WO2023108452A1 - 阵列基板、微型器件转移方法和微型器件转移系统 - Google Patents

阵列基板、微型器件转移方法和微型器件转移系统 Download PDF

Info

Publication number
WO2023108452A1
WO2023108452A1 PCT/CN2021/138165 CN2021138165W WO2023108452A1 WO 2023108452 A1 WO2023108452 A1 WO 2023108452A1 CN 2021138165 W CN2021138165 W CN 2021138165W WO 2023108452 A1 WO2023108452 A1 WO 2023108452A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
bonding electrode
spare
electrode pairs
bonding
Prior art date
Application number
PCT/CN2021/138165
Other languages
English (en)
French (fr)
Inventor
樊勇
Original Assignee
厦门市芯颖显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市芯颖显示科技有限公司 filed Critical 厦门市芯颖显示科技有限公司
Priority to PCT/CN2021/138165 priority Critical patent/WO2023108452A1/zh
Publication of WO2023108452A1 publication Critical patent/WO2023108452A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present application relates to the field of display technology, and in particular to an array substrate, a micro device transfer method and a micro device transfer system.
  • Micro-LED (Microlight-emitting diode, micron light-emitting diode) display is an array display device composed of micron-scale semiconductor light-emitting pixels. It is a combination of display, LED (light-emitting diode, light-emitting diode), and semiconductors.
  • the composite integration technology in one has the advantages of self-illumination, high efficiency, low power consumption, high integration, high stability, and all-weather work, and is considered to be the most promising next-generation new display technology.
  • the transfer is an important link in the preparation process of Micro-LED products. During the transfer process, some defects such as chip damage and omission of the position that should be transferred may appear in some positions.
  • the embodiments of the present application provide an array substrate, a micro device transfer method and a micro device transfer system, which can improve the repair efficiency and transfer efficiency during the micro device transfer process. Correct rate.
  • an embodiment of the present application provides an array substrate, including: a base substrate; a plurality of first bonding electrode pairs arranged on the base substrate at intervals; a plurality of first bonding electrodes parts, covering the plurality of first bonding electrode pairs in one-to-one correspondence, the plurality of first bonding members are arranged at intervals from each other, and respectively correspond to the preset transfer positions of the plurality of first micro-devices, the plurality of The first bonding member is used to hold the plurality of first micro-devices to the plurality of first bonding electrode pairs, so that the plurality of first micro-devices are respectively electrically connected to the plurality of first bonding electrodes.
  • Electrode pair a plurality of spare bonding electrode pairs, the plurality of spare bonding electrode pairs respectively corresponding to the plurality of first bonding electrode pairs and electrically connected to the plurality of first bonding electrode pairs;
  • a spare pair of bonding electrodes is used to electrically connect the spare micro-device when the corresponding first pair of bonding electrodes fails.
  • the spare micro-device includes a first spare micro-device, and the plurality of spare bonding electrode pairs includes a first spare bonding electrode pair, and the first spare bonding electrode pair corresponds to The failed first pair of bonding electrodes is electrically connected;
  • the array substrate further includes a second adhesive, the second adhesive correspondingly covers the first spare pair of bonding electrodes and corresponds to the first The preset transfer position of the spare micro-device, the second adhesive member is used to hold the first spare micro-device to the first spare bonding electrode pair, so that the first spare micro-device is electrically connected to the Describe the first spare bonding electrode pair.
  • another embodiment of the present application provides a micro-device transfer method for transferring the micro-device to an array substrate
  • the array substrate includes: a base substrate; a plurality of first bonding electrode pairs, The multiple first bonding electrode pairs are arranged at intervals; multiple spare bonding electrode pairs, the spare bonding electrode pairs respectively correspond to the multiple first bonding electrode pairs and are connected to the multiple first bonding electrode pairs
  • the bonding electrode pair is electrically connected; the spare bonding electrode pair is used to electrically connect the spare micro device when the corresponding first bonding electrode pair fails;
  • the micro device transfer method includes: corresponding on the substrate substrate
  • the preset transfer positions of the first micro-device respectively form a plurality of first adhesive members, and the plurality of first adhesive members cover the plurality of first bonding electrode pairs one by one and are arranged at intervals from each other;
  • a first micro-device is transferred to the base substrate, and the plurality of first adhesive members respectively hold the plurality of first micro-device to the plurality of first bonding electrode pairs,
  • the spare micro-device includes a first spare micro-device, and the plurality of spare bonding electrode pairs includes a first spare bonding electrode pair, and the first spare bonding electrode pair corresponds to The failed first bonding electrode pair is electrically connected;
  • the micro device transfer method further includes: detecting the failed first bonding electrode pair among the plurality of first bonding electrode pairs; A second bonding member is formed on the substrate corresponding to the preset transfer position of the first spare micro-device, and the second bonding member corresponds to cover the first spare bonding electrode pair; transfer the first spare micro-device to the base substrate, so that the second adhesive member holds the first spare micro-device on the first spare bonding electrode pair, so that the first spare micro-device is electrically connected to the first spare micro-device. Spare bonded electrode pairs.
  • the micro device is a micro light emitting device
  • the detection of the failed first bonding electrode pair among the plurality of first bonding electrode pairs includes: Before the first micro-device, power is supplied to the plurality of first micro-device, and the first micro-device that does not emit light is marked as a damaged first micro-device; and it is determined to correspond to the transfer position of the damaged first micro-device The first bonding electrode pair is used as the failed first bonding electrode pair.
  • the micro device is a micro light emitting device
  • the detection of the failed first bonding electrode pair among the plurality of first bonding electrode pairs includes: After the first micro-device is formed, power is applied to the plurality of first bonding electrode pairs, and the first bonding electrode pair corresponding to the non-light-emitting position among the plurality of first bonding electrode pairs is determined to be a failed first Bond electrode pairs.
  • the first micro-device and the first spare micro-device are transferred synchronously; and/or the first bonding part and the second bonding part are formed synchronously.
  • another embodiment of the present application provides a micro device transfer system for performing any one of the micro device transfer methods in the foregoing embodiments, including: a dispensing device for correspondingly The preset transfer positions of the first micro-device respectively form a plurality of first adhesive members spaced apart from each other; and form second adhesive members at the preset transfer positions corresponding to the first spare micro-device; the transfer device is used for The plurality of first micro-devices and the first spare micro-devices are respectively picked up and transferred onto the base substrate.
  • the dispensing device includes a first dispensing device, and the first dispensing device includes a plurality of dispensing protrusions corresponding to preset transfer positions of the plurality of first micro devices
  • the plurality of glue dispensing protrusions are spaced apart from each other, and each of the glue dispensing protrusions is provided with glue for forming the plurality of first adhesive pieces.
  • the dispensing device further includes a second dispensing device, and the second dispensing device includes a dispensing head for applying The adhesive that forms the second adhesive part is applied on top.
  • Adhesives spaced apart from each other are set at the preset transfer positions of the micro-devices, so that only the positions that need to be transferred or need to be repaired can be bonded. Parts can realize the accurate transfer or repair of micro devices in batches, which can improve the transfer efficiency and correct rate.
  • FIG. 1 is a schematic structural diagram of an array substrate provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another array substrate provided by another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another array substrate provided by another embodiment of the present application.
  • FIG. 4 is a schematic top view structure diagram of another array substrate provided by another embodiment of the present application.
  • FIG. 5 is a flow chart of a micro device transfer method provided by an embodiment of the present application.
  • FIG. 6 is a flow chart of another micro device transfer method provided by another embodiment of the present application.
  • FIG. 7 is a flow chart of another micro device transfer method provided by another embodiment of the present application.
  • 8 to 13 are process schematic diagrams of a micro device transfer method provided by an embodiment of the present application.
  • 100 array substrate; 110: base substrate; 120: bonding electrode pair; 121: first bonding electrode pair; 122: spare bonding electrode pair; 1221: first spare bonding electrode pair; 1222: second spare Bonding electrode pair; 130: bonding part; 131: first bonding part; 132: second bonding part; 133: third bonding part; 200: micro device; 210: first micro device; 220: spare Micro device; 221: first spare micro device; 222: second spare micro device; 111: driving circuit layer;
  • 1111 thin film transistor; 1112: common electrode; 310: glue dispensing equipment; 311: first glue dispensing equipment, 3111: glue dispensing protrusion; 312: second glue dispensing equipment; 3121: glue dispensing head; 320: transfer equipment.
  • the first embodiment of the present application provides an array substrate 100, including a base substrate 110, a plurality of bonding electrode pairs 120, and a plurality of adhesive members 130, wherein the plurality of bonding electrode pairs 120 are spaced apart from each other. are arranged on the base substrate 110, and a plurality of adhesive members 130 cover the plurality of target bonding electrode pairs of the plurality of bonding electrode pairs 120 one by one, and the plurality of adhesive members 130 are arranged at intervals and correspond to The predetermined transfer positions of the micro-devices 200 , the adhesives 130 are used to hold the micro-devices 200 onto the target bonding electrode pairs, so that the micro-devices 200 are electrically connected to the target bonding electrode pairs.
  • the micro-device 200 includes, for example, a first micro-device 210, and the plurality of bonding electrode pairs 120 includes a plurality of first bonding electrode pairs 121, and the plurality of first bonding electrode pairs 121 are arranged at intervals between on the base substrate 110.
  • the plurality of adhesive members 130 includes, for example, first adhesive members 131, which cover the plurality of first bonding electrode pairs 121 in one-to-one correspondence, and respectively correspond to the preset transfer positions of the plurality of first micro-devices 210.
  • the adhesive member 131 is used to hold the first micro devices 210 on the first bonding electrode pairs 121 , so that the plurality of first micro devices 210 are electrically connected to the plurality of first bonding electrode pairs 121 respectively.
  • five bonding electrode pairs 120 are arranged on the base substrate 110 from left to right.
  • the first and fourth bonding electrode pair 120 are the target bonding electrode pair, and there are two adhesive members 130 corresponding to the preset transfer positions of the micro device 200 to cover the first and fourth bonding electrode pairs.
  • the first and fourth bonding electrode pairs 120 i.e. target bonding electrode pairs
  • an adhesive 130 on the left holds a micro device 200 to the substrate 110.
  • an adhesive member 130 on the right holds another micro-device 200 to the fourth bonding electrode pair 120, so that the two micro-device 200 are respectively connected to the second bonding electrode pair 120 in subsequent processes.
  • the first and fourth bonding electrode pairs 120 are electrically connected.
  • the first adhesive member 131, the first bonding electrode pair 121 is the target bonding electrode pair corresponding to the preset transfer position of the first micro device 210 among the plurality of bonding electrode pairs 120, and the first adhesive member 131 corresponds to the first bonding electrode pair.
  • a preset transfer position of the micro device 210 is only an example, and this embodiment does not limit the specific number of bonding electrode pairs 120 and adhesive members 130, and the array substrate 100 may include other types of bonding electrode pairs in addition to the first bonding electrode pair 121. 120.
  • the micro-device 200 (including the first micro-device 210) can be, for example, a Micro-LED, but it should be understood that the micro-device 200 of the present application is not limited to the Micro-LED, and some embodiments can also be applied to other micro-semiconductor devices , such miniature semiconductor devices are designed in such a way as to perform predetermined electronic functions (eg diodes, transistors, integrated circuits) or photonic functions (LEDs, lasers) in a controlled manner.
  • the adhesive member 130 (including the first adhesive member 131 ) can be, for example, ACF glue (anisotropic conductive adhesive film, anisotropic conductive adhesive film) or the like.
  • a whole layer of adhesive layer is generally coated on the target substrate first.
  • the adhesive layer will also hold the chip on the surface of the target substrate.
  • a plurality of first adhesive members 131 are arranged at intervals and correspond to the preset transfer positions of the first micro-device 210.
  • the micro-device 200 further includes a spare micro-device 220, and the multiple bonding electrode pairs 120 on the array substrate 100, for example, also include a plurality of spare bonding electrode pairs 122.
  • the spare bonding electrode pairs 122 respectively correspond to the multiple first bonding electrode pairs 121 and are electrically connected to the multiple first bonding electrode pairs 121 .
  • Each first bonding electrode pair 121 may correspond to one spare bonding electrode pair 122 or may correspond to multiple spare bonding electrode pairs 122 .
  • the plurality of spare bonding electrode pairs 122 are used to electrically connect the spare micro-device 220 when the corresponding first bonding electrode pair 121 fails. Referring to FIG.
  • five bonding electrode pairs 120 are arranged on the base substrate 110 from left to right, among which the first and fourth ones from the left are the first bonding electrode pairs 121 , which are referred to as left for convenience below.
  • the first bonding electrode pair 120 from the left is the first bonding electrode pair 121 on the left
  • the fourth bonding electrode pair 120 from the left is the first bonding electrode pair 121 on the right.
  • the second and third bonding electrode pairs 120 from the left are spare bonding electrode pairs 122 corresponding to the left first bonding electrode pair 121 , and are respectively electrically connected to the left first bonding electrode pair 121 .
  • the fifth bonding electrode pair 120 from the left is the spare bonding electrode pair 122 corresponding to the right first bonding electrode pair 121 , and is electrically connected to the right first bonding electrode pair 121 .
  • the "first”, “second”, “third”, “fourth” and “fifth” in this embodiment are a plurality of bonding electrode pairs 120 according to FIG. 2
  • the corresponding arrangement position from left to right in the direction shown in is different from “first” in the first bonding electrode pair 121 .
  • the present embodiment is further described with reference to the transfer process of the micro-device:
  • five bonding electrode pairs 120 are arranged on the base substrate 110 from left to right.
  • a micro device 210 is placed on the first bonding electrode pair 121 , and the first bonding electrode pair 121 is the target bonding electrode pair for this transfer during the transfer process of the first micro device 210 .
  • the transfer status of the first micro-device 210 on the base substrate 110 for example, check the light-emitting status (or other working status) of the position of the first micro-device 210, for example, a certain position is missed during the transfer process, Either the corresponding first micro-device 210 is damaged (it can also be detected on the carrier substrate of the first micro-device 210 before transfer), or the electrical connection with the first bonding electrode pair 121 is unstable, etc., which will cause the position to not emit light.
  • the first bonding electrode pair 121 corresponding to the position is invalid (that is, it is judged that the first bonding electrode pair 121 is a failed first bonding electrode pair), and the spare micro device 220 is subsequently transferred to The repair of this position can be realized on the corresponding spare bonding electrode pair 122 .
  • the spare micro-device 220 includes a first spare micro-device 221
  • the spare bonding electrode pair 122 includes a first spare bonding electrode pair 1221
  • the first spare bonding electrode pair 1221 is connected to the corresponding failed first A bonding electrode pair 121 is electrically connected.
  • the plurality of bonding parts 130 on the array substrate 100 further includes a second bonding part 132, the second bonding part 132 corresponds to cover the first spare bonding electrode pair 1221 and corresponds to the preset transfer of the first spare micro device 221 position, the second bonding member 132 is used to hold the first spare micro-device 221 to the first spare bonding electrode pair 1221 , so that the first spare micro-device 221 is electrically connected to the first spare bonding electrode pair 1221 .
  • the first spare micro-device 221 can be understood as the micro-device 200 that needs to be repaired when the failure of the first bonding electrode pair 121 is detected, and the first spare bonding electrode pair 1221 corresponds to the failed first bonding electrode pair 121.
  • the specific number and position of the first spare bonding electrode pair 1221 and the second adhesive member 132 are related to the failed first bonding electrode pair 121 , and may be one or more. Specifically, referring to FIG. 2 , for example, it is detected that the first bonding electrode pair 121 on the left fails. Covering on the first spare bonding electrode pair 1221, at this time, the first spare bonding electrode pair 1221 is the target bonding electrode pair in this repair process. While the first bonding electrode pair 121 on the right is normal, there is no need to arrange the second adhesive member 132 on the corresponding spare bonding electrode pair 122 . Therefore, in this embodiment, the second bonding member 132 can only be provided on the corresponding first spare bonding electrode pair 1221. They are set at intervals, so batch repairing can be realized, and the correct rate of repairing can be guaranteed at the same time.
  • the spare micro-device 220 also includes a second spare micro-device 222
  • the spare bonding electrode pair 122 also includes a second spare bonding electrode pair 1222
  • the second spare bonding electrode pair 1222 is related to the corresponding failure
  • the first standby bonding electrode pair 1221 is electrically connected.
  • the plurality of bonding parts 130 on the array substrate 100 further includes a third bonding part 133, the third bonding part 133 corresponds to cover the second spare bonding electrode pair 1222 and corresponds to the preset transfer position of the second spare micro device 222 , the third adhesive member 133 is used to hold the second spare micro-device 222 on the second spare bonding electrode pair 1222 , so that the second spare micro-device 222 is electrically connected to the second spare bonding electrode pair 1222 .
  • the specific number and position of the second spare bonding electrode pair 1222 and the third adhesive member 133 are related to the failed first spare bonding electrode pair 1221 , and may be one or more. Referring to Fig. 3, after Fig.
  • the first spare micro-device 221 is transferred to the first spare bonding electrode pair 1221 to complete the repair, it is necessary to further check the effect of the repair, for example, the first spare bonding electrode pair 1221 also fails ( The corresponding first bonding electrode pair 121 has failed), then the third bonding member 133 is arranged on the corresponding second spare bonding electrode pair 1222, so as to repair the second spare micro-device 222 to the second spare key
  • the second spare bonding electrode pair 1222 is the target bonding electrode pair in the second repair process. If the first spare bonding electrode pair 1221 can work normally, there is no need to install the third adhesive member 133 , and this embodiment can also realize batch repair, further improving the transfer quality of the array substrate.
  • the array substrate 100 provided by the present application may be a driving array substrate of a Micro-LED display panel.
  • a driving circuit layer 111 is provided on the substrate substrate 110, which may include an active driving (AM, Active Matrix) circuit.
  • AM Active Matrix
  • PM Passive Matrix
  • the active drive for example includes a thin film transistor 1111 (such as TFT, Thin Film Transistor) and a common electrode 1112, a plurality of bonding electrode pairs 120 (including at least a plurality of first The bonding electrode pair 121) is electrically connected to the common electrode 1112 and the plurality of thin film transistors 1111.
  • Each bonding electrode pair 120 includes, for example, two bonding electrodes respectively connected to the common electrode 1112 and the corresponding thin film transistor 1111 .
  • FIG. 4 is a schematic top view structure diagram of an array substrate 100 provided by an embodiment of the present application.
  • six bonding electrode pairs 120 are arranged on the base substrate 110 , and a first bonding electrode pair 120 is arranged on the left and right sides respectively.
  • each first bonding electrode pair 121 has two bonding electrodes, respectively connected to the thin film transistor 1111 and the common electrode 1112, wherein each first bonding electrode pair 121 is also provided with two spare bonding electrode pairs 122 (directly above and above right), electrically connected to the first pair of bonding electrodes 121 respectively. It should be noted that, in order to clearly express the structure of this embodiment, only the part of the driving circuit layer 111 is shown in FIG. panel drive circuit.
  • the second embodiment of the present application provides a micro device transfer method for transferring a micro device to an array substrate
  • the array substrate includes a base substrate 110 and a plurality of bonding electrode pairs 120, a plurality of bonding electrodes
  • the bonding electrode pairs 120 are arranged on the base substrate 110 at intervals, wherein the plurality of bonding electrode pairs 120 include a plurality of first bonding electrode pairs 121 and spare bonding electrode pairs 122, and the first bonding electrode pairs 121 are connected to each other.
  • a plurality of spare bonding electrode pairs 122 respectively correspond to a plurality of first bonding electrode pairs 121 and are electrically connected to a plurality of first bonding electrode pairs 121, for when the corresponding first bonding electrode pair 121 fails
  • the spare micro device 220 is electrically connected.
  • the microdevice transfer method includes:
  • Step S31 Forming a plurality of first adhesive pieces on the base substrate corresponding to preset transfer positions of the first micro-device, and the plurality of first adhesive pieces cover the plurality of first bonding pieces one by one.
  • the electrode pairs are spaced apart from each other.
  • S41 Transfer the plurality of first micro-devices to the base substrate, so that the plurality of first adhesive members respectively hold the plurality of first micro-devices to the plurality of first bonding electrode pairs above, so that the plurality of first micro devices are electrically connected to the plurality of first bonding electrode pairs respectively.
  • the micro-device transfer method referred to in this embodiment can be applied to the transfer of Micro-LED, for example, and can also be applied to the transfer of other similar micro-device if there is no conflict, which is not limited by this embodiment.
  • a driving circuit layer is provided on the base substrate, which may include an active driving (AM, Active Matrix) circuit, or a passive driving (PM, Passive Matrix) circuit.
  • AM active driving
  • PM Passive Matrix
  • each first bonding electrode pair may be electrically connected to a plurality of spare bonding electrode pairs, or may be connected to only one.
  • step S31 two first adhesive pieces 131 are respectively formed at preset transfer positions corresponding to the first micro-device 210 (on the two first bonding electrode pairs 121), so that the first adhesive pieces 131 respectively cover the two first bonding electrode pairs 121 and are spaced apart from each other.
  • a plurality of first bonding parts 131 can be formed in batches.
  • the micro-device transfer method provided in this embodiment only forms the adhesive member 130 at the position where the micro-device needs to be transferred, which can avoid the defect that the micro-device is wrongly transferred to the position that does not need to be transferred, and improve the transfer accuracy.
  • the micro-device transfer method further includes step S51: detecting the failed first bonding electrode pair among the plurality of first bonding electrode pairs; step S42: transferring the spare micro-device To the base substrate, the spare bonding electrode pair corresponding to the failed first bonding electrode pair is electrically connected to the spare micro device.
  • step S51 may be, for example, before step S31 or after step S41 .
  • the spare bonding electrode pair 122 includes the first spare bonding electrode pair 1221
  • the spare micro-device 220 includes the first spare micro-device 221.
  • step S32 is also included between step S51 and step S42: A second bonding member is formed on the base substrate corresponding to the preset transfer position of the first spare micro-device, and the second bonding member corresponds to cover the first spare bonding electrode pair; step S42 includes, for example, step S421 : transferring the first spare micro-device to the base substrate, making the second bonding member hold the first spare micro-device on the first spare bonding electrode pair, so that the first spare micro-device A spare micro-device is electrically connected to the first spare pair of bonding electrodes.
  • step S32 can refer to Fig. 10, for example step S51 detects that the first bonding electrode pair 121 on the left fails, then forms the second bonding electrode pair 1221 corresponding to the first bonding electrode pair 121 on the left.
  • the adhesive member 132 wherein the corresponding first spare bonding electrode pair 1221 is electrically connected to the first bonding electrode pair 121 . If the first bonding electrode pair 121 on the right is normal, there is no need to form the second adhesive member 132 on the corresponding spare bonding electrode pair 122 .
  • the second adhesive part 132 can be formed by dispensing glue one by one by a glue dispensing head.
  • Step S421 can refer to FIG.
  • the solution provided by this embodiment can realize batch repair of defective positions, and improve repair efficiency and accuracy .
  • step S51 specifically includes step S511, for example:
  • step S511 for example, a test is performed on the carrier substrate carrying the first micro-device 210 before the transfer, and the first micro-device 210 that does not emit light is a damaged micro-device 210, then even if the first micro-device 210 is transferred Connecting to the first bonding electrode pair 121 also fails to work normally, resulting in failure of the first bonding electrode pair 121 .
  • the first bonding electrode pair corresponding to the failed first bonding electrode pair 121 can also be further determined. Spare bonding electrode pair 1221.
  • the second bonding member 132 may be formed before transferring the first micro-device 210, and after forming the first bonding member 131 and the second bonding member 132, the first micro-device 210 and the second bonding member A spare micro-device 221 is transferred to the base substrate 110 synchronously, that is, step S41 and step S421 are executed synchronously, which saves one transfer step and simplifies the process.
  • multiple first adhesive parts 131 and second adhesive parts 132 can be formed simultaneously, that is, step S31 and step S32 are performed synchronously, which can save one dispensing step and simplify the process.
  • step S51 includes, for example, step S512:
  • step S512 if the corresponding position of the first bonding electrode pair 121 is not lit, it may be that the first micro device 210 at this position is damaged, the electrical connection with the first bonding electrode pair 121 is unstable, or the position There is no transfer to the first micro-device 210 at all, and these cases belong to the cases where the first bonding electrode pair 121 fails. At this time, the spare micro-device 220 should be transferred to the corresponding spare bonding electrode pair 122 for repairing.
  • step S421 further includes step S52: detecting the failed first spare bonding electrode pair among the first spare bonding electrode pairs; step S33: on the base substrate A third bonding part is formed corresponding to a preset position of the second spare micro device, and the third bonding part covers the second spare micro device.
  • step S422 is also included: transferring the second spare micro-device to the base substrate, making the third bonding member hold the second spare micro-device to the second spare bonding electrode pair on, so that the second standby micro-device is electrically connected to the second standby bonding electrode pair.
  • the second spare bonding electrode pair is used to electrically connect the second spare micro device when the corresponding first spare bonding electrode pair fails.
  • step S52 can be realized by referring to step S51, step S33 can refer to FIG. 12, step S422 can refer to FIG.
  • This embodiment can further improve the accuracy of micro-device transfer through multiple inspections and multiple repairs, and is suitable for batch repair, improving repair efficiency and transfer quality.
  • the third embodiment of the present application provides a micro-device transfer system for performing any of the micro-device transfer methods in the second embodiment above.
  • the micro-device transfer system includes a dispensing device 310 and The transfer device 320 and the dispensing device 310 are used to execute step S31, step S32 and even step S33 in the second embodiment.
  • the transfer device 320 is used to execute step S41, step S421 and step S422 in the second embodiment.
  • the transfer device 320 can adopt commonly used micro-device transfer equipment such as laser transfer equipment, stamp transfer equipment, etc., and can pick up micro-device in batches and transfer them to on the target substrate.
  • the micro-device transfer system also includes a detection device for performing step S51 (including step S511 and step S512) or even S52, for example, also includes a control device that electrically connects the dispensing device 310, the transfer device 320 and the detection device, so as to Realize the scheduling control of the micro device transfer system.
  • the dispensing device 310 specifically includes a first dispensing device 311 for performing step S31.
  • the first dispensing device 311 includes a plurality of dispensing protrusions corresponding to the preset transfer positions of the first micro-device 210
  • a plurality of glue dispensing protrusions 3111 are spaced apart from each other, and each glue dispensing protrusion 3111 is provided with glue for forming the first adhesive member 131 .
  • a plurality of first adhesive pieces 131 spaced apart from each other can be formed in batches and accurately through the plurality of glue dispensing protrusions 3111 , which is conducive to improving the accuracy of transfer.
  • the dispensing device 310 further includes a second dispensing device 312 for performing step S32, the second dispensing device 312 includes a dispensing head 3121, and the dispensing head 3121 is used for dispensing the first spare micro device 221 Dispensing the glue to form the second adhesive part 132 at the preset transfer position.
  • the second glue dispensing device 312 includes, for example, a single glue dispensing head 312 , which can be sequentially moved to the position of each first spare bonding electrode pair 1221 and dispense glue when multiple second bonding parts 132 need to be formed.
  • the second glue dispensing device 312 may also include multiple glue dispensing heads 3121 , for example, and the multiple glue dispensing heads 3121 can operate simultaneously, which can also speed up the glue dispensing speed.
  • the second glue dispensing device 312 can also be used to execute step S33, for example, which is not limited in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例公开的一种阵列基板包括:衬底基板;多个第一键合电极对,相互间隔地设置在衬底基板上;多个第一粘接件,一一对应覆盖多个第一键合电极对,多个第一粘接件相互间隔设置,且分别对应于多个第一微型器件的预设转移位置,多个第一粘接件用于固持多个第一微型器件至多个第一键合电极对上,以使多个第一微型器件分别电连接多个第一键合电极对;多个备用键合电极对,多个备用键合电极对分别对应多个第一键合电极对且与多个第一键合电极对电连接;多个备用键合电极对用于在对应的第一键合电极对失效时电连接备用微型器件。本申请公开的阵列基板、微型器件转移方法和微型器件转移系统具有提高修补效率和转移正确率的特点。

Description

阵列基板、微型器件转移方法和微型器件转移系统 技术领域
本申请涉及显示技术领域,尤其涉及一种阵列基板、一种微型器件转移方法和一种微型器件转移系统。
背景技术
Micro-LED(Microlight-emitting diode,微米发光二极管)显示是由微米级半导体发光像元组成的阵列显示器件,是集显示、LED(light-emitting diode,发光二极管)、半导体等三者的技术特征于一体的复合集成技术,具有自发光、高效率、低功耗、高集成、高稳定性、全天候工作等优点,被认为是最有前途的下一代新型显示技术。而转移则是Micro-LED产品制备过程中一个重要的环节,在转移过程中某些位置可能会出现例如芯片损坏、遗漏了本该转移的位置等缺陷,这些问题位置是随机的,现有的转移方案对于这种随机的缺陷难以实现批量的修补,只能逐点转移修补。并且在这些现有的批量转移方案中还可能出现本不应该转移的位置却被粘胶层粘附了芯片的问题。总而言之,现有的转移技术存在的批量修复和精准转移不能两全的问题。
因此,亟需提供一种新的转移方法,以提高修补效率和转移正确率。
发明内容
因此,为克服现有技术中的至少部分缺陷,本申请实施例提供了一种阵列基板、一种微型器件转移方法和一种微型器件转移系统,能提高微型器件转移过程中的修补效率和转移正确率。
具体地,一方面,本申请一个实施例提供一种阵列基板,包括:衬底基板;多个第一键合电极对,相互间隔地设置在所述衬底基板上;多个第一粘接件,一一对应覆盖所述多个第一键合电极对,所述多个第一粘接件相互间隔设置,且分别对应于多个第一微型器件的预设转移位置,所述多个第一粘接件用于固持所述多个第一微型器件至所述多个第一键合电极对上,以使所述多个第一微型器件分别电连接所述多个第一键合电极对;多个备用键合电极对,所述多个备用键合电极对分别对应所述多个第一键合电极对且与所述多个第一键合电极对电连接;所述多个备用键合电极对用于在对应的所述第一键合电极对失效时电连接备用微型器件。
在本申请的一个实施例中,所述备用微型器件包括第一备用微型器件,所述多个备用键合电极对包括第一备用键合电极对,所述第一备用键合电极对与对应失效的所述第一键合电极对电连接;所述阵列基板还包括第二粘接件,所述第二粘接件对应覆盖所述第一备用键合电极对且对应于所述第一备用微型器件的预设转移位置,所述第二粘接件用于固持所述第一备用微型器件至所述第一备用键合电极对上,以使所述第一备用微型器件电连接所述第一备用键合电极对。
另一方面,本申请另一个实施例提供一种微型器件转移方法,用于将所述微型器件转移至 一阵列基板,所述阵列基板包括:衬底基板;多个第一键合电极对,所述多个第一键合电极对相互间隔设置;多个备用键合电极对,所述备用键合电极对分别对应所述多个第一键合电极对且与所述多个第一键合电极对电连接;所述备用键合电极对用于在对应的所述第一键合电极对失效时电连接备用微型器件;所述微型器件转移方法包括:在所述衬底基板上对应第一微型器件的预设转移位置分别形成多个第一粘接件,所述多个第一粘接件一一覆盖所述多个第一键合电极对且相互间隔设置;将所述多个第一微型器件转移至所述衬底基板,使所述多个第一粘接件分别固持所述多个第一微型器件至所述多个第一键合电极对上,以使所述多个第一微型器件分别电连接所述多个第一键合电极对。
在本申请的一个实施例中,所述备用微型器件包括第一备用微型器件,所述多个备用键合电极对包括第一备用键合电极对,所述第一备用键合电极对与对应失效的所述第一键合电极对电连接;所述微型器件转移方法还包括:检测所述多个第一键合电极对中失效的所述第一键合电极对;在所述衬底基板上对应所述第一备用微型器件的预设转移位置形成第二粘接件,所述第二粘接件对应覆盖所述第一备用键合电极对;将所述第一备用微型器件转移至所述衬底基板,使所述第二粘接件固持所述第一备用微型器件至所述第一备用键合电极对上,以使所述第一备用微型器件电连接所述第一备用键合电极对。
在本申请的一个实施例中,所述微型器件为微型发光器件,所述检测所述多个第一键合电极对中失效的所述第一键合电极对,包括:在转移所述多个第一微型器件之前,向所述多个第一微型器件通电,将不发光的所述第一微型器件标记为损坏的第一微型器件;确定与所述损坏的第一微型器件转移位置对应的所述第一键合电极对作为所述失效的第一键合电极对。
在本申请的一个实施例中,所述微型器件为微型发光器件,所述检测所述多个第一键合电极对中失效的所述第一键合电极对,包括:在转移所述多个第一微型器件之后,向所述多个第一键合电极对通电,确定所多个第一键合电极对位置中不发光位置对应的所述第一键合电极对为失效的第一键合电极对。
在本申请的一个实施例中,所述第一微型器件和所述第一备用微型器件同步转移;和/或所述第一粘接件和所述第二粘接件同步形成。
另一方面,本申请另一个实施例提供一种微型器件转移系统,用于执行前述实施例中任一所述微型器件转移方法,包括:点胶设备,用于在所述衬底基板上对应第一微型器件的预设转移位置分别形成相互间隔设置的多个第一粘接件;以及在对应所述第一备用微型器件的预设转移位置形成第二粘接件;转移设备,用于分别拾取所述多个第一微型器件和所述第一备用微型器件并转移至所述衬底基板上。
在本申请的一个实施例中,所述点胶设备包括第一点胶设备,所述第一点胶设备包括对应于所述多个第一微型器件的预设转移位置的多个点胶凸起,所述多个点胶凸起相互间隔设置, 每个所述点胶凸起上设置有用于形成所述多个第一粘接件的粘胶。
在本申请的一个实施例中,所述点胶设备还包括第二点胶设备,所述第二点胶设备包括点胶头,用于在所述第一备用微型器件的预设转移位置涂覆点涂形成所述第二粘接件的粘胶。
由上可知,本申请上述实施例可以达成以下一个或多个有益效果:在微型器件的预设转移位置设置相互间隔的粘接件,使得仅在需要转移的位置或者需要修补位置才具有粘接件,能够实现微型器件批量准确的转移或修补,可提高转移效率和正确率。
通过以下参考附图的详细说明,本申请的其它方面和特征变得明显。但是应当知道,该附图仅仅为解释的目的设计,而不是作为本申请的范围的限定。还应当知道,除非另外指出,不必要依比例绘制附图,它们仅仅力图概念地说明此处描述的结构和流程。
附图说明
下面将结合附图,对本申请的具体实施方式进行详细的说明。
图1为本申请一个实施例提供的一种阵列基板的结构示意图。
图2为本申请另一个实施例提供的另一种阵列基板的结构示意图。
图3为本申请另一个实施例提供的另一种阵列基板的结构示意图。
图4为本申请另一个实施例提供的另一种阵列基板的俯视结构示意图。
图5为本申请一个实施例提供的一种微型器件转移方法的流程图。
图6为本申请另一个实施例提供的另一种微型器件转移方法的流程图。
图7为本申请另一个实施例提供的另一种微型器件转移方法的流程图。
图8~图13为本申请一个实施例提供的微型器件转移方法的过程示意图。
【附图标记说明】
100:阵列基板;110:衬底基板;120:键合电极对;121:第一键合电极对;122:备用键合电极对;1221:第一备用键合电极对;1222:第二备用键合电极对;130:粘接件;131:第一粘接件;132:第二粘接件;133:第三粘接件;200:微型器件;210:第一微型器件;220:备用微型器件;221:第一备用微型器件;222:第二备用微型器件;111:驱动电路层;
1111:薄膜晶体管;1112:公共电极;310:点胶设备;311:第一点胶设备,3111:点胶凸起;312:第二点胶设备;3121:点胶头;320:转移设备。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。
为了使本领域普通技术人员更好地理解本申请的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或单元。
还需要说明的是,本申请中多个实施例的划分仅是为了描述的方便,不应构成特别的限定,各种实施例中的特征在不矛盾的情况下可以相结合,相互引用。
【第一实施例】
如图1所示,本申请第一实施例提供一种阵列基板100,包括衬底基板110、多个键合电极对120和多个粘接件130,其中多个键合电极对120相互间隔地设置在衬底基板110上,多个粘接件130一一对应覆盖在多个键合电极对120的多个目标键合电极对上,多个粘接件130相互间隔设置且分别对应于多个微型器件200的预设转移位置,多个粘接件130用于固持多个微型器件200至多个目标键合电极对上,以使微型器件200电连接目标键合电极对。
具体地,如图2,微型器件200例如包括第一微型器件210,多个键合电极对120包括多个第一键合电极对121,多个第一键合电极对121相互间隔的设置在衬底基板110上。多个粘接件130例如包括第一粘接件131,一一对应覆盖多个第一键合电极对121,且分别对应于多个第一微型器件210的预设转移位置,多个第一粘接件131用于固持第一微型器件210至第一键合电极对121上,以使多个第一微型器件210分别电连接多个第一键合电极对121。
例如参照图1,衬底基板110上从左至右设置有5个键合电极对120,当需要将两个微型器件200转移至衬底基板110的左起第一个和左起第四个键合电极对120上时,则该第一个和第四个键合电极对120为目标键合电极对,有两个粘接件130分别对应微型器件200的预设转移位置覆盖该第一个和第四个键合电极对120(即目标键合电极对),当将该两个微型器件200转移到衬底基板110上时,左边的一个粘接件130固持一个微型器件200至该第一个键合电极对120上,右边的一个粘接件130固持另一个微型器件200至该第四个键合电极对120上,以在后续工艺中使得这两个微型器件200分别与该第一个和第四个键合电极对120电连接。其中,例如图1中所示的左起第一个和第四个键合电极对120都是第一键合电极对121,对应覆盖在第一键合电极对121上的粘接件130为第一粘接件131,第一键合电极对121为多个键合电极对120中与第一微型器件210预设转移位置对应的目标键合电极对,第一粘接件131即对应第一微型器件210的预设转移位置。当然以上仅为举例说明,本实施例并不限制键合电极对120、 粘接件130的具体数量,阵列基板100上除第一键合电极对121外还可包括其他类型的键合电极对120。
其中微型器件200(包括第一微型器件210)例如可以是Micro-LED,但应当理解,本申请的微型器件200并不限制于Micro-LED,并且某些实施例也可以适用于其他微型半导体器件,这种微型半导体器件以这种方式被设计以便以受控方式执行预定电子功能(例如二极管、晶体管、集成电路)或光子功能(LED、激光器)。粘接件130(包括第一粘接件131)例如可以为ACF胶(anisotropic conductiveadhesive film,异方性导电胶)等。以Micro-LED芯片为例,在现有的一些转移技术中,一般先在目标基板上涂覆一整层粘胶层,当不需要转移芯片的位置被错误的转移了芯片时,该位置的粘胶层也会将芯片固持于目标基板的表面,本实施例中多个第一粘接件131相互间隔设置,且对应于第一微型器件210的预设转移位置,因此,即使转移设备发生错误,向本不应该转移位置转移了芯片时,例如转移设备上对应图1中左起第三个键合电极对120位置转移了一个芯片,由于该第三个键合电极对120上未覆盖有第一粘接件131,该错误转移的芯片也不会被固持于衬底基板110上,可以防止错误转移,提高转移的准确度,且本方案使用于批量转移,转移效率高。
进一步的,在一个实施例中,如图3,微型器件200例如还包括备用微型器件220,阵列基板100上的多个键合电极对120中例如还包括多个备用键合电极对122,多个备用键合电极对122分别对应多个第一键合电极对121且与多个第一键合电极对121电连接。其中每个第一键合电极对121可以对应一个备用键合电极对122也可以对应多个备用键合电极对122。多个备用键合电极对122用于在对应的第一键合电极对121失效时电连接备用微型器件220。参照图1,其中衬底基板110上设置有从左至右共五个键合电极对120,其中左起第一个和第四个为第一键合电极对121,以下为表述方便称左起第一个第一键合电极对120为左边的第一键合电极对121,左起第四个键合电极对120为右边的第一键合电极对121。左起第二个、第三个键合电极对120为对应左边第一键合电极对121的备用键合电极对122,且分别电连接该左边的第一键合电极对121。左起第五个键合电极对120为对应右边的第一键合电极对121的备用键合电极对122,且电连接该右边的第一键合电极对121。需要说明的是本实施例中所述“第一个”、“第二个”、“第三个”、“第四个”和“第五个”是多个键合电极对120按照图2中所示方向从左至右的对应排列位置,与第一键合电极对121中的“第一”不同。以下参照微型器件转移的过程对本实施例进行进一步的说明:
其中,该衬底基板110上设置有从左至右共5个键合电极对120,首先将第一微型器件210按照预设位置转移至衬底基板110,通过第一粘接件131固持第一微型器件210至第一键合电极对121上,在第一微型器件210的转移过程中第一键合电极对121即为本次转移的目标键合电极对。转移完成后需要对衬底基板110上的第一微型器件210的转移情况进行检查,例如检 查第一微型器件210位置的发光情况(或者其他工作状态),例如转移过程中某位置被遗漏转移,或者对应的第一微型器件210损坏(还可在转移之前在第一微型器件210的承载基板上检测出)又或者与第一键合电极对121的电连接不稳定等会导致该位置不发光(无法正常工作),则判断该位置对应的第一键合电极对121失效(即判断该第一键合电极对121为失效的第一键合电极对),后续将备用微型器件220转移至对应的备用键合电极对122上可实现对该位置的修补。
进一步的,在一个实施例中,备用微型器件220包括第一备用微型器件221,备用键合电极对122包括第一备用键合电极对1221,第一备用键合电极对1221与对应失效的第一键合电极对121电连接。阵列基板100上的多个粘接件130例如还包括第二粘接件132,第二粘接件132对应覆盖第一备用键合电极对1221且对应于第一备用微型器件221的预设转移位置,第二粘接件132用于固持第一备用微型器件221至第一备用键合电极对1221上,以使第一备用微型器件221电连接第一备用键合电极对1221。第一备用微型器件221可以理解为检查到有第一键合电极对121失效时需要对应修补的微型器件200,第一备用键合电极对1221则为该失效的第一键合电极对121对应的备用键合电极对122。第一备用键合电极对1221和第二粘接件132的具体数量和位置与失效的第一键合电极对121有关,可以是一个,也可以是多个。具体的,参照图2,例如检测到左边的第一键合电极对121失效,左起第二个键合电极对120为与其对应的第一备用键合电极对1221,第二粘接件132覆盖在该第一备用键合电极对1221上,此时该第一备用键合电极对1221为本次修补过程中的目标键合电极对。而右边的第一键合电极对121正常,则与其对应的备用键合电极对122上无需设置第二粘接件132。因此本实施例可以只在对应的第一备用键合电极对1221上设置第二粘接件132,当失效的第一键合电极对121为多个时,多个第二粘接件132也相互间隔设置,因此可实现批量修补,同时还可保证修补的正确率。
进一步的,在一个实施例中,备用微型器件220还包括第二备用微型器件222,备用键合电极对122还包括第二备用键合电极对1222,第二备用键合电极对1222与对应失效的第一备用键合电极对1221电连接。阵列基板100上的多个粘接件130还包括第三粘接件133,第三粘接件133对应覆盖第二备用键合电极对1222且对应于第二备用微型器件222的预设转移位置,第三粘接件133用于固持第二备用微型器件222至第二备用键合电极对1222上,以使第二备用微型器件222电连接第二备用键合电极对1222。第二备用键合电极对1222和第三粘接件133的具体数量和位置与失效的第一备用键合电极对1221有关,可以是一个也可以是多个。参照图3,在图2采用将第一备用微型器件221转移至第一备用键合电极对1221上完成修补后,需要进一步检查修补的效果,例如该第一备用键合电极对1221也失效(对应的第一键合电极对121已经失效),则在与其对应的第二备用键合电极对1222上设置第三粘接件133,以将第二备用微型器件222修补至该第二备用键合电极对1222上,该第二备用键合电极对1222则为第二次 修补过程中的目标键合电极对。如第一备用键合电极对1221可正常工作则无需设置第三粘接件133,本实施例同样可实现批量修补,进一步的提高阵列基板的转移质量。
在一个实施例中,本申请提供的阵列基板100可以是Micro-LED显示面板的驱动阵列基板,衬底基板110上例如设置有驱动电路层111,可以包括有源驱动(AM,Active Matrix)电路,也可以是无源驱动(PM,Passive Matrix)电路,有源驱动例如包括薄膜晶体管1111(例如TFT,Thin Film Transistor)和公共电极1112,多个键合电极对120(至少包括多个第一键合电极对121)与公共电极1112和多个薄膜晶体管1111电连接。每个键合电极对120例如包括两个键合电极分别连接公共电极1112和对应的薄膜晶体管1111。例如参照图4,其为本申请一个实施例提供的阵列基板100的俯视结构示意图,图4中,衬底基板110上设置有6个键合电极对120,其中左右各设置一个第一键合电极对121,每个第一键合电极对121具有两个键合电极,分别连接薄膜晶体管1111和公共电极1112,其中每个第一键合电极对121还对应设置两个备用键合电极对122(正上方和右上方),分别与第一键合电极对121电连接。需要说明的是,为了清楚的表达本实施例的结构,图4中仅示出驱动电路层111的部分,不能作为限制理解本实施例的条件,图4未示出的部分可参照常用的显示面板驱动电路。
【第二实施例】
参照图5,本申请的第二实施例提供一种微型器件转移方法,用于将微型器件转移至一阵列基板,该阵列基板包括衬底基板110和多个键合电极对120,多个键合电极对120相互间隔地设置在衬底基板110上,其中,多个键合电极对120包括多个第一键合电极对121和备用键合电极对122,第一键合电极对121相互间隔设置,多个备用键合电极对122分别对应多个第一键合电极对121且与多个第一键合电极对121电连接,用于在对应的第一键合电极对121失效时电连接备用微型器件220。该微型器件转移方法包括:
步骤S31:在所述衬底基板上对应第一微型器件的预设转移位置分别形成多个第一粘接件,所述多个第一粘接件一一覆盖所述多个第一键合电极对且相互间隔设置。
S41:将所述多个第一微型器件转移至所述衬底基板,使所述多个第一粘接件分别固持所述多个第一微型器件至所述多个第一键合电极对上,以使所述多个第一微型器件分别电连接所述多个第一键合电极对。
其中,本实施例所指微型器件转移方法例如可应用于Micro-LED的转移,在不冲突的情况下,也可应用于其他类似微型器的转移,本实施例并不限制。衬底基板上例如设置有驱动电路层,可以包括有源驱动(AM,Active Matrix)电路,也可以是无源驱动(PM,Passive Matrix)电路,具体的可参照本申请第一实施例中衬底基板的描述,在此不再赘述。以下对本申请实施例提供的微型器件转移方法进行进一步的说明。
其中,每个第一键合电极对可以对应电连接多个备用键合电极对,也可以只连接一个。参 照图8,步骤S31中,在对应第一微型器件210的预设转移位置(两个第一键合电极对121上)分别形成两个第一粘接件131,使该第一粘接件131分别覆盖该两个第一键合电极对121且相互间隔设置。多个第一粘接件131可批量形成。步骤S41如图9所示,通过转移设备(例如激光转移设备、凸点图章转移设备等)将第一微型器件210转移至衬底基板110上,由于备用键合电极对122上此时还未设置有粘接件130,因此不会有第一微型器件210转移至备用键合电极对122上,当然,其他未设置有粘胶件130的位置也不会被转移上第一微型器件210。本实施例提供的微型器件转移方法只在需要转移微型器件的位置形成粘接件130,可避免不需转移的位置被错误转移上微型器件的缺陷,提高转移准确率。
进一步的,在一个实施例中,该微型器件转移方法还包括步骤S51:检测所述多个第一键合电极对中失效的所述第一键合电极对;步骤S42:将备用微型器件转移至所述衬底基板,使与所述失效的第一键合电极对对应的所述备用键合电极对电连接所述备用微型器件。参照图6和图7,其中步骤S51例如可以在步骤S31之前,也可以在步骤S41之后。
具体地,备用键合电极对122包括第一备用键合电极对1221,备用微型器件220包括第一备用微型器件221,参照图7,步骤S51与步骤S42之间例如还包括步骤S32:在所述衬底基板上对应所述第一备用微型器件的预设转移位置形成第二粘接件,所述第二粘接件对应覆盖所述第一备用键合电极对;步骤S42例如包括步骤S421:将所述第一备用微型器件转移至所述衬底基板,使所述第二粘接件固持所述第一备用微型器件至所述第一备用键合电极对上,以使所述第一备用微型器件电连接所述第一备用键合电极对。其中,步骤S32可参照图10,例如步骤S51检查出左边的第一键合电极对121失效,则在与左边第一键合电极对121对应的第一备用键合电极对1221上形成第二粘接件132,其中对应的第一备用键合电极对1221电连接第一键合电极对121。右边的第一键合电极对121正常,则无需在其对应的备用键合电极对122上需形成第二粘接件132。第二粘接件132可通过点胶头逐个点胶形成。步骤S421可参照图11,由于第一备用键合电极对1221上形成有第二粘接件132,可将第一备用微型器件221固持于第一备用键合电极对1221上,并形成电连接。其余备用键合电极对122上未形成第二粘接件132,不会被转移第一备用微型器件221,因此,本实施例提供的方案可实现缺陷位置的批量修补,提高修补效率和正确率。
进一步的,在一个实施例中,以微型发光器件为Micro-LED为例,步骤S51例如具体包括步骤S511:
在转移所述多个第一微型器件之前,向所述多个第一微型器件通电,将不发光的所述第一微型器件标记为损坏的第一微型器件;
确定与所述损坏的第一微型器件转移位置对应的所述第一键合电极对作为所述失效的第一键合电极对。
在步骤S511中,例如在转移前承载第一微型器件210的承载基板上做测试,不发光的第一微型器件210则为损坏的微型器件210,则即使该第一微型器件210被转移后电连接第一键合电极对121,也无法正常工作,导致该第一键合电极对121失效。在本实施例中,由于在转移第一微型器件210之前已经能确定失效的第一键合电极对121的位置,也能进一步的确定与该失效的第一键合电极对121对应的第一备用键合电极对1221。因此,在一些实施例中可以在转移第一微型器件210之前先形成第二粘接件132,在形成第一粘接件131和第二粘接件132之后,将第一微型器件210和第一备用微型器件221同步转移至衬底基板110上,即步骤S41和步骤S421同步执行,可节省一次转移步骤,简化工艺。以及在一些实施例中还可以同步形成多个第一粘接件131和第二粘接件132,即步骤S31和步骤S32同步执行,可节省一次点胶步骤,简化工艺。
或者,在另一个实施例中,步骤S51例如包括步骤S512:
在转移所述多个第一微型器件之后,向所述多个第一键合电极对通电,确定所多个第一键合电极对位置中不发光位置对应的所述第一键合电极对为失效的第一键合电极对。
在步骤S512中通电检测时,若有第一键合电极对121对应位置未点亮,可能是该位置第一微型器件210损坏、与第一键合电极对121电连接不稳定或者是该位置根本没有转移到第一微型器件210,这些情况均属于第一键合电极对121失效的情况。此时应向对应的备用键合电极对122上转移备用微型器件220以进行修补。
进一步的,在一个实施例中,步骤S421之后还包括步骤S52:检测所述第一备用键合电极对中失效的所述第一备用键合电极对;步骤S33:在所述衬底基板上对应所述第二备用微型器件的预设位置形成第三粘接件,所述第三粘接件覆盖所述第二备用微型器件。步骤S33之后还包括步骤S422:将所述第二备用微型器件转移至所述衬底基板,使所述第三粘接件固持所述第二备用微型器件至所述第二备用键合电极对上,以使所述第二备用微型器件电连接所述第二备用键合电极对。本实施例中,第二备用键合电极对用于在对应的第一备用键合电极对失效时电连接第二备用微型器件。其中步骤S52的具体实施方式可参照步骤S51实现,步骤S33可参照图12,步骤S422可参照图13,其具体操作可分别参照步骤S32和步骤S421,再此不再赘述。本实施例通过多次检查和多次修补,可进一步提高微型器件转移的正确度,且适用于批量修补,提高修补效率和转移质量。
【第三实施例】
本申请第三实施例提供一种微型器件转移系统,用于执行上述第二实施例中的任意一种微型器件转移方法,参照图8至图13,该微型器件转移系统包括点胶设备310和转移设备320,点胶设备310用于执行第二实施例中的步骤S31和步骤S32甚至步骤S33。转移设备320用于执行第二实施例中步骤S41、步骤S421和步骤S422,转移设备320例如可以采用常用的微型 器件转移设备例如激光转移设备、图章转移设备等,可以批量拾取微型器件并转移至目标基板上。当然,该微型器件转移系统例如还包括用于执行步骤S51(包括步骤S511和步骤S512)甚至S52的检测设备,例如还包括电连接点胶设备310、转移设备320和检测设备的控制设备,以实现对微型器件转移系统的调度控制。
在一个实施例中,点胶设备310具体包括第一点胶设备311,用于执行步骤S31,第一点胶设备311包括对应于第一微型器件210的预设转移位置的多个点胶凸起3111,多个点胶凸起3111相互间隔设置,每个点胶凸起3111上设置有用于形成第一粘接件131的粘胶。通过多个点胶凸起3111可批量且准确的形成相互间隔设置的多个第一粘接件131,有利于提高转移的准确率。
在一个实施例中,点胶设备310还包括第二点胶设备312,用于执行步骤S32,第二点胶设备312包括点胶头3121,点胶头3121用于在第一备用微型器件221的预设转移位置点涂形成第二粘接件132的粘胶。其中第二点胶设备312例如包括单个的点胶头312,当需要形成多个第二粘接件132时,可依次移动至每个第一备用键合电极对1221的位置并点胶。由于第一备用微型器件的转移位置具有不确定性以及数量较小的特点,采用点胶头3121点涂粘胶相比于第一点胶设备311而言可以更精准快速,也有利于节省设备成本。当然,第二点胶设备312例如还可以包括多个点胶头3121,多个点胶头3121可以同时运作,也可加快点胶速度。其中第二点胶设备312例如还可用于执行步骤S33,本实施例并不限制。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (10)

  1. 一种阵列基板,包括:
    衬底基板;
    多个第一键合电极对,相互间隔地设置在所述衬底基板上;
    多个第一粘接件,一一对应覆盖所述多个第一键合电极对,所述多个第一粘接件相互间隔设置,且分别对应于多个第一微型器件的预设转移位置,所述多个第一粘接件用于固持所述多个第一微型器件至所述多个第一键合电极对上,以使所述多个第一微型器件分别电连接所述多个第一键合电极对;
    多个备用键合电极对,所述多个备用键合电极对分别对应所述多个第一键合电极对且与所述多个第一键合电极对电连接;所述多个备用键合电极对用于在对应的所述第一键合电极对失效时电连接备用微型器件。
  2. 如权利要求1所述的阵列基板,其中,所述备用微型器件包括第一备用微型器件,所述多个备用键合电极对包括第一备用键合电极对,所述第一备用键合电极对与对应失效的所述第一键合电极对电连接;所述阵列基板还包括第二粘接件,所述第二粘接件对应覆盖所述第一备用键合电极对且对应于所述第一备用微型器件的预设转移位置,所述第二粘接件用于固持所述第一备用微型器件至所述第一备用键合电极对上,以使所述第一备用微型器件电连接所述第一备用键合电极对。
  3. 一种微型器件转移方法,用于将所述微型器件转移至一阵列基板,所述阵列基板包括:衬底基板;多个第一键合电极对,所述多个第一键合电极对相互间隔设置;多个备用键合电极对,所述多个备用键合电极对分别对应所述多个第一键合电极对且与所述多个第一键合电极对电连接;所述多个备用键合电极对用于在对应的所述第一键合电极对失效时电连接备用微型器件;所述微型器件转移方法包括:
    在所述衬底基板上对应第一微型器件的预设转移位置分别形成多个第一粘接件,所述多个第一粘接件一一覆盖所述多个第一键合电极对且相互间隔设置;
    将所述多个第一微型器件转移至所述衬底基板,使所述多个第一粘接件分别固持所述多个第一微型器件至所述多个第一键合电极对上,以使所述多个第一微型器件分别电连接所述多个第一键合电极对。
  4. 如权利要求3所述的微型器件转移方法,其中,所述备用微型器件包括第一备用微型器件,所述多个备用键合电极对包括第一备用键合电极对,所述第一备用键合电极对与对应失效的所述第一键合电极对电连接;所述微型器件转移方法还包括:
    检测所述多个第一键合电极对中失效的所述第一键合电极对;
    在所述衬底基板上对应所述第一备用微型器件的预设转移位置形成第二粘接件, 所述第二粘接件对应覆盖所述第一备用键合电极对;
    将所述第一备用微型器件转移至所述衬底基板,使所述第二粘接件固持所述第一备用微型器件至所述第一备用键合电极对上,以使所述第一备用微型器件电连接所述第一备用键合电极对。
  5. 如权利要求4所述的微型器件转移方法,其中,所述微型器件为微型发光器件,所述检测所述多个第一键合电极对中失效的所述第一键合电极对,包括:
    在转移所述多个第一微型器件之前,向所述多个第一微型器件通电,将不发光的所述第一微型器件标记为损坏的第一微型器件;
    确定与所述损坏的第一微型器件转移位置对应的所述第一键合电极对作为所述失效的第一键合电极对。
  6. 如权利要求4所述的微型器件转移方法,其中,所述微型器件为微型发光器件,所述检测所述多个第一键合电极对中失效的所述第一键合电极对,包括:
    在转移所述多个第一微型器件之后,向所述多个第一键合电极对通电,确定所多个第一键合电极对位置中不发光位置对应的所述第一键合电极对为失效的第一键合电极对。
  7. 如权利要求5所述的微型器件转移方法,其中,所述第一微型器件和所述第一备用微型器件同步转移;和/或所述第一粘接件和所述第二粘接件同步形成。
  8. 一种微型器件转移系统,用于执行如权利要求4-7中任一所述微型器件转移方法,包括:
    点胶设备,用于在所述衬底基板上对应第一微型器件的预设转移位置分别形成相互间隔设置的多个第一粘接件;以及在对应所述第一备用微型器件的预设转移位置形成第二粘接件;
    转移设备,用于分别拾取所述多个第一微型器件和所述第一备用微型器件并转移至所述衬底基板上。
  9. 如权利要求8所述的微型器件转移系统,其中,所述点胶设备包括第一点胶设备,所述第一点胶设备包括对应于所述多个第一微型器件的预设转移位置的多个点胶凸起,所述多个点胶凸起相互间隔设置,且每个所述点胶凸起上设置有用于形成所述多个第一粘接件的粘胶。
  10. 如权利要求9所述的微型器件转移系统,其中,所述点胶设备还包括第二点胶设备,所述第二点胶设备包括点胶头,用于在所述第一备用微型器件的预设转移位置点涂用于形成所述第二粘接件的粘胶。
PCT/CN2021/138165 2021-12-15 2021-12-15 阵列基板、微型器件转移方法和微型器件转移系统 WO2023108452A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/138165 WO2023108452A1 (zh) 2021-12-15 2021-12-15 阵列基板、微型器件转移方法和微型器件转移系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/138165 WO2023108452A1 (zh) 2021-12-15 2021-12-15 阵列基板、微型器件转移方法和微型器件转移系统

Publications (1)

Publication Number Publication Date
WO2023108452A1 true WO2023108452A1 (zh) 2023-06-22

Family

ID=86775001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138165 WO2023108452A1 (zh) 2021-12-15 2021-12-15 阵列基板、微型器件转移方法和微型器件转移系统

Country Status (1)

Country Link
WO (1) WO2023108452A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109661122A (zh) * 2018-11-09 2019-04-19 华中科技大学 一种适用于微型发光二极管的选择性巨量转移方法
CN111199907A (zh) * 2018-11-20 2020-05-26 昆山工研院新型平板显示技术中心有限公司 微发光器件的转移方法及转移设备
CN111902952A (zh) * 2020-02-24 2020-11-06 重庆康佳光电技术研究院有限公司 发光二极管的巨量转移方法、以及显示背板组件
CN112864287A (zh) * 2021-01-11 2021-05-28 深圳市华星光电半导体显示技术有限公司 转移方法、微型器件阵列及其制备方法
CN112928123A (zh) * 2019-11-21 2021-06-08 京东方科技集团股份有限公司 一种驱动背板及其制作方法、显示面板、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109661122A (zh) * 2018-11-09 2019-04-19 华中科技大学 一种适用于微型发光二极管的选择性巨量转移方法
CN111199907A (zh) * 2018-11-20 2020-05-26 昆山工研院新型平板显示技术中心有限公司 微发光器件的转移方法及转移设备
CN112928123A (zh) * 2019-11-21 2021-06-08 京东方科技集团股份有限公司 一种驱动背板及其制作方法、显示面板、显示装置
CN111902952A (zh) * 2020-02-24 2020-11-06 重庆康佳光电技术研究院有限公司 发光二极管的巨量转移方法、以及显示背板组件
CN112864287A (zh) * 2021-01-11 2021-05-28 深圳市华星光电半导体显示技术有限公司 转移方法、微型器件阵列及其制备方法

Similar Documents

Publication Publication Date Title
CN109637957B (zh) 一种转印基板、转印设备及发光二极管芯片的转移方法
CN112908897B (zh) 基于无掩膜光刻的MicroLED芯片粘附式阵列转移方法
US9842782B2 (en) Intermediate structure for transfer, method for preparing micro-device for transfer, and method for processing array of semiconductor device
US10403537B2 (en) Inorganic light emitting diode (ILED) assembly via direct bonding
CN110634840B (zh) 检测基板及其制备方法、检测装置和检测方法
WO2019205437A1 (zh) Micro LED显示面板的制作方法及Micro LED显示面板
JP5437489B2 (ja) 電子装置
GB2541970A (en) Display manufacture
CN112582520B (zh) 微发光二极管转移方法及显示面板
CN113345878B (zh) 用于将microLED组装到基底上的方法和系统
WO2021012337A1 (zh) 显示装置的绑定方法及显示装置
TW201904050A (zh) 具有透光基材之微發光二極體顯示模組及其製造方法
TW201904048A (zh) 微發光二極體顯示模組及其製造方法
TWI611573B (zh) 微發光二極體顯示模組的製造方法
TW202046496A (zh) 顯示裝置及其製造方法
CN111490143B (zh) 一种显示背板及其制造方法、微型发光二极管显示器
WO2023087394A1 (zh) 发光二极管的转移方法及发光基板
WO2023108452A1 (zh) 阵列基板、微型器件转移方法和微型器件转移系统
CN114160440B (zh) 一种led芯片检测分选方法
CN116264240A (zh) 阵列基板、微型器件转移方法和微型器件转移系统
CN113745137A (zh) 微型发光二极管的转移方法与显示面板
WO2021243762A1 (zh) 微型发光二极管显示装置及其制造方法
CN114784207B (zh) 一种oled显示面板及其制备方法
CN115863242B (zh) 暂态基板和发光芯片的转移方法
WO2022252020A1 (zh) 显示背板组件、led显示模组及装置、以及相关方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE