WO2023108607A1 - 探测基板、其降噪方法及探测装置 - Google Patents

探测基板、其降噪方法及探测装置 Download PDF

Info

Publication number
WO2023108607A1
WO2023108607A1 PCT/CN2021/139116 CN2021139116W WO2023108607A1 WO 2023108607 A1 WO2023108607 A1 WO 2023108607A1 CN 2021139116 W CN2021139116 W CN 2021139116W WO 2023108607 A1 WO2023108607 A1 WO 2023108607A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
line
noise reduction
electrically connected
photosensitive
Prior art date
Application number
PCT/CN2021/139116
Other languages
English (en)
French (fr)
Inventor
丁志
侯学成
王振宇
李金钰
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/139116 priority Critical patent/WO2023108607A1/zh
Priority to CN202180004009.8A priority patent/CN116615807A/zh
Publication of WO2023108607A1 publication Critical patent/WO2023108607A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors

Definitions

  • the present disclosure relates to the technical field of photoelectric detection, and in particular to a detection substrate, a noise reduction method thereof, and a detection device.
  • X-ray inspection technology is widely used in industrial non-destructive testing, container scanning, circuit board inspection, medical treatment, security, industry and other fields, and has broad application prospects.
  • Traditional X-Ray imaging technology belongs to analog signal imaging, which has low resolution and poor image quality.
  • the X-ray digital imaging technology Digital Radio Graphy, DR
  • Digital Radio Graphy, DR Digital Radio Graphy, DR
  • the detection substrate, its noise reduction method and detection device provided in the present disclosure have specific solutions as follows:
  • an embodiment of the present disclosure provides a detection substrate, including:
  • a base substrate comprising a noise reduction region
  • a plurality of reading lines and a plurality of scanning lines, the plurality of reading lines and the plurality of scanning lines are arranged in different layers from the plurality of first photosensitive devices, and the plurality of reading lines and the Multi-layer cross setting of scanning lines;
  • a plurality of first transistors are located in the noise reduction area, and the first transistors are disconnected from at least one of the first photosensitive device, the read line and the scan line.
  • At least one of the gate, the first electrode and the second electrode of the first transistor is floating.
  • the gate of the first transistor is electrically connected to the scanning line, and the first electrode of the first transistor is connected to the first photosensitive device. electrically connected, and the second pole of the first transistor is floating.
  • the gate of the first transistor is electrically connected to the scanning line, the first electrode of the first transistor is set floating, and the first electrode of the first transistor is floating.
  • the second pole of a transistor is electrically connected with the reading line.
  • the gate of the first transistor is floating, and the first electrode of the first transistor is electrically connected to the first photosensitive device, so The second pole of the first transistor is electrically connected with the reading line.
  • the gate, the first electrode and the second electrode of the first transistor are all floating.
  • At least one of the gate, the first electrode and the second electrode of the first transistor is missing.
  • the gate of the first transistor is electrically connected to the scanning line, and the first electrode of the first transistor is connected to the first photosensitive device. electrically connected, the second pole of the first transistor is absent.
  • the gate of the first transistor is electrically connected to the scanning line, the first electrode of the first transistor is missing, and the first The second pole of the transistor is electrically connected with the reading line.
  • the gate of the first transistor is missing, the first electrode of the first transistor is electrically connected to the first photosensitive device, and the The second pole of the first transistor is electrically connected with the reading line.
  • the gate, the first electrode and the second electrode of the first transistor are all absent.
  • the base substrate further includes a photosensitive region, and the noise reduction region is located at least one of the photosensitive regions along the direction in which the reading lines extend. side;
  • a single readout line is located in the noise reduction area or the photosensitive area, and each of the scanning lines runs through the photosensitive area and the noise reduction area.
  • the base substrate further includes a photosensitive area, and the noise reduction area is located on at least one side of the photosensitive area in the direction in which the scanning lines extend ;
  • Each of the reading lines runs through the noise reduction area and the photosensitive area, and the plurality of scanning lines are located in the photosensitive area.
  • the detection substrate provided by the embodiments of the present disclosure further includes a plurality of second photosensitive devices and a plurality of second transistors located in the photosensitive region, wherein the gates of the second transistors are connected to The scanning line is electrically connected, the first pole of the second transistor is electrically connected to the second photosensitive device, and the second pole of the second transistor is electrically connected to the reading line.
  • an embodiment of the present disclosure provides a noise reduction method for detecting a substrate, including:
  • Noise reduction processing is performed on the photoelectric signal of the detection substrate based on at least one of the coupled noise signal of the scan line and the self-noise signal of the read line.
  • an embodiment of the present disclosure provides a detection device, including the above-mentioned detection substrate provided by the embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a detection substrate provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a noise reduction pixel in the noise reduction area in FIG. 1;
  • Fig. 3 is a sectional view along I-I ' line among Fig. 2;
  • FIG. 4 is a schematic structural diagram of a noise reduction pixel in the noise reduction area in FIG. 1;
  • Fig. 5 is a sectional view along II-II' line among Fig. 4;
  • FIG. 6 is a schematic structural diagram of a noise reduction pixel in the noise reduction area in FIG. 1;
  • Fig. 7 is a sectional view along line III-III' in Fig. 6;
  • FIG. 8 is a schematic structural diagram of a noise reduction pixel in the noise reduction area in FIG. 1;
  • Fig. 9 is a sectional view along line IV-IV' in Fig. 8;
  • FIG. 10 is a schematic structural diagram of a noise reduction pixel in the noise reduction area in FIG. 1;
  • Fig. 11 is a sectional view along the line V-V' in Fig. 10;
  • FIG. 12 is a schematic structural diagram of a noise reduction pixel in the noise reduction area in FIG. 1;
  • Fig. 13 is a sectional view along VI-VI' line among Fig. 12;
  • FIG. 14 is a schematic structural diagram of a noise reduction pixel in the noise reduction area in FIG. 1;
  • Fig. 15 is a sectional view along line VII-VII' in Fig. 14;
  • FIG. 16 is a schematic structural diagram of a noise reduction pixel in the noise reduction area in FIG. 1;
  • Fig. 17 is a sectional view along VIII-VIII' line among Fig. 16;
  • Fig. 18 is the detection image of denoised pixels and normal pixels
  • Fig. 19 is a comparison diagram of the gray value of the noise reduction pixel and the normal pixel
  • FIG. 20 is a schematic structural diagram of a noise reduction pixel in the noise reduction area in FIG. 1;
  • Fig. 21 is a schematic structural diagram of a normal pixel in the photosensitive area in Fig. 1;
  • FIG. 22 is a flowchart of a noise reduction method for detecting a substrate provided by an embodiment of the present disclosure.
  • the X-ray flat panel detector includes reading lines and scanning lines arranged crosswise. Because there is a coupling capacitance between the scanning lines and the reading lines due to overlap, the reading lines will collect the photoelectric signal while collecting The coupling noise signal on the scanning line; and, the reading line itself will also generate certain noise, which will affect the image quality. If the noise on the scanning line and the reading line can be accurately read out, then the subsequent image processing can Algorithms eliminate noise and improve image quality.
  • a metal layer is used to block the photosensitive device in the noise reduction area, so that it cannot be exposed to light, so as to improve the image quality; but because the photosensitive device still has leakage current in the dark state, which has a certain impact on the gray value of the image, Moreover, the metal layer cannot completely block all visible light, so that the photosensitive device will still produce a certain response and generate electrical signals, which will also have a certain impact on image quality.
  • an embodiment of the present disclosure provides a detection substrate, as shown in FIG. 1 to FIG. 3 , including:
  • the base substrate 101, the base substrate 101 includes the noise reduction area BB;
  • a plurality of first photosensitive devices 102 located in the noise reduction area BB;
  • a plurality of reading lines 103 and a plurality of scanning lines 104, the plurality of reading lines 103 and the plurality of scanning lines 104 are arranged in different layers with the plurality of first photosensitive devices 102, and the plurality of reading lines 103 and the plurality of scanning lines 104 different layer cross settings;
  • a plurality of first transistors 105 are located in the noise reduction area BB, and the first transistors 105 are disconnected from at least one of the first photosensitive device 102 , the read line 103 and the scan line 104 .
  • the gate g 1 , the first pole s 1 , and the second pole d 1 of the first transistor 105 are processed so that the first transistor 105 cannot normally conduct the first photosensitive
  • the leakage current of the first photosensitive device 102 in the dark state is not will be read
  • the signal read by the read line 103 is completely the coupling noise signal of the scan line 104; by not setting the scan line 104 in the noise reduction area BB, the first transistor 105 is disconnected from the scan line 104
  • the leakage current of the first photosensitive device 102 in the dark state will not be read, and the signal read by the readout line 103 is the self-noise signal of the readout line 103 .
  • the first photosensitive device 102 may include a stacked bottom electrode 1021, a photoelectric conversion structure 1022, and a top electrode 1023, wherein the photoelectric conversion structure 1022 may be a PN structure, and may also be a PIN structure.
  • the PIN structure 1022 includes an N-type semiconductor layer with N-type impurities, an intrinsic semiconductor layer without impurities (also called an I-type semiconductor layer), and an N-type semiconductor layer with P-type impurities, which are sequentially stacked on the bottom electrode 1021.
  • the P-type semiconductor layer wherein the thickness of the intrinsic semiconductor layer can be greater than the thickness of the P-type semiconductor layer and the thickness of the N-type semiconductor layer
  • the top electrode 10233 and the photoelectric conversion structure 1022 can be prepared by a mask process, and make the top electrode
  • the orthographic projection of 1023 on the base substrate 101 is located within the orthographic projection of the photoelectric conversion structure 1022 on the base substrate 101, that is, the area of the top electrode 1023 is slightly smaller than the area of the photoelectric conversion structure 1022, for example, the edge of the top electrode 1023 can be set to
  • the distance between the edges of the photoelectric conversion structure 1022 is 1 ⁇ m ⁇ 3 ⁇ m, such as 1.0 ⁇ m, 1.5 ⁇ m, 1.8 ⁇ m, 2.0 ⁇ m, 2.5 ⁇ m, 3.0 ⁇ m and so on.
  • the first transistor 105 may be an amorphous silicon transistor, a polysilicon transistor, an oxide transistor, etc., which is not limited herein.
  • the first transistor 105 may be a top-gate transistor, a bottom-gate transistor, a double-gate transistor, etc., which are not limited herein.
  • the first pole s1 of the first transistor 105 is the source and the second pole d1 is the drain, or the first pole s1 of the first transistor 105 is the drain and the second pole d1 is the source. make specific distinctions.
  • the gate g1 of the first transistor 105 is set floating, specifically refers to that the gate g1 of the first transistor 105 is independent from the scan line 104; the first pole s1 of the first transistor 105 is set floating , specifically means that the first pole s1 of the first transistor 105 is independent from the first photosensitive device 102 (specifically, the bottom electrode of the first photosensitive device 102); the second pole d1 of the first transistor 105 is floating
  • the empty setting specifically refers to that the second pole d1 of the first transistor 105 and the readout line 103 are independent from each other.
  • At least one of the gate g 1 , the first pole s 1 and the second pole d 1 of the first transistor 105 is floating, which may include Several possible implementations are as follows: as shown in FIG. 2 and FIG .
  • the gate g1 of the first transistor 105 is electrically connected to the scan line 104, and the first pole s of the first transistor 105 1 floating setting, the second pole d 1 of the first transistor 105 is electrically connected to the reading line 103; as shown in Figure 6 and Figure 7, the gate g 1 of the first transistor 105 is floating setting, the The first pole s1 is electrically connected to the first photosensitive device 102, and the second pole d1 of the first transistor 105 is electrically connected to the reading line 103; as shown in Figures 8 and 9, the gate g1 of the first transistor 105 , the first pole s 1 and the second pole d 1 are set floating.
  • any two of the gate g 1 , the first pole s 1 and the second pole d 1 of the first transistor 105 can also be set floating, which is not specifically limited here.
  • the gate g1 of the first transistor 105 is absent, specifically refers to the absence of the gate g1 of the first transistor 105, so that the first transistor 105 is disconnected from the scanning line 104;
  • the first pole s of the first transistor 105 1 Missing setting specifically refers to the absence of the first pole s1 of the first transistor 105, causing the first transistor 105 to be disconnected from the first photosensitive device 102;
  • the second pole d1 of the first transistor 105 is missing setting, specifically referring to the first The second pole d1 of a transistor 105 is absent, so that the first transistor 105 is disconnected from the read line 103 .
  • At least one of the gate g 1 , the first pole s 1 and the second pole d 1 of the first transistor 105 is absent, which may include the following Several possible implementations: as shown in FIG. 10 to FIG.
  • the gate g1 of the first transistor 105 is electrically connected to the scan line 104, and the first pole s1 of the first transistor 105 is electrically connected to the first photosensitive device 102 , the second pole d1 of the first transistor 105 is absent; as shown in Figure 12 and Figure 13, the gate g1 of the first transistor 105 is electrically connected to the scan line 104, and the first pole s1 of the first transistor 105 is absent setting, the second pole d1 of the first transistor 105 is electrically connected to the read line 103; 1 is electrically connected to the first photosensitive device 102, and the second pole d 1 of the first transistor 105 is electrically connected to the reading line 103; as shown in Figure 16 and Figure 17, the gate g 1 of the first transistor 105, the first pole Both s 1 and second pole d 1 are missing settings.
  • any two of the gate g 1 , the first pole s 1 and the second pole d 1 of the first transistor 105 may also be missing, which is
  • the active layer a1 of the first transistor 105 may exist or may be missing, which is not specifically limited here.
  • the first photosensitive device 102 can be in the noise reduction area BB on one side (eg, left or right) of the photosensitive area AA
  • a single reading line 103 can be located in the noise reduction area BB or the photosensitive area AA
  • each scanning line 104 runs through the photosensitive area AA and the noise reduction area BB, so that each reading line 103 in the noise reduction area BB
  • each reading line 103 in the photosensitive area AA is electrically connected to a column of second photosensitive devices 106 (located in the photosensitive area AA), and each scanning line 104 is connected to all first photosensitive devices in a row.
  • Devices 102 are correspondingly arranged and electrically connected to all second photosensitive devices 106 in the row. In this way, the influence of the first photosensitive device 102 can be avoided, so that the signal read by the read line 103 is completely the coupling noise signal of the scan line 104 .
  • the embodiment of the present disclosure provides the detection image (as shown in FIG. 18 ) and the comparison map of the gray value of the noise-reduced pixel P 1 and the normal pixel P 2 shown in FIG. 1 and FIG. 2 (as shown in FIG. 19 ),
  • the gate of the transistor is electrically connected to the scanning line 104
  • the first pole of the transistor is electrically connected to the photosensitive device
  • the second pole of the transistor is electrically connected to the reading line 103 .
  • the pixels in the middle bright part in FIG. 18 are noise reduction pixels P 1
  • other pixels with lower grayscale values are normal pixels P 2 . It can be seen from Fig.
  • the first photosensitive device 102 can be arranged in at least one row in the noise reduction area BB on one side (for example, the upper side or the lower side) of the photosensitive area AA, and each reading line 103 all run through the noise reduction area BB and the photosensitive area AA, and a plurality of scanning lines 104 are located in the photosensitive area AA, that is, no scanning line 104 is set in the noise reduction area BB on the upper side and/or lower side of the photosensitive area AA (as shown in Figure 20 shown), so that each scanning line 104 is electrically connected to a row of second photosensitive devices 106, and each read line 103 is electrically connected to all first photosensitive devices 102 and all second photosensitive devices 106 in a column. In this way, the influence of the first photosensitive device 102 and the scanning line 104 can be avoided, so that the reading line 103 only outputs its
  • the detection substrate provided by the embodiments of the present disclosure may further include a plurality of second photosensitive devices 106 and a plurality of second transistors 107 located in the photosensitive area AA, wherein the first The gate g2 of the second transistor 107 is electrically connected to the scan line 104, the first pole s2 of the second transistor 107 is electrically connected to the second photosensitive device 106 (specifically, it can be the bottom electrode 1061 of the second photosensitive device 106), and the second The second pole d 2 of the transistor 107 is electrically connected to the reading line 103 .
  • the structure of the second photosensitive device 106 is the same as that of the first photosensitive device 102, and the same functional film layers of the second photosensitive device 106 and the first photosensitive device 102 can be arranged in the same layer, for example, the bottom electrode of the second photosensitive device 106 1061 is set on the same layer as the bottom electrode 1021 of the first photosensitive device 102, the photoelectric conversion structure 1062 of the second photosensitive device 106 is set on the same layer as the photoelectric conversion structure 1022 of the first photosensitive device 102, and the top electrode 1063 of the second photosensitive device 106 and The top electrode 1023 of the first photosensitive device 102 is set on the same layer; the second transistor 107 has the same structure as the first transistor 105, and the same functional film layer of the second transistor 107 and the first transistor 105 can be set on the same layer, such as the second transistor The gate g2 of 107 is set on the same layer as the gate g1 of the first transistor 105, the first pole s2 of the second transistor 107 is
  • the above detection substrate may also include a bias line 108
  • the extension direction of the bias line 108 may be the same as the extension direction of the read line 103
  • the bias line 108 is connected to the top electrode 1023 of the first photosensitive device 102 or the top electrode 1023 of the second photosensitive device 106
  • the electrodes 1063 are electrically connected. It should be understood that since the first photosensitive device 102 in the noise reduction area BB does not need to be loaded with a bias voltage, in some embodiments, the bias voltage line 108 in the noise reduction area BB can be omitted.
  • the bias line 108 may have a protruding portion that shields the second transistor 107 , so as to prevent light from irradiating the active layer a 2 of the second transistor 107 and causing leakage current of the second transistor 107 .
  • the passivation layer 110 and other essential components for the detection substrate should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be used as a limitation to the present disclosure.
  • the embodiments of the present disclosure provide a noise reduction method for the detection substrate provided by the embodiments of the present disclosure. Since the problem-solving principle of the noise reduction method is similar to the problem-solving principle of the above-mentioned detection substrate, the implementation of the noise reduction method can refer to the above-mentioned embodiment of the detection substrate, and repeated descriptions will not be repeated.
  • the noise reduction method for detecting the substrate provided by the embodiment of the present disclosure, as shown in FIG. 22 , may include the following steps:
  • S221. Collect at least one of the coupled noise signal of the scan line and the self-noise signal of the read line through the read line; specifically, when collecting the coupled noise signal of the scan line and the self-noise signal of the read line, the The scanning line controls the second transistor to be in an off state, so as to ensure that the reading line collects only noise signals without photoelectric signals.
  • the photoelectric signal of the detection substrate can be equivalent to the photoelectric signal of the second photosensitive device, specifically, the second transistor can be controlled to be in a conductive state through the scanning line, so that the photoelectric signal of the second photosensitive device can pass through the second transistor Transmitted to the read line to be acquired. Subsequently, an image processing algorithm in the related art may be used to perform noise reduction processing on the photoelectric signal of the second photosensitive device.
  • an embodiment of the present disclosure provides a detection device, including the above-mentioned detection substrate provided by the embodiment of the present disclosure. Since the problem-solving principle of the detection device is similar to the problem-solving principle of the above-mentioned detection substrate, the implementation of the detection device can refer to the above-mentioned embodiment of the detection substrate, and the repetition will not be repeated.
  • the detection device provided by the embodiments of the present disclosure can be used for X-ray detection and imaging, or for identifying fingerprints, palm prints and other lines.
  • other essential components in the detection device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should they be used as limitations on the present disclosure.

Abstract

本公开提供的探测基板、其降噪方法及探测装置,包括衬底基板,该衬底基板包括降噪区;多个第一光敏器件,位于降噪区;多条读取线和多条扫描线,多条读取线与多条扫描线均与多个第一光敏器件异层设置,且多条读取线与多条扫描线异层交叉设置;多个第一晶体管,位于降噪区,第一晶体管与第一光敏器件、读取线和扫描线中的至少之一断开设置。

Description

探测基板、其降噪方法及探测装置 技术领域
本公开涉及光电探测技术领域,尤其涉及一种探测基板、其降噪方法及探测装置。
背景技术
X射线检测技术广泛应用于工业无损检测、集装箱扫描、电路板检查、医疗、安防、工业等领域,具有广阔的应用前景。传统的X-Ray成像技术属于模拟信号成像,分辨率不高,图像质量较差。20世纪90年代末出现的X射线数字化成像技术(Digital Radio Graphy,DR)采用X射线平板探测器直接将X影像转换为数字图像,因其转换的数字图像清晰,分辨率高,且易于保存和传送,已成为目前研究的热点。
发明内容
本公开提供的探测基板、其降噪方法及探测装置,具体方案如下:
一方面,本公开实施例提供了一种探测基板,包括:
衬底基板,所述衬底基板包括降噪区;
多个第一光敏器件,位于所述降噪区;
多条读取线和多条扫描线,所述多条读取线与所述多条扫描线均与所述多个第一光敏器件异层设置,且所述多条读取线与所述多条扫描线异层交叉设置;
多个第一晶体管,位于所述降噪区,所述第一晶体管与所述第一光敏器件、所述读取线和所述扫描线中的至少之一断开设置。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述第一晶体管的栅极、第一极和第二极中的至少之一浮空设置。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述第一晶 体管的栅极与所述扫描线电连接,所述第一晶体管的第一极与所述第一光敏器件电连接,所述第一晶体管的第二极浮空设置。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述第一晶体管的栅极与所述扫描线电连接,所述第一晶体管的第一极浮空设置,所述第一晶体管的第二极与所述读取线电连接。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述第一晶体管的栅极浮空设置,所述第一晶体管的第一极与所述第一光敏器件电连接,所述第一晶体管的第二极与所述读取线电连接。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述第一晶体管的栅极、第一极和第二极均浮空设置。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述第一晶体管的栅极、第一极和第二极中的至少之一缺失设置。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述第一晶体管的栅极与所述扫描线电连接,所述第一晶体管的第一极与所述第一光敏器件电连接,所述第一晶体管的第二极缺失设置。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述第一晶体管的栅极与所述扫描线电连接,所述第一晶体管的第一极缺失设置,所述第一晶体管的第二极与所述读取线电连接。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述第一晶体管的栅极缺失设置,所述第一晶体管的第一极与所述第一光敏器件电连接,所述第一晶体管的第二极与所述读取线电连接。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述第一晶体管的栅极、第一极和第二极均缺失设置。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述衬底基板还包括感光区,所述降噪区位于所述感光区在所述读取线延伸方向上的至少一侧;
单条所述读取线位于所述降噪区或所述感光区,每条所述扫描线均贯穿 所述感光区和所述降噪区。
在一些实施例中,在本公开实施例提供的上述探测基板中,所述衬底基板还包括感光区,所述降噪区位于所述感光区在所述扫描线延伸方向上的至少一侧;
每条所述读取线均贯穿所述降噪区和所述感光区,所述多条扫描线均位于所述感光区。
在一些实施例中,在本公开实施例提供的上述探测基板中,还包括位于所述感光区的多个第二光敏器件和多个第二晶体管,其中,所述第二晶体管的栅极与所述扫描线电连接,所述第二晶体管的第一极与所述第二光敏器件电连接,所述第二晶体管的第二极与所述读取线电连接。
另一方面,本公开实施例提供了一种上述探测基板的降噪方法,包括:
通过所述读取线采集所述扫描线的耦合噪声信号及所述读取线的自身噪声信号中的至少之一;
基于所述扫描线的耦合噪声信号及所述读取线的自身噪声信号中的至少之一对所述探测基板的光电信号进行降噪处理。
另一方面,本公开实施例提供了一种探测装置,包括本公开实施例提供的上述探测基板。
附图说明
图1为本公开实施例提供的探测基板的结构示意图;
图2为图1中降噪区内一个降噪像素的结构示意图;
图3为沿图2中I-I’线的截面图;
图4为图1中降噪区内一个降噪像素的结构示意图;
图5为沿图4中II-II’线的截面图;
图6为图1中降噪区内一个降噪像素的结构示意图;
图7为沿图6中III-III’线的截面图;
图8为图1中降噪区内一个降噪像素的结构示意图;
图9为沿图8中IV-IV’线的截面图;
图10为图1中降噪区内一个降噪像素的结构示意图;
图11为沿图10中V-V’线的截面图;
图12为图1中降噪区内一个降噪像素的结构示意图;
图13为沿图12中VI-VI’线的截面图;
图14为图1中降噪区内一个降噪像素的结构示意图;
图15为沿图14中VII-VII’线的截面图;
图16为图1中降噪区内一个降噪像素的结构示意图;
图17为沿图16中VIII-VIII’线的截面图;
图18为降噪像素与正常像素的探测图像;
图19为降噪像素与正常像素的灰度值对比图;
图20为图1中降噪区内一个降噪像素的结构示意图;
图21为图1中感光区内一个正常像素的结构示意图;
图22为本公开实施例提供的探测基板的降噪方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表 示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
X射线平板探测器包括交叉设置的读取线和扫描线,因为扫描线与读取线之间因为存在交叠而会产生耦合电容,所以导致读取线在采集光电信号的同时,会采集到扫描线上的耦合噪声信号;并且,读取线本身也会产生一定噪声,影响图像质量,如果能够准确的读出扫描线上及读取线上的噪声大小,那么就可以通过后续的图像处理算法剔除掉噪声,提高图像质量。此外,相关技术中在降噪区采用金属层遮挡光敏器件,使其无法感光,以提高图像质量;但因为光敏器件在暗态下仍存在漏电流,而对图像的灰度值产生一定影响,并且金属层也无法完全遮挡全部可见光,使得光敏器件仍会产生一定响应,产生电信号,因此也会对图像质量造成一定的影响。
为了改善相关技术中存在的上述技术问题,本公开实施例提供了一种探测基板,如图1至图3所示,包括:
衬底基板101,该衬底基板101包括降噪区BB;
多个第一光敏器件102,位于降噪区BB;
多条读取线103和多条扫描线104,多条读取线103与多条扫描线104均与多个第一光敏器件102异层设置,且多条读取线103与多条扫描线104异层交叉设置;
多个第一晶体管105,位于降噪区BB,第一晶体管105与第一光敏器件102、读取线103和扫描线104中的至少之一断开设置。
在本公开实施例提供的上述探测基板中,通过对第一晶体管105的栅极g 1、第一极s 1、第二极d 1进行处理,使得第一晶体管105不能正常导通第一光敏器件102和读取线103,第一晶体管105与第一光敏器件102、读取线103和扫描线104中的至少之一断开设置时,第一光敏器件102在暗态下的漏电流不会被读取,读取线103读取到的信号完全为扫描线104的耦合噪声信号;通过在降噪区BB内不设置扫描线104,而使得第一晶体管105与扫描线104断开的情况下,第一光敏器件102在暗态下的漏电流不会被读取,读取线103 读取到的信号为读取线103的自身噪声信号。后续通过相关技术中的图像处理方法剔除掉扫描线104的耦合噪声信号、以及读取线103的自身噪声信号,即可有效避免第一光敏器件102、读取线103和扫描线104对图像质量的影响,由此可显著提高图像质量。
在一些实施例中,在本公开实施例提供的上述探测基板中,第一光敏器件102可以包括层叠设置的底电极1021、光电转换结构1022和顶电极1023,其中,光电转换结构1022可以为PN结构,还可以为PIN结构。具体的,PIN结构1022包括依次层叠设置在底电极1021上的具有N型杂质的N型半导体层、不具有杂质的本征半导体层(也称为I型半导体层)、以及具有P型杂质的P型半导体层,其中,本征半导体层的厚度可以大于P型半导体层的厚度、以及N型半导体层的厚度,顶电极10233和光电转换结构1022可采用一次掩膜工艺制备,并且使得顶电极1023在衬底基板101上的正投影位于光电转换结构1022在衬底基板101上的正投影内,即顶电极1023的面积稍小于光电转换结构1022的面积,例如可以设置顶电极1023的边缘与光电转换结构1022边缘之间的距离为1μm~3μm,比如可以是1.0μm、1.5μm、1.8μm、2.0μm、2.5μm、3.0μm等。通过上述设置,可减小光电转换结构1022的侧壁由于刻蚀损伤而造成的漏电流。
可选地,第一晶体管105可以为非晶硅晶体管、多晶硅晶体管、氧化物晶体管等,在此不做限定。第一晶体管105可以为顶栅型晶体管、底栅型晶体管、双栅型晶体管等,在此也不做限定。第一晶体管105的第一极s 1为源极、第二极d 1为漏极,或者第一晶体管105的第一极s 1为漏极、第二极d 1为源极,在此不做具体区分。
在一些实施例中,在本公开实施例提供的上述探测基板中,如图2至图9所示,第一晶体管105的栅极g 1、第一极s 1和第二极d 1中的至少之一浮空设置。其中,第一晶体管105的栅极g 1浮空设置,具体指第一晶体管105的栅极g 1与扫描线104之间是相互独立的;第一晶体管105的第一极s 1浮空设置,具体指第一晶体管105的第一极s 1与第一光敏器件102(具体可以为第一光敏 器件102的底电极)之间是相互独立的;第一晶体管105的第二极d 1浮空设置,具体指第一晶体管105的第二极d 1与读取线103之间是相互独立的。如此,则可通过将第一晶体管105的栅极g 1、第一极s 1和第二极d 1中的至少之一浮空设置,达到第一晶体管105与第一光敏器件102、读取线103和扫描线104中的至少之一断开设置的技术效果。
在一些实施例中,在本公开实施例提供的上述探测基板中,第一晶体管105的栅极g 1、第一极s 1和第二极d 1中的至少之一浮空设置,可以包括以下几种可能的实现方式:如图2和图3所示,第一晶体管105的栅极g 1与扫描线104电连接,第一晶体管105的第一极s 1与第一光敏器件102电连接,第一晶体管105的第二极d 1浮空设置;如图4和图5所示,第一晶体管105的栅极g 1与扫描线104电连接,第一晶体管105的第一极s 1浮空设置,第一晶体管105的第二极d 1与读取线103电连接;如图6和图7所示,第一晶体管105的栅极g 1浮空设置,第一晶体管105的第一极s 1与第一光敏器件102电连接,第一晶体管105的第二极d 1与读取线103电连接;如图8和图9所示,第一晶体管105的栅极g 1、第一极s 1和第二极d 1均浮空设置。当然在具体实施时,也可以使得第一晶体管105的栅极g 1、第一极s 1和第二极d 1中的任意两个浮空设置,在此不做具体限定。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图10至图17所示,第一晶体管105的栅极g 1、第一极s 1和第二极d 1中的至少之一缺失设置。其中,第一晶体管105的栅极g 1缺失设置,具体指第一晶体管105的栅极g 1不存在,致使第一晶体管105与扫描线104断开设置;第一晶体管105的第一极s 1缺失设置,具体指第一晶体管105的第一极s 1不存在,致使第一晶体管105与第一光敏器件102断开设置;第一晶体管105的第二极d 1缺失设置,具体指第一晶体管105的第二极d 1不存在,致使第一晶体管105与读取线103断开设置。如此,则可通过将第一晶体管105的栅极g 1、第一极s 1和第二极d 1中的至少之一缺失设置,达到第一晶体管105与第一光敏器件102、读取线103和扫描线104中的至少之一断开设置的技术效果。
在一些实施例中,在本公开实施例提供的上述探测基板中,第一晶体管105的栅极g 1、第一极s 1和第二极d 1中的至少之一缺失设置,可以包括以下几种可能的实现方式:如图10至图11所示,第一晶体管105的栅极g 1与扫描线104电连接,第一晶体管105的第一极s 1与第一光敏器件102电连接,第一晶体管105的第二极d 1缺失设置;如图12和图13所示,第一晶体管105的栅极g 1与扫描线104电连接,第一晶体管105的第一极s 1缺失设置,第一晶体管105的第二极d 1与读取线103电连接;如图14和图15所示,第一晶体管105的栅极g 1缺失设置,第一晶体管105的第一极s 1与第一光敏器件102电连接,第一晶体管105的第二极d 1与读取线103电连接;如图16和图17所示,第一晶体管105的栅极g 1、第一极s 1和第二极d 1均缺失设置。当然在具体实施时,也可以使得第一晶体管105的栅极g 1、第一极s 1和第二极d 1中的任意两个缺失设置,在此不做具体限定。
需要说明的是,在第一晶体管105的栅极g 1、第一极s 1和第二极d 1中的至少之一浮空设置或缺失设置时,由于第一晶体管105并不需要开启,因此,第一晶体管105的有源层a 1可以存在也可以缺失,在此不做具体限定。
在一些实施例中,在本公开实施例提供的上述探测基板中,如图1所示,衬底基板101还可以包括感光区AA,降噪区BB可以位于感光区AA在读取线103延伸方向Y上的至少一侧(即左右两侧中的至少一侧);在此情况下,第一光敏器件102可以在感光区AA单侧(例如左侧或右侧)的降噪区BB内排布成至少一列,单条读取线103可以位于降噪区BB或感光区AA,每条扫描线104均贯穿感光区AA和降噪区BB,使得降噪区BB的每条读取线103与一列第一光敏器件102对应设置,感光区AA的每条读取线103与一列第二光敏器件106(位于感光区AA)对应电连接,每条扫描线104与一行中的全部第一光敏器件102对应设置、并与该行中的全部第二光敏器件106对应电连接。这样可以避免第一光敏器件102的影响,使得读取线103读取的信号完全为扫描线104的耦合噪声信号。
相应地,本公开实施例提供了图1和图2所示降噪像素P 1同正常像素P 2 的探测图像(如图18所示)以及灰度值对比图(如图19所示),其中,在正常像素中,晶体管的栅极与扫描线104电连接,晶体管的第一极与光敏器件电连接,晶体管的第二极与读取线103电连接。图18中的中间发亮部分的像素为降噪像素P 1,其他灰度值较低的像素为正常像素P 2。由图19可以看出,降噪像素P 1的灰度变化趋势同正常像素P 2一致,说明降噪像素P 1可以隔绝掉第一光敏器件102带来的影响,其像素值波动全部来自于扫描线104的耦合噪声信号,可以准确反映扫描线104的耦合噪声信号。
在一些实施例中,在本公开实施例提供的上述探测基板中,如图1所示,降噪区BB还可以位于感光区AA在扫描线104延伸方向X上的至少一侧(即上下两侧中的至少一侧);在此情况下,第一光敏器件102可以在感光区AA单侧(例如上侧或下侧)的降噪区BB内排布成至少一行,每条读取线103均贯穿降噪区BB和感光区AA,多条扫描线104均位于感光区AA,即感光区AA上侧和/或下侧的降噪区BB内未设置扫描线104(如图20所示),使得每条扫描线104与一行第二光敏器件106对应电连接,每条读取线103与一列中的全部第一光敏器件102及全部第二光敏器件106对应电连接。这样可以避免第一光敏器件102和扫描线104的影响,使得读取线103仅输出其自身的噪声信号。
在一些实施例中,在本公开实施例提供的上述探测基板中,如图21所示,还可以包括位于感光区AA的多个第二光敏器件106和多个第二晶体管107,其中,第二晶体管107的栅极g 2与扫描线104电连接,第二晶体管107的第一极s 2与第二光敏器件106(具体可以为第二光敏器件106的底电极1061)电连接,第二晶体管107的第二极d 2与读取线103电连接。可选地,第二光敏器件106与第一光敏器件102的结构相同,且第二光敏器件106与第一光敏器件102的相同功能膜层可以同层设置,例如第二光敏器件106的底电极1061与第一光敏器件102的底电极1021同层设置、第二光敏器件106的光电转换结构1062与第一光敏器件102的光电转换结构1022同层设置、第二光敏器件106的顶电极1063与第一光敏器件102的顶电极1023同层设置;第 二晶体管107与第一晶体管105的结构相同,且第二晶体管107与第一晶体管105的相同功能膜层可以同层设置,例如第二晶体管107的栅极g 2与第一晶体管105的栅极g 1同层设置、第二晶体管107的第一极s 2与第一晶体管105的第一极s 1同层设置、第二晶体管107的第二极d 2与第一晶体管105的第二极d 1同层设置,以减少掩膜次数和膜层数量,节约制作成本,提供生产效率。
在一些实施例中,在本公开实施例提供的上述探测基板中,如图2、图4、图6、图8、图10、图12、图14、图16、图19和图21所示,还可以包括偏压线108,偏压线108的延伸方向可以与读取线103的延伸方向相同,且偏压线108与第一光敏器件102的顶电极1023或第二光敏器件106的顶电极1063电连接。应当理解的是,由于降噪区BB的第一光敏器件102并不需要加载偏置电压,因此,在一些实施例中,降噪区BB的偏压线108可省略。另外,如图21所示,偏压线108可以具有遮挡第二晶体管107的凸出部,以避免光线照射第二晶体管107的有源层a 2,导致第二晶体管107出现漏电流。
一般地,在本公开实施例提供的上述探测基板中,如图3、图5、图7、图9、图11、图13、图15和图17所示,还可以包括栅绝缘层109、钝化层110等,对于探测基板的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
基于同一发明构思,针对本公开实施例提供的上述探测基板,本公开实施例提供了一种降噪方法。由于该降噪方法解决问题的原理与上述探测基板解决问题的原理相似,因此,该降噪方法的实施可以参见上述探测基板的实施例,重复之处不再赘述。
具体地,本公开实施例提供的探测基板的降噪方法,如图22所示,可以包括以下步骤:
S221、通过读取线采集扫描线的耦合噪声信号及读取线的自身噪声信号中的至少之一;具体地,在采集扫描线的耦合噪声信号和读取线的自身噪声信号时,可通过扫描线控制第二晶体管处于关闭状态,以保证读取线采集的仅是噪声信号而没有光电信号。
S222、基于扫描线的耦合噪声信号及读取线的自身噪声信号中的至少之一对探测基板的光电信号进行降噪处理。在一些实施例中,探测基板的光电信号可等效于第二光敏器件的光电信号,具体可通过扫描线控制第二晶体管处于导通状态,以使得第二光敏器件的光电信号通过第二晶体管传输至读取线而被采集。后续可使用相关技术中的图像处理算法对第二光敏器件的光电信号进行降噪处理。
基于同一发明构思,本公开实施例提供了一种探测装置,包括本公开实施例提供的上述探测基板。由于该探测装置解决问题的原理与上述探测基板解决问题的原理相似,因此,该探测装置的实施可以参见上述探测基板的实施例,重复之处不再赘述。
在一些实施例中,本公开实施例提供的上述探测装置可用于X射线检测成像,或用于识别指纹、掌纹等纹路等。另外,对于探测装置中其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
尽管已描述了本公开的优选实施例,但本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (16)

  1. 一种探测基板,其中,包括:
    衬底基板,所述衬底基板包括降噪区;
    多个第一光敏器件,位于所述降噪区;
    多条读取线和多条扫描线,所述多条读取线与所述多条扫描线均与所述多个第一光敏器件异层设置,且所述多条读取线与所述多条扫描线异层交叉设置;
    多个第一晶体管,位于所述降噪区,所述第一晶体管与所述第一光敏器件、所述读取线和所述扫描线中的至少之一断开设置。
  2. 如权利要求1所述的探测基板,其中,所述第一晶体管的栅极、第一极和第二极中的至少之一浮空设置。
  3. 如权利要求2所述的探测基板,其中,所述第一晶体管的栅极与所述扫描线电连接,所述第一晶体管的第一极与所述第一光敏器件电连接,所述第一晶体管的第二极浮空设置。
  4. 如权利要求2所述的探测基板,其中,所述第一晶体管的栅极与所述扫描线电连接,所述第一晶体管的第一极浮空设置,所述第一晶体管的第二极与所述读取线电连接。
  5. 如权利要求2所述的探测基板,其中,所述第一晶体管的栅极浮空设置,所述第一晶体管的第一极与所述第一光敏器件电连接,所述第一晶体管的第二极与所述读取线电连接。
  6. 如权利要求2所述的探测基板,其中,所述第一晶体管的栅极、第一极和第二极均浮空设置。
  7. 如权利要求1所述的探测基板,其中,所述第一晶体管的栅极、第一极和第二极中的至少之一缺失设置。
  8. 如权利要求7所述的探测基板,其中,所述第一晶体管的栅极与所述扫描线电连接,所述第一晶体管的第一极与所述第一光敏器件电连接,所述 第一晶体管的第二极缺失设置。
  9. 如权利要求7所述的探测基板,其中,所述第一晶体管的栅极与所述扫描线电连接,所述第一晶体管的第一极缺失设置,所述第一晶体管的第二极与所述读取线电连接。
  10. 如权利要求7所述的探测基板,其中,所述第一晶体管的栅极缺失设置,所述第一晶体管的第一极与所述第一光敏器件电连接,所述第一晶体管的第二极与所述读取线电连接。
  11. 如权利要求7所述的探测基板,其中,所述第一晶体管的栅极、第一极和第二极均缺失设置。
  12. 如权利要求2~11任一项所述的探测基板,其中,所述衬底基板还包括感光区,所述降噪区位于所述感光区在所述读取线延伸方向上的至少一侧;
    单条所述读取线位于所述降噪区或所述感光区,每条所述扫描线均贯穿所述感光区和所述降噪区。
  13. 如权利要求5所述的探测基板,其中,所述衬底基板还包括感光区,所述降噪区位于所述感光区在所述扫描线延伸方向上的至少一侧;
    每条所述读取线均贯穿所述降噪区和所述感光区,所述多条扫描线均位于所述感光区。
  14. 如权利要求12或13所述的探测基板,其中,还包括位于所述感光区的多个第二光敏器件和多个第二晶体管,其中,所述第二晶体管的栅极与所述扫描线电连接,所述第二晶体管的第一极与所述第二光敏器件电连接,所述第二晶体管的第二极与所述读取线电连接。
  15. 一种如权利要求1~14任一项所述探测基板的降噪方法,其中,包括:
    通过所述读取线采集所述扫描线的耦合噪声信号及所述读取线的自身噪声信号中的至少之一;
    基于所述扫描线的耦合噪声信号及所述读取线的自身噪声信号中的至少之一对所述探测基板的光电信号进行降噪处理。
  16. 一种探测装置,其中,包括如权利要求1~14任一项所述的探测基板。
PCT/CN2021/139116 2021-12-17 2021-12-17 探测基板、其降噪方法及探测装置 WO2023108607A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/139116 WO2023108607A1 (zh) 2021-12-17 2021-12-17 探测基板、其降噪方法及探测装置
CN202180004009.8A CN116615807A (zh) 2021-12-17 2021-12-17 探测基板、其降噪方法及探测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139116 WO2023108607A1 (zh) 2021-12-17 2021-12-17 探测基板、其降噪方法及探测装置

Publications (1)

Publication Number Publication Date
WO2023108607A1 true WO2023108607A1 (zh) 2023-06-22

Family

ID=86775303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139116 WO2023108607A1 (zh) 2021-12-17 2021-12-17 探测基板、其降噪方法及探测装置

Country Status (2)

Country Link
CN (1) CN116615807A (zh)
WO (1) WO2023108607A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202984A (ja) * 2005-01-20 2006-08-03 Hamamatsu Photonics Kk 検出器
CN103779362A (zh) * 2012-10-17 2014-05-07 上海天马微电子有限公司 X射线平板探测装置的制造方法
CN110660816A (zh) * 2018-06-29 2020-01-07 京东方科技集团股份有限公司 一种平板探测器
CN112002721A (zh) * 2020-10-28 2020-11-27 南京迪钛飞光电科技有限公司 薄膜晶体管阵列基板、像素电路、x射线探测器及其驱动方法
CN113130698A (zh) * 2021-04-12 2021-07-16 京东方科技集团股份有限公司 光探测基板及其制备方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202984A (ja) * 2005-01-20 2006-08-03 Hamamatsu Photonics Kk 検出器
CN103779362A (zh) * 2012-10-17 2014-05-07 上海天马微电子有限公司 X射线平板探测装置的制造方法
CN110660816A (zh) * 2018-06-29 2020-01-07 京东方科技集团股份有限公司 一种平板探测器
CN112002721A (zh) * 2020-10-28 2020-11-27 南京迪钛飞光电科技有限公司 薄膜晶体管阵列基板、像素电路、x射线探测器及其驱动方法
CN113130698A (zh) * 2021-04-12 2021-07-16 京东方科技集团股份有限公司 光探测基板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN116615807A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
US20160293659A1 (en) Image sensor and manufacturing method thereof
US20070146520A1 (en) Solid state image pickup apparatus and radiation image pickup apparatus
US11594064B2 (en) Display substrate, display panel and display device
CN102664184B (zh) 一种x射线检测装置的阵列基板的制造方法
EP0838859A2 (en) Photoelectric conversion apparatus with signal correction capability
WO2017036094A1 (zh) 光电传感器及其驱动方法、阵列基板和显示装置
WO2018040578A1 (zh) 阵列基板及其制造方法、显示面板和显示装置
US20190198702A1 (en) X-ray detector
US20130207169A1 (en) Active matrix image sensing panel and apparatus
US20150028338A1 (en) Method for manufacturing x-ray flat panel detector and x-ray flat panel detector tft array substrate
TW201423962A (zh) X光偵測裝置
US10871582B2 (en) Detection panel, manufacturing method thereof and detection device
WO2023108607A1 (zh) 探测基板、其降噪方法及探测装置
CN111312726A (zh) 一种阵列基板、其制作方法及显示装置
JP2003255049A (ja) 光検出装置及び放射線検出装置
CN111682040B (zh) 探测基板及射线探测器
WO2021189490A1 (zh) X射线平板探测器及其图像校正方法
CN103259983B (zh) 一种平板图像传感器
US20170192109A1 (en) Array substrate of x-ray detector, method for manufacturing array substrate of x-ray detector, digital x-ray detector including the same, and method for manufacturing x-ray detector
US10872914B2 (en) Detection substrate, ray imaging device and method for driving detection substrate
CN102790060B (zh) 一种传感器及其制造方法
JP5163680B2 (ja) 表示装置
US8900909B2 (en) Manufacture method of sensor
US7116319B2 (en) Image forming apparatus and radiation detection system
JP3424360B2 (ja) 固体撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004009.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967741

Country of ref document: EP

Kind code of ref document: A1