统的成像技术相比,光谱成像技术能够识别目标的光谱特征,在环境监测、海洋生物识别、生物医学等领域得到了广泛应用。
目前,成像光谱仪主要用于航空和航天以及无人机遥感领域,因此,减小其体积和重量是当下该领域面临的主要挑战以及需要解决的主要问题。成像光谱学的基本思想为,在全色或者多光谱影像的基础上,划分出更多和更窄的光谱波段。对于每一个像元数据,可以得到一个接近连续的光谱反射率曲线,二维空间图像数据加上光谱维信息,形成三维光谱数据立方。成像光谱仪的硬件部分主要包括前端光学系统、分光组件和成像电子学部分,其中成像电子学部分包括探测器、数据采集及控制系统;前端光学系统负责将地物聚焦于像面,包括透射式、全反射式等类型;相对于普通相机,分光组件是成像光谱仪的特殊所在,将入瞳辐射沿光谱维展开,会聚到焦平面探测器上,分光方式多种多样且各具特点,主要包括棱镜分光、光栅分光、声光可调谐滤波器(AOTF)分光等方式;探测器根据工作波段不同而材料不同,在可见近红外波段为硅,主要分为CCD和CMOS两种,红外探测器的响应材料主要包括HgCdTe、InSb、InGaAs等,探测器的作用在于光电转换,可能还包括信号放大、AD转换等功能;数据采集及控制系统其实是一个笼统的概念,它还必须具备供电、通讯、数传遥测遥控等功能。
传统的分光方法无法满足成像光谱仪小型轻量化的要求,由于多光谱滤光片的出现,使得成像光谱仪的结构得到了极大优化,并且保证了其作为分光元件在成像光谱仪中具有小型轻量化的特点,可以满足在成像光谱仪中越来越多的需求。多光谱滤光片有两种类型,第一种是线条状的,其光谱通道尺寸大、精度也很低,并且光谱通道只能按照一个方向变化,且只能用于推扫模式下,因此这种线条状的多光谱滤光片具有很多弊端,不符合当下快照模式应用的需求。所以选用另一种像元级多光谱滤光片越来越符合当下的需求,在此背景下将光谱通道分成马赛克式的块状子区域(如图1所示),并与探测器芯片靶面像元一一对应,光谱通道的尺寸可以达到微米级,具有较高的尺寸精度,可以实现成像光谱仪的视频工作模式,完成对快速移动的目标的高帧率成像,可广泛应用于无人机农业、军事及航天等领域。但是这种像元级多光谱滤光片还存在以下问题:在光谱信息采集的过程中,由于滤光片边框不透光膜的存在会导致入射光不能完全被光敏区域所探测,从而引起光谱信息采集的缺失,光谱信息采集的不完整性会导致探测器性能下降,精度降低,进而影响成像光谱仪的成像质量和成像效果。
发明内容
本发明的目的是提供一种基于靶面分割和像素级分光的光谱探测系统及其制备方法。
本发明为解决技术问题所采用的技术方案如下:
本发明的基于靶面分割和像素级分光的光谱探测系统,包括:管壳、与管壳相连的底座、固定在底座上的光谱探测器,还包括:固定在管壳上的微透镜阵列;所述光谱探测器包括:目标探测器和集成在目标探测器上的光谱滤光片;所述目标探测器的靶面被划分为n×n个大小相同的像元区域;所述微透镜阵列对准光谱滤光片,所述光谱滤光片具有像素级光谱分光功能;所述光谱滤光片包括:由上至下依次设置的第二反射镜、介质层、第一反射镜和基底,所述第一反射镜的整个像元区域被划分为n×n个大小相同的子像元区域,所述第一反射镜上的子像元区域与目标探测器靶面上的像元区域一一对应。
进一步的,所述目标探测器的靶面经过光刻刻蚀工艺分割后被划分为n×n个大小相同的像元区域。
进一步的,所述光谱滤光片是一种法布里-珀罗谐振腔结构。
进一步的,所述第一反射镜是通过在基底上镀制底部高反射膜堆制备而成,所述第二反射镜是通过在介质层上镀制顶部高反射膜堆制备而成。
进一步的,所述第一反射镜和第二反射镜均选用分布式布拉格反射镜。
进一步的,所述分布式布拉格反射镜选用高折射率介质薄膜材料与低折射率介质薄膜材料交替组成制备,所述高折射率介质薄膜材料选用二氧化钛或五氧化二钽,所述低折射率介质薄膜材料选用二氧化硅。
进一步的,所述光谱滤光片中心波长的优化通过调节介质层的厚度实现,所述光谱滤光片带宽的优化通过调节第一反射镜和第二反射镜的反射率实现。
本发明的基于靶面分割和像素级分光的光谱探测系统的制备方法,包括以下步骤:
步骤S1、利用光刻刻蚀工艺对目标探测器的靶面进行分割,将靶面划分为n×n个大小相同的像元区域;
步骤S2、清洁基底,在基底上镀制底部高反射膜堆,获得第一反射镜;
步骤 S3、在第一反射镜上涂制光刻胶,将第一反射镜的整个像元区域划分为n×n个大小相同的子像元区域,第一反射镜上的n×n个大小相同的子像元区域与目标探测器靶面的n×n个大小相同的像元区域一一对应;利用光刻工艺去除第一个子像元区域的光刻胶;
步骤S4、在第一反射镜的整个像元区域镀制介质层;
步骤S5、采用离子束辅助沉积技术对第一反射镜的整个像元区域进行刻蚀,将底部涂有光刻胶的介质层进行刻蚀,再将底部光刻胶剥离完成第一个子像元区域的介质层镀制;
步骤S6、重复步骤S3至步骤S5,重复n2-1次,依次完成对第二个子像元区域至最后一个子像元区域的介质层镀制,实现对第一反射镜的所有子像元区域的介质层镀制;
步骤S7、在步骤S6的基础上镀制顶部高反射膜堆,获得第二反射镜;通过步骤S2至步骤S7获得一种具有像素级光谱分光功能的光谱滤光片;
步骤S8、基于靶面分割和像素级分光的光谱探测系统的组装;
将光谱滤光片集成于步骤S1所制备的靶面分割的目标探测器上,得到一种具有像素级光谱分光功能的光谱探测器;将光谱探测器固定在底座上,将底座与管壳相连,将微透镜阵列固定在管壳上,并使微透镜阵列对准光谱探测器中的光谱滤光片,得到基于靶面分割和像素级分光的光谱探测系统。
进一步的,步骤S4中,镀制底部高反射膜堆的工艺采用离子束溅射沉积技术、等离子体辅助电子束蒸发沉积技术或等离子体增强化学气相沉积技术。
进一步的,步骤S7中,镀制顶部高反射膜堆的工艺采用离子束溅射沉积技术、等离子体辅助电子束蒸发沉积技术或等离子体增强化学气相沉积技术。
本发明的有益效果是:
本发明的目的在于针对当前成像光谱仪领域所面临的一些性能缺陷,而提出一种基于靶面分割和像素级分光的光谱探测系统及其制备方法,通过对光谱探测系统制备方法的工艺进行优化设计,从而使光谱探测系统达到更高的性能指标,极大地提升了光谱探测器的性能,同时也保证了像元通道的完整性。
本发明的一种基于靶面分割和像素级分光的光谱探测系统,通过制备一种具有像素级光谱分光功能的法布里-珀罗谐振腔(FP腔)结构的光谱滤光片,通过制备可以形成n2个厚度不同的微米级台阶,用以调控光谱峰位,同时在顶层镀制顶部高反射膜堆后形成马赛克式排列的像元级多光谱滤光片,在制备过程中通过对介质层材料的选取以及介质层厚度的调控,能够使得光谱滤光片的透过率得到更大提升,并且微透镜阵列的引入可以有效地保证光谱信息采集的完整性,解决现有多光谱滤光片存在的入射光不能完全被光敏区域所探测的问题。
附图说明
图1为现有马赛克式像元级多光谱滤光片的结构示意图。
图2为本发明中光谱探测器与微透镜阵列的安装示意图。
图3为本发明的一种基于靶面分割和像素级分光的光谱探测系统的制备过程示意图。
图4为光线通过光谱探测系统的光路图。
图中:1、目标探测器,2、基底,3、第一反射镜,4、光刻胶,5、第一个子像元区域,6、介质层,7、第二反射镜,8、光谱探测器,9、微透镜阵列,10、管壳,11、底座。
实施方式
以下结合附图对本发明做进一步详细说明。
如图2所示,本发明的一种基于靶面分割和像素级分光的光谱探测系统,主要包括:光谱探测器8、微透镜阵列9、管壳10和底座11;光谱探测器8固定在底座11上,底座11与管壳10相连,微透镜阵列9固定在管壳10上,微透镜阵列9应对准光谱探测器8,通过上述安装即可得到本发明的一种基于靶面分割和像素级分光的光谱探测系统。
其中,所说的光谱探测器8主要包括:目标探测器1和集成在目标探测器1上的光谱滤光片,目标探测器1的靶面经过光刻刻蚀工艺分割后被划分为n×n个大小相同的像元区域101;所说的光谱滤光片是一种法布里-珀罗谐振腔(FP腔)结构,具有像素级光谱分光功能,主要包括:基底2、第一反射镜3、介质层6和第二反射镜7,其中,第二反射镜7、介质层6、第一反射镜3、基底2由上至下依次设置,所说的第一反射镜3是通过在基底2上镀制底部高反射膜堆制备而成的,所说的第二反射镜7是通过在介质层6上镀制顶部高反射膜堆制备而成的。
其中,所说的第一反射镜3的整个像元区域被划分为n×n个大小相同的子像元区域,第一反射镜3上的n×n个大小相同的子像元区域与目标探测器1靶面的n×n个大小相同的像元区域101一一对应设置。
其中,所说的第一反射镜3和第二反射镜7具体可以选用分布式布拉格反射镜(DBR),DBR材料可以选用高折射率介质薄膜材料与低折射率介质薄膜材料交替组成(不同折射率的薄膜周期性的交互堆叠在一起,利用的原理为:当光经过不同介质时,在界面会发生反射,当光经过不同折射率的薄膜时由于各层反射回来的光因为相位角的改变而进行干涉,然后结合在一起,形成强烈的反射光),所说的高折射率介质薄膜材料可以选用二氧化钛或者五氧化二钽,但不限于此;所说的低折射率介质薄膜材料可以选用二氧化硅,但不限于此。
其中,所说的光谱滤光片的中心波长的优化可以通过调节介质层6的厚度来实现,所说的光谱滤光片的中心波长为λ,介质层6的厚度为nλ/2,二者之间成正比;所说的光谱滤光片的带宽的优化可以通过调节第一反射镜3和第二反射镜7的反射率来实现,第一反射镜3和第二反射镜7之间的反射率微小差异会使光谱滤光片的带宽变宽。
其中,所说的微透镜阵列9为正方形的集成式阵列,单片,微透镜阵列9的每个子单元由像元大小决定,材质为二氧化硅,平凸抛物面,旋转角8.13°,通道尺寸5微米-30微米。
如图3所示,本发明的一种基于靶面分割和像素级分光的光谱探测系统的制备方法,具体包括以下步骤:
步骤S1、目标探测器1的靶面分割;
利用光刻刻蚀工艺对目标探测器1的靶面进行分割,将靶面划分为n×n个大小相同的像元区域101;
步骤S2、第一反射镜3的制备;
清洁基底2,在基底2上镀制底部高反射膜堆,获得第一反射镜3;其中,镀制底部高反射膜堆的工艺具体可以采用离子束溅射沉积技术、等离子体辅助电子束蒸发沉积技术或等离子体增强化学气相沉积技术,但不限于此;
步骤 S3、光刻胶4的涂制;
在所制备的第一反射镜3上涂制光刻胶4,然后将第一反射镜3的整个像元区域划分为n×n个大小相同的子像元区域,第一反射镜3上的n×n个大小相同的子像元区域与目标探测器1靶面的n×n个大小相同的像元区域101一一对应;利用光刻工艺去除第一个子像元区域5的光刻胶4;
步骤S4、第一反射镜3整个像元区域的介质层镀制;
在步骤S3的基础上,在第一反射镜3的整个像元区域镀制介质层6;其中,所镀制的介质层6的材料可选用二氧化硅,但不限于此;
步骤S5、第一子像元区域5的介质层镀制;
在步骤S4的基础上,采用离子束辅助沉积技术对第一反射镜3的整个像元区域进行刻蚀,将底部涂有光刻胶4的介质层6(即除了第一个子像元区域5的其他像元区域)进行刻蚀,之后再将底部光刻胶4剥离,如此,便完成了第一个子像元区域5的介质层镀制;
步骤S6、第一反射镜3所有子像元区域的介质层镀制;
重复步骤S3到步骤S5,重复n2-1次,依次完成对第二个子像元区域至最后一个子像元区域的介质层镀制,实现对第一反射镜3的所有子像元区域的介质层镀制;
步骤S7、第二反射镜7的的制备;
在步骤S6的基础上镀制顶部高反射膜堆,获得第二反射镜7;通过步骤S2至步骤S7获得一种具有像素级光谱分光功能的光谱滤光片,其中,镀制顶部高反射膜堆的工艺具体可以采用离子束溅射沉积技术、等离子体辅助电子束蒸发沉积技术或等离子体增强化学气相沉积技术,但不限于此;
步骤S8、基于靶面分割和像素级分光的光谱探测系统的组装;
将光谱滤光片集成于步骤S1所制备的靶面分割的目标探测器1上,得到一种具有像素级光谱分光功能的光谱探测器8;将光谱探测器8固定在底座11上,将底座11与管壳10相连,将微透镜阵列9固定在管壳10上,并使微透镜阵列9对准光谱探测器8中的光谱滤光片,通过上述组装即可得到本发明的一种基于靶面分割和像素级分光的光谱探测系统。由于步骤S7所制备的光谱滤光片边缘存在不透光的部分,因此引用一组微透镜阵列9来将光谱信息集中于光谱滤光片的滤光范围内,以此来保证所采集到的光谱信息的完整性。
如图4所示,光线入射至本发明的一种基于靶面分割和像素级分光的光谱探测系统,光线先通过微透镜阵列9后再入射至光谱探测器8,通过光谱探测器8采集光线的光谱信息。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.基于靶面分割和像素级分光的光谱探测系统,包括:管壳、与管壳相连的底座、固定在底座上的光谱探测器,其特征在于,还包括:固定在管壳上的微透镜阵列;所述光谱探测器包括:目标探测器和集成在目标探测器上的光谱滤光片;所述目标探测器的靶面被划分为n×n个大小相同的像元区域;所述微透镜阵列对准光谱滤光片,所述光谱滤光片具有像素级光谱分光功能;所述光谱滤光片包括:由上至下依次设置的第二反射镜、介质层、第一反射镜和基底,所述第一反射镜的整个像元区域被划分为n×n个大小相同的子像元区域,所述第一反射镜上的子像元区域与目标探测器靶面上的像元区域一一对应。
2.根据权利要求1所述的基于靶面分割和像素级分光的光谱探测系统,其特征在于,所述目标探测器的靶面经过光刻刻蚀工艺分割后被划分为n×n个大小相同的像元区域。
3.根据权利要求1所述的基于靶面分割和像素级分光的光谱探测系统,其特征在于,所述光谱滤光片是一种法布里-珀罗谐振腔结构。
4.根据权利要求1所述的基于靶面分割和像素级分光的光谱探测系统,其特征在于,所述第一反射镜是通过在基底上镀制底部高反射膜堆制备而成,所述第二反射镜是通过在介质层上镀制顶部高反射膜堆制备而成。
5.根据权利要求1所述的基于靶面分割和像素级分光的光谱探测系统,其特征在于,所述第一反射镜和第二反射镜均选用分布式布拉格反射镜。
6.根据权利要求5所述的基于靶面分割和像素级分光的光谱探测系统,其特征在于,所述分布式布拉格反射镜选用高折射率介质薄膜材料与低折射率介质薄膜材料交替组成制备,所述高折射率介质薄膜材料选用二氧化钛或五氧化二钽,所述低折射率介质薄膜材料选用二氧化硅。
7.根据权利要求1所述的基于靶面分割和像素级分光的光谱探测系统,其特征在于,所述光谱滤光片中心波长的优化通过调节介质层的厚度实现,所述光谱滤光片带宽的优化通过调节第一反射镜和第二反射镜的反射率实现。
8.如权利要求1至7中任意一项所述的基于靶面分割和像素级分光的光谱探测系统的制备方法,其特征在于,包括以下步骤:
步骤S1、利用光刻刻蚀工艺对目标探测器的靶面进行分割,将靶面划分为n×n个大小相同的像元区域;
步骤S2、清洁基底,在基底上镀制底部高反射膜堆,获得第一反射镜;
步骤 S3、在第一反射镜上涂制光刻胶,将第一反射镜的整个像元区域划分为n×n个大小相同的子像元区域,第一反射镜上的n×n个大小相同的子像元区域与目标探测器靶面的n×n个大小相同的像元区域一一对应;利用光刻工艺去除第一个子像元区域的光刻胶;
步骤S4、在第一反射镜的整个像元区域镀制介质层;
步骤S5、采用离子束辅助沉积技术对第一反射镜的整个像元区域进行刻蚀,将底部涂有光刻胶的介质层进行刻蚀,再将底部光刻胶剥离完成第一个子像元区域的介质层镀制;
步骤S6、重复步骤S3至步骤S5,重复n2-1次,依次完成对第二个子像元区域至最后一个子像元区域的介质层镀制,实现对第一反射镜的所有子像元区域的介质层镀制;
步骤S7、在步骤S6的基础上镀制顶部高反射膜堆,获得第二反射镜;通过步骤S2至步骤S7获得一种具有像素级光谱分光功能的光谱滤光片;
步骤S8、基于靶面分割和像素级分光的光谱探测系统的组装;
将光谱滤光片集成于步骤S1所制备的靶面分割的目标探测器上,得到一种具有像素级光谱分光功能的光谱探测器;将光谱探测器固定在底座上,将底座与管壳相连,将微透镜阵列固定在管壳上,并使微透镜阵列对准光谱探测器中的光谱滤光片,得到基于靶面分割和像素级分光的光谱探测系统。
9.根据权利要求8所述的基于靶面分割和像素级分光的光谱探测系统的制备方法,其特征在于,步骤S4中,镀制底部高反射膜堆的工艺采用离子束溅射沉积技术、等离子体辅助电子束蒸发沉积技术或等离子体增强化学气相沉积技术。
10.根据权利要求8所述的基于靶面分割和像素级分光的光谱探测系统的制备方法,其特征在于,步骤S7中,镀制顶部高反射膜堆的工艺采用离子束溅射沉积技术、等离子体辅助电子束蒸发沉积技术或等离子体增强化学气相沉积技术。
CN202310389091.1A 2023-04-13 2023-04-13 基于靶面分割和像素级分光的光谱探测系统及其制备方法 Active CN116105862B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310389091.1A CN116105862B (zh) 2023-04-13 2023-04-13 基于靶面分割和像素级分光的光谱探测系统及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310389091.1A CN116105862B (zh) 2023-04-13 2023-04-13 基于靶面分割和像素级分光的光谱探测系统及其制备方法

Publications (2)

Publication Number Publication Date
CN116105862A true CN116105862A (zh) 2023-05-12
CN116105862B CN116105862B (zh) 2023-07-14

Family

ID=86264122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310389091.1A Active CN116105862B (zh) 2023-04-13 2023-04-13 基于靶面分割和像素级分光的光谱探测系统及其制备方法

Country Status (1)

Country Link
CN (1) CN116105862B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257404A (zh) * 2013-06-04 2013-08-21 贵阳恒浩光电科技有限公司 一种mems法布里-珀罗腔可调谐滤波器
CN106768328A (zh) * 2016-12-09 2017-05-31 中国科学院长春光学精密机械与物理研究所 一种光谱仪成像系统
CN109655955A (zh) * 2018-12-26 2019-04-19 中国科学院长春光学精密机械与物理研究所 一种多通道法布里-珀罗滤光片及其制备方法
CN110146949A (zh) * 2019-05-29 2019-08-20 西北工业大学深圳研究院 一种窄带光谱滤波结构及其制作方法
CN111458051A (zh) * 2020-03-09 2020-07-28 西安电子科技大学 基于像素级光谱分光探测器的三维温度场测量系统和方法
CN211425662U (zh) * 2019-11-12 2020-09-04 西安电子科技大学 基于微透镜滤波阵列的红外长波多光谱成像装置
CN114236663A (zh) * 2021-12-15 2022-03-25 浙江大学 大面积单片集成的平坦化多通道滤光片阵列及制备方法
CN114360364A (zh) * 2022-01-12 2022-04-15 西安工业大学 一种多光谱成像模组及便携显示设备
CN114690301A (zh) * 2022-03-21 2022-07-01 浙江水晶光电科技股份有限公司 一种多光谱滤光器及其制备方法、图像采集装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257404A (zh) * 2013-06-04 2013-08-21 贵阳恒浩光电科技有限公司 一种mems法布里-珀罗腔可调谐滤波器
CN106768328A (zh) * 2016-12-09 2017-05-31 中国科学院长春光学精密机械与物理研究所 一种光谱仪成像系统
CN109655955A (zh) * 2018-12-26 2019-04-19 中国科学院长春光学精密机械与物理研究所 一种多通道法布里-珀罗滤光片及其制备方法
CN110146949A (zh) * 2019-05-29 2019-08-20 西北工业大学深圳研究院 一种窄带光谱滤波结构及其制作方法
CN211425662U (zh) * 2019-11-12 2020-09-04 西安电子科技大学 基于微透镜滤波阵列的红外长波多光谱成像装置
CN111458051A (zh) * 2020-03-09 2020-07-28 西安电子科技大学 基于像素级光谱分光探测器的三维温度场测量系统和方法
CN114236663A (zh) * 2021-12-15 2022-03-25 浙江大学 大面积单片集成的平坦化多通道滤光片阵列及制备方法
CN114360364A (zh) * 2022-01-12 2022-04-15 西安工业大学 一种多光谱成像模组及便携显示设备
CN114690301A (zh) * 2022-03-21 2022-07-01 浙江水晶光电科技股份有限公司 一种多光谱滤光器及其制备方法、图像采集装置

Also Published As

Publication number Publication date
CN116105862B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
US10819922B2 (en) Solid-state imaging element and imaging device
EP1915781B1 (en) Two f-number, two-color sensor system
US7319560B2 (en) Partitioned-cavity tunable fabry-perot filter
US7330266B2 (en) Stationary fourier transform spectrometer
CN211481355U (zh) 一种多光谱传感结构、传感器及相机
CN109029726B (zh) 一种窗口集成式光谱/偏振成像系统
US20070210244A1 (en) Spectral filter for optical sensor
CN103091258B (zh) 一种基于液态变焦技术的多光谱成像仪
WO2023151614A1 (zh) 短波红外光谱探测器及其制备方法
CN114927536B (zh) 多光谱成像芯片、组件、制备方法及移动终端
CN109632099B (zh) 一种法布里-珀罗干涉型成像光谱仪
CN110429095B (zh) 一种凝视型多光谱成像器件
US20230096263A1 (en) Spectral Element Array, Image Sensor and Image Apparatus
CN116105862B (zh) 基于靶面分割和像素级分光的光谱探测系统及其制备方法
IL279955B2 (en) A multispectral imaging sensor provided with means to limit interference
CN113267257A (zh) 一种红外成像模组、红外成像仪
US10948349B2 (en) Multi-spectrum imaging
CN111811651A (zh) 光谱芯片、光谱仪及光谱芯片制备方法
Gunning et al. Adaptive focal plane array: an example of MEMS, photonics, and electronics integration
CN115955610A (zh) 一种滤波器件、视频光谱成像系统及其制备方法
Wang et al. Miniaturized customized filtering-wheel-based multispectral imaging system for target detection
Gunning et al. LWIR/MWIR adaptive focal plane array
CN111854950A (zh) 一种多次像面光谱仪的光学系统
Gunning et al. Dual band adaptive focal plane array: an example of the challenge and potential of intelligent integrated microsystems
CN115000107B (zh) 多光谱成像芯片、多光谱成像组件、制备方法及移动终端

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant