WO2023106626A1 - 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물 - Google Patents

헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물 Download PDF

Info

Publication number
WO2023106626A1
WO2023106626A1 PCT/KR2022/016716 KR2022016716W WO2023106626A1 WO 2023106626 A1 WO2023106626 A1 WO 2023106626A1 KR 2022016716 W KR2022016716 W KR 2022016716W WO 2023106626 A1 WO2023106626 A1 WO 2023106626A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
light emitting
Prior art date
Application number
PCT/KR2022/016716
Other languages
English (en)
French (fr)
Inventor
박성종
장형근
노영석
김동준
Original Assignee
엘티소재주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티소재주식회사 filed Critical 엘티소재주식회사
Priority to EP22904460.7A priority Critical patent/EP4339195A1/en
Publication of WO2023106626A1 publication Critical patent/WO2023106626A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a heterocyclic compound, an organic light emitting device including the same, and a composition for an organic material layer of the organic light emitting device.
  • the electroluminescent device is a type of self-luminous display device, and has advantages of a wide viewing angle, excellent contrast, and fast response speed.
  • the organic light emitting element has a structure in which an organic thin film is disposed between two electrodes.
  • a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes combine in the organic thin film to form a pair, and then emit light while disappearing.
  • the organic thin film may be composed of a single layer or multiple layers as needed.
  • the material of the organic thin film may have a light emitting function as needed.
  • a compound capable of constituting the light emitting layer by itself may be used, or a compound capable of serving as a host or dopant of the host-dopant type light emitting layer may be used.
  • a compound capable of performing functions such as hole injection, hole transport, electron blocking, hole blocking, electron transport, and electron injection may be used.
  • Patent Document 1 US Patent No. 4,356,429
  • the present invention is to provide a heterocyclic compound, an organic light emitting device including the same, and a composition for an organic material layer of the organic light emitting device.
  • a heterocyclic compound represented by Formula 1 is provided.
  • Z1 to Z3 are the same as or different from each other, and each independently N; or CR, at least one is N;
  • R is hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • L is a direct bond; Or a substituted or unsubstituted C6 to C60 arylene group,
  • l is an integer from 0 to 3, and when l is 2 or more, L are the same as or different from each other,
  • X is O; or S,
  • R11 to R13 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • k 0 or 1
  • m is an integer from 0 to 9
  • k is 1
  • m is an integer from 0 to 7
  • R11 is the same as or different from each other
  • n is an integer from 0 to 6, and when n is 2 or more, R12 is the same as or different from each other;
  • Ar11 and Ar12 are the same as or different from each other, and each independently a substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • the deuterium content of is greater than 0% and less than or equal to 100%
  • the first electrode a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the heterocyclic compound represented by Chemical Formula 1.
  • the organic material layer provides an organic light emitting device that further includes a heterocyclic compound represented by Chemical Formula 2 below.
  • R', R" and R"' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • r and s are integers from 0 to 7, and when r and s are 2 or more, the substituents in parentheses are the same as or different from each other,
  • Ar21 and Ar22 are the same as or different from each other, and each independently a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group.
  • the heterocyclic compound represented by Formula 1 and a composition for an organic layer of an organic light emitting device including the heterocyclic compound represented by Formula 2.
  • the heterocyclic compound described in this specification can be used as a material for an organic material layer of an organic light emitting device. That is, it can serve as a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like in an organic light emitting device. In particular, it can be used as a material for the light emitting layer of an organic light emitting device.
  • one or two or more heterocyclic compounds represented by Formula 1 may be used, and may be used as a material of the light emitting layer.
  • it can be used as an n-host material of a light emitting layer of an organic light emitting device by introducing various substituents to control a bandgap.
  • the driving voltage of the organic light emitting device can be lowered, light efficiency can be improved, and lifespan characteristics of the device can be improved.
  • heterocyclic compound represented by Chemical Formula 1 may further include the heterocyclic compound represented by Chemical Formula 2 as a p-host material of the light emitting layer and may be applied to the organic layer of the organic light emitting device in a combination of the two.
  • 1 to 3 each schematically show a stacked structure of an organic light emitting device according to an exemplary embodiment of the present application.
  • Figure 4 is the result of measuring the recombination zone of reference compound Q
  • Figure 5 is the result of measuring the recombination zone of reference compound U
  • Figure 6 is the result of measuring the recombination zone of reference compound W
  • Figure 7 is the compound 101 This is the result of measuring the Recombination Zone of
  • FIG. 8 is the result of measuring the hole mobility (HOD (HOLE ONLY DEVICE) of compound 101 and reference compounds W, Q and U
  • Figure 9 is the electron mobility (EOD (EOD) of compound 101, reference compounds W, Q and U) ELECTRON ONLY DEVICE) is measured
  • FIG. 10 is a result of measuring hole mobility (HOD (HOLE ONLY DEVICE) of Compound 101 and reference compounds S, Q and R).
  • FIG. 11 shows the HOMO distribution of Compound 101
  • FIG. 12 shows the LUMO distribution of Compound 101.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the hydrogen atom is substituted, that is, the position where the substituent is substituted, and when two or more are substituted , Two or more substituents may be the same as or different from each other.
  • "when no substituent is indicated in the chemical formula or compound structure” may mean that all possible positions of the substituent are hydrogen or deuterium. That is, deuterium is an isotope of hydrogen, and some hydrogen atoms may be an isotope of deuterium, and in this case, the content of deuterium may be 0% to 100%.
  • the content of deuterium is 0%, the content of hydrogen is 100%, and all substituents explicitly exclude deuterium such as hydrogen. If not, hydrogen and deuterium may be mixed and used in the compound.
  • deuterium is one of the isotopes of hydrogen, and is an element having a deuteron composed of one proton and one neutron as an atomic nucleus, hydrogen- It can be expressed as 2, and the element symbol can also be written as D or 2 H.
  • isotopes which mean atoms having the same atomic number (Z) but different mass numbers (A), have the same number of protons, but have neutrons It can also be interpreted as an element with a different number of neutrons.
  • the deuterium content of 20% can be represented by the following structural formula.
  • a phenyl group having a deuterium content of 0% it may mean a phenyl group without deuterium atoms, that is, having 5 hydrogen atoms.
  • halogen may be fluorine, chlorine, bromine or iodine.
  • the alkyl group includes a straight or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms of the alkyl group may be 1 to 60, specifically 1 to 40, and more specifically, 1 to 20.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, octyl group, n-octyl group, tert-octyl group, 1-methylheptyl group
  • the alkenyl group includes a straight chain or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the alkenyl group may have 2 to 60 carbon atoms, specifically 2 to 40, and more specifically, 2 to 20.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1 -butenyl group, 1,3-butadienyl group, allyl group, 1-phenylvinyl-1-yl group, 2-phenylvinyl-1-yl group, 2,2-diphenylvinyl-1-yl group, 2-phenyl-2 -(naphthyl-1-yl)vinyl-1-yl group, 2,2-bis(diphenyl-1-yl)vinyl-1-yl group, stilbenyl group, styrenyl group, etc., but is not limited thereto.
  • the alkynyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms of the alkynyl group may be 2 to 60, specifically 2 to 40, and more specifically, 2 to 20.
  • a haloalkyl group means an alkyl group substituted with a halogen group, and specific examples thereof include -CF 3 , -CF 2 CF 3 , but are not limited thereto.
  • the alkoxy group is represented by -O(R101), and examples of the above-described alkyl group may be applied to R101.
  • the aryloxy group is represented by -O(R102), and examples of the above-described aryl group may be applied to R102.
  • alkylthio group is represented by -S(R103), and examples of the above-described alkyl group may be applied to R103.
  • an arylthio group is represented by -S(R104), and examples of the above-described aryl group may be applied to R104.
  • the cycloalkyl group includes a monocyclic or polycyclic group having 3 to 60 carbon atoms, and may be further substituted with other substituents.
  • the polycyclic means a group in which a cycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a cycloalkyl group, but may also be another type of ring group, such as a heterocycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the number of carbon atoms in the cycloalkyl group may be 3 to 60, specifically 3 to 40, and more specifically 5 to 20.
  • the heterocycloalkyl group includes O, S, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic group having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a heterocycloalkyl group, but may also be another type of ring group, such as a cycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the heterocycloalkyl group may have 2 to 60, specifically 2 to 40, and more specifically 3 to 20 carbon atoms.
  • the aryl group includes a monocyclic or polycyclic group having 6 to 60 carbon atoms, and may be further substituted with other substituents.
  • the polycyclic means a group in which an aryl group is directly connected or condensed with another cyclic group.
  • the other ring group may be an aryl group, but may also be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, and the like.
  • the aryl group includes a spiro group.
  • the number of carbon atoms of the aryl group may be 6 to 60, specifically 6 to 40, and more specifically 6 to 25.
  • aryl group examples include a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a chrysenyl group, a phenanthrenyl group, a perylenyl group, a fluoranthenyl group, a triphenylenyl group, and a phenalenyl group.
  • a condensed ring group may be included, but is not limited thereto.
  • terphenyl group may be selected from the following structures.
  • the fluorenyl group may be substituted, and adjacent substituents may bond to each other to form a ring.
  • fluorenyl group when substituted, it may be of the following structural formula, but is not limited thereto.
  • the heteroaryl group includes S, O, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic group having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a heteroaryl group is directly connected or condensed with another ring group.
  • the other ring group may be a heteroaryl group, but may also be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, an aryl group, and the like.
  • the heteroaryl group may have 2 to 60 carbon atoms, specifically 2 to 40, and more specifically 3 to 25 carbon atoms.
  • heteroaryl group examples include a pyridine group, a pyrrole group, a pyrimidine group, a pyridazine group, a furan group, a thiophene group, an imidazole group, a pyrazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, Triazole group, furazine group, oxadiazole group, thiadiazole group, dithiazole group, tetrazolyl group, pyran group, thiopyran group, diazine group, oxazine group, thiazine group, dioxin group, triazine group, tetrazine group, quinoline group, Isoquinoline group, quinazoline group, isoquinazoline group, quinozoline group, naphthyridine group, acridine group, phenanthridine group, imidazole
  • the substituent when the substituent is a carbazole group, it means bonding to nitrogen or carbon of carbazole.
  • benzocarbazole group may have any one of the following structures.
  • the dibenzocarbazole group may have any one of the following structures.
  • the naphthobenzofuran group may have any one of the following structures.
  • the naphthobenzothiophene group may have any one of the following structures.
  • the silyl group is a substituent that includes Si and the Si atom is directly connected as a radical, and is represented by -Si(R107)(R108)(R109), R107 to R109 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; an alkyl group; alkenyl group; alkoxy group; cycloalkyl group; heterocycloalkyl group; aryl group; And it may be a substituent consisting of at least one of a heteroaryl group.
  • silyl group is (trimethylsilyl group), (triethylsilyl group), (t-butyldimethylsilyl group), (vinyldimethylsilyl group), (propyldimethylsilyl group), (triphenylsilyl group), (diphenylsilyl group), (phenylsilyl group), but is not limited thereto.
  • the phosphine oxide group includes, but is not limited to, a dimethylphosphine oxide group, a diphenylphosphine oxide group, and a dinaphthylphosphine oxide group.
  • the amine group is represented by -N(R112)(R113), R112 and R113 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; an alkyl group; alkenyl group; alkoxy group; cycloalkyl group; heterocycloalkyl group; aryl group; And it may be a substituent consisting of at least one of a heteroaryl group.
  • the amine group is -NH 2 ; monoalkylamine group; monoarylamine group; Monoheteroarylamine group; Dialkylamine group; Diaryl amine group; Diheteroarylamine group; an alkyl arylamine group; Alkylheteroarylamine group; And it may be selected from the group consisting of an arylheteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, a dibiphenylamine group, an anthracenylamine group, a 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluorene
  • Examples include a ylamine group, a phenyltriphenylenylamine group, a biphenyltriphenylenylamine group, and the like, but are not limited thereto.
  • heteroaryl group examples of the above-described heteroaryl group may be applied, except that the heteroarylene group is a divalent group.
  • adjacent refers to a substituent substituted on an atom directly connected to the atom on which the substituent is substituted, a substituent located sterically closest to the substituent, or another substituent substituted on the atom on which the substituent is substituted.
  • two substituents substituted at ortho positions in a benzene ring and two substituents substituted at the same carbon in an aliphatic ring may be interpreted as “adjacent” to each other.
  • Hydrocarbon rings and heterocycles that adjacent groups can form include aliphatic hydrocarbon rings, aromatic hydrocarbon rings, aliphatic heterocycles and aromatic heterocycles, except that the rings are not monovalent, respectively, the above-mentioned cycloalkyl groups, aryl Structures exemplified by groups, heterocycloalkyl groups and heteroaryl groups can be applied.
  • the compound represented by Formula 1 is provided.
  • a group not represented by a substituent may mean those that can be substituted with heavy hydrogen. That is, hydrogen; Alternatively, deuterium may represent a state in which each other is substitutable.
  • the deuterium content of the heterocyclic compound of Chemical Formula 1 may be greater than 0% and less than or equal to 100%.
  • the deuterium content of the heterocyclic compound of Formula 1 is 5% to 100%, 7% to 100%, 10% to 100%, 15% to 100%, or 20% to 100%.
  • a compound bonded with hydrogen and a compound substituted with deuterium show a difference in thermodynamic behavior. This is because the mass of the deuterium atom is twice as large as that of hydrogen, and due to the difference in mass of the atom, deuterium has a lower vibrational energy.
  • the bond length between carbon and deuterium is shorter than the bond between hydrogen and the dissociation energy used to break the bond is stronger. Because the van der Waals radius of deuterium is smaller than that of hydrogen, the extension amplitude of the carbon-deuterium bond is narrower.
  • deuterium-substituted compounds have a lower ground state energy than hydrogen-substituted compounds, and as the bond length between carbon-deuterium decreases, the molecular center volume (Molecular hardcore volume) is reduced.
  • electrical polarizability can be reduced, and intermolecular interactions can be made weaker to increase the volume of the device thin film.
  • This characteristic induces the effect of lowering the crystallinity by creating an amorphous state of the thin film. Therefore, substitution of deuterium in the heterocyclic compound of Chemical Formula 1 may be effective in improving heat resistance of an OLED device, thereby improving lifespan and driving characteristics.
  • the formula (1) May be represented by Formula 1-A-1 or Formula 1-A-2.
  • R111 and R112 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; halogen group; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • n1 is an integer from 0 to 5
  • m2 is an integer from 0 to 4
  • substituents in parentheses are the same as or different from each other
  • the formula (1) When k of is 0, it means that there is no coupling other than direct coupling. That is, it may be represented by a substituted or unsubstituted biphenyl group with R11.
  • in the structure of Formula 1 may be any one of the following structures.
  • Chemical Formula 1 may be divided into the following structures 1-A to 1-D.
  • the deuterium content of Structure 1-A below may be 0% to 100%.
  • the deuterium content of Structure 1-A below may be 0% to 70%.
  • the deuterium content of Structure 1-A below may be 0% to 50%.
  • the deuterium content of Structure 1-A below may be 0% to 30%.
  • the deuterium content of Structure 1-A below may be 0%.
  • the deuterium content of Structure 1-B below may be 0% to 100%.
  • the deuterium content of Structure 1-B below may be 0% to 70%.
  • the deuterium content of Structure 1-B below may be 0% to 50%.
  • the deuterium content of Structure 1-B below may be 0% to 30%.
  • the deuterium content of Structure 1-B below may be 0%.
  • deuterium of the following structure 1-C may be greater than 0% and less than 100%.
  • the deuterium content of Structure 1-C below may be 30% to 100%.
  • the deuterium content of Structure 1-C below may be 50% to 100%.
  • the deuterium content of Structure 1-C below may be 70% to 100%.
  • the deuterium content of Structure 1-C below may be 90% to 100%.
  • the deuterium content of Structure 1-C below may be 100%.
  • the deuterium content of Structure 1-D below may be 0% to 100%.
  • the deuterium content of Structure 1-D below may be 30% to 100%.
  • the deuterium content of Structure 1-D below may be 50% to 100%.
  • the deuterium content of Structure 1-D below may be 70% to 100%.
  • the deuterium content of Structure 1-D below may be 90% to 100%.
  • the deuterium content of Structure 1-D below may be 100%.
  • Chemical Formula 1 may be represented by any one of the following Chemical Formulas 1-1-1 to 1-1-3.
  • Z1 to Z3, L, l, X, R11 to R13, k, m, n, Ar11 and Ar12 are the same as those in Formula 1 above.
  • Z1 to Z3 are the same as or different from each other, and each independently N; or CR, and at least one may be N.
  • Z1 may be N and Z2 and Z3 may be CR.
  • Z2 may be N and Z1 and Z3 may be CR.
  • Z3 may be N and Z1 and Z2 may be CR.
  • Z1 and Z2 may be N and Z3 may be CR.
  • Z2 and Z3 may be N, and Z1 may be CR.
  • Z1 and Z3 may be N and Z2 may be CR.
  • Z1 to Z3 may all be N.
  • R is hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R is hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C3 to C40 cycloalkyl group; A substituted or unsubstituted C2 to C40 heterocycloalkyl group; A substituted or unsubstituted C6 to C40 aryl group; Or it may be a substituted or unsubstituted C2 to C40 heteroaryl group.
  • R is hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C3 to C20 cycloalkyl group; A substituted or unsubstituted C2 to C20 heterocycloalkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R is hydrogen; heavy hydrogen; C1 to C20 alkyl group; C3 to C20 cycloalkyl group; A C2 to C20 heterocycloalkyl group; C6 to C20 aryl group; Or it may be a C2 to C20 heteroaryl group.
  • R is hydrogen; heavy hydrogen; C1 to C10 alkyl group; C3 to C10 cycloalkyl group; A C2 to C10 heterocycloalkyl group; C6 to C10 aryl group; Or it may be a C2 to C10 heteroaryl group.
  • R is hydrogen; heavy hydrogen; C1 to C10 alkyl group; Or it may be a C6 to C10 aryl group.
  • R is hydrogen; or deuterium.
  • L is a direct bond; Or it may be a substituted or unsubstituted C6 to C60 arylene group.
  • L is a direct bond; Or it may be a substituted or unsubstituted C6 to C40 arylene group.
  • L is a direct bond; Or it may be a substituted or unsubstituted C6 to C20 arylene group.
  • L is a direct bond; A substituted or unsubstituted phenylene group; Or it may be a substituted or unsubstituted biphenylene group.
  • L is a direct bond; A phenylene group unsubstituted or substituted with heavy hydrogen or a phenyl group; Or it may be a biphenylene group unsubstituted or substituted with deuterium.
  • X is O; or S.
  • X may be O.
  • X may be S.
  • R11 to R13 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R11 to R13 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; cyano group; A substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C3 to C40 cycloalkyl group; A substituted or unsubstituted C2 to C40 heterocycloalkyl group; A substituted or unsubstituted C6 to C40 aryl group; Or it may be a substituted or unsubstituted C2 to C40 heteroaryl group.
  • R11 to R13 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; cyano group; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C3 to C20 cycloalkyl group; A substituted or unsubstituted C2 to C20 heterocycloalkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R11 to R13 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or it may be a substituted or unsubstituted C6 to C20 aryl group.
  • R11 to R13 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or it may be a substituted or unsubstituted phenyl group.
  • R11 to R13 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or it may be a phenyl group unsubstituted or substituted with heavy hydrogen.
  • Ar11 and Ar12 are the same as or different from each other, and each independently a substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • Ar11 and Ar12 are the same as or different from each other, and each independently a substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C3 to C40 cycloalkyl group; A substituted or unsubstituted C2 to C40 heterocycloalkyl group; A substituted or unsubstituted C6 to C40 aryl group; Or it may be a substituted or unsubstituted C2 to C40 heteroaryl group.
  • Ar11 and Ar12 are the same as or different from each other, and each independently a substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C3 to C20 cycloalkyl group; A substituted or unsubstituted C2 to C20 heterocycloalkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar11 and Ar12 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar11 and Ar12 are the same as or different from each other, and each independently a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted terphenyl group; A substituted or unsubstituted dibenzofuran group; Or it may be a substituted or unsubstituted dibenzothiophene group.
  • Ar11 and Ar12 are the same as or different from each other, and each independently represents a phenyl group unsubstituted or substituted with deuterium; A biphenyl group unsubstituted or substituted with heavy hydrogen; A terphenyl group unsubstituted or substituted with heavy hydrogen; A dibenzofuran group unsubstituted or substituted with a phenyl group; Or it may be a dibenzothiophene group unsubstituted or substituted with a phenyl group.
  • Formula 1 may be represented by any one of Formulas 1-1 to 1-3 below.
  • Z1 to Z3, L, l, R11 to R13, m, n, Ar11 and Ar12 are the same as those in Formula 1,
  • R111 and R112 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; halogen group; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • n1 is an integer of 0 to 5
  • m2 is an integer of 0 to 4
  • the substituents in parentheses are the same as or different from each other.
  • R111 and R112 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R111 and R112 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; cyano group; A substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C3 to C40 cycloalkyl group; A substituted or unsubstituted C2 to C40 heterocycloalkyl group; A substituted or unsubstituted C6 to C40 aryl group; Or it may be a substituted or unsubstituted C2 to C40 heteroaryl group.
  • R111 and R112 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; cyano group; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C3 to C20 cycloalkyl group; A substituted or unsubstituted C2 to C20 heterocycloalkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R111 and R112 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or it may be a substituted or unsubstituted C6 to C20 aryl group.
  • R111 and R112 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or it may be a substituted or unsubstituted phenyl group.
  • R111 and R112 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or it may be a phenyl group unsubstituted or substituted with heavy hydrogen.
  • Formula 1 provides a heterocyclic compound represented by any one of the following compounds.
  • the band gap can be finely controlled, and on the other hand, the properties at the interface between organic material layers can be improved.
  • the compound of Chemical Formula 1 has excellent thermal stability, and this thermal stability provides operational stability to the organic light emitting device and improves lifetime characteristics.
  • the first electrode a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the heterocyclic compound represented by Chemical Formula 1.
  • the first electrode a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes one heterocyclic compound represented by Chemical Formula 1.
  • a light emitting element is provided.
  • the first electrode a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes two or more heterocyclic compounds represented by Chemical Formula 1.
  • An organic light emitting device is provided.
  • the heterocyclic compound represented by Chemical Formula 1 may be used as a light emitting material of a light emitting layer of an organic light emitting device and may be used as a phosphorescent green light emitting material.
  • the heterocyclic compound represented by Chemical Formula 1 may be used as a light emitting material of a light emitting layer of an organic light emitting device and may be used as an n-host material.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound according to Chemical Formula 1 may be used as a material for the blue organic light emitting device.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for the green organic light emitting device.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for the red organic light emitting device.
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound according to Chemical Formula 1 may be used as a material for a light emitting layer of the blue organic light emitting device.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for a light emitting layer of the green organic light emitting device.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for a light emitting layer of the red organic light emitting device.
  • the organic light emitting device of the present invention may be manufactured by conventional organic light emitting device manufacturing methods and materials, except for forming one or more organic material layers using the aforementioned heterocyclic compound.
  • the heterocyclic compound may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as organic material layers.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • Ir(ppy) 3 may be used as a green phosphorescent dopant as the iridium-based dopant.
  • the organic material layer of the organic light emitting device includes a light emitting layer, and the light emitting layer provides an organic light emitting device including the heterocyclic compound.
  • the organic material layer of the organic light emitting device includes a light emitting layer, the light emitting layer includes a host material, and the host material provides an organic light emitting device including the heterocyclic compound.
  • the organic material layer may include an electron injection layer or an electron transport layer, and the electron injection layer or electron transport layer may include the heterocyclic compound.
  • the organic material layer may include an electron blocking layer or a hole blocking layer, and the electron blocking layer or hole blocking layer may include the heterocyclic compound.
  • the organic material layer may include an electron transport layer, a light emitting layer, or a hole blocking layer, and the electron transport layer, the light emitting layer, or the hole blocking layer may include the heterocyclic compound.
  • anode material materials having a relatively high work function may be used as the anode material, and transparent conductive oxides, metals, or conductive polymers may be used.
  • the anode material include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material Materials having a relatively low work function may be used as the cathode material, and metals, metal oxides, or conductive polymers may be used.
  • Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • a known hole injection material may be used.
  • a phthalocyanine compound such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429 or described in [Advanced Material, 6, p.677 (1994)] starburst amine derivatives, such as tris(4-carbazoyl-9-ylphenyl)amine (TCTA), 4,4',4"-tri[phenyl(m-tolyl)amino]triphenylamine (m- MTDATA), 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB), polyaniline/dodecylbenzenesulfonic acid, a soluble conductive polymer, or poly( 3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) (Poly(3,4-ethylenedioxythiophene)/Poly(4-st
  • hole transport material pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, and the like may be used, and low molecular weight or high molecular weight materials may also be used.
  • Examples of the electron transport material include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone.
  • Derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, etc. may be used, and high molecular materials as well as low molecular materials may be used.
  • LiF is typically used in the art, but the present application is not limited thereto.
  • a red, green or blue light emitting material may be used as the light emitting material, and if necessary, two or more light emitting materials may be mixed and used. At this time, two or more light emitting materials may be deposited and used as separate sources or may be pre-mixed and deposited as one source.
  • a fluorescent material can be used as a light emitting material, but it can also be used as a phosphorescent material.
  • As the light emitting material a material that emits light by combining holes and electrons respectively injected from the anode and the cathode may be used, but materials in which a host material and a dopant material are involved in light emission may also be used.
  • hosts of the same series may be mixed and used, or hosts of different series may be mixed and used.
  • two or more materials selected from among n-type host materials and p-type host materials may be selected and used as host materials for the light emitting layer.
  • An organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type depending on materials used.
  • the heterocyclic compound according to an exemplary embodiment of the present application may act on a principle similar to that applied to an organic light emitting device in an organic electronic device including an organic solar cell, an organic photoreceptor, and an organic transistor.
  • the organic light emitting device of the present invention may further include one or two or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer, and an electron injection layer.
  • 1 to 3 illustrate the stacking order of the electrode and the organic material layer of the organic light emitting device according to an exemplary embodiment of the present application.
  • the scope of the present application be limited by these drawings, and structures of organic light emitting devices known in the art may be applied to the present application as well.
  • an organic light emitting device in which an anode 200, an organic material layer 300, and a cathode 400 are sequentially stacked on a substrate 100 is shown.
  • an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting device according to FIG. 3 includes a hole injection layer 301, a hole transport layer 302, an emission layer 303, a hole blocking layer 304, an electron transport layer 305, and an electron injection layer 306.
  • a hole injection layer 301 a hole transport layer 302
  • an emission layer 303 a hole transport layer 302
  • a hole blocking layer 304 a hole blocking layer 304
  • an electron transport layer 305 a hole blocking layer 306.
  • the scope of the present application is not limited by such a laminated structure, and layers other than the light emitting layer may be omitted as necessary, and other necessary functional layers may be further added.
  • the organic material layer of the organic light emitting device including the heterocyclic compound represented by Formula 1 provides an organic light emitting device further comprising a heterocyclic compound represented by Formula 2 below.
  • R', R" and R"' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • r and s are integers from 0 to 7, and when r and s are 2 or more, the substituents in parentheses are the same as or different from each other,
  • Ar21 and Ar22 are the same as or different from each other, and each independently a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R21 and R22 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; C1 to C20 alkyl group; or a C6 to C20 aryl group; Or it may be a C2 to C20 heteroaryl group.
  • R21 and R22 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or a phenyl group.
  • R21 and R22 are the same as or different from each other, and each independently hydrogen; or deuterium.
  • R', R" and R"' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R', R" and R"' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; A substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C3 to C40 cycloalkyl group; A substituted or unsubstituted C6 to C40 aryl group; Or it may be a substituted or unsubstituted C2 to C40 heteroaryl group.
  • R', R" and R"' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C3 to C20 cycloalkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R', R" and R"' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; cyano group; C1 to C20 alkyl group; C3 to C20 cycloalkyl group; C6 to C20 aryl group; Or it may be a C2 to C20 heteroaryl group.
  • R', R" and R"' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or a phenyl group.
  • Ar21 and Ar22 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • Ar21 and Ar22 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C40 aryl group; Or it may be a substituted or unsubstituted C2 to C40 heteroaryl group.
  • Ar21 and Ar22 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar21 and Ar22 are the same as or different from each other, and each independently a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted terphenyl group; A substituted or unsubstituted triphenylene group; A substituted or unsubstituted dimethylfluorene group; A substituted or unsubstituted dibenzofuran group; Or it may be a substituted or unsubstituted dibenzothiophene group.
  • Ar21 and Ar22 are the same as or different from each other, and each independently represents a phenyl group unsubstituted or substituted with deuterium; a biphenyl group unsubstituted or substituted with deuterium; A terphenyl group unsubstituted or substituted with heavy hydrogen; A triphenylene group unsubstituted or substituted with heavy hydrogen; A dimethylfluorene group unsubstituted or substituted with heavy hydrogen; A dibenzofuran group unsubstituted or substituted with heavy hydrogen; Or it may be a dibenzothiophene group unsubstituted or substituted with deuterium.
  • the deuterium content of the heterocyclic compound represented by Chemical Formula 2 may be 0% or more and 100% or less.
  • the deuterium content of the heterocyclic compound represented by Chemical Formula 2 may be greater than 0% and less than or equal to 100%.
  • the deuterium content of the heterocyclic compound represented by Chemical Formula 2 may be 0% or 5% or more and 100% or less.
  • the deuterium content of the heterocyclic compound represented by Formula 2 may be 0% or 10% or more and 100% or less.
  • the deuterium content of the heterocyclic compound represented by Formula 2 may be 0% or 20% or more and 100% or less.
  • the deuterium content of the heterocyclic compound represented by Formula 2 may be 0% or 40% or more and 100% or less.
  • the deuterium content of the heterocyclic compound represented by Formula 2 may be 0% or 60% or more and 100% or less.
  • the deuterium content of the heterocyclic compound represented by Chemical Formula 2 may be 0% or 80% or more and 100% or less.
  • the deuterium content of the heterocyclic compound represented by Chemical Formula 2 may be 0% or 100%.
  • Formula 2 provides an organic light emitting device that is represented by any one of the following compounds.
  • the organic light emitting device further including the heterocyclic compound represented by Chemical Formula 2
  • the organic light emitting device including the heterocyclic compound represented by Chemical Formula 1 may be applied.
  • the heterocyclic compound represented by Chemical Formula 2 may be used as a light emitting material of a light emitting layer of an organic light emitting device and may be used as a phosphorescent green light emitting material.
  • the heterocyclic compound represented by Chemical Formula 2 may be used as a light emitting material of a light emitting layer of an organic light emitting device and may be used as a p-host material.
  • the organic material layer includes a light emitting layer, the light emitting layer includes a host material, and the host material includes a heterocyclic compound represented by Formula 1 and a heterocyclic compound represented by Formula 2. can do.
  • the organic material layer includes a light emitting layer, includes a heterocyclic compound represented by Formula 1 as an n-host material of the light emitting layer, and a heterocyclic compound represented by Formula 2 as a p-host material.
  • a heterocyclic compound represented by Formula 1 as an n-host material of the light emitting layer
  • a heterocyclic compound represented by Formula 2 as a p-host material.
  • composition for an organic material layer of an organic light emitting device including the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 is provided.
  • the weight ratio of the heterocyclic compound represented by Formula 1 in the composition to the heterocyclic compound represented by Formula 2 may be 1: 10 to 10: 1, 1: 8 to 8: 1, or 1: 5 to 5:1, or 1:2 to 2:1, but is not limited thereto.
  • the composition can be used when forming an organic material layer of an organic light emitting device, and can be more preferably used as a host material for the light emitting layer.
  • the composition is in the form of simple mixing of two or more compounds, and powder materials may be mixed before forming the organic material layer of the organic light emitting device, or liquid compounds may be mixed at an appropriate temperature or higher.
  • the composition is in a solid state below the melting point of each material, and can be maintained in a liquid state by adjusting the temperature.
  • composition may further include materials known in the art, such as solvents and additives.
  • one or more organic material layers are formed using the heterocyclic compound represented by Formula 1, or the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 2 Except for forming one or more organic material layers by using, it can be manufactured by conventional organic light emitting device manufacturing methods and materials.
  • the forming of the organic material layer is performed by pre-mixing one heterocyclic compound represented by Chemical Formula 1 and one heterocyclic compound represented by Chemical Formula 2 to perform thermal vacuum deposition. It provides a method for manufacturing an organic light emitting device that is formed using the method.
  • the pre-mixing means that the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 2 are first mixed and mixed in one park before depositing the heterocyclic compound represented by Formula 2 on the organic layer.
  • the premixed material may be referred to as a composition for an organic layer according to an exemplary embodiment of the present application.
  • Benzene-D6 (50g, 191.6eq.) CF 3 SO 3 D (11.5g, 25eq.) 50oC , 1h 0.68g, 66% 7 5-P3 (1g, 1eq.) DMSO-D6 (50g, 191.6eq.) CF 3 SO 3 H (11.5g, 25eq.) 50oC , 1h 0.5g, 48% 8 5-P3 (1g, 1eq.) DMF-D6 (50g, 185.1eq.) CF 3 SO 3 H (11.5, 25eq.) 50oC , 1h 0.5g, 48%
  • Compound 5-P2 was synthesized under the reaction conditions of Experimental Example 4 with the highest yield in Table 1 above.
  • the target compound in Table 2 was synthesized in the same manner as in Preparation Example 1, except that Intermediate 1 in Table 2 was used instead of 5-P3 and Intermediate 2 in Table 2 was used instead of Compound A.
  • the target compound in Table 3 was synthesized in the same manner as in Preparation Example 2, except that Intermediate 3 in Table 3 was used instead of Compound B.
  • 9H,9'H-3,3'-bicarbazole (10 g, 0.030 mol), 4-bromo-1,1' -Biphenyl (4-bromo-1,1'-biphenyl) (Compound E) (7.26g, 0.030mol), CuI (0.57g, 0.003mol), trans-1,2-diaminocyclohexane (Trans-1 ,2-diaminocyclohexane) (0.34g, 0.003mol) and K 3 PO 4 (12.74g, 0.06mol) were dissolved in 100mL of 1,4-dioxane, and then refluxed at 125°C for 8 hours. .
  • the target compound can be directly synthesized by adding 2 equivalents of compound E in 1) of Preparation Example 3. That is, when compound E and compound E' are the same, 2) of Preparation Example 3 may be omitted.
  • the target compound in Table 7 was synthesized in the same manner as in Preparation Example 6, except that Intermediate 1 in Table 7 was used instead of 251-P3.
  • a glass substrate coated with ITO thin film to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic cleaning was performed with solvents such as acetone, methanol, and isopropyl alcohol, and after drying, UVO treatment was performed for 5 minutes using UV in a UV cleaner. Thereafter, the substrate was transferred to a plasma cleaner (PT), plasma treated to remove the ITO work function and residual film in a vacuum state, and transferred to a thermal evaporation equipment for organic deposition.
  • PT plasma cleaner
  • a light emitting layer was thermally vacuum deposited thereon as follows.
  • the light emitting layer used a heterocyclic compound of Formula 1 as a host, Ir(ppy) 3 (tris(2-phenylpyridine)iridium) as a green phosphorescent dopant, and 7% by weight of Ir(ppy) 3 was doped into the host. and deposited at 360 ⁇ .
  • the organic light emitting devices of Comparative Examples 1 to 8 were prepared in the same manner as in Experimental Example, except that the following comparative compounds were used as hosts of the light emitting layer.
  • the electroluminescence (EL) characteristics of the organic electroluminescent device manufactured as described above were measured with McScience's M7000, and the standard luminance was 6,000 cd through the life measurement equipment (M6000) manufactured by McScience with the measurement result. /m 2 , T 90 was measured.
  • Example 1 5 4.01 62.3 (0.243, 0.714) 103
  • Example 2 11 4.07 61.9 (0.241, 0.711) 106
  • Example 3 14 4.08 62.5 (0.241, 0.714) 103
  • Example 4 15 4.10 63.3 (0.241, 0.715) 107
  • Example 5 19 4.06 62.1 (0.231, 0.712) 102
  • Example 6 21 4.09 62.6 (0.251, 0.714)
  • Example 7 23 4.18 61.0 (0.241, 0.711)
  • Example 8 27 4.19 61.2 (0.251, 0.714) 99
  • Example 9 37 (red host) 4.28 62.1 (0.241, 0.714) 90
  • Example 10 38 4.15 63.5 (0.242, 0.713) 108
  • Example 11 46 4.06 63.0 (0.248, 0.715) 113
  • Example 12 47 4.11 62.4 (0.251, 0.714) 118
  • Example 13 62 4.19 61.1 (0.251, 0.714)
  • deuterium is substituted for heterocyclic carbazole.
  • Molecules are thermally damaged by the movement of electrons when the organic light emitting device is driven.
  • the heterocyclic structure containing carbazole is highly likely to have a defect in nitrogen, which is the most unstable site having a pentagonal ring.
  • the compound of the present invention substitutes deuterium, which has a higher molecular weight than hydrogen, in heterocyclic carbazole, thereby reducing the change in vibrational frequency, lowering the energy of the molecule, and developing a compound that increases the stability of the molecule accordingly.
  • deuterium which has a higher molecular weight than hydrogen
  • heterocyclic carbazole thereby reducing the change in vibrational frequency, lowering the energy of the molecule, and developing a compound that increases the stability of the molecule accordingly.
  • the single bond dissociation energy of carbon and deuterium is higher than that of carbon and hydrogen, it can be seen that the device life is improved as the thermal stability of the molecule increases.
  • FIG. 8 shows the hole mobility (HOD) for reference compounds Q, U, W and compound 101
  • Figure 9 shows the electron mobility (EOD) measurement results for reference compounds Q, U, W and compound 101.
  • the reference compound Q it is a compound in which deuterium is not substituted. It can be seen that EOD appears faster than HOD when deuterium is not substituted.
  • the recombination zone (RZ) in the OLED device is located close to the hole transport layer (HTL) rather than located in the center of the light emitting layer. (See FIG. 4) This can be confirmed in the RZ Test experiment of FIG. 4.
  • the recombination zone (RZ) confirmation experiment was produced by the same organic light emitting device manufacturing method as in Experimental Example 1. The difference is the doping position of the green phosphorescent dopant in the light emitting layer.
  • #1 was doped with a green phosphorescent dopant over the entire light emitting layer and was used as a comparison group.
  • #2 only 120 ⁇ of the colored portion (located close to the hole transport layer) was doped and the remaining 240 ⁇ was deposited only with the host.
  • #3 only 120 ⁇ was doped on the painted portion (located in the center of the light emitting layer), and only the host was deposited on the remaining unpainted portion.
  • #4 only 120 ⁇ was doped on the painted portion (located close to the hole blocking layer), and only the host was deposited on the remaining unpainted portion.
  • reference compound W In the case of reference compound W, compared to reference compound Q, driving voltage and luminous efficiency were similar, but lifespan was excellent. In the case of the reference compound W in which all deuterium substitutions were made in the reference compound Q, both electrons and holes are accelerated, which is interpreted as a result in which RZ does not change.
  • # 3 (located in the center of the light emitting layer) shows the highest efficiency and lifetime.
  • deuterium is substituted on the heterocyclic side responsible for HOMO. Accordingly, it was confirmed that the movement of holes was faster than that of the reference compound Q in which deuterium was not substituted, and the movement of electrons and holes was balanced so that RZ was widely located in the center of the EML layer.
  • Recombination Zone (RZ) test results and Hole Only Device (HOD) and Electron Only Device (EOD) test results for the reference compounds Q, U, and W and Compound 101 can be confirmed in FIGS. 4 to 9 .
  • Hole Only Device (HOD) test results for reference compounds S, R, Q, and compound 101 can be seen in FIG. 10.
  • a glass substrate coated with ITO thin film to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, it was ultrasonically washed with solvents such as acetone, methanol, and isopropyl alcohol, dried, and then treated with UVO for 5 minutes using UV in a UV cleaner. Thereafter, the substrate was transferred to a plasma cleaner (PT), plasma treated to remove the ITO work function and residual film in a vacuum state, and then transferred to a thermal evaporation equipment for organic deposition.
  • PT plasma cleaner
  • a light emitting layer was thermally vacuum deposited thereon as follows.
  • the light emitting layer was pre-mixed with one heterocyclic compound of Formula 1 and one compound of Formula 2 as a host, and after pre-mixing, it was deposited at 360 ⁇ in one park, and the green phosphorescent dopant was Ir(ppy) 3 by 7 weight of the deposition thickness of the light emitting layer. % doped and deposited. Thereafter, 60 ⁇ of BCP was deposited as a hole blocking layer, and 200 ⁇ of Alq 3 was deposited thereon as an electron transport layer.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer, and then an aluminum (Al) cathode is deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode.
  • An electroluminescent device was manufactured.
  • the electroluminescence (EL) characteristics of the organic electroluminescent device manufactured as described above were measured with McScience's M7000, and with the measurement result, the standard luminance was 6,000 cd through life measurement equipment (M6000) manufactured by McScience. /m 2 , T 90 was measured.
  • Example 45 101:2-74 1:1 3.80 66.3 (0.248, 0.637) 155
  • Example 46 1:2 3.87 65.7 (0.269, 0.611) 160
  • Example 47 1:3 3.93 65.1 (0.251, 0.693) 165
  • Example 48 101:2-51 1:1 3.81 66.4 (0.248, 0.637) 290
  • Example 49 1:2 3.87 65.8 (0.269, 0.611) 297
  • Example 50 1:3 3.94 65.1 (0.251, 0.693) 303
  • Example 51 14:2-76 1:1 3.82 66.7 (0.245, 0.677) 151
  • Example 52 1:2 3.86 65.8 (0.258, 0.647) 155
  • Example 53 1:3 3.93 64.8 (0.266, 0.645) 160
  • Example 54 14:2-53 1:1 3.81 66.8 (0.245, 0.677) 295
  • Example 55 1:2 3.86 65.8 (0.258, 0.647) 300
  • Example 56 1:3 3.92 6
  • the exciplex phenomenon is a phenomenon in which energy of the size of the HOMO level of the donor (p-host) and the LUMO level of the acceptor (n-host) is released through electron exchange between two molecules.
  • RISC Reverse Intersystem Crossing
  • a donor (p-host) with good hole transport ability and an acceptor (n-host) with good electron transport capability are used as the host of the light emitting layer, holes are injected into the p-host and electrons are injected into the n-host. can be lowered, thereby helping to improve the lifespan.
  • RISC Reverse Intersystem Crossing
  • the heterocyclic compound of Formula 1 and the compound of Formula 2 of the present invention are simultaneously used as a host of the light emitting layer, it can be confirmed that the driving voltage, luminous efficiency and lifetime are remarkably excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물을 제공한다.

Description

헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
본 출원은 2021년 12월 10일 한국특허청에 제출된 한국 특허 출원 제10-2021-0176360호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물에 관한 것이다.
전계 발광 소자는 자체 발광형 표시 소자의 일종으로서, 시야각이 넓고 콘트라스트가 우수할 뿐만 아니라 응답 속도가 빠르다는 장점을 가지고 있다.
유기 발광 소자는 2개의 전극 사이에 유기 박막을 배치시킨 구조로 되어 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면 2개의 전극으로부터 주입된 전자와 정공이 유기 박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기 박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기 박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도 유기 박막의 재료로서, 정공 주입, 정공 수송, 전자 차단, 정공 차단, 전자 수송, 전자 주입 등의 기능을 수행할 수 있는 화합물이 사용될 수도 있다.
유기 발광 소자의 성능, 효율 및 수명을 향상시키기 위하여, 유기 박막의 재료의 개발이 지속적으로 요구되고 있다.
<선행기술문헌>
(특허문헌 1) 미국 특허 제4,356,429호
본 발명은 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물을 제공하고자 한다.
본 출원의 일 실시상태에 있어서, 하기 화학식 1로 표시되는 헤테로고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2022016716-appb-img-000001
상기 화학식 1에 있어서,
Z1 내지 Z3는 서로 동일하거나 상이하고, 각각 독립적으로 N; 또는 CR이고, 적어도 하나는 N이며,
R은 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
L은 직접결합; 또는 치환 또는 비치환된 C6 내지 C60의 아릴렌기이며,
l은 0 내지 3의 정수이고, l이 2 이상인 경우 L은 서로 동일하거나 상이하며,
X는 O; 또는 S이고,
R11 내지 R13는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
k는 0 또는 1이며,
k가 0인 경우 직접 결합이 아닌, 결합이 존재하지 않는 것을 의미하며,
k가 0인 경우 m은 0 내지 9의 정수이고, k가 1인 경우 m은 0 내지 7의 정수이며, m이 2 이상인 경우 R11은 서로 동일하거나 상이하고,
n은 0 내지 6의 정수이고, n이 2 이상인 경우 R12는 서로 동일하거나 상이하고,
Ar11 및 Ar12는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 화학식 1의 구조 중
Figure PCTKR2022016716-appb-img-000002
의 중수소 함량은 0% 초과 100% 이하이고,
상기
Figure PCTKR2022016716-appb-img-000003
는 상기 화학식 1과의 결합 위치이다.
또한, 본 출원의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
또한, 본 출원의 일 실시상태에 있어서, 상기 유기물층은 하기 화학식 2로 표시되는 헤테로고리 화합물을 더 포함하는 것인 유기 발광 소자를 제공한다.
[화학식 2]
Figure PCTKR2022016716-appb-img-000004
상기 화학식 2에 있어서,
R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -SiR'R"R"'; -P(=O)R'R"; 및 치환 또는 비치환된 C1 내지 C60의 알킬기, 치환 또는 비치환된 C6 내지 C60의 아릴기 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기로 치환 또는 비치환된 아민기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 지방족 또는 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 지방족 또는 방향족 헤테로 고리를 형성하고,
R', R" 및 R"'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
r 및 s는 0 내지 7의 정수이고, r 및 s가 2 이상인 경우, 괄호 내의 치환기는 서로 동일하거나 상이하고,
Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
마지막으로, 본 출원의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물; 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 유기 발광 소자의 유기물층용 조성물을 제공한다.
본 명세서에 기재된 헤테로고리 화합물은 유기 발광 소자의 유기물층 재료로 사용할 수 있다. 즉, 유기 발광 소자에서 발광재료, 정공주입재료, 정공수송재료, 전자수송재료, 전자주입재료 등의 역할을 할 수 있다. 특히, 유기 발광 소자의 발광층 재료로 사용될 수 있다.
구체적으로, 상기 화학식 1로 표시되는 헤테로고리 화합물이 1종 또는 2종 이상 사용될 수 있고, 발광층의 재료로서 사용될 수 있다. 특히, 다양한 치환기를 도입하여 밴드갭(bandgap)을 조절함으로써 유기 발광 소자의 발광층의 n-호스트 재료로서 사용될 수 있다. 특히, 중수소로 치환된 경우 유기 발광 소자의 구동 전압을 낮추고, 광 효율을 향상시키며, 소자의 수명 특성을 향상시킬 수 있다.
또한, 상기 화학식 1로 표시되는 헤테로고리 화합물은 상기 화학식 2로 표시되는 헤테로고리 화합물을 발광층의 p-호스트 재료로서 더 포함하여 2종의 조합으로 유기 발광 소자의 유기물층에 적용할 수 있다.
도 1 내지 도 3은 각각 본 출원의 일 실시상태에 따른 유기 발광 소자의 적층 구조를 개략적으로 나타낸 것이다.
도 4는 참고 화합물 Q의 Recombination Zone을 측정한 결과이며, 도 5는 참고화합물 U의 Recombination Zone을 측정한 결과이고, 도 6은 참고 화합물 W의 Recombination Zone을 측정한 결과이며, 도 7은 화합물 101의 Recombination Zone을 측정한 결과이다.
도 8는 화합물 101, 참고 화합물 W, Q 및 U의 정공이동도(HOD(HOLE ONLY DEVICE)를 측정한 결과이고, 도 9는 화합물 101, 참고 화합물 W, Q 및 U의 전자이동도(EOD(ELECTRON ONLY DEVICE)를 측정한 결과이고, 도 10은 화합물 101, 참고 화합물 S, Q 및 R의 정공이동도(HOD(HOLE ONLY DEVICE)를 측정한 결과이다.
도 11은 화합물 101의 HOMO 분포도를 나타낸 것이고, 도 12는 화합물 101의 LUMO 분포도를 나타낸 것이다.
<부호의 설명>
100: 기판
200: 양극
300: 유기물층
301: 정공 주입층
302: 정공 수송층
303: 발광층
304: 정공 저지층
305: 전자 수송층
306: 전자 주입층
400: 음극
이하, 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 화학식의
Figure PCTKR2022016716-appb-img-000005
는 결합되는 위치를 의미한다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치, 즉 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, "치환 또는 비치환"이란 중수소; 할로겐기; -CN; C1 내지 C60의 알킬기; C2 내지 C60의 알케닐기; C2 내지 C60의 알키닐기; C1 내지 C60의 할로알킬기; C1 내지 C60의 알콕시기; C6 내지 C60의 아릴옥시기; C1 내지 C60의 알킬티오기; C6 내지 C60의 아릴티오기; C1 내지 C60의 알킬술폭시기; C6 내지 C60의 아릴술폭시기; C3 내지 C60의 시클로알킬기; C2 내지 C60의 헤테로시클로알킬기; C6 내지 C60의 아릴기; C2 내지 C60의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택된 1 이상의 치환기, 또는 상기 예시된 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미하고, R, R' 및 R"은 각각 독립적으로, 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 헤테로시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기이다.
본 명세서에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 탄소 원자에 수소 원자가 결합된 것을 의미한다. 다만, 중수소(2H, Deuterium)는 수소의 동위원소이므로, 일부 수소 원자는 중수소일 수 있다.
본 출원의 일 실시상태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 치환기로 올 수 있는 위치가 모두 수소 또는 중수소인 것을 의미할 수 있다. 즉, 중수소의 경우 수소의 동위원소로, 일부의 수소 원자는 동위원소인 중수소일 수 있으며, 이 때 중수소의 함량은 0% 내지 100%일 수 있다.
본 출원의 일 실시상태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"에 있어, 중수소의 함량이 0%, 수소의 함량이 100%, 치환기는 모두 수소 등 중수소를 명시적으로 배제하지 않는 경우에는 수소와 중수소는 화합물에 있어 혼재되어 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 중수소는 수소의 동위원소(isotope)중 하나로 양성자(proton) 1개와 중성자(neutron) 1개로 이루어진 중양성자(deuteron)를 원자핵(nucleus)으로 가지는 원소로서, 수소-2로 표현될 수 있으며, 원소기호는 D 또는 2H로 쓸 수도 있다.
본 출원의 일 실시상태에 있어서, 동위원소는 원자 번호(atomic number, Z)는 같지만, 질량수(mass number, A)가 다른 원자를 의미하는 동위원소는 같은 수의 양성자(proton)를 갖지만, 중성자(neutron)의 수가 다른 원소로도 해석할 수 있다.
본 출원의 일 실시상태에 있어서, 특정 치환기의 함량 T%의 의미는 기본이 되는 화합물이 가질 수 있는 치환기의 총 개수를 T1으로 정의하고, 그 중 특정의 치환기의 개수를 T2로 정의하는 경우 T2/T1×100 = T%로 정의할 수 있다.
즉, 일 예시에 있어서,
Figure PCTKR2022016716-appb-img-000006
로 표시되는 페닐기에 있어 중수소의 함량 20%라는 것은 페닐기가 가질 수 있는 치환기의 총 개수는 5(식 중 T1)개이고, 그 중 중수소의 개수가 1(식 중 T2)인 경우 20%로 표시될 수 있다. 즉, 페닐기에 있어 중수소의 함량이 20%인 것은 하기 구조식으로 표시될 수 있다.
Figure PCTKR2022016716-appb-img-000007
또한, 본 출원의 일 실시상태에 있어서, "중수소의 함량이 0%인 페닐기"의 경우 중수소 원자가 포함되지 않은, 즉 수소 원자 5개를 갖는 페닐기를 의미할 수 있다.
본 명세서에 있어서, 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다.
본 명세서에 있어서, 알킬기는 탄소수 1 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알킬기의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 알케닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알케닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다. 구체적인 예로는 비닐기, 1-프로페닐기, 이소프로페닐기, 1-부테닐기, 2-부테닐기, 3-부테닐기, 1-펜테닐기, 2-펜테닐기, 3-펜테닐기, 3-메틸-1-부테닐기, 1,3-부타디에닐기, 알릴기, 1-페닐비닐-1-일기, 2-페닐비닐-1-일기, 2,2-디페닐비닐-1-일기, 2-페닐-2-(나프틸-1-일)비닐-1-일기, 2,2-비스(디페닐-1-일)비닐-1-일기, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 알키닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알키닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 할로알킬기는 할로겐기로 치환된 알킬기를 의미하며, 구체적인 예로는, -CF3, -CF2CF3 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 알콕시기는 -O(R101)로 표시되고, R101은 전술한 알킬기의 예시가 적용될 수 있다.
본 명세서에 있어서, 아릴옥시기는 -O(R102)로 표시되고, R102는 전술한 아릴기의 예시가 적용될 수 있다.
본 명세서에 있어서, 알킬티오기는 -S(R103)로 표시되고, R103은 전술한 알킬기의 예시가 적용될 수 있다.
본 명세서에 있어서, 아릴티오기는 -S(R104)로 표시되고, R104는 전술한 아릴기의 예시가 적용될 수 있다.
본 명세서에 있어서, 알킬술폭시기는 -S(=0)2(R105)로 표시되고, R105는 전술한 알킬기의 예시가 적용될 수 있다.
본 명세서에 있어서, 아릴술폭시기는 -S(=0)2(R106)로 표시되고, R106은 전술한 아릴기의 예시가 적용될 수 있다.
본 명세서에 있어서, 시클로알킬기는 탄소수 3 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 시클로알킬기의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다. 구체적으로, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 3-메틸시클로펜틸기, 2,3-디메틸시클로펜틸기, 시클로헥실기, 3-메틸시클로헥실기, 4-메틸시클로헥실기, 2,3-디메틸시클로헥실기, 3,4,5-트리메틸시클로헥실기, 4-tert-부틸시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 헤테로시클로알킬기는 헤테로 원자로서 O, S, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 헤테로시클로알킬기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다.
본 명세서에 있어서, 아릴기는 탄소수 6 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 헤테로아릴기 등일 수도 있다. 상기 아릴기는 스피로기를 포함한다. 상기 아릴기의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴기의 구체적인 예로는 페닐기, 비페닐기, 터페닐기(terphenyl), 나프틸기, 안트릴기, 크라이세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 2,3-디히드로-1H-인데닐기, 이들의 축합고리기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 터페닐기는 하기 구조 중에서 선택될 수 있다.
Figure PCTKR2022016716-appb-img-000008
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우, 하기 구조식 등이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022016716-appb-img-000009
본 명세서에 있어서, 헤테로아릴기는 헤테로 원자로서 S, O, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 상기 다환이란 헤테로아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 아릴기 등일 수도 있다. 상기 헤테로아릴기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로아릴기의 구체적인 예로는 피리딘기, 피롤기, 피리미딘기, 피리다진기, 퓨란기, 티오펜기, 이미다졸기, 피라졸기, 옥사졸기, 이속사졸기, 티아졸기, 이소티아졸기, 트리아졸기, 퓨라잔기, 옥사디아졸기, 티아디아졸기, 디티아졸기, 테트라졸릴기, 피란기, 티오피란기, 디아진기, 옥사진기, 티아진기, 다이옥신기, 트리아진기, 테트라진기, 퀴놀린기, 이소퀴놀린기, 퀴나졸린기, 이소퀴나졸린기, 퀴노졸린기, 나프티리딘기, 아크리딘기, 페난트리딘기, 이미다조피리딘기, 디아자나프탈렌기, 트리아자인덴기, 인돌기, 인돌리진기, 벤조티아졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티오펜기, 벤조퓨란기, 디벤조티오펜기, 디벤조퓨란기, 카바졸기, 벤조카바졸기, 디벤조카바졸기, 페나진기, 디벤조실롤기, 스피로비(디벤조실롤), 디히드로페나진기, 페녹사진기, 페난트리딘기, 티에닐기, 인돌로[2,3-a]카바졸기, 인돌로[2,3-b]카바졸기, 인돌린기, 10,11-디히드로-디벤조[b,f]아제핀기, 9,10-디히드로아크리딘기, 페난트라진기, 페노티아티아진기, 프탈라진기, 페난트롤린기, 나프토벤조퓨란기, 나프토벤조티오펜기, 벤조[c][1,2,5]티아디아졸기, 2,3-디히드로벤조[b]티오펜기, 2,3-디히드로벤조퓨란기, 5,10-디히드로디벤조[b,e][1,4]아자실린기, 피라졸로[1,5-c]퀴나졸린기, 피리도[1,2-b]인다졸기, 피리도[1,2-a]이미다조[1,2-e]인돌린기, 5,11-디히드로인데노[1,2-b]카바졸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 치환기가 카바졸기인 경우, 카바졸의 질소 또는 탄소와 결합하는 것을 의미한다.
본 명세서에 있어서, 카바졸기가 치환될 경우, 카바졸의 질소 또는 탄소에 추가의 치환기가 치환될 수 있다.
본 명세서에 있어서, 벤조카바졸기는 하기 구조 중 어느 하나일 수 있다.
Figure PCTKR2022016716-appb-img-000010
본 명세서에 있어서, 디벤조카바졸기는 하기 구조 중 어느 하나일 수 있다.
Figure PCTKR2022016716-appb-img-000011
본 명세서에 있어서, 나프토벤조퓨란기는 하기 구조 중 어느 하나일 수 있다.
Figure PCTKR2022016716-appb-img-000012
본 명세서에 있어서, 나프토벤조티오펜기는 하기 구조 중 어느 하나일 수 있다.
Figure PCTKR2022016716-appb-img-000013
본 명세서에 있어서, 실릴기는 Si를 포함하고 상기 Si 원자가 라디칼로서 직접 연결되는 치환기이며, -Si(R107)(R108)(R109)로 표시되고, R107 내지 R109는 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 헤테로시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기일 수 있다. 실릴기의 구체적인 예로는
Figure PCTKR2022016716-appb-img-000014
(트리메틸실릴기),
Figure PCTKR2022016716-appb-img-000015
(트리에틸실릴기),
Figure PCTKR2022016716-appb-img-000016
(t-부틸디메틸실릴기),
Figure PCTKR2022016716-appb-img-000017
(비닐디메틸실릴기),
Figure PCTKR2022016716-appb-img-000018
(프로필디메틸실릴기),
Figure PCTKR2022016716-appb-img-000019
(트리페닐실릴기),
Figure PCTKR2022016716-appb-img-000020
(디페닐실릴기),
Figure PCTKR2022016716-appb-img-000021
(페닐실릴기) 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 포스핀옥사이드기는 -P(=O)(R110)(R111)로 표시되고, R110 및 R111은 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 헤테로시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기일 수 있다. 구체적으로 알킬기 또는 아릴기로 치환될 수 있으며, 상기 알킬기 및 아릴기는 전술한 예시가 적용될 수 있다. 예컨대, 포스핀옥사이드기는 디메틸포스핀옥사이드기, 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 -N(R112)(R113)로 표시되고, R112 및 R113은 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 헤테로시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기일 수 있다. 상기 아민기는 -NH2; 모노알킬아민기; 모노아릴아민기; 모노헤테로아릴아민기; 디알킬아민기; 디아릴아민기; 디헤테로아릴아민기; 알킬아릴아민기; 알킬헤테로아릴아민기; 및 아릴헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 상기 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 디비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기, 비페닐나프틸아민기, 페닐비페닐아민기, 비페닐플루오레닐아민기, 페닐트리페닐레닐아민기, 비페닐트리페닐레닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 2가기인 것을 제외하고, 전술한 아릴기의 예시가 적용될 수 있다.
본 명세서에 있어서, 헤테로아릴렌기는 2가기인 것을 제외하고, 전술한 헤테로아릴기의 예시가 적용될 수 있다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한"기로 해석될 수 있다.
인접한 기들이 형성할 수 있는 탄화수소고리 및 헤테로고리는 지방족 탄화수소고리, 방향족 탄화수소고리, 지방족 헤테로고리 및 방향족 헤테로고리를 포함하고, 상기 고리들은 1가기가 아닌 것을 제외하고는 각각 전술한 시클로알킬기, 아릴기, 헤테로시클로알킬기 및 헤테로아릴기로 예시된 구조들이 적용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 화합물을 제공한다.
본 출원의 일 실시상태에 있어서, 치환기로 표시되지 않은 기; 또는 수소로 표시되는 기는 모두 중수소로 치환 가능한 것을 의미할 수 있다. 즉, 수소; 또는 중수소는 서로 치환 가능한 상태임을 나타낼 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 헤테로고리 화합물의 중수소 함량은 0% 초과 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 1의 헤테로고리 화합물의 중수소 함량은 5% 내지 100%, 7% 내지 100%, 10% 내지 100%, 15% 내지 100%, 또는 20% 내지 100%일 수 있다.
일반적으로 수소로 결합된 화합물과 중수소로 치환된 화합물의 경우 열역학적인 거동에서 차이를 보인다. 이러한 이유는 중수소 원자의 질량이 수소에 비해 2배 크기 때문인데, 원자의 질량 차이로 인해 중수소의 경우 더 낮은 진동 에너지를 갖는 특징이 있다. 또한, 탄소와 중수소의 결합 길이는 수소와의 결합에 비해 더 짧고 결합을 끊는데 사용되는 해리 에너지(Dissociation energy)도 더 강하다. 왜냐하면 중수소의 반데르발스 반경이 수소보다 작아 탄소-중수소 사이 결합의 신장 진폭이 더 좁아지기 때문이다.
본원 발명의 화학식 1의 헤테로고리 화합물 중 중수소 치환된 화합물은 수소 치환된 화합물에 비해 바닥상태의 에너지가 더 낮아지는 특성이 있고, 탄소-중수소 사이의 결합 길이가 짧아질수록 분자 중심의 부피(Molecular hardcore volume)는 줄어든다. 이로 인해 전기적 극성화도(Electroical polarizability)를 감소시킬 수 있으며, 분자간 상호작용(Intermolecular interaction)을 보다 약하게 만들어 소자 박막의 부피를 증가시킬 수 있다. 이러한 특성은 박막의 비결정성(Amorphous) 상태를 만들어 결정화도를 낮추는 효과를 유도한다. 따라서 화학식 1의 헤테로고리 화합물 중 중수소 치환은 OLED 소자 내열성 향상에 효과적일 수 있으며, 이로 인해 수명과 구동 특성이 개선될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의
Figure PCTKR2022016716-appb-img-000022
는 하기 화학식 1-A-1 또는 화학식 1-A-2로 표시될 수 있다.
[화학식 1-A-1]
Figure PCTKR2022016716-appb-img-000023
[화학식 1-A-2]
Figure PCTKR2022016716-appb-img-000024
상기 화학식 1-A-1 및 화학식 1-A-2에 있어서,
R111 및 R112은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
m1은 0 내지 5의 정수이고, m2는 0 내지 4의 정수이며, m1 및 m2가 각각 2 이상인 경우, 괄호 내의 치환기는 서로 동일하거나 상이하고,
X, R11 및 m의 정의는 상기 화학식 1에서의 정의와 동일하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의
Figure PCTKR2022016716-appb-img-000025
의 k가 0인 경우는 직접결합이 아닌, 결합이 존재하지 않는 것을 의미한다. 즉, R11으로 치환 또는 비치환된 비페닐기로 표시될 수 있다.
본 출원의 일 실시상태에 있어서, k가 0인 경우 상기 화학식 1의
Figure PCTKR2022016716-appb-img-000026
는 상기 화학식 1-A-1로 표시될 수 있다.
본 출원의 일 실시상태에 있어서, k가 1인 경우 상기 화학식 1의
Figure PCTKR2022016716-appb-img-000027
는 상기 화학식 1-A-2로 표시될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 구조 중
Figure PCTKR2022016716-appb-img-000028
는 하기 구조 중의 어느 하나 일 수 있다.
Figure PCTKR2022016716-appb-img-000029
상기 구조식에 있어서,
각 치환기의 정의는 상기 화학식 1에서의 정의와 동일하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 구조 1-A 내지 1-D로 나누어 표시될 수 있다.
[구조 1-A]
Figure PCTKR2022016716-appb-img-000030
[구조 1-B]
Figure PCTKR2022016716-appb-img-000031
[구조 1-C]
Figure PCTKR2022016716-appb-img-000032
[구조 1-D]
Figure PCTKR2022016716-appb-img-000033
상기 구조 1-A 내지 1-D에 있어서,
Z1 내지 Z3, L, l, X, R11 내지 R13, k, m, n, Ar11 및 Ar12의 정의는 상기 화학식 1에서의 정의와 동일하고,
Figure PCTKR2022016716-appb-img-000034
,
Figure PCTKR2022016716-appb-img-000035
Figure PCTKR2022016716-appb-img-000036
는 각각 서로 동일한 것끼리 연결되는 결합 위치이다.
또 다른 일 실시상태에 있어서, 하기 구조 1-A의 중수소 함량은 0% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-A의 중수소 함량은 0% 내지 70%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-A의 중수소 함량은 0% 내지 50%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-A의 중수소 함량은 0% 내지 30%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-A의 중수소 함량은 0%일 수 있다.
본 출원의 일 실시상태에 있어서, 하기 구조 1-B의 중수소 함량은 0% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-B의 중수소 함량은 0% 내지 70%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-B의 중수소 함량은 0% 내지 50%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-B의 중수소 함량은 0% 내지 30%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-B의 중수소 함량은 0%일 수 있다.
본 출원의 일 실시상태에 있어서, 하기 구조 1-C의 중수소 0% 초과 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-C의 중수소 함량은 30% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-C의 중수소 함량은 50% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-C의 중수소 함량은 70% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-C의 중수소 함량은 90% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-C의 중수소 함량은 100%일 수 있다.
본 출원의 일 실시상태에 있어서, 하기 구조 1-D의 중수소 함량은 0% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-D의 중수소 함량은 30% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-D의 중수소 함량은 50% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-D의 중수소 함량은 70% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-D의 중수소 함량은 90% 내지 100%일 수 있다.
또 다른 일 실시상태에 있어서, 하기 구조 1-D의 중수소 함량은 100%일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1-1 내지 1-1-3 중 어느 하나로 표시될 수 있다.
[화학식 1-1-1]
Figure PCTKR2022016716-appb-img-000037
[화학식 1-1-2]
Figure PCTKR2022016716-appb-img-000038
[화학식 1-1-3]
Figure PCTKR2022016716-appb-img-000039
상기 화학식 1-1-1 내지 1-1-3에 있어서,
Z1 내지 Z3, L, l, X, R11 내지 R13, k, m, n, Ar11 및 Ar12의 정의는 상기 화학식 1에서의 정의와 동일하다.
본 출원의 일 실시상태에 있어서, Z1 내지 Z3는 서로 동일하거나 상이하고, 각각 독립적으로 N; 또는 CR이고, 적어도 하나는 N일 수 있다.
또 다른 일 실시상태에 있어서, Z1은 N이고 Z2 및 Z3는 CR일 수 있다.
또 다른 일 실시상태에 있어서, Z2는 N이고 Z1 및 Z3는 CR일 수 있다.
또 다른 일 실시상태에 있어서, Z3는 N이고 Z1 및 Z2는 CR일 수 있다.
또 다른 일 실시상태에 있어서, Z1 및 Z2는 N이고 Z3는 CR일 수 있다.
또 다른 일 실시상태에 있어서, Z2 및 Z3는 N이고, Z1은 CR일 수 있다.
또 다른 일 실시상태에 있어서, Z1 및 Z3는 N이고 Z2는 CR일 수 있다.
또 다른 일 실시상태에 있어서, Z1 내지 Z3는 모두 N일 수 있다.
본 출원의 일 실시상태에 있어서, R은 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R은 수소; 중수소; 치환 또는 비치환된 C1 내지 C40의 알킬기; 치환 또는 비치환된 C3 내지 C40의 시클로알킬기; 치환 또는 비치환된 C2 내지 C40의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C40의 아릴기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R은 수소; 중수소; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R은 수소; 중수소; C1 내지 C20의 알킬기; C3 내지 C20의 시클로알킬기; C2 내지 C20의 헤테로시클로알킬기; C6 내지 C20의 아릴기; 또는 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R은 수소; 중수소; C1 내지 C10의 알킬기; C3 내지 C10의 시클로알킬기; C2 내지 C10의 헤테로시클로알킬기; C6 내지 C10의 아릴기; 또는 C2 내지 C10의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R은 수소; 중수소; C1 내지 C10의 알킬기; 또는 C6 내지 C10의 아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R은 수소; 또는 중수소일 수 있다.
본 출원의 일 실시상태에 있어서, L은 직접결합; 또는 치환 또는 비치환된 C6 내지 C60의 아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, L은 직접결합; 또는 치환 또는 비치환된 C6 내지 C40의 아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, L은 직접결합; 또는 치환 또는 비치환된 C6 내지 C20의 아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, L은 직접결합; 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 비페닐렌기일 수 있다.
또 다른 일 실시상태에 있어서, L은 직접결합; 중수소 또는 페닐기로 치환 또는 비치환된 페닐렌기; 또는 중수소로 치환 또는 비치환된 비페닐렌기일 수 있다.
본 출원의 일 실시상태에 있어서, X는 O; 또는 S일 수 있다.
또 다른 일 실시상태에 있어서, X는 O일 수 있다.
또 다른 일 실시상태에 있어서, X는 S일 수 있다.
본 출원의 일 실시상태에 있어서, R11 내지 R13는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R11 내지 R13는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C40의 알킬기; 치환 또는 비치환된 C3 내지 C40의 시클로알킬기; 치환 또는 비치환된 C2 내지 C40의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C40의 아릴기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R11 내지 R13는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R11 내지 R13는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 C6 내지 C20의 아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R11 내지 R13는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 페닐기일 수 있다.
또 다른 일 실시상태에 있어서, R11 내지 R13는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 중수소로 치환 또는 비치환된 페닐기일 수 있다.
본 발명의 일 실시상태에 있어서, Ar11 및 Ar12는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar11 및 Ar12는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C40의 알킬기; 치환 또는 비치환된 C3 내지 C40의 시클로알킬기; 치환 또는 비치환된 C2 내지 C40의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C40의 아릴기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar11 및 Ar12는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar11 및 Ar12는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar11 및 Ar12는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 디벤조퓨란기; 또는 치환 또는 비치환된 디벤조티오펜기일 수 있다.
또 다른 일 실시상태에 있어서, Ar11 및 Ar12는 서로 동일하거나 상이하고, 각각 독립적으로 중수소로 치환 또는 비치환된 페닐기; 중수소로 치환 또는 비치환된 비페닐기; 중수소로 치환 또는 비치환된 터페닐기; 페닐기로 치환 또는 비치환된 디벤조퓨란기; 또는 페닐기로 치환 또는 비치환된 디벤조티오펜기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 1-3 중 어느 하나로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2022016716-appb-img-000040
[화학식 1-2]
Figure PCTKR2022016716-appb-img-000041
[화학식 1-3]
Figure PCTKR2022016716-appb-img-000042
상기 화학식 1-1 내지 1-3에 있어서,
Z1 내지 Z3, L, l, R11 내지 R13, m, n, Ar11 및 Ar12의 정의는 상기 화학식 1에서의 정의와 동일하고,
R111 및 R112은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
m1은 0 내지 5의 정수이고, m2는 0 내지 4의 정수이며, m1 및 m2가 각각 2 이상인 경우, 괄호 내의 치환기는 서로 동일하거나 상이하다.
본 출원의 일 실시상태에 있어서, R111 및 R112은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R111 및 R112은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C40의 알킬기; 치환 또는 비치환된 C3 내지 C40의 시클로알킬기; 치환 또는 비치환된 C2 내지 C40의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C40의 아릴기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R111 및 R112은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R111 및 R112은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 C6 내지 C20의 아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R111 및 R112은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 페닐기일 수 있다.
또 다른 일 실시상태에 있어서, R111 및 R112은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 중수소로 치환 또는 비치환된 페닐기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 것인 헤테로고리 화합물을 제공한다.
Figure PCTKR2022016716-appb-img-000043
Figure PCTKR2022016716-appb-img-000044
Figure PCTKR2022016716-appb-img-000045
Figure PCTKR2022016716-appb-img-000046
Figure PCTKR2022016716-appb-img-000047
Figure PCTKR2022016716-appb-img-000048
Figure PCTKR2022016716-appb-img-000049
Figure PCTKR2022016716-appb-img-000050
Figure PCTKR2022016716-appb-img-000051
Figure PCTKR2022016716-appb-img-000052
Figure PCTKR2022016716-appb-img-000053
Figure PCTKR2022016716-appb-img-000054
Figure PCTKR2022016716-appb-img-000055
Figure PCTKR2022016716-appb-img-000056
Figure PCTKR2022016716-appb-img-000057
Figure PCTKR2022016716-appb-img-000058
Figure PCTKR2022016716-appb-img-000059
Figure PCTKR2022016716-appb-img-000060
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공주입재료, 정공수송재료, 발광재료, 전자수송재료 및 전자주입재료에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 밴드갭을 미세하게 조절할 수 있으며, 한편으로 유기물층 간 계면에서의 특성을 향상시킬 수 있다.
또한, 상기 화학식 1의 화합물은 열적 안정성이 우수하며, 이러한 열적 안정성은 유기 발광 소자에 구동 안정성을 제공하며, 수명 특성을 향상시킨다.
본 출원의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
또 다른 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 1종 포함하는 것인 유기 발광 소자를 제공한다.
또 다른 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 2종 이상 포함하는 것인 유기 발광 소자를 제공한다.
또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물은 유기 발광 소자의 발광층의 발광재료로 사용될 수 있으며, 인광 그린 발광재료로 사용될 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물은 유기 발광 소자의 발광층의 발광재료로 사용될 수 있으며, n-호스트 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 전극은 양극일 수 있고, 상기 제2 전극은 음극일 수 있다.
또 다른 일 실시상태에 있어서, 상기 제1 전극은 음극일 수 있고, 상기 제2 전극은 양극일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물은 청색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로고리 화합물은 녹색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로고리 화합물은 적색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물은 청색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로고리 화합물은 녹색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로고리 화합물은 적색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명의 유기 발광 소자는 전술한 헤테로고리 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 헤테로고리 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 이리듐계 도펀트로는 녹색 인광 도펀트로 Ir(ppy)3이 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 유기 발광 소자의 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 있어서, 유기 발광 소자의 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트 물질을 포함하며, 상기 호스트 물질은 상기 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자에서, 상기 유기물층은 전자주입층 또는 전자수송층을 포함하고, 상기 전자주입층 또는 전자수송층은 상기 헤테로고리 화합물을 포함할 수 있다.
또 다른 유기 발광 소자에서, 상기 유기물층은 전자저지층 또는 정공저지층을 포함하고, 상기 전자저지층 또는 정공저지층은 상기 헤테로고리 화합물을 포함할 수 있다.
또 다른 유기 발광 소자에서, 상기 유기물층은 전자수송층, 발광층 또는 정공저지층을 포함하고, 상기 전자수송층, 발광층 또는 정공저지층은 상기 헤테로고리 화합물을 포함할 수 있다.
본 출원의 유기 발광 소자에 있어서, 양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다. 상기 양극 재료의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다. 상기 음극 재료의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 주입 재료로는 공지된 정공 주입 재료를 이용할 수도 있는데, 예를 들면, 미국 특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 트리스(4-카바조일-9-일페닐)아민(TCTA), 4,4',4"-트리[페닐(m-톨릴)아미노]트리페닐아민(m-MTDATA), 1,3,5-트리스[4-(3-메틸페닐페닐아미노)페닐]벤젠(m-MTDAPB), 용해성이 있는 전도성 고분자인 폴리아닐린/도데실벤젠술폰산(Polyaniline/Dodecylbenzenesulfonic acid) 또는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), 폴리아닐린/캠퍼술폰산(Polyaniline/Camphor sulfonic acid) 또는 폴리아닐린/폴리(4-스티렌술포네이트)(Polyaniline/Poly(4-styrene-sulfonate))등을 사용할 수 있다.
정공 수송 재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자 수송 재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착체 등이 사용될 수 있으며, 저분자 물질 뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자 주입 재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 출원이 이에 한정되는 것은 아니다.
발광 재료로는 적색, 녹색 또는 청색 발광재료가 사용될 수 있으며, 필요한 경우, 2 이상의 발광 재료를 혼합하여 사용할 수 있다. 이 때, 2 이상의 발광 재료를 개별적인 공급원으로 증착하여 사용하거나, 예비혼합하여 하나의 공급원으로 증착하여 사용할 수 있다. 또한, 발광 재료로서 형광 재료를 사용할 수도 있으나, 인광 재료로서 사용할 수도 있다. 발광 재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
발광 재료의 호스트를 혼합하여 사용하는 경우에는, 동일 계열의 호스트를 혼합하여 사용할 수도 있고, 다른 계열의 호스트를 혼합하여 사용할 수도 있다. 예를 들어, n 타입 호스트 재료 또는 p 타입 호스트 재료 중 어느 두 종류 이상의 재료를 선택하여 발광층의 호스트 재료로 사용할 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 출원의 일 실시상태에 따른 헤테로고리 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
본 발명의 유기 발광 소자는 발광층, 정공주입층, 정공수송층, 전자저지층, 정공저지층, 전자수송층 및 전자주입층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있다.
도 1 내지 3에 본 출원의 일 실시상태에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 출원의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기 발광 소자의 구조가 본 출원에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기 발광 소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기 발광 소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기 발광 소자는 정공 주입층(301), 정공 수송층(302), 발광층(303), 정공 저지층(304), 전자 수송층(305) 및 전자 주입층(306)을 포함한다. 그러나, 이와 같은 적층 구조에 의하여 본 출원의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 유기 발광 소자의 유기물층은 하기 화학식 2로 표시되는 헤테로고리 화합물을 더 포함하는 것인 유기 발광 소자를 제공한다.
[화학식 2]
Figure PCTKR2022016716-appb-img-000061
상기 화학식 2에 있어서,
R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -SiR'R"R"'; -P(=O)R'R"; 및 치환 또는 비치환된 C1 내지 C60의 알킬기, 치환 또는 비치환된 C6 내지 C60의 아릴기 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기로 치환 또는 비치환된 아민기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 지방족 또는 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 지방족 또는 방향족 헤테로 고리를 형성하고,
R', R" 및 R"'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
r 및 s는 0 내지 7의 정수이고, r 및 s가 2 이상인 경우, 괄호 내의 치환기는 서로 동일하거나 상이하고,
Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
본 출원이 일 실시상태에 있어서, R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C40의 알킬기; 치환 또는 비치환된 C2 내지 C40의 알케닐기; 치환 또는 비치환된 C2 내지 C40의 알키닐기; 치환 또는 비치환된 C1 내지 C40의 알콕시기; 치환 또는 비치환된 C3 내지 C40의 시클로알킬기; 치환 또는 비치환된 C2 내지 C40의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C40의 아릴기; 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기; -SiR'R"R"'; -P(=O)R'R"; 및 치환 또는 비치환된 C1 내지 C40의 알킬기, 치환 또는 비치환된 C6 내지 C40의 아릴기 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기로 치환 또는 비치환된 아민기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 C6 내지 C40의 지방족 또는 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C40의 지방족 또는 방향족 헤테로 고리를 형성할 수 있다.
또 다른 일 실시상태에 있어서, R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C2 내지 C20의 알케닐기; 치환 또는 비치환된 C2 내지 C20의 알키닐기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기; -SiR'R"R"'; -P(=O)R'R"; 및 치환 또는 비치환된 C1 내지 C20의 알킬기, 치환 또는 비치환된 C6 내지 C20의 아릴기 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기로 치환 또는 비치환된 아민기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 지방족 또는 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C20의 지방족 또는 방향족 헤테로 고리를 형성할 수 있다.
또 다른 일 실시상태에 있어서, R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; C1 내지 C20의 알킬기; C2 내지 C20의 알케닐기; C2 내지 C20의 알키닐기; C1 내지 C20의 알콕시기; C3 내지 C20의 시클로알킬기; C2 내지 C20의 헤테로시클로알킬기; C6 내지 C20의 아릴기; C2 내지 C20의 헤테로아릴기; -SiR'R"R"'; -P(=O)R'R"; 및 아민기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 C6 내지 C20의 지방족 또는 방향족 탄화수소 고리 또는 C2 내지 C20의 지방족 또는 방향족 헤테로 고리를 형성할 수 있다.
또 다른 일 실시상태에 있어서, R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; C1 내지 C20의 알킬기; 또는 C6 내지 C20의 아릴기; 또는 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 페닐기일 수 있다.
또 다른 일 실시상태에 있어서, R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소일 수 있다.
본 발명의 일 실시상태에 있어서, R', R" 및 R"'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R', R" 및 R"'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 C1 내지 C40의 알킬기; 치환 또는 비치환된 C3 내지 C40의 시클로알킬기; 치환 또는 비치환된 C6 내지 C40의 아릴기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R', R" 및 R"'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R', R" 및 R"'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; C1 내지 C20의 알킬기; C3 내지 C20의 시클로알킬기; C6 내지 C20의 아릴기; 또는 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, R', R" 및 R"'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 페닐기일 수 있다.
본 발명의 일 실시상태에 있어서, Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C40의 아릴기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 트리페닐렌기; 치환 또는 비치환된 디메틸플루오렌기; 치환 또는 비치환된 디벤조퓨란기; 또는 치환 또는 비치환된 디벤조티오펜기일 수 있다.
또 다른 일 실시상태에 있어서, Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 중수소로 치환 또는 비치환된 페닐;, 중수소로 치환 또는 비치환된 비페닐기; 중수소로 치환 또는 비치환된 터페닐기; 중수소로 치환 또는 비치환된 트리페닐렌기; 중수소로 치환 또는 비치환된 디메틸플루오렌기; 중수소로 치환 또는 비치환된 디벤조퓨란기; 또는 중수소로 치환 또는 비치환된 디벤조티오펜기일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물의 중수소 함량은 0% 이상 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물의 중수소 함량은 0% 초과 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물의 중수소 함량은 0%이거나, 5% 이상 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물의 중수소 함량은 0%이거나, 10% 이상 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물의 중수소 함량은 0%이거나, 20% 이상 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물의 중수소 함량은 0%이거나, 40% 이상 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물의 중수소 함량은 0%이거나, 60% 이상 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물의 중수소 함량은 0%이거나, 80% 이상 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물의 중수소 함량은 0%이거나, 100%일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 화학식 2는 하기 화합물 중 어느 하나로 표시되는 것인 유기 발광 소자를 제공한다.
Figure PCTKR2022016716-appb-img-000062
Figure PCTKR2022016716-appb-img-000063
Figure PCTKR2022016716-appb-img-000064
Figure PCTKR2022016716-appb-img-000065
Figure PCTKR2022016716-appb-img-000066
Figure PCTKR2022016716-appb-img-000067
상기 화학식 2로 표시되는 헤테로고리 화합물을 더 포함하는 유기 발광 소자는 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 유기 발광 소자에 관한 내용이 적용될 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물은 유기 발광 소자의 발광층의 발광재료로 사용될 수 있으며, 인광 그린 발광재료로 사용될 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2로 표시되는 헤테로고리 화합물은 유기 발광 소자의 발광층의 발광재료로 사용될 수 있으며, p-호스트 재료로 사용될 수 있다.
본 발명의 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트 물질을 포함하며, 상기 호스트 물질은 상기 화학식 1로 표시되는 헤테로고리 화합물 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함할 수 있다.
또 다른 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층의 n-호스트 물질로 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하고, p-호스트 물질로 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 유기 발광 소자의 유기물층용 조성물을 제공한다.
상기 조성물 내의 상기 화학식 1로 표시되는 헤테로고리 화합물 : 상기 화학식 2로 표시되는 헤테로고리 화합물의 중량비는 1 : 10 내지 10 : 1 일 수 있으며, 1 : 8 내지 8: 1 일 수 있고, 1 : 5 내지 5 : 1 일 수 있으며, 1 : 2 내지 2 : 1 일 수 있으나, 이에 한정되는 것은 아니다.
상기 조성물은 유기 발광 소자의 유기물층 형성시 이용할 수 있고, 특히 발광층의 호스트 물질로 보다 바람직하게 이용할 수 있다.
상기 조성물은 둘 이상의 화합물이 단순 혼합되어 있는 형태이며, 유기 발광 소자의 유기물층 형성 전에 파우더 상태의 재료를 혼합할 수도 있고, 적정 온도 이상에서 액상 상태로 되어있는 화합물을 혼합할 수 있다. 상기 조성물은 각 재료의 녹는점 이하에서는 고체 상태이며, 온도를 조정하면 액상으로 유지할 수 있다.
상기 조성물은 추가로 용매, 첨가제 등 당 기술분야에 공지된 재료들이 추가로 포함될 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 상기 화학식 1로 표시되는 헤테로고리 화합물을 이용하여 한 층 이상의 유기물층을 형성하거나, 상기 화학식 1로 표시되는 헤테로고리 화합물 및 화학식 2로 표시되는 헤테로고리 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
본 출원의 일 실시상태에 있어서, 기판을 준비하는 단계; 상기 기판 상에 제1 전극을 형성하는 단계; 상기 제1 전극 상에 1층 이상의 유기물층을 형성하는 단계; 및 상기 유기물층 상에 제2 전극을 형성하는 단계를 포함하고, 상기 유기물층을 형성하는 단계는 본 출원의 일 실시상태에 따른 유기물층용 조성물을 이용하여 1층 이상의 유기물층을 형성하는 단계를 포함하는 것인 유기 발광 소자의 제조 방법을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층을 형성하는 단계는 상기 화학식 1로 표시되는 헤테로고리 화합물 1종 및 상기 화학식 2로 표시되는 헤테로고리 화합물 1종을 혼합(pre-mixed)하여 열 진공 증착 방법을 이용하여 형성하는 것인 유기 발광 소자의 제조 방법을 제공한다.
상기 예비 혼합(pre-mixed)은 상기 화학식 1로 표시되는 헤테로고리 화합물 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 유기물층에 증착하기 전 먼저 재료를 섞어서 하나의 공원에 담아 혼합하는 것을 의미한다.
예비 혼합된 재료는 본 출원의 일 실시상태에 따른 유기물층용 조성물로 언급될 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명하지만, 이들은 본 출원을 예시하기 위한 것일 뿐, 본 출원 범위를 한정하기 위한 것은 아니다.
[제조예]
<제조예 1> 화합물 5의 제조
Figure PCTKR2022016716-appb-img-000068
1) 화합물 5-P2의 제조
반응 화합물 및 반응 조건은 하기 표 1과 같다.
실험예 화합물
(g, 당량)
용매
(g, 당량)

(g, 당량)
시간, 온도 얻은 양, 수율
1 5-P3
(1g, 1eq.)
벤젠-D6
(100g, 383.3eq. )
CF3SO3H
(23g, 50eq.)
80 oC, 1h 0.68g, 66%
2 5-P3(1g, 1eq.) 벤젠-D6
(100g, 383.3eq. )
CF3SO3H
(23g, 50eq.)
RT., 5h 0.5g, 48%
3 5-P3
(1g, 1eq.)
벤젠-D6
(100g, 383.3eq.)
CF3SO3H
(23g, 50eq.)
50 oC, 1h 0.65g, 62%
4 5-P3
(1g, 1eq.)
벤젠-D6
(50g, 191.6eq.)
CF3SO3H
(11.5g, 25eq.)
80 oC, 1h 0.71g, 72%
5 5-P3
(1g, 1eq.)
벤젠-D6
(50g, 191.6eq.)
CF3SO3H
(11.5g,25eq.)
RT., 1h 0.55g, 53%
6 5-P3
(1g, 1eq.).
벤젠-D6
(50g, 191.6eq.)
CF3SO3D
(11.5g, 25eq.)
50 oC, 1h 0.68g, 66%
7 5-P3(1g, 1eq.) DMSO-D6
(50g, 191.6eq.)
CF3SO3H
(11.5g, 25eq.)
50 oC, 1h 0.5g, 48%
8 5-P3
(1g, 1eq.)
DMF-D6
(50g, 185.1eq.)
CF3SO3H
(11.5, 25eq.)
50 oC, 1h 0.5g, 48%
상기 표 1에서 수율이 가장 높은 실험예 4번 반응 조건으로 화합물 5-P2을 합성하였다.
화합물 5-P3 20g(62.07 mmol)을 벤젠-D6(Benzene-D6) 1000g과 CF3SO3H 230g에 녹이고, 80℃에서 1시간 교반하였다. 반응 완료 후, D2O 중의 Na2CO3로 켄칭하였다. 켄칭 후 혼합액에 에틸아세테이트(Ethyl acetate)를 넣어 용해시킨 다음, 유기층을 분리하고, 무수 MgSO4로 건조시킨 후, 회전 증발기로 용매를 제거하였다. 이후, 디클로로메탄과 헥산을 전개용매로 하여 컬럼 크로마토그래피로 정제하여 화합물 5-P2 14.9g(수율 72%)를 얻었다.
2) 화합물 5-P1의 제조
화합물 5-P2 14.9g(44.69 mmol)과 4,4,4',4',5,5,5',5'-옥타메틸-2,2'-비(1,3,2-디옥사보로란)((4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane)) 14.72g(57.97 mmol)을 1,4-디옥산(1,4-dioxane) 120mL에 녹인 후 Pd(dppf)Cl2 1.63g(2.23 mmol)과 포타슘 아세테이트(Potassium acetate) 13.14g(134.07 mmol)을 넣고 16시간 동안 환류 교반하였다. 반응 완료 후 반응액에 에틸 아세테이트(Ethyl acetate)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 5-P1 13.6g(수율=80%)를 얻었다.
3) 화합물 5의 제조
화합물 5-P1 13.6g(35.75 mmol) 과 2,4-디([1,1'-비페닐]-4-일)-6-클로로-1,3,5-트리아진 (2,4-di([1,1'-biphenyl]-4-yl)-6-chloro-1,3,5-triazine) 15.01g(18.49 mmol)을 1,4-디옥산(1,4-dioxane) 150mL와 증류수 30 mL에 녹인 후, Pd(PPh3)4 2.06g(1.79 mmol)과 K2CO3 9.88g(71.5 mmol)을 넣고, 6시간동안 환류 교반하였다. 반응 완료 후 반응액에 디클로로메탄(Dichloromethane)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 5 15.99 g(수율=70%)를 얻었다.
상기 제조예 1에서 5-P3 대신 하기 표 2의 중간체 1를 사용하고, 화합물 A 대신 하기 표 2의 중간체 2를 사용한 것을 제외하고 동일한 방법으로 제조하여 하기 표 2의 목적화합물을 합성하였다.
Figure PCTKR2022016716-appb-img-000069
Figure PCTKR2022016716-appb-img-000070
Figure PCTKR2022016716-appb-img-000071
Figure PCTKR2022016716-appb-img-000072
Figure PCTKR2022016716-appb-img-000073
Figure PCTKR2022016716-appb-img-000074
<제조예 2> 화합물 79의 제조
Figure PCTKR2022016716-appb-img-000075
1) 화합물 79-P3의 제조
화합물 79-P4 20g(49.86 mmol)을 벤젠-D6(Benzene-D6) 804g과 CF3SO3H 187g에 녹이고, 80℃에서 1시간 교반하였다. 반응 완료 후, D2O 중의 Na2CO3로 켄칭하였다. 켄칭 후 혼합액에 에틸아세테이트(Ethyl acetate)를 넣어 용해시킨 다음, 유기층을 분리하고, 무수 MgSO4로 건조시킨 후, 회전 증발기로 용매를 제거하였다. 이후, 디클로로메탄과 헥산을 전개용매로 하여 컬럼 크로마토그래피로 정제하여 화합물 79-P3 14.8g(수율 72%)를 얻었다.
2) 화합물 79-P2의 제조
화합물 79-P3 14.8g(35.90 mmol) 과 페닐보론산(phenylboronic acid) 4.38g(35.90 mmol)을 1,4-디옥산(1,4-dioxane) 150mL와 증류수 30 mL에 녹인 후, Pd(PPh3)4 2.06g(1.79 mmol)과 K2CO3 9.88g(71.5 mmol)을 넣고, 5시간동안 환류 교반하였다. 반응 완료 후 반응액에 디클로로메탄(Dichloromethane)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 79-P2 8.82 g(수율=65%)를 얻었다.
3) 화합물 79-P1의 제조
화합물 79-P2 8.82g(23.34 mmol)과 4,4,4',4',5,5,5',5'-옥타메틸-2,2'-비(1,3,2-디옥사보로란)(4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane)) 8.88g (35.00 mmol)을 1,4-디옥산(1,4-dioxane) 120mL에 녹인 후 Pd(dppf)Cl2 0.85g(1.17 mmol)과 포타슘 아세테이트(Potassium acetate) 6.57g(67.04 mmol)을 넣고 6시간동안 환류 교반하였다. 반응 완료 후 반응액에 에틸 아세테이트(Ethyl acetate)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 79-P1 8.53g(수율=80%)를 얻었다.
4) 화합물 79의 제조
화합물 79-P1 8.53g(18.70 mmol) 과 2-([1,1'-비페닐]-4-일)-4-클로로-6-페닐-1,3,5-트리아진 (2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine) 6.43g(18.70 mmol)을 1,4-디옥산(1,4-dioxane) 100mL와 증류수 20 mL에 녹인 후, Pd(PPh3)4 1.08g(0.94 mmol)과 K2CO3 5.17g(37.4 mmol)을 넣고, 5시간동안 환류 교반하였다. 반응 완료 후 반응액에 디클로로메탄(Dichloromethane)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 79 8.35 g(수율=70%)를 얻었다.
상기 제조예 2에서 화합물 B 대신 하기 표 3의 중간체 3를 사용한 것을 제외하고 동일한 방법으로 제조하여 하기 표 3의 목적화합물을 합성하였다.
Figure PCTKR2022016716-appb-img-000076
<제조예 3> 화합물 2-79의 제조
Figure PCTKR2022016716-appb-img-000077
1) 중간체 2-79-1의 제조
일구의 라운드 바텀 플라스크에 9H,9'H-3,3'-비카바졸(9H,9'H-3,3'-bicarbazole) (10g, 0.030mol), 4-브로모-1,1'-비페닐 (4-bromo-1,1'-biphenyl) (화합물 E) (7.26g, 0.030mol), CuI (0.57g, 0.003mol), 트랜스-1,2-디아미노사이클로헥산(Trans-1,2-diaminocyclohexane) (0.34g, 0.003mol), K3PO4 (12.74g, 0.06mol)를 1,4-디옥산(1,4-dioxane) 100mL에 녹인 후 125℃에서 8시간 동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 DCM을 넣고 추출하였고 유기층은 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피 (DCM:헥산(Hexane)=1:3)로 정제하였고 메탄올로 재결정하여 중간체 2-79-1를 얻었다. (13.92g, 수율 94%)
2) 화합물 2-79의 제조
일구의 라운드 바텀 플라스크에 중간체 2-79-1 (13.92g, 0.028mol), 3-브로모-1,1'-비페닐(3-bromo-1,1'-biphenyl) (화합물 E') (6.83g, 0.028mol), CuI (0.53g, 0.0028mol), 트랜스-1,2-디아미노사이클로헥산 (0.32g, 0.0028mol), K3PO4 (11.89g, 0.056mol)를 1,4-디옥산 140mL에 녹인 후 125℃에서 8시간 동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 DCM을 넣고 추출하였고 유기층은 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피 (DCM:헥산(Hexane)=1:3)로 정제하였고 메탄올로 재결정하여 목적 화합물 2-79를 얻었다. (16.14g, 수율 88%)
화합물 E와 화합물 E'가 동일한 경우 상기 제조예 3의 1)에서 화합물 E를 2당량 넣어 목적 화합물을 바로 합성할 수 있다. 즉, 화합물 E와 화합물 E'가 동일한 경우 상기 제조예 3의 2)를 생략할 수 있다.
상기 제조예 3에 있어서, 4-브로모-1,1'-비페닐 (화합물 E), 3-브로모-1,1'-비페닐 (화합물 E') 대신 하기 표 4의 화합물 E1, E'1을 사용한 것을 제외하고 상기 제조예 3와 동일하게 합성하여 하기 목적 화합물 G1을 동일한 방법으로 합성하였다.
Figure PCTKR2022016716-appb-img-000078
<제조예 4> 화합물 2-57의 제조
Figure PCTKR2022016716-appb-img-000079
1) 화합물 2-57의 제조
일구의 라운드 바텀 플라스크에 중간체 2-79 (12.17g, 0.017mol), 트리플릭산(Triflic acid) 51.5g 및 D6-벤젠(D6-benzene)(608.5mL) 혼합물을 50℃에서 1시간 교반 하였다. 반응 완료 후, D2O 중의 Na2CO3로 켄칭하였다. 켄칭 후 혼합액에 DCM을 넣어 용해시킨 다음, 유기층을 분리하고, 무수 MgSO4로 건조시킨 후, 회전 증발기로 용매를 제거하였다. 이후, 디클로로메탄과 헥산을 전개용매로 하여 컬럼 크로마토그래피로 정제하여 목적 화합물 2-57을 얻었다. (8.01g, 수율 70%)
상기 제조예 4에 있어서, 화합물 2-79 대신 하기 표 5의 화합물 E3을 사용한 것을 제외하고 상기 제조예 4와 동일하게 합성하여 하기 목적 화합물 G2을 동일한 방법으로 합성하였다.
Figure PCTKR2022016716-appb-img-000080
Figure PCTKR2022016716-appb-img-000081
<제조예 5> 화합물 185의 제조
Figure PCTKR2022016716-appb-img-000082
1) 화합물 185-P3의 제조
화합물 185-P4 20g(81.26 mmol)을 벤젠-d6(Benzene-d6) 653g과 CF3SO3H 152g에 녹이고, 80℃에서 1시간 교반하였다. 반응 완료 후, D2O 중의 Na2CO3로 켄칭하였다. 켄칭 후 혼합액에 에틸아세테이트(Ethyl acetate)를 넣어 용해시킨 다음, 유기층을 분리하고, 무수 MgSO4로 건조시킨 후, 회전 증발기로 용매를 제거하였다. 이후, 디클로로메탄과 헥산을 전개용매로 하여 컬럼 크로마토그래피로 정제하여 화합물 185-P3 14.4g(수율 70%)를 얻었다.
2) 화합물 185-P2의 제조
화합물 185-P3 14.4g(56.88 mmol)과 K2CO3 15.7g(113.76 mmol)을 아이오도벤젠(iodobenzene) 250 mL에 녹이고, CuI 0.54g (2.84 mmol)을 주입 후 120℃에서 16시간 교반하였다. 반응 완료 후 반응액에 디클로로메탄(Dichloromethane)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 185-P2 11.23 g(수율=60%)를 얻었다.
3) 화합물 185-P1의 제조
화합물 185-P2 11.23g(34.13 mmol)과 4,4,4',4',5,5,5',5'-옥타메틸-2,2'-비(1,3,2-디옥사보로란)((4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane)) 13g(51.19 mmol)을 1,4-디옥산(1,4-dioxane) 110mL에 녹인 후 Pd(dppf)Cl2 1.47g(2.01 mmol)과 포타슘 아세테이트(Potassium acetate) 11.83g(120.66 mmol)을 넣고 16시간 동안 환류 교반하였다. 반응 완료 후 반응액에 에틸 아세테이트(Ethyl acetate)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 185-P1 10.14g(수율=79%)를 얻었다.
4) 화합물 185의 제조
화합물 185-P1 10.14g(26.96 mmol) 과 2,4-디([1,1'-비페닐]-4-일)-6-클로로-1,3,5-트리아진 (2,4-di([1,1'-biphenyl]-4-yl)-6-chloro-1,3,5-triazine) 11.32g(26.96 mmol)을 1,4-디옥산(1,4-dioxane) 125mL와 증류수 25 mL에 녹인 후, Pd(PPh3)4 1.54g(1.34 mmol)과 K2CO3 7.41g(53.62 mmol)을 넣고, 6시간동안 환류 교반하였다. 반응 완료 후 반응액에 디클로로메탄(Dichloromethane)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 185 12.13 g(수율=71%)를 얻었다.
상기 제조예 5에서 185-P4 대신 하기 표 6의 중간체 1를 사용하고, 화합물 H 대신 하기 표 6의 중간체 2를 사용하고, 화합물 I 대신 하기 표 6의 중간체 3을 사용한 것을 제외하고 동일한 방법으로 제조하여 하기 표 6의 목적화합물을 합성하였다.
Figure PCTKR2022016716-appb-img-000083
<제조예 6> 화합물 251의 제조
Figure PCTKR2022016716-appb-img-000084
1) 화합물 251-P2의 제조
화합물 251-P3 15g(59.25 mmol)과 4,4,4',4',5,5,5',5'-옥타메틸-2,2'-비(1,3,2-디옥사보로란)((4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane)) 22.5g(88.58 mmol)을 1,4-디옥산(1,4-dioxane) 150mL에 녹인 후 Pd(dppf)Cl2 2.83g(3.47 mmol)과 포타슘 아세테이트(Potassium acetate) 20.46g(208.74 mmol)을 넣고 16시간 동안 환류 교반하였다. 반응 완료 후 반응액에 에틸 아세테이트(Ethyl acetate)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 251-P2 22.83g(수율=80%)를 얻었다.
2) 화합물 251-P1의 제조
화합물 251-P2 22.83g(47.4 mmol) 과 2-([1,1'-비페닐]-4-일)-4-클로로-6-패닐-1,3,5-트리아진 (2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine) 16.3g(47.4 mmol)을 1,4-디옥산(1,4-dioxane) 300mL와 증류수 60 mL에 녹인 후, Pd(PPh3)4 2.72g(2.35 mmol)과 K2CO3 13.04g(94.37 mmol)을 넣고, 6시간동안 환류 교반하였다. 반응 완료 후 반응액에 디클로로메탄(Dichloromethane)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 251-P1 15.52 g(수율=68%)를 얻었다.
3) 화합물 251의 제조
화합물 251-P1 15.52g(32.23 mmol) 과 7-클로로-1-페닐-디벤조퓨란(7-chloro-1-phenyl-dibenzofuran) 8.98g (32.23 mmol), 소듐 터부톡사이트(Sodium tert-butoxide) 7.74g (80.57 mmol), S Phos 2.65g(6.45 mmol), Pd2(dba)3 2.95g (3.22 mmol)을 톨루엔(Toluene) 200 mL에 녹이고 6시간동안 환류 교반하였다. 반응 완료 후 반응액에 디클로로메탄(Dichloromethane)를 넣어 용해시킨 후 증류수로 추출하고 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 컬럼크로마토그래피로 정제하여 화합물 251 14.0 g(수율=60%)를 얻었다.
상기 제조예 6에서 251-P3 대신 하기 표 7의 중간체 1를 사용한 것을 제외하고 동일한 방법으로 제조하여 하기 표 7의 목적화합물을 합성하였다.
Figure PCTKR2022016716-appb-img-000085
상기 제조예 1 내지 6 및 표 2 내지 표 7에 기재된 화합물 이외의 나머지 화합물도 전술한 제조예에 기재된 방법과 동일한 방법으로 제조하였으며, 하기 표 8 및 9에 합성결과를 나타내었다. 하기 표 8은 1H NMR(CDCl3, 400Mz)의 측정값이고, 하기 표 9는 FD-질량분석계(FD-MS: Field desorption mass spectrometry)의 측정값이다.
화합물 1H NMR(CDCl3, 300MHz)
5 δ= 7.96 (4H, d), 7.75 (4H, d), 7.49-7.41 (6H, m), 7.25(4H, d)
11 δ= 8.36 (2H, d), 8.03-7.98 (2H, m), 7.82 (1H, d), 7.76 (1H, s), 7.54-7.50 (4H, m), 7.39-7.31 (2H, m)
101 δ= 7.96 (4H, d), 7.75 (4H, d), 7.49-7.41 (6H, m), 7.25(4H, d)
14 δ= 8.03-7.96 (4H, m), 7.82-7.75 (4H, m), 7.54-7.25 (8H, m)
15 δ= 8.38 (1H, d), 8.03-7.94 (3H, m), 7.82-7.73 (5H, m), 7.61-7.31 (7H,m)
19 δ= 8.36 (2H, d), 8.03-7.98 (2H, m), 7.82 (1H, d), 7.76 (1H, s), 7.54-7.50 (4H, m), 7.39-7.31 (2H, m)
21 δ= 8.55 (1H, d), 8.45 (1H, d), 7.96-7.92 (4H, m), 7.75-7.70 (3H, m), 7.56-7.41 (5H, m), 7.25 (2H, d)
23 δ= 8.55 (1H, d), 8.45 (1H, d), 7.96-7.92 (4H, m), 7.75-7.70 (3H, m), 7.56-7.41 (5H, m), 7.25 (2H, d)
27 δ= 8.38 (1H, d), 8.03-7.94 (3H, m), 7.82-7.73 (5H, m), 7.61-7.31 (7H,m)
37 δ= 8.08 (1H, d), 7.98-7.88 (4H, m), 7.75 (2H, d), 7.54-7.25 (7H, m)
38 δ= 8.36 (2H, d), 7.96 (2H, d), 7.75 (2H, d), 7.50-7.41 (6H, m), 7.25 (2H, d)
46 δ= 8.36 (2H, d), 7.96 (2H, d), 7.75 (2H, d), 7.50-7.41 (6H, m), 7.25 (2H, d)
47 δ= 8.36 (2H, d), 8.03-7.98 (2H, m), 7.82 (1H, d), 7.76 (1H, s), 7.54-7.50 (4H, m), 7.39-7.31 (2H, m)
62 δ= 8.36 (2H, d), 7.96 (2H, d), 7.75 (2H, d), 7.50-7.41 (6H, m), 7.25 (2H, d)
63 δ= 8.36 (2H, d), 7.96 (2H, d), 7.75 (2H, d), 7.50-7.41 (6H, m), 7.25 (2H, d)
66 δ= 8.36 (2H, d), 8.03-7.98 (2H, m), 7.82 (1H, d), 7.76 (1H, s), 7.54-7.50 (4H, m), 7.39-7.31 (2H, m)
79 δ= 8.36 (2H, d), 7.96 (2H, d), 7.75 (2H, d), 7.50-7.41 (6H, m), 7.25 (2H, d)
80 δ= 8.36 (2H, d), 8.03-7.98 (2H, m), 7.82 (1H, d), 7.76 (1H, s), 7.54-7.50 (4H, m), 7.39-7.31 (2H, m)
86 δ= 8.36 (2H, d), 7.96 (4H, d), 7.75 (2H, d), 7.50-7.41 (6H, m), 7.25 (4H, d)
95 δ= 8.38 (2H, d), 8.03-7.94 (4H, m), 7.82-7.76 (6H, m), 7.61-7.31 (8H, m)
96 δ= 8.38 (1H, d), 7.98-7.94 (4H, m), 7.82-7.25 (15H, m)
97 δ= 8.38 (1H, d), 8.08 (1H, d), 7.98-7.88 (5H, m), 7.75-7.73 (3H, m), 7.61-7.25 (10H, m)
99 δ= 8.38-8.36 (3H, m), 8.03-7.94 (3H, m), 7.82-7.73 (3H, m), 7.61-7.50 (5H, m), 7.39-7.31 (2H, m)
100 δ= 8.38 (2H, d), 7.96-7.94 (4H, m), 7.75-7.73 (6H, m), 7.61 (2H, d), 7.49-7.41 (6H, m), 7.25 (2H, d)
107 δ= 8.36 (2H, d), 8.03-7.96 (4H, m), 7.82-7.76 (2H, m), 7.54-7.50 (4H, m), 7.39-7.25 (4H, m)
108 δ= 8.38 (1H, d), 7.96-7.94 (5H, m), 7.73-7.75 (5H, m), 7.61 (1H, d), 7.49-7.41 (6H, m), 7.25 (4H, d)
116 δ= 8.38 (1H, d), 7.98-7.94 (4H, m), 7.82-7.25 (15H, m)
117 δ= 8.38 (1H, d), 8.08 (1H, d), 7.96-7.88 (5H, m), 7.75-7.73 (3H, m), 7.61-7.25 (10H, m)
119 δ= 8.38-8.36 (3H, m), 8.03-7.94 (3H, m), 7.82-7.73 (3H, m), 7.61-7.50 (5H, m), 7.39-7.31 (2H, m)
120 δ= 8.38 (2H, m), 7.96-7.94 (4H, m), 7.75-7.73 (6H, m), 7.61 (2H, d), 7.49-7.41 (6H, m), 7.25 (2H, d)
134 δ= 8.36 (2H, d), 7.96 (4H, d), 7.75 (2H, d), 7.50-7.41 (6H, m), 7.25 (4H, d)
143 δ= 8.38-8.36 (3H, m), 7.96-7.94 (4H, m), 7.75-7.73 (4H, m), 7.61 (2H, d), 7.50-7.41 (6H, m), 7.25 (2H, d)
160 δ= 8.38-8.36 (3H, m), 8.03-7.94 (3H, m), 7.82-7.73 (3H, m), 7.61-7.50 (5H, m), 7.39-7.31 (2H, m)
185 δ= 7.96 (4H, d), 7.75 (4H, d), 7.62-7.41 (11H, m), 7.25 (4H, d)
190 δ= 8.03-7.96 (4H, m), 7.82-7.75 (4H, m), 7.62-7.25 (13H, m)
200 δ= 8.36 (2H, d), 8.03-7.91 (6H, m), 7.82-7.75 (4H, m), 7.54-7.31 (9H, m)
220 δ= 8.38-8.36 (3H, m), 8.03-7.94 (3H, m), 7.82-7.73 (3H, m), 7.62-7.50 (10H, m), 7.39-7.31 (2H, m)
228 δ = 중수소 함량 100%로 1H NMR 피크 없음
230 δ = 중수소 함량 100%로 1H NMR 피크 없음
250 δ= 8.36 (2H, d), 7.98-7.96 (3H, m), 7.82-7.69 (6H, m), 7.57-7.41(11H, m), 7.25 (3H, m)
251 δ= 8.36 (2H, d), 7.98-7.96 (3H, m), 7.82-7.69 (6H, m), 7.57-7.41 (11H, m), 7.25 (3H, d)
263 δ= 8.38 (1H, d), 8.03-7.94 (5H, m), 7.82-7.73 (5H, m), 7.61-7.31 (9H, m)
287 δ= 8.36 (2H, d), 8.03-7.96 (4H, m), 7.82-7.76 (2H, m), 7.60-7.50 (6H, m), 7.39-7.31 (2H, m)
302 δ= 8.36 (2H, d) 8.03 (1H, d), 7.82-7.76 (5H, m), 7.69-7.41 (13H, m)
2-50 δ = 중수소 함량 100%로 1H NMR 피크 없음
2-51 δ = 중수소 함량 100%로 1H NMR 피크 없음
2-53 δ = 중수소 함량 100%로 1H NMR 피크 없음
2-56 δ = 중수소 함량 100%로 1H NMR 피크 없음
2-57 δ = 중수소 함량 100%로 1H NMR 피크 없음
2-74 δ= 8.55 (1H, d), 8.30 (1H, d), 8.19-8.13 (2H, m), 7.94-7.89 (8H, m), 7.77-7.75 (3H, m), 7.62-7.35 (11H, m), 7.20-7.16 (2H m)
2-76 δ = 8.55 (1H, d), 8.30 (1H, d), 8.13~8.19 (2H, m), 7.89~7.99 (9H, m), 7.73~7.77 (4H, m), 7.35~7.62 (13H, m), 7.16~7.20 (2H, m)
2-77 δ = 8.55 (1H, d), 8.30 (1H, d), 8.13~8.21 (4H, m), 7.89~7.99 (4H, m), 7.35~7.77 (20H, m), 7.16~7.20 (2H, t)
2-78 δ = 8.55 (1H, d), 8.30 (1H, d), 8.13~8.19 (2H, m), 7.89~7.99 (12H, m), 7.75~7.77 (5H, m), 7.58 (1H, d), 7.35~7.50 (8H, m), 7.16~7.20 (2H, m)
2-79 δ= 8.55 (1H, d), 8.30 (1H, d), 8.21-8.13 (3H, m), 7.99-7.89 (8H, m), 7.77-7.35 (12H, m), 7.20-7.16 (2H, m)
화합물 FD-MS 화합물 FD-MS
5 m/z= 638.84(C45H18D12N4=638.32) 79 m/z= 642.86(C45H14D16N4=642.35)
11 m/z= 576.72(C39H12D12N4O=576.27) 80 m/z= 656.84(C45H12D16N4O=656.33)
14 m/z= 652.82(C45H16D12N4O=652.30) 86 m/z= 638.84(C45H18D12N4=638.32)
15 m/z= 652.82(C45H16D12N4O=652.30) 95 m/z=728.92(C51H20D12N4O=728.33)
19 m/z= 576.72(C39H12D12N4O=576.27) 96 m/z=728.92(C51H20D12N4O=728.33)
21 m/z= 668.88(C45H16D12N4S=668.28) 97 m/z=728.92(C51H20D12N4O=728.33)
23 m/z= 668.88(C45H16D12N4S=668.28) 99 m/z= 652.82(C45H16D12N4O=652.30)
27 m/z= 652.82(C45H16D12N4O=652.30) 100 m/z= 714.93(C51H22D12N4=714.35)
37 m/z= 732.94(C51H16D16N4O=732.36) 101 m/z= 638.84(C45H18D12N4=638.32)
38 m/z= 642.86(C45H14D16N4=642.35) 107 m/z= 652.82(C45H16D12N4O=652.30)
46 m/z= 642.86(C45H14D16N4=642.35) 108 m/z= 714.93(C51H22D12N4=714.35)
47 m/z= 656.84(C45H12D16N4O=656.33) 116 m/z=728.92(C51H20D12N4O=728.33)
62 m/z= 562.74(C39H14D12N4=562.29) 117 m/z=728.92(C51H20D12N4O=728.33)
63 m/z= 642.86(C45H14D16N4=642.35) 119 m/z= 652.82(C45H16D12N4O=652.30)
66 m/z= 656.84(C45H12D16N4O=656.33) 120 m/z= 714.93(C51H22D12N4=714.35)
134 m/z= 638.84(C45H18D12N4=638.32) 228 m/z= 668.92(C45D28N4O=668.40)
143 m/z= 714.93(C51H22D12N4=714.35) 230 m/z= 668.92(C45D28N4O=668.40)
160 m/z= 732.94(C51H16D16N4O=732.36) 250 m/z= 723.89(C51H25D7N4O=723.30)
185 m/z= 633.81(C45H23D7N4=633.29) 251 m/z= 723.89(C51H25D7N4O=723.30)
190 m/z= 647.79(C45H21D7N4O=647.27) 263 m/z=728.92(C51H20D12N4O=728.33)
200 m/z= 647.79(C45H21D7N4O=647.27) 287 m/z= 652.82(C45H16D12N4O=652.30)
220 m/z= 647.79(C45H21D7N4O=647.27) 302 m/z= 647.79(C45H21D7N4O=647.27)
2-79 m/z= 636.80(C48H32N2=636.26) 2-74 m/z= 560.23(C42H28N2=560.70)
2-51 m/z= 588.87(C42D28N2=588.40) 2-53 m/z= 668.99(C48D32N2=668.46)
2-56 m/z= 668.99(C48D32N2=668.46) 2-50 m/z= 668.99(C48D32N2=668.46)
2-76 m/z= 636.80(C48H32N2=636.26) 2-77 m/z= 636.80(C48H32N2=636.26)
2-78 m/z= 636.80(C48H32N2=636.26) 2-57 m/z=668.46(C48D32N2=668.99)
[실험예]
<실험예 1>
1) 유기 발광 소자의 제작
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO 처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공 주입층 2-TNATA(4,4′,4′′-Tris[2-naphthyl(phenyl)amino]triphenylamine) 및 정공수송층 NPB(N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine)을 형성시켰다.
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 하기 표 10에 기재된 화학식 1의 헤테로고리 화합물, 녹색 인광 도펀트로 Ir(ppy)3 (tris(2-phenylpyridine)iridium)을 사용하였으며, 호스트에 Ir(ppy)3를 7 중량% 도핑하여 360Å 증착하였다.
이후 정공 저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자 수송층으로 Alq3를 200Å 증착하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al) 음극을 1200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
하기 표 10에서 별도로 적색 호스트로 표기한 것 이외에 실시예 및 비교예는 녹색 호스트로 사용되었다. 레드 인광 도펀트로 Ir(piq)2(acac)를 7 중량% 사용하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-8~10-6torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
비교예 1 내지 8의 유기 발광 소자는 발광층의 호스트로 하기의 비교 화합물을 사용한 것 외에는 상기 실험예와 동일하게 제조하였다.
[비교예]
Figure PCTKR2022016716-appb-img-000086
[참고예]
Figure PCTKR2022016716-appb-img-000087
2) 유기 발광 소자의 구동 전압, 발광 효율, 색좌표 및 수명
상기와 같이 제작된 유기 전계 발광 소자에 대하여 맥사이언스사의 M7000으로 전계발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다.
본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색좌표(CIE), 수명을 측정한 결과는 하기 표 10과 같았다.
화합물 구동전압
(V)
발광효율
(cd/A)
색좌표
(x, y)
수명
(T90)
실시예 1 5 4.01 62.3 (0.243, 0.714) 103
실시예 2 11 4.07 61.9 (0.241, 0.711) 106
실시예 3 14 4.08 62.5 (0.241, 0.714) 103
실시예 4 15 4.10 63.3 (0.241, 0.715) 107
실시예 5 19 4.06 62.1 (0.231, 0.712) 102
실시예 6 21 4.09 62.6 (0.251, 0.714) 104
실시예 7 23 4.18 61.0 (0.241, 0.711) 98
실시예 8 27 4.19 61.2 (0.251, 0.714) 99
실시예 9 37
(적색 호스트)
4.28 62.1 (0.241, 0.714) 90
실시예 10 38 4.15 63.5 (0.242, 0.713) 108
실시예 11 46 4.06 63.0 (0.248, 0.715) 113
실시예 12 47 4.11 62.4 (0.251, 0.714) 118
실시예 13 62 4.19 61.1 (0.251, 0.714) 98
실시예 14 63 4.12 61.9 (0.247, 0.727) 117
실시예 15 66 4.07 62.7 (0.231, 0.711) 112
실시예 16 79 4.06 63.3 (0.246, 0.717) 107
실시예 17 80 4.15 64.2 (0.231, 0.711) 105
실시예 18 86 4.16 64.0 (0.671, 0.320) 114
실시예 19 95 4.07 63.4 (0.246, 0.717) 100
실시예 20 96 4.03 62.7 (0.233, 0.701) 106
실시예 21 97 4.01 62.4 (0.251, 0.713) 118
실시예 22 99 4.07 63.0 (0.254, 0.724) 113
실시예 23 100 4.03 62.4 (0.233, 0.703) 115
실시예 24 101 4.00 64.8 (0.234, 0.714) 119
실시예 25 107 4.08 61.9 (0.243, 0.693) 104
실시예 26 108 4.04 62.4 (0.251, 0.724) 102
실시예 27 116 4.13 63.0 (0.242, 0.713) 114
실시예 28 117 4.01 63.5 (0.243, 0.712) 115
실시예 29 119 4.02 62.2 (0.242, 0.716) 115
실시예 30 120 4.12 62.7 (0.241, 0.713) 118
실시예 31 134 4.10 62.5 (0.251, 0.714) 108
실시예 32 143 4.16 63.9 (0.247, 0.727) 109
실시예 33 160 4.12 62.8 (0.231, 0.711) 111
실시예 34 185 4.17 61.3 (0.246, 0.717) 96
실시예 35 190 4.18 61.4 (0.231, 0.712) 96
실시예 36 200 4.16 61.6 (0.251, 0.714) 95
실시예 37 220 4.19 61.2 (0.241, 0.711) 95
실시예 38 228 4.19 62.2 (0.251, 0.714) 99
실시예 39 230 4.20 62.3 (0.242, 0.713) 99
실시예 40 250 4.15 62.0 (0.248, 0.715) 98
실시예 41 251 4.16 62.1 (0.251, 0.714) 98
실시예 42 263 4.10 62.3 (0.251, 0.714) 105
실시예 43 287 4.11 62.2 (0.246, 0.717) 106
실시예 44 302 4.18 61.9 (0.251, 0.724) 95
비교예 1 A 4.75 56.3 (0.248, 0.715) 65
비교예 2 B 4.80 53.8 (0.246, 0.717) 42
비교예 3 C 4.65 56.0 (0.231, 0.711) 60
비교예 4 D 4.67 56.4 (0.251, 0.713) 62
비교예 5 E 4.85 53.5 (0.245, 0.716) 45
비교예 6 F 4.77 54.0 (0.242, 0.713) 50
비교예 7 G 4.78 53.8 (0.251, 0.724) 50
비교예 8 H 4.89 52.8 (0.243, 0.693) 40
참고예 1 Q 4.25 60.0 (0.251, 0.714) 88
참고예 2 R 4.20 60.6 (0.247, 0.727) 93
참고예 3 S 4.15 61.3 (0.231, 0.711) 100
참고예 4 U 4.35 57.8 (0.246, 0.717) 70
참고예 5 W 4.25 60.1 (0.251, 0.724) 95
상기 표 10의 결과를 살펴보면, 본 발명의 화학식 1의 헤테로고리 화합물을 포함하는 유기 발광 소자의 경우(실시예 1 내지 44), 비교예 1 내지 8보다 구동전압, 발광효율 및 수명 면에서 모두 우수한 것을 알 수 있다.
구체적으로, 본 발명의 화합물은 헤테로 고리인 카바졸에 중수소가 치환되어 있다. 분자는 유기 발광 소자 구동 시 전자의 이동에 의해서 열 손상을 받게 된다. 특히 카바졸을 포함하고 있는 헤테로 고리 구조는 5각 고리를 가지고 있는 가장 불안정한 위치(site)인 질소에 결함이 생길 가능성이 높다.
본 발명의 화합물은 이를 방지하고자 헤테로고리인 카바졸에 수소보다 분자량이 더 큰 중수소를 치환함으로써 Vibrational frequency(진동 주파수)의 변화를 줄여 분자의 에너지를 낮추고, 이에 따라 분자의 안정성이 높아지는 화합물을 개발하였다. 또한, 탄소와 중수소의 단일 결합 해리에너지는 탄소와 수소의 단일 결합 해리에너지보다 높으므로, 분자의 열적 안정성이 증가함에 따라 소자 수명이 개선되는 것을 확인할 수 있다.
추가적으로, 중수소 치환의 위치에 따라 유기 발광 소자에서 어떠한 변화가 있는지 확인하기 위해, 화합물 101 및 상기 참고 화합물을 사용하여, 참고 실험을 진행하였다.
OLED 소자에서 전자와 정공의 이동도는 소자의 성능에 중요한 역할을 한다. 도 8은 참고 화합물 Q, U, W 그리고 화합물 101에 대한 정공 이동도(HOD)를, 도 9는 참고 화합물 Q, U, W 그리고 화합물 101에 대한 전자 이동도(EOD) 측정 결과를 나타내었다. 참고 화합물 Q의 경우에는 중수소가 치환되지 않은 화합물이다. 중수소가 치환되지 않은 경우에는 HOD보다 EOD가 더 빠르게 나타난다는 것을 확인할 수 있다. 이 경우에 OLED 소자에서 재결합 영역(Recombination Zone, RZ)은 발광층 중앙에 위치하지 않고 정공 수송층(HTL)에 가깝게 위치한다. (도 4 참조) 이것은 도 4의 RZ Test 실험에서 확인할 수 있다.
화합물 101의 경우 HOMO와 LUMO상태의 전자구름분포를 보면 트리아진 류에 LUMO가 분포되어있고, 카바졸 류에 HOMO가 분포되어있다. (도 11 및 도 12 참조) 유기화합물 분자 내에서 정공은 HOMO를 통해 이동하고, 전자는 LUMO를 통해서 이동한다. 중수소로 치환된 화합물은 수소에 비해 패킹 밀도가 더 높다. 따라서 중수소가 치환되는 경우 분자간 거리가 가까워 전자나 정공이 더 빠르게 이동한다.
참고 화합물 U와 같이 LUMO를 담당하는 트리아진 류에 중수소가 치환되는 경우 전자가 더욱 빨리 이동하기 때문에 RZ이 중수소가 치환되지 않는 경우보다 더 HTL쪽으로 치우치게 된다. 이에 따라 효율과 수명이 모두 감소하는 결과가 나타난 것으로 판단된다.
참고 화합물 W와 같이 화합물 전체에 중수소가 치환되는 경우에는 참고 화합물 Q에 비하여 구동 전압 및 발광 효율 면에서는 비슷하나, 우수한 수명을 나타내었다. 이것은 전자와 정공이 모두 빨라져 RZ이 변화하지 않은 결과로 해석된다.
반면 본 발명의 화합물인 화합물 101의 경우에는 HOMO를 담당하는 카바졸 류에 중수소가 치환되어 있다. 이에 따라 정공의 이동이 중수소가 치환되지 않은 참고 화합물 Q에 비해 빨라져서 RZ이 EML층의 중앙에 넓게 위치하게 되어 효율과 수명이 향상된 것을 확인하였다. 다시 말해서, 본 발명의 화합물을 발광층의 호스트로 사용하는 경우, 구동전압, 발광효율 및 수명이 현저히 우수한 것을 확인할 수 있다.
재결합 영역(Recombination Zone, RZ) 확인 실험은 실험예 1과 같은 유기 발광 소자 제작 방법으로 제작되었다. 차이점은 발광층에서 녹색 인광 도펀트의 도핑 위치이다.
도 4 내지 도 7에 있어서, #1은 녹색 인광 도펀트를 발광층 전체에 도핑하였고 비교군으로 사용하였다. #2의 경우는 색칠된 부분(정공 수송층에 가깝게 위치)에 120Å만 도핑하고 나머지 240Å은 호스트만 증착시켰다. #3의 경우는 색칠된 부분(발광층 중앙에 위치)에 120Å만 도핑하고 나머지 색칠되지 않은 부분에는 호스트만 증착시켰다. #4의 경우에는 색칠된 부분(정공 저지층에 가깝게 위치)에 120Å만 도핑하고 나머지 색칠되지 않은 부분에는 호스트만 증착 시켰다.
참고 화합물 Q의 경우 RZ이 정공 수송층에 가깝게 위치하고 있어 #2의 경우가 효율과 수명이 가장 좋은 것으로 나타났다. 이는 도 8 및 도 9에서와 같이 전자의 이동이 정공보다 상대적으로 빠른 결과를 나타내기도 한다.
참고 화합물 U의 경우에는 LUMO를 담당하는 트리아진 류에 중수소 치환됨으로써 참고 화합물 Q에 비해 수명이 낮게 나타났다. 이것은 전자의 이동이 참고 화합물 Q보다 빨라져 RZ이 더욱 정공 수송층으로 치우쳐 나타난 결과로 판단된다.
참고 화합물 W의 경우에는 참고 화합물 Q에 비하여 구동 전압 및 발광 효율 면에서는 비슷하나, 수명은 우수하였다. 참고 화합물 Q에 전체 중수소 치환된 참고 화합물 W의 경우에는 전자와 정공이 모두 빨라져 RZ이 변화하지 않은 결과로 해석된다.
반면 화합물 101의 경우에는 #3(발광층 중앙에 위치)에서 가장 높은 효율과 수명을 나타낸다. 이는 앞에서 설명한 바와 같이 HOMO를 담당하는 헤테로 고리쪽에 중수소가 치환되어 있다. 이에 따라 정공의 이동이 중수소가 치환되지 않은 참고 화합물 Q에 비해 빨라져 전자와 정공의 이동이 균형 있게 이루어져 RZ이 EML층의 중앙에 넓게 위치하는 것을 확인하였다.
본 발명의 화합물과 같이 전자 이동이 상대적으로 빠른 화합물의 경우에는 전자 저지층을 사용하면 발광층에서 전자가 넘어 오는 것을 저지하여 좀더 높을 효율을 낼 수 있을 것으로 기대된다.
추가적으로, 화학식 1의 구조 1-C의 중수소 함량에 따라 유기 발광 소자에서 HOD가 어떠한 변화가 있는지 참고 실험을 진행하였다(도 10). 실험 결과, 중수소로 치환되지 않은 화합물 Q보다는 중수소 함량이 43%인 화합물 R의 HOD가 상대적으로 빠르게 측정되었다. 또한, 중수소 함량이 0%, 43%를 가지는 화합물 Q, R의 경우는 100% 치환된 화합물 101에 비해서 HOD가 상대적으로 느린 것을 확인하였다. 70% 이상의 중수소 함량을 가지는 화합물 S의 경우는 100% 치환된 경우와 비슷한 HOD를 나타냄을 확인하였다.
참고 화합물 Q, U, W 그리고 화합물 101에 대한 재결합 영역(Recombination Zone, RZ) 확인 실험 결과와 Hole Only Device(HOD), Electron Only Device(EOD) 실험 결과는 도 4 내지 도 9에서 확인할 수 있다. 참고 화합물 S, R, Q, 그리고 화합물 101에 대한 Hole Only Device(HOD) 실험 결과는 도 10에서 확인할 수 있다.
<실험예 2>
1) 유기 발광 소자의 제작
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공 주입층 2-TNATA(4,4′,4′′-Tris[2-naphthyl(phenyl)amino]triphenylamine) 및 정공 수송층 NPB(N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine)을 형성시켰다.
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 화학식 1의 헤테로고리 화합물 1종과 화학식 2의 화합물 1종을 pre-mixed하여 예비 혼합 후 하나의 공원에서 360Å 증착하였고 녹색 인광 도펀트는 Ir(ppy)3를 발광층 증착 두께의 7 중량% 도핑하여 증착하였다. 이후 정공 저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자 수송층으로 Alq3를 200Å 증착하였다.
마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al) 음극을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
하기 표 11에서 별도로 적색 호스트로 표기한 것 이외에 실시예 및 비교예는 녹색 호스트로 사용되었다. 레드 인광 도펀트로 Ir(piq)2(acac)를 7 중량% 사용하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-8~10-6torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
2) 유기 발광 소자의 구동 전압, 발광 효율, 색좌표 및 수명
상기와 같이 제작된 유기 전계 발광 소자에 대하여 맥사이언스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다.
본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색좌표(CIE), 수명을 측정한 결과는 하기 표 11과 같았다.
발광층
화합물
비율 구동전압
(V)
발광효율
(cd/A)
색좌표
(x, y)
수명
(T90)
실시예45 101 : 2-74 1 : 1 3.80 66.3 (0.248, 0.637) 155
실시예46 1 : 2 3.87 65.7 (0.269, 0.611) 160
실시예47 1 : 3 3.93 65.1 (0.251, 0.693) 165
실시예48 101 : 2-51 1 : 1 3.81 66.4 (0.248, 0.637) 290
실시예49 1 : 2 3.87 65.8 (0.269, 0.611) 297
실시예50 1 : 3 3.94 65.1 (0.251, 0.693) 303
실시예51 14 : 2-76 1 : 1 3.82 66.7 (0.245, 0.677) 151
실시예52 1 : 2 3.86 65.8 (0.258, 0.647) 155
실시예53 1 : 3 3.93 64.8 (0.266, 0.645) 160
실시예54 14 : 2-53 1 : 1 3.81 66.8 (0.245, 0.677) 295
실시예55 1 : 2 3.86 65.8 (0.258, 0.647) 300
실시예56 1 : 3 3.92 64.9 (0.266, 0.645) 305
실시예57 15 : 2-76 1 : 1 3.83 66.5 (0.256, 0.673) 152
실시예58 1 : 2 3.88 65.6 (0.237, 0.644) 156
실시예59 1 : 3 3.93 64.7 (0.237, 0.624) 161
실시예60 15 : 2-53 1 : 1 3.83 66.7 (0.256, 0.673) 294
실시예61 1 : 2 3.87 65.7 (0.237, 0.644) 300
실시예62 1 : 3 3.93 64.7 (0.237, 0.624) 306
실시예63 19 : 2-77 1 : 1 3.85 67.7 (0.245, 0.617) 155
실시예64 1 : 2 3.91 66.8 (0.257, 0.624) 160
실시예65 1 : 3 3.95 65.8 (0.259, 0.712) 164
실시예66 19 : 2-56 1 : 1 3.84 67.6 (0.245, 0.617) 300
실시예67 1 : 2 3.90 66.8 (0.257, 0.624) 305
실시예68 1 : 3 3.94 65.9 (0.259, 0.712) 311
실시예69 27 : 2-79 1 : 1 3.79 67.3 (0.243, 0.643) 156
실시예70 1 : 2 3.84 66.2 (0.261, 0.764) 160
실시예71 1 : 3 3.90 65.4 (0.258, 0.628) 165
실시예72 27 : 2-57 1 : 1 3.78 67.2 (0.243, 0.643) 301
실시예73 1 : 2 3.83 66.2 (0.261, 0.764) 304
실시예74 1 : 3 3.89 65.4 (0.258, 0.628) 310
실시예75 38 : 2-78 1 : 1 3.80 67.4 (0.254, 0.653) 156
실시예76 1 : 2 3.85 66.4 (0.275, 0.657) 160
실시예77 1 : 3 3.93 65.4 (0.264, 0.642) 165
실시예78 38 : 2-50 1 : 1 3.80 67.4 (0.254, 0.653) 302
실시예79 1 : 2 3.85 66.5 (0.275, 0.657) 307
실시예80 1 : 3 3.92 65.5 (0.264, 0.642) 313
실시예81 47 : 2-74 1 : 1 3.84 68.2 (0.256, 0.638) 157
실시예82 1 : 2 3.90 67.2 (0.251, 0.632) 162
실시예83 1 : 3 3.95 66.3 (0.253, 0.684) 167
실시예84 47 : 2-51 1 : 1 3.83 68.3 (0.256, 0.638) 305
실시예85 1 : 2 3.90 67.3 (0.251, 0.632) 309
실시예86 1 : 3 3.94 66.4 (0.253, 0.684) 314
실시예87 66 : 2-77 1 : 1 3.76 67.6 (0.235, 0.655) 158
실시예88 1 : 2 3.84 66.7 (0.236, 0.624) 163
실시예89 1 : 3 3.92 65.7 (0.255, 0.692) 168
실시예90 66 : 2-56 1 : 1 3.76 67.6 (0.235, 0.655) 307
실시예91 1 : 2 3.84 66.7 (0.236, 0.624) 312
실시예92 1 : 3 3.92 65.7 (0.255, 0.692) 317
실시예93 80 : 2-79 1 : 1 3.83 66.9 (0.253, 0.724) 159
실시예94 1 : 2 3.88 65.9 (0.242, 0.625) 164
실시예95 1 : 3 3.92 64.9 (0.261, 0.623) 167
실시예96 80 : 2-57 1 : 1 3.83 66.9 (0.253, 0.724) 308
실시예97 1 : 2 3.87 65.9 (0.242, 0.625) 312
실시예98 1 : 3 3.91 65.1 (0.261, 0.623) 316
실시예99 86 : 2-76 1 : 1 3.82 67.3 (0.253, 0.614) 163
실시예100 1 : 2 3.88 66.4 (0.254, 0.659) 168
실시예101 1 : 3 3.94 65.5 (0.255, 0.635) 173
실시예102 86 : 2-53 1 : 1 3.81 67.4 (0.253, 0.614) 317
실시예103 1 : 2 3.87 66.5 (0.254, 0.659) 323
실시예104 1 : 3 3.93 65.5 (0.255, 0.635) 329
실시예105 97 : 2-78 1 : 1 3.79 65.9 (0.257, 0.714) 165
실시예106 1 : 2 3.86 65.1 (0.249, 0.666) 168
실시예107 1 : 3 3.92 64.1 (0.253, 0.635) 172
실시예108 97 : 2-50 1 : 1 3.78 66.0 (0.257, 0.714) 315
실시예109 1 : 2 3.86 65.1 (0.249, 0.666) 320
실시예110 1 : 3 3.92 64.2 (0.253, 0.635) 325
실시예111 99 : 2-74 1 : 1 3.83 67.3 (0.268, 0.615) 160
실시예112 1 : 2 3.88 66.3 (0.253, 0.628) 165
실시예113 1 : 3 3.92 65.4 (0.256, 0.713) 170
실시예114 99 : 2-51 1 : 1 3.82 67.2 (0.268, 0.615) 312
실시예115 1 : 2 3.90 66.2 (0.253, 0.628) 314
실시예116 1 : 3 3.93 65.3 (0.256, 0.713) 316
실시예117 107 : 2-77 1 : 1 3.82 67.8 (0.243, 0.612) 154
실시예118 1 : 2 3.86 66.9 (0.265, 0.669) 158
실시예119 1 : 3 3.92 66.0 (0.255, 0.627) 163
실시예120 107 : 2-56 1 : 1 3.82 67.7 (0.243, 0.612) 298
실시예121 1 : 2 3.87 66.8 (0.265, 0.669) 304
실시예122 1 : 3 3.92 65.8 (0.255, 0.627) 309
실시예123 108 : 2-79 1 : 1 3.82 67.0 (0.243, 0.653) 156
실시예124 1 : 2 3.87 65.9 (0.247, 0.644) 160
실시예125 1 : 3 3.93 65.1 (0.274, 0.658) 164
실시예126 108 : 2-57 1 : 1 3.81 66.9 (0.243, 0.653) 307
실시예127 1 : 2 3.88 65.9 (0.247, 0.644) 312
실시예128 1 : 3 3.93 65.0 (0.274, 0.658) 318
실시예129 119 : 2-78 1 : 1 3.80 67.4 (0.263, 0.621) 154
실시예130 1 : 2 3.85 66.5 (0.256, 0.670) 156
실시예131 1 : 3 3.90 65.5 (0.245, 0.637) 159
실시예132 119 : 2-50 1 : 1 3.80 67.5 (0.263, 0.621) 302
실시예133 1 : 2 3.85 66.6 (0.256, 0.670) 306
실시예134 1 : 3 3.90 65.6 (0.245, 0.637) 310
실시예135 160 : 2-74 1 : 1 3.82 67.3 (0.254, 0.653) 154
실시예136 1 : 2 3.87 66.3 (0.275, 0.657) 158
실시예137 1 : 3 3.93 65.3 (0.264, 0.642) 163
실시예138 160 : 2-51 1 : 1 3.80 67.3 (0.254, 0.653) 300
실시예139 1 : 2 3.85 66.4 (0.275, 0.657) 305
실시예140 1 : 3 3.92 65.4 (0.264, 0.642) 311
실시예141 263 : 2-78 1 : 1 3.85 68.1 (0.256, 0.638) 155
실시예142 1 : 2 3.91 67.1 (0.251, 0.632) 160
실시예143 1 : 3 3.95 66.2 (0.253, 0.684) 165
실시예144 263 : 2-50 1 : 1 3.84 68.2 (0.256, 0.638) 303
실시예145 1 : 2 3.90 67.2 (0.251, 0.632) 307
실시예146 1 : 3 3.94 66.3 (0.253, 0.684) 312
실시예147 37 : 2-76
(적색 호스트)
1 : 1 4.10 65.6 (0.672, 0.319) 143
실시예148 1 : 2 4.15 65.2 (0.670, 0.321) 146
실시예149 1 : 3 4.19 64.9 (0.671, 0.320) 149
비교예 9 A : 2-78 1 : 1 4.49 59.8 (0.256, 0.723) 84
비교예 10 1 : 2 4.54 59.3 (0.243, 0.629) 87
비교예 11 1 : 3 4.59 58.8 (0.268, 0.734) 89
비교예 12 C : 2-76 1 : 1 4.50 59.5 (0.266, 0.657) 75
비교예 13 1 : 2 4.55 59.0 (0.268, 0.739) 79
비교예 14 1 : 3 4.60 58.7 (0.257, 0.624) 84
비교예 15 D : 2-79 1 : 1 4.52 59.3 (0.687, 0.643) 76
비교예 16 1 : 2 4.57 58.9 (0.267, 0.628) 80
비교예 17 1 : 3 4.62 58.5 (0.265, 0.624) 85
비교예 18 E: 2-77 1 : 1 4.60 58.0 (0.276, 0.613) 72
비교예 19 1 : 2 4.64 57.7 (0.259, 0.628) 76
비교예 20 1 : 3 4.69 57.4 (0.244, 0.628) 79
비교예 21 H : 2-74 1 : 1 4.65 57.3 (0.256, 0.723) 70
비교예 22 1 : 2 4.70 57.0 (0.243, 0.629) 74
비교예 23 1 : 3 4.75 56.5 (0.268, 0.734) 78
상기 표 10의 결과를 표 11의 결과와 비교해보면, 화학식 1의 헤테로고리 화합물과 화학식 2의 화합물을 동시에 발광층의 호스트로 사용하는 경우, 구동전압, 발광효율 및 수명이 모두 개선된 것을 확인할 수 있다.
이는, 화학식 1의 화합물 및 화학식 2의 화합물을 동시에 포함하는 경우 더 우수한 효율 및 수명 효과를 보인다. 이 결과는 두 화합물을 동시에 포함하는 경우 엑시플렉스(exciplex) 현상이 일어남을 예상할 수 있다.
상기 엑시플렉스(exciplex) 현상은 두 분자간 전자 교환으로 donor(p-host)의 HOMO level, acceptor(n-host) LUMO level 크기의 에너지를 방출하는 현상이다. 두 분자간 엑시플렉스(exciplex) 현상이 일어나면 Reverse Intersystem Crossing(RISC)이 일어나게 되고 이로 인해 형광의 내부양자 효율이 100%까지 올라갈 수 있다. 정공 수송 능력이 좋은 donor(p-host)와 전자 수송 능력이 좋은 acceptor(n-host)가 발광층의 호스트로 사용될 경우 정공은 p-host로 주입되고, 전자는 n-host로 주입되기 때문에 구동 전압을 낮출 수 있고, 그로 인해 수명 향상에 도움을 줄 수 있다. 본 발명에서는 donor 역할은 상기 화학식 2의 화합물, acceptor 역할은 상기 화학식 1의 화합물이 발광층 호스트로 사용되었을 경우에 우수한 소자 특성을 나타냄을 확인할 수 있었다.
특히, 중수소가 치환되면 수명 특성이 우수함을 확인할 수 있다. 이는 표 10의 결과에서 설명한 것과 같은 중수소가 치환됨으로써 나타낸 결과이며 이는 유사한 구조를 가지고 있을지라도 중수소의 치환에 따라 화합물의 특성이 달라질 수 있음을 시사하고 있다.
반면, 본 발명의 범위에 포함되지 않는 화합물(비교예 9 내지 23)을 화학식 2의 화합물과 조합하여 사용할 경우, 구동전압, 발광효율 및 수명에서 성능이 본 발명에 비해 떨어지는 것을 알 수 있다.
즉, 본 발명의 화학식 1의 헤테로고리 화합물과 화학식 2의 화합물을 동시에 발광층의 호스트로 사용하는 경우, 구동전압, 발광효율 및 수명이 현저히 우수한 것을 확인할 수 있다.

Claims (16)

  1. 하기 화학식 1로 표시되는 헤테로고리 화합물:
    [화학식 1]
    Figure PCTKR2022016716-appb-img-000088
    상기 화학식 1에 있어서,
    Z1 내지 Z3는 서로 동일하거나 상이하고, 각각 독립적으로 N; 또는 CR이고, 적어도 하나는 N이며,
    R은 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    L은 직접결합; 또는 치환 또는 비치환된 C6 내지 C60의 아릴렌기이며,
    l은 0 내지 3의 정수이고, l이 2 이상인 경우 L은 서로 동일하거나 상이하며,
    X는 O; 또는 S이고,
    R11 내지 R13는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    k는 0 또는 1이며,
    k가 0인 경우 직접 결합이 아닌, 결합이 존재하지 않는 것을 의미하며,
    k가 0인 경우 m은 0 내지 9의 정수이고, k가 1인 경우 m은 0 내지 7의 정수이며, m이 2 이상인 경우 R11은 서로 동일하거나 상이하고,
    n은 0 내지 6의 정수이고, n이 2 이상인 경우 R12는 서로 동일하거나 상이하고,
    Ar11 및 Ar12는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    상기 화학식 1의 구조 중
    Figure PCTKR2022016716-appb-img-000089
    의 중수소 함량은 0% 초과 100% 이하이고,
    상기
    Figure PCTKR2022016716-appb-img-000090
    는 상기 화학식 1과의 결합 위치이다.
  2. 청구항 1에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물의 중수소 함량은 0% 초과 100% 이하인 것인 헤테로고리 화합물.
  3. 청구항 1에 있어서, 상기 화학식 1은 하기 구조 1-A 내지 1-D로 나누어 표시되고, 하기 구조 1-C의 중수소 함량은 30% 내지 100%인 것인 헤테로고리 화합물:
    [구조 1-A]
    Figure PCTKR2022016716-appb-img-000091
    [구조 1-B]
    Figure PCTKR2022016716-appb-img-000092
    [구조 1-C]
    Figure PCTKR2022016716-appb-img-000093
    [구조 1-D]
    Figure PCTKR2022016716-appb-img-000094
    상기 구조 1-A 내지 1-D에 있어서,
    Z1 내지 Z3, L, l, X, R11 내지 R13, k, m, n, Ar11 및 Ar12의 정의는 상기 화학식 1에서의 정의와 동일하고,
    Figure PCTKR2022016716-appb-img-000095
    ,
    Figure PCTKR2022016716-appb-img-000096
    Figure PCTKR2022016716-appb-img-000097
    는 각각 서로 동일한 것끼리 연결되는 결합 위치이다.
  4. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-1-1 내지 1-1-3 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    [화학식 1-1-1]
    Figure PCTKR2022016716-appb-img-000098
    [화학식 1-1-2]
    Figure PCTKR2022016716-appb-img-000099
    [화학식 1-1-3]
    Figure PCTKR2022016716-appb-img-000100
    상기 화학식 1-1-1 내지 1-1-3에 있어서,
    Z1 내지 Z3, L, l, X, R11 내지 R13, k, m, n, Ar11 및 Ar12의 정의는 상기 화학식 1에서의 정의와 동일하다.
  5. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 1-3 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    [화학식 1-1]
    Figure PCTKR2022016716-appb-img-000101
    [화학식 1-2]
    Figure PCTKR2022016716-appb-img-000102
    [화학식 1-3]
    Figure PCTKR2022016716-appb-img-000103
    상기 화학식 1-1 내지 1-3에 있어서,
    Z1 내지 Z3, L, l, R11 내지 R13, m, n, Ar11 및 Ar12의 정의는 상기 화학식 1에서의 정의와 동일하고,
    R111 및 R112은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    m1은 0 내지 5의 정수이고, m2는 0 내지 4의 정수이며, m1 및 m2가 각각 2 이상인 경우, 괄호 내의 치환기는 서로 동일하거나 상이하다.
  6. 청구항 1에 있어서, Ar11 및 Ar12는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기인 것인 헤테로고리 화합물.
  7. 청구항 1에 있어서, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    Figure PCTKR2022016716-appb-img-000104
    Figure PCTKR2022016716-appb-img-000105
    Figure PCTKR2022016716-appb-img-000106
    Figure PCTKR2022016716-appb-img-000107
    Figure PCTKR2022016716-appb-img-000108
    Figure PCTKR2022016716-appb-img-000109
    Figure PCTKR2022016716-appb-img-000110
    Figure PCTKR2022016716-appb-img-000111
    Figure PCTKR2022016716-appb-img-000112
    Figure PCTKR2022016716-appb-img-000113
    Figure PCTKR2022016716-appb-img-000114
    Figure PCTKR2022016716-appb-img-000115
    Figure PCTKR2022016716-appb-img-000116
    Figure PCTKR2022016716-appb-img-000117
    Figure PCTKR2022016716-appb-img-000118
    Figure PCTKR2022016716-appb-img-000119
    Figure PCTKR2022016716-appb-img-000120
    Figure PCTKR2022016716-appb-img-000121
  8. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 청구항 1 내지 7 중 어느 한 항에 따른 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  9. 청구항 8에 있어서, 상기 유기물층은 하기 화학식 2로 표시되는 헤테로고리 화합물을 더 포함하는 것인 유기 발광 소자:
    [화학식 2]
    Figure PCTKR2022016716-appb-img-000122
    상기 화학식 2에 있어서,
    R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -SiR'R"R"'; -P(=O)R'R"; 및 치환 또는 비치환된 C1 내지 C60의 알킬기, 치환 또는 비치환된 C6 내지 C60의 아릴기 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기로 치환 또는 비치환된 아민기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 지방족 또는 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 지방족 또는 방향족 헤테로 고리를 형성하고,
    R', R" 및 R"'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    r 및 s는 0 내지 7의 정수이고, r 및 s가 2 이상인 경우, 괄호 내의 치환기는 서로 동일하거나 상이하고,
    Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
  10. 청구항 9에 있어서,
    R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이고,
    Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기인 것인 유기 발광 소자.
  11. 청구항 9에 있어서, 상기 화학식 2는 하기 화합물 중 어느 하나로 표시되는 것인 유기 발광 소자:
    Figure PCTKR2022016716-appb-img-000123
    Figure PCTKR2022016716-appb-img-000124
    Figure PCTKR2022016716-appb-img-000125
    Figure PCTKR2022016716-appb-img-000126
    Figure PCTKR2022016716-appb-img-000127
    Figure PCTKR2022016716-appb-img-000128
  12. 청구항 9에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 헤테로고리 화합물 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  13. 청구항 9에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트 물질을 포함하며, 상기 호스트 물질은 상기 화학식 1로 표시되는 헤테로고리 화합물 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  14. 청구항 8에 있어서, 상기 유기 발광 소자는 발광층, 정공주입층, 정공수송층, 전자저지층, 정공저지층, 전자수송층 및 전자주입층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함하는 것인 유기 발광 소자.
  15. 청구항 1 내지 7 중 어느 한 항에 따른 헤테로고리 화합물; 및 하기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 유기 발광 소자의 유기물층용 조성물:
    [화학식 2]
    Figure PCTKR2022016716-appb-img-000129
    상기 화학식 2에 있어서,
    R21 및 R22는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -SiR'R"R"'; -P(=O)R'R"; 및 치환 또는 비치환된 C1 내지 C60의 알킬기, 치환 또는 비치환된 C6 내지 C60의 아릴기 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기로 치환 또는 비치환된 아민기로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 지방족 또는 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 지방족 또는 방향족 헤테로 고리를 형성하고,
    R', R" 및 R"'는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    r 및 s는 0 내지 7의 정수이고, r 및 s가 2 이상인 경우, 괄호 내의 치환기는 서로 동일하거나 상이하고,
    Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
  16. 청구항 15에 있어서,
    상기 조성물 내의 상기 헤테로고리 화합물 : 상기 화학식 2로 표시되는 헤테로고리 화합물의 중량비는 1 : 10 내지 10 : 1 인 것인 유기 발광 소자의 유기물층용 조성물.
PCT/KR2022/016716 2021-12-10 2022-10-28 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물 WO2023106626A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22904460.7A EP4339195A1 (en) 2021-12-10 2022-10-28 Heterocyclic compound, organic light-emitting element comprising same, and composition for organic layer of organic light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210176360A KR20230087805A (ko) 2021-12-10 2021-12-10 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
KR10-2021-0176360 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023106626A1 true WO2023106626A1 (ko) 2023-06-15

Family

ID=86730782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016716 WO2023106626A1 (ko) 2021-12-10 2022-10-28 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물

Country Status (4)

Country Link
EP (1) EP4339195A1 (ko)
KR (1) KR20230087805A (ko)
TW (1) TW202330497A (ko)
WO (1) WO2023106626A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
KR20180002351A (ko) * 2016-06-29 2018-01-08 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR101959821B1 (ko) * 2017-09-15 2019-03-20 엘티소재주식회사 유기 발광 소자, 이의 제조방법 및 유기 발광 소자의 유기물층용 조성물
US20190214573A1 (en) * 2016-10-07 2019-07-11 Samsung Sdi Co., Ltd. Composition for organic optoelectronic device, organic optoelectronic device, and display device
KR20200056589A (ko) * 2018-11-15 2020-05-25 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200068568A (ko) * 2018-12-05 2020-06-15 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
KR20180002351A (ko) * 2016-06-29 2018-01-08 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
US20190214573A1 (en) * 2016-10-07 2019-07-11 Samsung Sdi Co., Ltd. Composition for organic optoelectronic device, organic optoelectronic device, and display device
KR101959821B1 (ko) * 2017-09-15 2019-03-20 엘티소재주식회사 유기 발광 소자, 이의 제조방법 및 유기 발광 소자의 유기물층용 조성물
KR20200056589A (ko) * 2018-11-15 2020-05-25 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200068568A (ko) * 2018-12-05 2020-06-15 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자

Also Published As

Publication number Publication date
EP4339195A1 (en) 2024-03-20
KR20230087805A (ko) 2023-06-19
TW202330497A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2022065761A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
WO2022035097A1 (ko) 유기 발광 소자 및 유기물층 형성용 조성물
WO2021137565A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2021133016A2 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2021132984A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021241923A1 (ko) 유기 발광 소자, 이의 제조방법 및 유기 발광 소자의 유기물층용 조성물
WO2021034039A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022270741A1 (ko) 헤테로고리 화합물, 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물
WO2022131547A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
WO2022035224A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021261849A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021215742A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2021132982A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2023277446A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
WO2019245264A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2022250228A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021101220A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2020060225A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2023106626A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2023163381A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물
WO2023101238A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
WO2023113389A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2023153844A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물
WO2023149718A1 (ko) 헤테로고리 화합물을 포함하는 유기 발광 소자, 상기 유기 발광 소자의 유기물층용 조성물 및 상기 유기 발광 소자의 제조방법
WO2023191353A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904460

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022904460

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18571845

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022904460

Country of ref document: EP

Effective date: 20231205