WO2023101238A1 - 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물 - Google Patents

헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물 Download PDF

Info

Publication number
WO2023101238A1
WO2023101238A1 PCT/KR2022/017207 KR2022017207W WO2023101238A1 WO 2023101238 A1 WO2023101238 A1 WO 2023101238A1 KR 2022017207 W KR2022017207 W KR 2022017207W WO 2023101238 A1 WO2023101238 A1 WO 2023101238A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
light emitting
Prior art date
Application number
PCT/KR2022/017207
Other languages
English (en)
French (fr)
Inventor
박건유
노영석
김동준
Original Assignee
엘티소재주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티소재주식회사 filed Critical 엘티소재주식회사
Publication of WO2023101238A1 publication Critical patent/WO2023101238A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present specification relates to a heterocyclic compound, an organic light emitting device including the heterocyclic compound, and a composition for an organic material layer.
  • the organic electroluminescent device is a type of self-luminous display device, and has advantages such as a wide viewing angle, excellent contrast, and fast response speed.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes are combined in the organic thin film to form a pair, and then emit light while disappearing.
  • the organic thin film may be composed of a single layer or multiple layers as needed.
  • the material of the organic thin film may have a light emitting function as needed.
  • a compound capable of constituting the light emitting layer by itself may be used, or a compound capable of serving as a host or dopant of the host-dopant type light emitting layer may be used.
  • a compound capable of performing functions such as hole injection, hole transport, electron blocking, hole blocking, electron transport, and electron injection may be used.
  • Patent Document US Patent No. 4,356,429
  • the present invention is to provide a heterocyclic compound, an organic light emitting device including the same, and a composition for an organic material layer.
  • a heterocyclic compound represented by Formula 1 is provided.
  • X1 to X3 are the same as or different from each other, and each independently N; or CRa1, at least one is N;
  • La1 and La2 are the same as or different from each other, and are each independently a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • R1 is hydrogen; or deuterium
  • Rb1 to Rb11 are the same as or different from each other, and each independently hydrogen; Or deuterium, at least one of Rb1 to Rb11 is deuterium,
  • R, R' and R" are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; a substituted or unsubstituted C1 to C60 alkyl group; or a substituted or unsubstituted C6 to C60 aryl group,
  • a, b and m are integers from 1 to 4.
  • n is an integer from 0 to 4.
  • the first electrode a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the heterocyclic compound represented by Chemical Formula 1.
  • an exemplary embodiment of the present application provides an organic light emitting device in which the organic material layer including the heterocyclic compound of Formula 1 further includes a heterocyclic compound represented by Formula 2 below.
  • L2 is a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • R, R' and R" are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; a substituted or unsubstituted C1 to C60 alkyl group; or a substituted or unsubstituted C6 to C60 aryl group,
  • a1 is an integer from 0 to 4.
  • r and s are integers from 0 to 7;
  • another exemplary embodiment of the present application provides a composition for an organic layer of an organic light emitting device comprising the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 2 above.
  • the heterocyclic compound according to an exemplary embodiment of the present application may be used as a material for an organic material layer of an organic light emitting device.
  • the heterocyclic compound may be used as a material for a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, or a charge generation layer in an organic light emitting device.
  • the heterocyclic compound represented by Chemical Formula 1 corresponds to one having an arylene linking group in the core structure of a triphenylenyl group in which at least one or more is substituted with deuterium and having an azine substituent.
  • compounds substituted with deuterium whose atomic mass is twice as large as hydrogen, have lower zero-point energy and vibrational energy than compounds substituted with hydrogen, resulting in lower energy in the ground state and reduced collisions due to intermolecular vibrations, resulting in thin films in an amorphous state. It can be made to have a feature that can improve the lifespan of the organic light emitting device.
  • At least one of the cores of the triphenylenyl group is substituted with deuterium to have a low ground state energy, thereby improving the stability of the compound, and the high dissociation energy of the C-D bond improves the stability of the molecule, It has characteristics capable of improving the lifetime of the organic light emitting device.
  • heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 may be simultaneously used as materials for a light emitting layer of an organic light emitting device.
  • the driving voltage of the device is lowered, the light efficiency is improved, and the thermal stability of the compound improves the efficiency of the device. life characteristics can be improved.
  • FIG. 1 to 3 are views schematically illustrating a stacked structure of an organic light emitting device according to an exemplary embodiment of the present application.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the hydrogen atom is substituted, that is, the position where the substituent is substituted, and when two or more are substituted , Two or more substituents may be the same as or different from each other.
  • "when no substituent is indicated in the chemical formula or compound structure” may mean that all possible positions of the substituent are hydrogen or deuterium. That is, deuterium is an isotope of hydrogen, and some hydrogen atoms may be an isotope of deuterium, and in this case, the content of deuterium may be 0% to 100%.
  • the content of deuterium is 0%, the content of hydrogen is 100%, and all substituents explicitly exclude deuterium such as hydrogen. If not, hydrogen and deuterium may be mixed and used in the compound.
  • deuterium is one of the isotopes of hydrogen, and is an element having a deuteron composed of one proton and one neutron as an atomic nucleus, hydrogen- It can be expressed as 2, and the element symbol can also be written as D or 2 H.
  • isotopes which mean atoms having the same atomic number (Z) but different mass numbers (A), have the same number of protons, but have neutrons It can also be interpreted as an element with a different number of neutrons.
  • the deuterium content of 20% can be represented by the following structural formula.
  • a phenyl group having a deuterium content of 0% it may mean a phenyl group without deuterium atoms, that is, having 5 hydrogen atoms.
  • halogen may be fluorine, chlorine, bromine or iodine.
  • the alkyl group includes a straight or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms of the alkyl group may be 1 to 60, specifically 1 to 40, and more specifically, 1 to 20.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, octyl group, n-octyl group, tert-octyl group, 1-methylheptyl group
  • the alkenyl group includes a straight chain or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the alkenyl group may have 2 to 60 carbon atoms, specifically 2 to 40, and more specifically, 2 to 20.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1 -butenyl group, 1,3-butadienyl group, allyl group, 1-phenylvinyl-1-yl group, 2-phenylvinyl-1-yl group, 2,2-diphenylvinyl-1-yl group, 2-phenyl-2 -(naphthyl-1-yl)vinyl-1-yl group, 2,2-bis(diphenyl-1-yl)vinyl-1-yl group, stilbenyl group, styrenyl group, etc., but is not limited thereto.
  • the alkynyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms of the alkynyl group may be 2 to 60, specifically 2 to 40, and more specifically, 2 to 20.
  • a haloalkyl group means an alkyl group substituted with a halogen group, and specific examples thereof include -CF 3 , -CF 2 CF 3 , but are not limited thereto.
  • the alkoxy group is represented by -O(R101), and examples of the above-described alkyl group may be applied to R101.
  • the aryloxy group is represented by -O(R102), and examples of the above-described aryl group may be applied to R102.
  • alkylthioxy group is represented by -S(R103), and examples of the above-described alkyl group may be applied to R103.
  • the arylthiooxy group is represented by -S(R104), and examples of the above-described aryl group may be applied to R104.
  • the cycloalkyl group includes a monocyclic or polycyclic group having 3 to 60 carbon atoms, and may be further substituted with other substituents.
  • the polycyclic means a group in which a cycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a cycloalkyl group, but may also be another type of ring group, such as a heterocycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the number of carbon atoms in the cycloalkyl group may be 3 to 60, specifically 3 to 40, and more specifically 5 to 20.
  • the heterocycloalkyl group includes O, S, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic group having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a heterocycloalkyl group, but may also be another type of ring group, such as a cycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the heterocycloalkyl group may have 2 to 60, specifically 2 to 40, and more specifically 3 to 20 carbon atoms.
  • the aryl group includes a monocyclic or polycyclic group having 6 to 60 carbon atoms, and may be further substituted with other substituents.
  • the polycyclic means a group in which an aryl group is directly connected or condensed with another cyclic group.
  • the other ring group may be an aryl group, but may also be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, and the like.
  • the aryl group includes a spiro group.
  • the number of carbon atoms of the aryl group may be 6 to 60, specifically 6 to 40, and more specifically 6 to 25.
  • aryl group examples include a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a chrysenyl group, a phenanthrenyl group, a perylenyl group, a fluoranthenyl group, a triphenylenyl group, and a phenalenyl group.
  • a condensed ring group may be included, but is not limited thereto.
  • terphenyl group may be selected from the following structures.
  • the fluorenyl group may be substituted, and adjacent substituents may bond to each other to form a ring.
  • fluorenyl group when substituted, it may be any one of the following structures, but is not limited thereto.
  • the heteroaryl group includes S, O, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic group having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a heteroaryl group is directly connected or condensed with another ring group.
  • the other ring group may be a heteroaryl group, but may also be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, an aryl group, and the like.
  • the heteroaryl group may have 2 to 60 carbon atoms, specifically 2 to 40, and more specifically 3 to 25 carbon atoms.
  • heteroaryl group examples include a pyridine group, a pyrrole group, a pyrimidine group, a pyridazine group, a furan group, a thiophene group, an imidazole group, a pyrazole group, an oxazole group, an isoxazole group, a thiazole group, an isothiazole group, Triazole group, furazine group, oxadiazole group, thiadiazole group, dithiazole group, tetrazolyl group, pyran group, thiopyran group, diazine group, oxazine group, thiazine group, dioxin group, triazine group, tetrazine group, quinoline group, Isoquinoline group, quinazoline group, isoquinazoline group, quinozoline group, naphthyridine group, acridine group, phenanthridine group, imidazole
  • the substituent when the substituent is a carbazole group, it means bonding to nitrogen or carbon of carbazole.
  • benzocarbazole group may have any one of the following structures.
  • the dibenzocarbazole group may have any one of the following structures.
  • the naphthobenzofuran group may have any one of the following structures.
  • the naphthobenzothiophene group may have any one of the following structures.
  • the silyl group is a substituent that includes Si and the Si atom is directly connected as a radical, and is represented by -Si(R107)(R108)(R109), R107 to R109 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; an alkyl group; alkenyl group; alkoxy group; cycloalkyl group; heterocycloalkyl group; aryl group; And it may be a substituent consisting of at least one of a heteroaryl group.
  • silyl group is (trimethylsilyl group), (triethylsilyl group), (t-butyldimethylsilyl group), (vinyldimethylsilyl group), (propyldimethylsilyl group), (triphenylsilyl group), (diphenylsilyl group), (phenylsilyl group), but is not limited thereto.
  • the phosphine oxide group includes, but is not limited to, a dimethylphosphine oxide group, a diphenylphosphine oxide group, and a dinaphthylphosphine oxide group.
  • the amine group is represented by -N(R112)(R113), R112 and R113 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; an alkyl group; alkenyl group; alkoxy group; cycloalkyl group; heterocycloalkyl group; aryl group; And it may be a substituent consisting of at least one of a heteroaryl group.
  • the amine group is -NH 2 ; monoalkylamine group; monoarylamine group; Monoheteroarylamine group; Dialkylamine group; Diaryl amine group; Diheteroarylamine group; an alkyl arylamine group; Alkylheteroarylamine group; And it may be selected from the group consisting of an arylheteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, a dibiphenylamine group, an anthracenylamine group, a 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluorene
  • Examples include a ylamine group, a phenyltriphenylenylamine group, a biphenyltriphenylenylamine group, and the like, but are not limited thereto.
  • heteroaryl group examples of the above-described heteroaryl group may be applied, except that the heteroarylene group is a divalent group.
  • adjacent refers to a substituent substituted on an atom directly connected to the atom on which the substituent is substituted, a substituent located sterically closest to the substituent, or another substituent substituted on the atom on which the substituent is substituted.
  • two substituents substituted at ortho positions in a benzene ring and two substituents substituted at the same carbon in an aliphatic ring may be interpreted as “adjacent” to each other.
  • Hydrocarbon rings and heterocycles that adjacent groups can form include aliphatic hydrocarbon rings, aromatic hydrocarbon rings, aliphatic heterocycles and aromatic heterocycles, except that the rings are not monovalent, respectively, the above-mentioned cycloalkyl groups, aryl Structures exemplified by groups, heterocycloalkyl groups and heteroaryl groups can be applied.
  • a heterocyclic compound represented by Formula 1 is provided.
  • X1 may be N, and X2 and X3 may be CRa1.
  • X3 may be N, and X1 and X2 may be CRa1.
  • X2 may be N, and X1 and X3 may be CRa1.
  • X1 and X2 may be N, and X3 may be CRa1.
  • X1 and X3 may be N, and X2 may be CRa1.
  • X2 and X3 may be N, and X1 may be CRa1.
  • X1 to X3 may be N.
  • La1 and La2 are the same as or different from each other, and are each independently a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or it may be a substituted or unsubstituted C2 to C60 heteroarylene group.
  • La1 and La2 are the same as or different from each other, and are each independently a direct bond; A substituted or unsubstituted C6 to C40 arylene group; Or it may be a substituted or unsubstituted C2 to C40 heteroarylene group.
  • La1 and La2 are the same as or different from each other, and are each independently a direct bond; or a substituted or unsubstituted C6 to C40 arylene group;
  • La1 and La2 are the same as or different from each other, and are each independently a direct bond; or a substituted or unsubstituted C6 to C20 arylene group;
  • La1 and La2 are the same as or different from each other, and are each independently a direct bond; A substituted or unsubstituted monocyclic C6 to C10 arylene group; or a substituted or unsubstituted polycyclic C10 to C20 arylene group;
  • La1 and La2 are the same as or different from each other, and are each independently a direct bond; A monocyclic C6 to C10 arylene group; or a polycyclic C10 to C20 arylene group;
  • La1 and La2 are the same as or different from each other, and are each independently a direct bond; A substituted or unsubstituted phenylene group; Or it may be a substituted or unsubstituted biphenylene group.
  • La1 and La2 are the same as or different from each other, and are each independently a direct bond; phenylene group; or a biphenylene group.
  • La1 and La2 are the same as or different from each other, and each may be independently substituted or unsubstituted with deuterium.
  • R1 may be hydrogen, and n may be an integer of 1 to 4.
  • R1 may be hydrogen, and n may be an integer of 4.
  • R1 may be deuterium, and n may be an integer of 1 to 4.
  • R1 may be deuterium, and n may be an integer of 4.
  • m may be 1.
  • n may be 2.
  • m may be 3.
  • m may be 4.
  • Ar1 and Ar2 are the same as or different from each other and each independently a substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • Ar1 and Ar2 are the same as or different from each other and each independently a substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C6 to C40 aryl group; Or it may be a substituted or unsubstituted C2 to C40 heteroaryl group.
  • Ar1 and Ar2 are the same as or different from each other and each independently represent a substituted or unsubstituted C6 to C40 aryl group; Or it may be a substituted or unsubstituted C2 to C40 heteroaryl group.
  • Ar1 and Ar2 are the same as or different from each other and each independently represents a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar1 and Ar2 are the same as or different from each other and each independently a C6 to C20 aryl group unsubstituted or substituted with a C1 to C10 alkyl group; Or it may be a C2 to C20 heteroaryl group.
  • Ar1 and Ar2 are the same as or different from each other and each independently represent a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted terphenyl group; A substituted or unsubstituted dimethylfluorenyl group; It may be a substituted or unsubstituted dibenzofuran group or a substituted or unsubstituted dibenzothiophene group.
  • Ar1 and Ar2 are the same as or different from each other and each independently a phenyl group; biphenyl group; terphenyl group; dimethyl fluorenyl group; It may be a dibenzofuran group or a dibenzothiophene group.
  • Ar1 and Ar2 may be unsubstituted or substituted with deuterium.
  • the formula (1) May be represented by Formula 1-1 or 1-2.
  • Xa is O; or S,
  • Ar12 is a substituted or unsubstituted C6 to C60 aryl group
  • R11 to R15 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; And a substituted or unsubstituted C2 to C60 heteroaryl group; selected from the group consisting of, or two or more groups adjacent to each other combine to form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heterocycle;
  • p is an integer from 0 to 3, and when p is 2 or more, the substituents in parentheses are the same as or different from each other.
  • Ar12 is a substituted or unsubstituted C6 to C60 aryl group.
  • Ar12 is a substituted or unsubstituted C6 to C40 aryl group.
  • Ar12 is a substituted or unsubstituted C6 to C20 aryl group.
  • Ar12 is a C6 to C20 aryl group unsubstituted or substituted with a C1 to C10 alkyl group.
  • Ar12 is a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted terphenyl group; Or it could be a substituted or unsubstituted dimethylfluorenyl group.
  • Ar12 is a phenyl group; biphenyl group; terphenyl group; or a dimethylfluorenyl group.
  • Ar12 may be unsubstituted or substituted with deuterium.
  • R11 to R15 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; cyano group; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C2 to C60 alkenyl group; A substituted or unsubstituted C2 to C60 alkynyl group; A substituted or unsubstituted C1 to C60 alkoxy group; A substituted or unsubstituted C3 to C60 cycloalkyl group; A substituted or unsubstituted C2 to C60 heterocycloalkyl group; A substituted or unsubstituted C6 to C60 aryl group; and a substituted or unsubstituted C2 to C60 heteroaryl group; or two or more adjacent groups bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted hetero
  • R11 to R15 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; It may be selected from the group consisting of; and a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R11 to R15 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C6 to C40 aryl group; It may be selected from the group consisting of; and a substituted or unsubstituted C2 to C40 heteroaryl group.
  • R11 to R15 are the same as or different from each other, and each independently hydrogen; or deuterium.
  • Formula 1 may be represented by any one of Formulas 3 to 5 below.
  • Rb1 to Rb11, X1 to X3, Ar1, La1, La2, a, b and Ar2 are the same as those in Formula 1,
  • R2 to R7 are the same as or different from each other, and each independently hydrogen; or deuterium, n2 to n7 are the same as or different from each other, each independently represent an integer of 0 to 4, and when n2 to n7 are 2 or more, the substituents in parentheses are the same or different from each other.
  • Formula 3 may be represented by Formula 3-1 or 3-2 below.
  • R21 to R25 are the same as or different from each other and are each independently hydrogen; or deuterium;
  • Chemical Formula 4 may be represented by any one of Chemical Formulas 4-1 to 4-4.
  • R31 to R40 are the same as or different from each other and are each independently hydrogen; or deuterium;
  • Chemical Formula 5 may be represented by any one of Chemical Formulas 5-1 to 5-4.
  • R41 to R51 are the same as or different from each other and are each independently hydrogen; or deuterium;
  • a2 is an integer from 0 to 4, and when a2 is 2 or more, the substituents in parentheses are the same as or different from each other;
  • the deuterium content of Chemical Formula 1 may be 40% or more and 100% or less.
  • the deuterium content of Chemical Formula 1 may be 40% or more and 100% or less, 45% or more and 100% or less, 50% or more and 100% or less, and specifically ranges from 70% to 90%. can be satisfied
  • Rb1 to Rb11 are the same as or different from each other, and each independently hydrogen; or deuterium, and at least one of Rb1 to Rb11 may be deuterium.
  • Rb1 to Rb11 are the same as or different from each other, and each independently may be deuterium.
  • Rb1 to Rb11 are the same as or different from each other, and each independently hydrogen; or deuterium, and at least 1 and 10 of Rb1 to Rb11 may be deuterium.
  • the number of deuteriums in Rb1 to Rb11 is not limited as long as it satisfies the range of 1 or more and 11 or less, and for example, it may satisfy all of the ranges of 3 or more and 10 or less and 4 or more and 9 or less.
  • Formula 1 is represented by the following Structural Formulas A to C, the deuterium content of Structural Formula A is 1% to 100%, and the deuterium content of Structural Formula B is 0% to 100%, The deuterium content of Structural Formula C may be 0% to 100%.
  • the deuterium content of Structural Formula A is 1% to 100%; 50% to 100%; 60% to 90%; or 70% to 90%.
  • the deuterium content of Structural Formula A may be 100%.
  • that the deuterium content of Structural Formula A is 100% may mean that all of Rb1 to Rb11 are deuterium.
  • the deuterium content of Structural Formula B is 0% to 100%; 20% to 100%; 30% to 100%; 50% to 100%; or 70% to 90%.
  • the deuterium content of Structural Formula B may be 0%.
  • the deuterium content of Structural Formula B may be 100%.
  • the deuterium content of Structural Formula C is 0% to 100%; 20% to 100%; 30% to 100%; 50% to 100%; or 70% to 90%.
  • the deuterium content of Structural Formula C may be 0%.
  • the deuterium content of Structural Formula C may be 100%.
  • the deuterium content of Structural Formulas A, B and C may increase or decrease according to the deuterium substitution process when an additional substituent is further included.
  • the deuterium content of structural formulas A to C is 1% or more and 100% or less, 45% or more and 100% or less, 50% or more and 100% or less, 60% or more 90%; Alternatively, a range of 70% or more and 90% or less may be satisfied.
  • the deuterium content of the structural formulas A to C can be specifically represented by calculating the deuterium content of the specific compounds 1-1 to 1-200 of Formula 1 to be described later.
  • the deuterium content can be expressed up to the second decimal place.
  • R, R', and R" are the same as or different from each other and each independently represent a substituted or unsubstituted C1 to C60 alkyl group; a substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R, R', and R" are the same as or different from each other and each independently represents a substituted or unsubstituted C1 to C60 alkyl group; or a substituted or unsubstituted C6 to C60 aryl group. there is.
  • R, R', and R" are the same as or different from each other, and each independently may be a C1 to C60 alkyl group; or a C6 to C60 aryl group.
  • R, R', and R" are the same as or different from each other, and each independently may be a methyl group; or a phenyl group.
  • R, R', and R" may be a substituted or unsubstituted methyl group.
  • R, R', and R" may be a substituted or unsubstituted phenyl group.
  • R, R', and R" may be a phenyl group.
  • R, R', and R" may be a methyl group.
  • Formula 1 provides a heterocyclic compound represented by any one of the following compounds.
  • the following compound is an example, but is not limited thereto and may include other compounds included in Formula 1 including additional substituents. That is, as long as the content of deuterium is satisfied, specific positions are excluded from the process of substitution and synthesis of deuterium, and hydrogen and deuterium may coexist.
  • the compound has a high glass transition temperature (Tg) and excellent thermal stability. This increase in thermal stability is an important factor in providing driving stability to the device.
  • the first electrode a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the heterocyclic compound represented by Chemical Formula 1.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound according to Chemical Formula 1 may be used as a material for the blue organic light emitting device.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for the green organic light emitting device.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for the red organic light emitting device.
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound according to Chemical Formula 1 may be used as a material for a light emitting layer of the blue organic light emitting device.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for a light emitting layer of the green organic light emitting device.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for a light emitting layer of the red organic light emitting device.
  • the organic light emitting device of the present invention may be manufactured by conventional organic light emitting device manufacturing methods and materials, except for forming one or more organic material layers using the aforementioned heterocyclic compound.
  • the heterocyclic compound may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer as organic material layers.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic material layer includes a light emitting layer, and the light emitting layer may include the heterocyclic compound represented by Chemical Formula 1.
  • the organic material layer includes a light emitting layer, the light emitting layer includes a host material, and the host material provides an organic light emitting device including the heterocyclic compound.
  • the organic material layer includes a light emitting layer
  • the light emitting layer may include the heterocyclic compound of Chemical Formula 1 as a host for the light emitting layer.
  • the organic material layer including the heterocyclic compound represented by Formula 1 provides an organic light emitting device that further includes a heterocyclic compound represented by Formula 2 below. .
  • L2 is a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • R, R' and R" are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; a substituted or unsubstituted C1 to C60 alkyl group; or a substituted or unsubstituted C6 to C60 aryl group,
  • a1 is an integer from 0 to 4.
  • r and s are integers from 0 to 7;
  • L2 is a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or it may be a substituted or unsubstituted C2 to C60 heteroarylene group.
  • L2 is a direct bond; A substituted or unsubstituted C6 to C40 arylene group; Or it may be a substituted or unsubstituted C2 to C40 heteroarylene group.
  • L2 is a direct bond; C6 to C40 arylene group; Or it may be a C2 to C40 heteroarylene group.
  • L2 is a direct bond; A substituted or unsubstituted phenylene group; A substituted or unsubstituted biphenylene group; Or it may be a substituted or unsubstituted divalent dibenzofuran group.
  • L2 is a direct bond; phenylene group; Biphenylene group; Divalent dibenzothiophene group; A divalent dimethylfluorene group; Or it may be a divalent dibenzofuran group.
  • the L2 may be substituted with deuterium.
  • Rb is a substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • Rb may be a C6 to C60 aryl group unsubstituted or substituted with a C1 to C40 alkyl group, -CN, SiRR'R" or a C6 to C40 aryl group.
  • Rb may be a C6 to C40 aryl group unsubstituted or substituted with a C1 to C40 alkyl group, -CN, SiRR'R" or a C6 to C40 aryl group.
  • Rb may be a phenyl group unsubstituted or substituted with -CN or SiRR'R"; a biphenyl group unsubstituted or substituted with a phenyl group; a terphenyl group; or a dimethylfluorenyl group.
  • the Ra and Rb may be substituted with deuterium.
  • -(L2)a-Ra and Rb of Chemical Formula 2 may be different from each other.
  • -(L2)a-Ra and Rb in Chemical Formula 2 may be the same as each other.
  • R, R', and R" may be a phenyl group.
  • the deuterium content of Chemical Formula 2 may be 0% or more and 100% or less.
  • the deuterium content of Chemical Formula 2 may be 10% or more and 100% or less.
  • the deuterium content of Chemical Formula 2 may be 0%, 100%, or 10% to 80%.
  • Rc and Rd are the same as or different from each other, and each independently hydrogen; or deuterium;
  • r may be 7, and Rc may be hydrogen.
  • r is 7, and Rc may be deuterium.
  • r is 7, and Rc is hydrogen; or deuterium.
  • s may be 7 and Rd may be hydrogen.
  • s may be 7, and Rd may be deuterium.
  • s is 7, and Rd is hydrogen; or deuterium.
  • the exciplex phenomenon is a phenomenon in which energy of the size of the HOMO level of the donor (p-host) and the LUMO level of the acceptor (n-host) is released through electron exchange between two molecules.
  • a donor (p-host) with good hole transport ability and an acceptor (n-host) with good electron transport capability are used as the host of the light emitting layer, holes are injected into the p-host and electrons are injected into the n-host. can be lowered, thereby helping to improve the lifespan.
  • heterocyclic compound of Chemical Formula 2 may be represented by any one of the following compounds.
  • another exemplary embodiment of the present application provides a composition for an organic layer of an organic light emitting device comprising the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 2 above.
  • the weight ratio of the heterocyclic compound represented by Formula 1 in the composition to the heterocyclic compound represented by Formula 2 may be 1: 10 to 10: 1, 1: 8 to 8: 1, or 1: 5 to 5:1, or 1:2 to 2:1, but is not limited thereto.
  • the composition can be used when forming an organic material of an organic light emitting device, and can be more preferably used when forming a host of a light emitting layer.
  • the composition is in the form of simple mixing of two or more compounds, and powder materials may be mixed before forming the organic material layer of the organic light emitting device, or liquid compounds may be mixed at an appropriate temperature or higher.
  • the composition is in a solid state below the melting point of each material, and can be maintained in a liquid state by adjusting the temperature.
  • composition may further include materials known in the art, such as solvents and additives.
  • the organic light emitting device uses a heterocyclic compound represented by Formula 1 and a heterocyclic compound represented by Formula 2, except that one or more organic material layers are formed. It can be manufactured by the manufacturing method and material of the light emitting element.
  • the compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 2 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer as organic material layers.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound according to Formula 1 and the heterocyclic compound according to Formula 2 may be used as materials for the blue organic light emitting device. .
  • the organic light emitting device may be a green organic light emitting device, and the compound represented by Formula 1 and the heterocyclic compound represented by Formula 2 may be used as materials for the green organic light emitting device. .
  • the organic light emitting device may be a red organic light emitting device, and the compound represented by Formula 1 and the heterocyclic compound represented by Formula 2 may be used as materials for the red organic light emitting device. .
  • the organic light emitting device of the present invention may further include one or two or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an electron blocking layer, and a hole blocking layer.
  • the organic material layer includes at least one layer of a hole blocking layer, an electron injection layer, and an electron transport layer, and at least one layer of the hole blocking layer, the electron injection layer, and the electron transport layer is represented by Chemical Formula 1. It provides an organic light emitting device comprising the heterocyclic compound represented by the above formula and the heterocyclic compound represented by Formula 2.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a heterocyclic compound represented by Chemical Formula 1 and a heterocyclic compound represented by Chemical Formula 2.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a heterocyclic compound represented by Chemical Formula 1 and a heterocyclic compound represented by Chemical Formula 2.
  • the organic material layer includes a light emitting layer, the light emitting layer includes a host material, and the host material is a heterocyclic compound represented by Formula 1 and a heterocyclic compound represented by Formula 2 It provides an organic light emitting device comprising a.
  • 1 to 3 illustrate the stacking order of the electrode and the organic material layer of the organic light emitting device according to an exemplary embodiment of the present application.
  • the scope of the present application be limited by these drawings, and structures of organic light emitting devices known in the art may be applied to the present application as well.
  • an organic light emitting device in which an anode 200, an organic material layer 300, and a cathode 400 are sequentially stacked on a substrate 100 is shown.
  • an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting device according to FIG. 3 includes a hole injection layer 301, a hole transport layer 302, a light emitting layer 303, a hole blocking layer 304, an electron transport layer 305, and an electron injection layer 306.
  • a hole injection layer 301 a hole transport layer 302
  • a light emitting layer 303 a hole transport layer 302
  • a hole blocking layer 304 a hole blocking layer 304
  • an electron transport layer 305 an electron injection layer 306.
  • the scope of the present application is not limited by such a laminated structure, and layers other than the light emitting layer may be omitted as necessary, and other necessary functional layers may be further added.
  • the forming of the organic material layer is formed by pre-mixing the heterocyclic compound of Chemical Formula 1 and the heterocyclic compound of Chemical Formula 2 using a thermal vacuum deposition method.
  • a method for manufacturing a phosphorus organic light emitting device is provided.
  • the pre-mixing means mixing the materials first before depositing the heterocyclic compound of Chemical Formula 1 and the heterocyclic compound of Chemical Formula 2 on the organic material layer and mixing them in one park.
  • the premixed material may be referred to as a composition for an organic layer according to an exemplary embodiment of the present application.
  • anode material Materials having a relatively high work function may be used as the anode material, and transparent conductive oxides, metals, or conductive polymers may be used.
  • the anode material include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material Materials having a relatively low work function may be used as the cathode material, and metals, metal oxides, or conductive polymers may be used.
  • Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • a known hole injection material may be used.
  • a phthalocyanine compound such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429 or described in [Advanced Material, 6, p.677 (1994)] starburst amine derivatives, such as tris(4-carbazoyl-9-ylphenyl)amine (TCTA), 4,4',4"-tri[phenyl(m-tolyl)amino]triphenylamine (m- MTDATA), 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB), polyaniline/dodecylbenzenesulfonic acid, a soluble conductive polymer, or poly( 3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) (Poly(3,4-ethylenedioxythiophene)/Poly(4-st
  • hole transport material pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, and the like may be used, and low molecular weight or high molecular weight materials may also be used.
  • Examples of the electron transport material include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone.
  • Derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, etc. may be used, and high molecular materials as well as low molecular materials may be used.
  • LiF is typically used in the art, but the present application is not limited thereto.
  • a red, green or blue light emitting material may be used as the light emitting material, and if necessary, two or more light emitting materials may be mixed and used. In this case, two or more light emitting materials may be deposited and used as individual sources, or may be pre-mixed and deposited as one source.
  • a fluorescent material can be used as a light emitting material, but it can also be used as a phosphorescent material.
  • As the light emitting material a material that emits light by combining holes and electrons respectively injected from the anode and the cathode may be used, but materials in which a host material and a dopant material are involved in light emission may also be used.
  • hosts of the same series may be mixed and used, or hosts of different series may be mixed and used.
  • two or more materials selected from among n-type host materials and p-type host materials may be selected and used as host materials for the light emitting layer.
  • An organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type depending on materials used.
  • the heterocyclic compound according to an exemplary embodiment of the present application may act on a principle similar to that applied to an organic light emitting device in an organic electronic device including an organic solar cell, an organic photoreceptor, and an organic transistor.
  • the deuterium substitution rate increases as the equivalent weight is raised using triflic acid, a strong acid.
  • concentration and reaction temperature that can increase the reaction rate improve the deuterium substitution rate up to a specific equivalent, but when excessive, the yield and deuterium substitution rate may be impaired by decomposing the compound.
  • substitution rate is calculated as [(the number of deuterium substituted after the chemical reaction) / (the number of hydrogens in the compound before the chemical reaction)] * 100.
  • condition 2 had the highest yield and substitution rate. Accordingly, compound 1-1-2 was synthesized under condition 2 having the highest substitution rate. In addition, since the decomposition of compounds in strong acid is a unique characteristic, the experiment was conducted by changing the reaction conditions according to the change of the compound.
  • condition compound Benzene-D 6 triflic acid temperature transference number substitution rate One 1g, 1eq 68eq,10mL 1eq RT 95% 72% 2 3eq RT 86% 93% 3 3eq 40°C 77% 88% 4 3eq 80°C 68% 84% 5 5eq RT 80% 81%
  • the target compound can be directly synthesized by adding 2 equivalents of Compound A in Preparation Example 4. That is, when Compound A and Compound A' are the same, preparation of Compound 3-2-1 may be omitted.
  • the target compound can be directly synthesized by adding 2 equivalents of Compound B in Preparation Example 5. That is, when Compound B and Compound B' are identical, the preparation of Compound 3-26-1 may be omitted.
  • a glass substrate coated with ITO thin film to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic cleaning was performed with solvents such as acetone, methanol, and isopropyl alcohol, and after drying, UVO treatment was performed for 5 minutes using UV in a UV cleaner. Thereafter, the substrate was transferred to a plasma cleaner (PT), plasma treated to remove the ITO work function and residual film in a vacuum state, and transferred to a thermal evaporation equipment for organic deposition.
  • PT plasma cleaner
  • a light emitting layer was thermally vacuum deposited thereon as follows.
  • a heterocyclic compound represented by Chemical Formula 1 in Table 9 below was used as a host, and Ir(ppy) 3 (tris(2-phenylpyridine)iridium) was used as a green phosphorescent dopant. deposited. Thereafter, 60 ⁇ of BCP was deposited as a hole blocking layer, and 200 ⁇ of Alq 3 was deposited thereon as an electron transport layer.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer, and then an aluminum (Al) cathode is deposited on the electron injection layer to a thickness of 1200 ⁇ to form a cathode, thereby forming an organic electric field A light emitting device was manufactured.
  • Example 1 1-1 4.69 74.4 green 356
  • Example 2 1-4 4.63 73.5 358
  • Example 3 1-17 4.57 77.3 358
  • Example 4 1-19 4.65 73.6 360
  • Example 5 1-51 4.99 77.7 397
  • Example 6 1-77 4.53 73.5
  • Example 7 1-111 4.79 77.9 381
  • Example 8 1-113 4.55 78.2 374
  • Example 9 1-116 4.65 73.9 382
  • Example 10 1-118 4.55 72.8 390
  • Example 11 1-127 4.94 81.3 413
  • Example 12 1-133 4.51 73.9 326
  • Example 13 1-142 4.86 77.2 385
  • Example 14 1-147 4.56 73.2 352
  • Example 15 1-160 4.81 75.3 399
  • Example 16 1-161 4.47 74.4 311
  • Example 19 1-178 4.92 76.3 420 Comparative Example 1 Ref.
  • the organic light emitting device using the heterocyclic compound of the present invention as a material for the light emitting layer has a lower driving voltage and significantly improved luminous efficiency and lifetime compared to the organic light emitting devices of Comparative Examples 1 to 8.
  • the heterocyclic compound according to the present invention is a deuterium-substituted compound
  • the compounds of Comparative Examples 1 to 8 are hydrogen-substituted compounds or partially deuterium-substituted compounds.
  • Compounds substituted with deuterium, whose atomic mass is twice as large as hydrogen have lower zero-point energy and lower vibrational energy than compounds substituted with hydrogen, resulting in lower energy in the ground state and reduced collisions due to intermolecular vibrations, turning the thin film into an amorphous state. Therefore, the lifetime of the organic light emitting device can be improved.
  • the compound substituted with deuterium has low ground state energy, thereby improving the stability of the compound, and high dissociation energy of the C-D bond, improving molecular stability, thereby improving the lifetime of the organic light emitting device.
  • the deuterium-substituted heterocyclic compound 1-118 according to the present invention is a comparative example compound substituted with hydrogen due to molecular stability and non-crystallinity Ref. It can be seen that the driving voltage and lifespan are improved compared to 1, 2, and 8, and the low vibration energy of the deuterium-substituted heterocyclic compound minimizes energy loss and facilitates energy transfer to the dopant, resulting in light emission of the organic light emitting device efficiency could be improved.
  • the deuterium-substituted heterocyclic compounds 1-1 and 1-133 according to the present invention are comparative example compounds Ref.
  • compounds 1-1 and 1-133 are compounds in which deuterium is substituted for triphenylene and the linker aryl group, and the comparative example compound Ref. In 5 and 6, deuterium is substituted for the aryl group at the end of the triazine.
  • a host of an organic light emitting device may generate a radical cation in a substituent having a HOMO orbital due to excitation of electrons, and if the cation is not effectively stabilized, the efficiency and lifetime of the device may be impaired.
  • the deuterium-substituted compounds 1-1 and 1-133 when a radical cation is generated, the deuterium stabilizes the radical cation, thereby improving the lifespan of the organic light emitting device. .
  • heterocyclic compound 1-127 substituted with deuterium according to the present invention was able to improve the luminous efficiency of the organic light emitting device by reducing energy loss due to the low vibrational energy of the compound, and lowered the ground state energy of the organic light emitting device. lifespan could be improved.
  • compound 1-127 substituted with all deuterium has a higher packing density with lower vibrational energy than compound 1-113 in which triphenylene and only the linker, aryl, are substituted with deuterium, and this forms excessive mobility in the light emitting layer of the organic light emitting device. It was confirmed that the driving voltage could be inhibited by leaking holes and electrons to the surrounding layer.
  • a glass substrate coated with ITO thin film to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, it was ultrasonically washed with solvents such as acetone, methanol, and isopropyl alcohol, dried, and then treated with UVO for 5 minutes using UV in a UV cleaner. Thereafter, the substrate was transferred to a plasma cleaner (PT), plasma treated to remove the ITO work function and residual film in a vacuum state, and then transferred to a thermal evaporation equipment for organic deposition.
  • PT plasma cleaner
  • a light emitting layer was thermally vacuum deposited thereon as follows.
  • the light emitting layer was pre-mixed with one heterocyclic compound of Formula 1 and one compound of Formula 2 as a host, and after pre-mixing, it was deposited at 360 ⁇ in one park, and the green phosphorescent dopant was Ir(ppy) 3 at 7% of the deposition thickness of the light emitting layer. Deposited by doping. Thereafter, 60 ⁇ of BCP was deposited as a hole blocking layer, and 200 ⁇ of Alq 3 was deposited thereon as an electron transport layer.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer, and then an aluminum (Al) cathode is deposited on the electron injection layer to a thickness of 1,200 ⁇ to form an organic cathode.
  • An electroluminescent device was manufactured.
  • the electroluminescence (EL) characteristics of the organic electroluminescent device manufactured as described above were measured with McScience's M7000, and with the measurement result, the standard luminance was 6,000 cd through life measurement equipment (M6000) manufactured by McScience. /m 2 , T 90 was measured.
  • the exciplex phenomenon is a phenomenon in which energy of the size of the HOMO energy level of a donor (p-host) and the LUMO energy level of an acceptor (n-host) is released by electron exchange between two molecules.
  • RISC reverse intersystem crossing
  • the internal quantum efficiency of fluorescence can be increased to 100%.
  • a donor (p-host) with good hole transport ability and an acceptor (n-host) with good electron transport ability are used as the host of the light emitting layer, holes are injected into the p-host and electrons are injected into the n-host. Since it is injected into the organic light emitting diode, the driving voltage of the organic light emitting diode can be lowered, thereby helping to improve the lifetime of the organic light emitting diode.
  • the compound represented by Formula 2 it is a compound substituted with hydrogen or partially substituted with deuterium or total deuterium.
  • Compounds substituted with deuterium whose atomic mass is twice as large as hydrogen, have lower zero-point energy and lower vibrational energy than compounds substituted with hydrogen, resulting in lower energy in the ground state and reduced collisions due to intermolecular vibrations, resulting in thin films in an amorphous state. It can be made to improve the lifespan of the organic light emitting device.
  • the deuterium-substituted compound has low ground state energy, thereby improving the stability of the compound, and high dissociation energy of the C-D bond, improving molecular stability, thereby improving the lifetime of the organic light emitting device.

Abstract

본 명세서는 화학식 1로 표시되는 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물에 관한 것이다. 상기 화학식 1은 트리페닐레닐기의 코어 중 1 이상이 중수소로 치환되는 것을 특징으로, 안정성이 향상되어, 유기 발광 소자의 수명을 개선할 수 있는 특징을 갖게 된다.

Description

헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
본 명세서는 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물에 관한 것이다.
<관련 출원들의 상호 참조>
본 출원은 2021년 12월 3일에 한국 특허청에 제출된 한국 특허 출원 제10-2021-0172049호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
유기 전계 발광 소자는 자체 발광형 표시 소자의 일종으로서, 시야각이 넓고, 콘트라스트가 우수할 뿐만 아니라 응답속도가 빠르다는 장점을 가지고 있다.
유기 발광 소자는 2개의 전극 사이에 유기 박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기 박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기 박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기 박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도, 유기 박막의 재료로서, 정공 주입, 정공 수송, 전자 저지, 정공 저지, 전자 수송, 전자 주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기 발광 소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기 박막의 재료의 개발이 지속적으로 요구되고 있다.
<선행기술문헌>
(특허문헌) 미국 특허 제4,356,429호
본 발명은 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물을 제공하고자 한다.
본 출원의 일 실시상태에 있어서, 하기 화학식 1로 표시되는 헤테로고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2022017207-appb-img-000001
상기 화학식 1에 있어서,
X1 내지 X3은 서로 동일하거나 상이하고, 각각 독립적으로 N; 또는 CRa1이고, 적어도 하나는 N이며,
La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
R1은 수소; 또는 중수소이고,
Ra1, Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; SiRR'R”; 또는 -P(=O)RR'이고,
Rb1 내지 Rb11은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이고, Rb1 내지 Rb11 중 적어도 하나는 중수소이며,
상기 R, R' 및 R"는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 또는 치환 또는 비치환된 C6 내지 C60의 아릴기이며,
a, b 및 m은 1 내지 4의 정수이고,
n는 0 내지 4의 정수이며,
a, b, n 및 m이 2 이상인 경우 괄호 내 치환기는 서로 동일하거나 상이하다.
또한, 본 출원의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
또한, 본 출원의 일 실시상태는, 상기 화학식 1의 헤테로고리 화합물을 포함하는 유기물층은 하기 화학식 2로 표시되는 헤테로고리 화합물을 추가로 포함하는 것인 유기 발광 소자를 제공한다.
[화학식 2]
Figure PCTKR2022017207-appb-img-000002
상기 화학식 2에 있어서,
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택되거나, 또는 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 방향족 탄화수소 고리 또는 치환 또는 비치환된 헤테로고리를 형성하며,
L2는 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 -CN; -SiRR'R"; -P(=O)RR'; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 R, R' 및 R"는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 또는 치환 또는 비치환된 C6 내지 C60의 아릴기이고,
a1는 0 내지 4의 정수이며,
r 및 s는 0 내지 7의 정수이고,
a1, s 및 r이 2 이상인 경우, 괄호내 치환기는 서로 동일하거나 상이하다.
또한, 본 출원의 다른 실시상태는, 상기 화학식 1로 표시되는 헤테로고리 화합물, 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자의 유기물층용 조성물을 제공한다.
본 출원의 일 실시상태에 따른 헤테로고리 화합물은 유기 발광 소자의 유기물층 재료로서 사용할 수 있다. 상기 헤테로고리 화합물은 유기 발광 소자에서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 전하 생성층 등의 재료로서 사용될 수 있다.
구체적으로, 상기 화학식 1로 표시되는 헤테로고리 화합물은 적어도 1 이상이 중수소로 치환된 트리페닐레닐기의 코어구조에 아릴렌기의 연결기를 가지며, 아진류의 치환기를 갖는 것에 해당한다. 먼저 원자 질량이 수소 보다 2배 큰 중수소로 치환된 화합물은 수소로 치환된 화합물보다 더 낮은 영점 에너지 및 진동 에너지로 인해 기저 상태의 에너지가 낮아지고, 분자간 진동에 의한 충돌이 감소하여 박막을 비결정질 상태로 만들 수 있어 유기 발광 소자의 수명을 향상시킬 수 있는 특징을 갖게 된다.
즉, 상기 화학식 1과 같이 트리페닐레닐기의 코어 중 1 이상이 중수소로 치환되어 낮은 기저 상태의 에너지를 갖게 되어 화합물의 안정성이 향상되고, C-D 결합의 해리에너지가 높아 분자의 안정성이 향상되어, 유기 발광 소자의 수명을 개선할 수 있는 특징을 갖게 된다.
또한, 상기 화학식 1로 표시되는 헤테로고리 화합물, 및 상기 화학식 2로 표시되는 헤테로고리 화합물은 동시에 유기 발광 소자의 발광층의 재료로서 사용될 수 있다. 또한, 상기 화학식 1로 표시되는 헤테로고리 화합물과 상기 화학식 2로 표시되는 헤테로고리 화합물을 동시에 유기 발광 소자에 사용하는 경우 소자의 구동전압을 낮추고, 광효율을 향상시키며, 화합물의 열적 안정성에 의하여 소자의 수명 특성을 향상시킬 수 있다.
도 1 내지 도 3은 각각 본 출원의 일 실시상태에 따른 유기 발광 소자의 적층 구조를 개략적으로 나타낸 도이다.
[부호의 설명]
100: 기판
200: 양극
300: 유기물층
301: 정공주입층
302: 정공수송층
303: 발광층
304: 정공저지층
305: 전자수송층
306: 전자주입층
400: 음극
이하, 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 화학식의
Figure PCTKR2022017207-appb-img-000003
는 결합되는 위치를 의미한다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치, 즉 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, "치환 또는 비치환"이란 중수소; 할로겐기; -CN; C1 내지 C60의 알킬기; C2 내지 C60의 알케닐기; C2 내지 C60의 알키닐기; C1 내지 C60의 할로알킬기; C1 내지 C60의 알콕시기; C6 내지 C60의 아릴옥시기; C1 내지 C60의 알킬티옥시기; C6 내지 C60의 아릴티옥시기; C1 내지 C60의 알킬술폭시기; C6 내지 C60의 아릴술폭시기; C3 내지 C60의 시클로알킬기; C2 내지 C60의 헤테로시클로알킬기; C6 내지 C60의 아릴기; C2 내지 C60의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택된 1 이상의 치환기, 또는 상기 예시된 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미하고, R, R' 및 R"은 각각 독립적으로, 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 헤테로시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기이다.
본 명세서에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 탄소 원자에 수소 원자가 결합된 것을 의미한다. 다만, 중수소(2H, Deuterium)는 수소의 동위원소이므로, 일부 수소 원자는 중수소일 수 있다.
본 출원의 일 실시상태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 치환기로 올 수 있는 위치가 모두 수소 또는 중수소인 것을 의미할 수 있다. 즉, 중수소의 경우 수소의 동위원소로, 일부의 수소 원자는 동위원소인 중수소일 수 있으며, 이 때 중수소의 함량은 0% 내지 100%일 수 있다.
본 출원의 일 실시상태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"에 있어, 중수소의 함량이 0%, 수소의 함량이 100%, 치환기는 모두 수소 등 중수소를 명시적으로 배제하지 않는 경우에는 수소와 중수소는 화합물에 있어 혼재되어 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 중수소는 수소의 동위원소(isotope)중 하나로 양성자(proton) 1개와 중성자(neutron) 1개로 이루어진 중양성자(deuteron)를 원자핵(nucleus)으로 가지는 원소로서, 수소-2로 표현될 수 있으며, 원소기호는 D 또는 2H로 쓸 수도 있다.
본 출원의 일 실시상태에 있어서, 동위원소는 원자 번호(atomic number, Z)는 같지만, 질량수(mass number, A)가 다른 원자를 의미하는 동위원소는 같은 수의 양성자(proton)를 갖지만, 중성자(neutron)의 수가 다른 원소로도 해석할 수 있다.
본 출원의 일 실시상태에 있어서, 특정 치환기의 함량 T%의 의미는 기본이 되는 화합물이 가질 수 있는 치환기의 총 개수를 T1으로 정의하고, 그 중 특정의 치환기의 개수를 T2로 정의하는 경우 T2/T1×100 = T%로 정의할 수 있다.
즉, 일 예시에 있어서,
Figure PCTKR2022017207-appb-img-000004
로 표시되는 페닐기에 있어 중수소의 함량 20%라는 것은 페닐기가 가질 수 있는 치환기의 총 개수는 5(식 중 T1)개이고, 그 중 중수소의 개수가 1(식 중 T2)인 경우 20%로 표시될 수 있다. 즉, 페닐기에 있어 중수소의 함량이 20%인 것은 하기 구조식으로 표시될 수 있다.
Figure PCTKR2022017207-appb-img-000005
또한, 본 출원의 일 실시상태에 있어서, "중수소의 함량이 0%인 페닐기"의 경우 중수소 원자가 포함되지 않은, 즉 수소 원자 5개를 갖는 페닐기를 의미할 수 있다.
본 명세서에 있어서, 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다.
본 명세서에 있어서, 알킬기는 탄소수 1 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알킬기의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 알케닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알케닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다. 구체적인 예로는 비닐기, 1-프로페닐기, 이소프로페닐기, 1-부테닐기, 2-부테닐기, 3-부테닐기, 1-펜테닐기, 2-펜테닐기, 3-펜테닐기, 3-메틸-1-부테닐기, 1,3-부타디에닐기, 알릴기, 1-페닐비닐-1-일기, 2-페닐비닐-1-일기, 2,2-디페닐비닐-1-일기, 2-페닐-2-(나프틸-1-일)비닐-1-일기, 2,2-비스(디페닐-1-일)비닐-1-일기, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 알키닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알키닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 할로알킬기는 할로겐기로 치환된 알킬기를 의미하며, 구체적인 예로는, -CF3, -CF2CF3 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 알콕시기는 -O(R101)로 표시되고, R101은 전술한 알킬기의 예시가 적용될 수 있다.
본 명세서에 있어서, 아릴옥시기는 -O(R102)로 표시되고, R102는 전술한 아릴기의 예시가 적용될 수 있다.
본 명세서에 있어서, 알킬티옥시기는 -S(R103)로 표시되고, R103은 전술한 알킬기의 예시가 적용될 수 있다.
본 명세서에 있어서, 아릴티옥시기는 -S(R104)로 표시되고, R104는 전술한 아릴기의 예시가 적용될 수 있다.
본 명세서에 있어서, 알킬술폭시기는 -S(=0)2(R105)로 표시되고, R105는 전술한 알킬기의 예시가 적용될 수 있다.
본 명세서에 있어서, 아릴술폭시기는 -S(=0)2(R106)로 표시되고, R106은 전술한 아릴기의 예시가 적용될 수 있다.
본 명세서에 있어서, 시클로알킬기는 탄소수 3 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 시클로알킬기의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다. 구체적으로, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 3-메틸시클로펜틸기, 2,3-디메틸시클로펜틸기, 시클로헥실기, 3-메틸시클로헥실기, 4-메틸시클로헥실기, 2,3-디메틸시클로헥실기, 3,4,5-트리메틸시클로헥실기, 4-tert-부틸시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 헤테로시클로알킬기는 헤테로 원자로서 O, S, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 헤테로시클로알킬기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다.
본 명세서에 있어서, 아릴기는 탄소수 6 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 헤테로아릴기 등일 수도 있다. 상기 아릴기는 스피로기를 포함한다. 상기 아릴기의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴기의 구체적인 예로는 페닐기, 비페닐기, 터페닐기(terphenyl), 나프틸기, 안트릴기, 크라이세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 2,3-디히드로-1H-인데닐기, 이들의 축합고리기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 터페닐기는 하기 구조 중에서 선택될 수 있다.
Figure PCTKR2022017207-appb-img-000006
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플로오레닐기가 치환되는 경우, 하기 구조 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022017207-appb-img-000007
본 명세서에 있어서, 헤테로아릴기는 헤테로 원자로서 S, O, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 상기 다환이란 헤테로아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 아릴기 등일 수도 있다. 상기 헤테로아릴기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로아릴기의 구체적인 예로는 피리딘기, 피롤기, 피리미딘기, 피리다진기, 퓨란기, 티오펜기, 이미다졸기, 피라졸기, 옥사졸기, 이속사졸기, 티아졸기, 이소티아졸기, 트리아졸기, 퓨라잔기, 옥사디아졸기, 티아디아졸기, 디티아졸기, 테트라졸릴기, 피란기, 티오피란기, 디아진기, 옥사진기, 티아진기, 다이옥신기, 트리아진기, 테트라진기, 퀴놀린기, 이소퀴놀린기, 퀴나졸린기, 이소퀴나졸린기, 퀴노졸린기, 나프티리딘기, 아크리딘기, 페난트리딘기, 이미다조피리딘기, 디아자나프탈렌기, 트리아자인덴기, 인돌기, 인돌리진기, 벤조티아졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티오펜기, 벤조퓨란기, 디벤조티오펜기, 디벤조퓨란기, 카바졸기, 벤조카바졸기, 디벤조카바졸기, 페나진기, 디벤조실롤기, 스피로비(디벤조실롤), 디히드로페나진기, 페녹사진기, 페난트리딘기, 티에닐기, 인돌로[2,3-a]카바졸기, 인돌로[2,3-b]카바졸기, 인돌린기, 10,11-디히드로-디벤조[b,f]아제핀기, 9,10-디히드로아크리딘기, 페난트라진기, 페노티아티아진기, 프탈라진기, 페난트롤린기, 나프토벤조퓨란기, 나프토벤조티오펜기, 벤조[c][1,2,5]티아디아졸기, 2,3-디히드로벤조[b]티오펜기, 2,3-디히드로벤조퓨란기, 5,10-디히드로디벤조[b,e][1,4]아자실린기, 피라졸로[1,5-c]퀴나졸린기, 피리도[1,2-b]인다졸기, 피리도[1,2-a]이미다조[1,2-e]인돌린기, 5,11-디히드로인데노[1,2-b]카바졸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 치환기가 카바졸기인 경우, 카바졸의 질소 또는 탄소와 결합하는 것을 의미한다.
본 명세서에 있어서, 카바졸기가 치환될 경우, 카바졸의 질소 또는 탄소에 추가의 치환기가 치환될 수 있다.
본 명세서에 있어서, 벤조카바졸기는 하기 구조 중 어느 하나일 수 있다.
Figure PCTKR2022017207-appb-img-000008
본 명세서에 있어서, 디벤조카바졸기는 하기 구조 중 어느 하나일 수 있다.
Figure PCTKR2022017207-appb-img-000009
본 명세서에 있어서, 나프토벤조퓨란기는 하기 구조 중 어느 하나일 수 있다.
Figure PCTKR2022017207-appb-img-000010
본 명세서에 있어서, 나프토벤조티오펜기는 하기 구조 중 어느 하나일 수 있다.
Figure PCTKR2022017207-appb-img-000011
본 명세서에 있어서, 실릴기는 Si를 포함하고 상기 Si 원자가 라디칼로서 직접 연결되는 치환기이며, -Si(R107)(R108)(R109)로 표시되고, R107 내지 R109는 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 헤테로시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기일 수 있다. 실릴기의 구체적인 예로는
Figure PCTKR2022017207-appb-img-000012
(트리메틸실릴기),
Figure PCTKR2022017207-appb-img-000013
(트리에틸실릴기),
Figure PCTKR2022017207-appb-img-000014
(t-부틸디메틸실릴기),
Figure PCTKR2022017207-appb-img-000015
(비닐디메틸실릴기),
Figure PCTKR2022017207-appb-img-000016
(프로필디메틸실릴기),
Figure PCTKR2022017207-appb-img-000017
(트리페닐실릴기),
Figure PCTKR2022017207-appb-img-000018
(디페닐실릴기),
Figure PCTKR2022017207-appb-img-000019
(페닐실릴기) 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 포스핀옥사이드기는 -P(=O)(R110)(R111)로 표시되고, R110 및 R111은 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 헤테로시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기일 수 있다. 구체적으로 알킬기 또는 아릴기로 치환될 수 있으며, 상기 알킬기 및 아릴기는 전술한 예시가 적용될 수 있다. 예컨대, 포스핀옥사이드기는 디메틸포스핀옥사이드기, 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 -N(R112)(R113)로 표시되고, R112 및 R113은 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 헤테로시클로알킬기; 아릴기; 및 헤테로아릴기 중 적어도 하나로 이루어진 치환기일 수 있다. 상기 아민기는 -NH2; 모노알킬아민기; 모노아릴아민기; 모노헤테로아릴아민기; 디알킬아민기; 디아릴아민기; 디헤테로아릴아민기; 알킬아릴아민기; 알킬헤테로아릴아민기; 및 아릴헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 상기 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 디비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기, 비페닐나프틸아민기, 페닐비페닐아민기, 비페닐플루오레닐아민기, 페닐트리페닐레닐아민기, 비페닐트리페닐레닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 2가기인 것을 제외하고, 전술한 아릴기의 예시가 적용될 수 있다.
본 명세서에 있어서, 헤테로아릴렌기는 2가기인 것을 제외하고, 전술한 헤테로아릴기의 예시가 적용될 수 있다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한"기로 해석될 수 있다.
인접한 기들이 형성할 수 있는 탄화수소고리 및 헤테로고리는 지방족 탄화수소고리, 방향족 탄화수소고리, 지방족 헤테로고리 및 방향족 헤테로고리를 포함하고, 상기 고리들은 1가기가 아닌 것을 제외하고는 각각 전술한 시클로알킬기, 아릴기, 헤테로시클로알킬기 및 헤테로아릴기로 예시된 구조들이 적용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물을 제공한다.
본 출원의 일 실시상태에 있어서, X1은 N이고, X2 및 X3은 CRa1일 수 있다.
본 출원의 일 실시상태에 있어서, X3은 N이고, X1 및 X2는 CRa1일 수 있다.
본 출원의 일 실시상태에 있어서, X2는 N이고, X1 및 X3는 CRa1일 수 있다.
본 출원의 일 실시상태에 있어서, X1 및 X2는 N이고, X3는 CRa1일 수 있다.
본 출원의 일 실시상태에 있어서, X1 및 X3는 N이고, X2는 CRa1일 수 있다.
본 출원의 일 실시상태에 있어서, X2 및 X3는 N이고, X1는 CRa1일 수 있다.
본 출원의 일 실시상태에 있어서, X1 내지 X3은 N일 수 있다.
본 출원의 일 실시상태에 있어서, La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 C6 내지 C40의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 C6 내지 C40의 아릴렌기;일 수 있다.
또 다른 일 실시상태에 있어서, La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 C6 내지 C20의 아릴렌기;일 수 있다.
또 다른 일 실시상태에 있어서, La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 단환의 C6 내지 C10의 아릴렌기; 또는 치환 또는 비치환된 다환의 C10 내지 C20의 아릴렌기;일 수 있다.
또 다른 일 실시상태에 있어서, La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 단환의 C6 내지 C10의 아릴렌기; 또는 다환의 C10 내지 C20의 아릴렌기;일 수 있다.
또 다른 일 실시상태에 있어서, La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 비페닐렌기일 수 있다.
또 다른 일 실시상태에 있어서, La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 페닐렌기; 또는 비페닐렌기일 수 있다.
또 다른 일 실시상태에 있어서, La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 중수소로 치환 또는 비치환 될 수 있다.
본 출원의 일 실시상태에 있어서, R1은 수소일 수 있으며, n은 1 내지 4의 정수일 수 있다.
본 출원의 일 실시상태에 있어서, R1은 수소일 수 있으며, n은 4의 정수일 수 있다.
본 출원의 일 실시상태에 있어서, R1은 중수소일 수 있으며, n은 1 내지 4의 정수일 수 있다.
본 출원의 일 실시상태에 있어서, R1은 중수소일 수 있으며, n은 4의 정수일 수 있다.
본 출원의 일 실시상태에 있어서, m은 1일 수 있다.
본 출원의 일 실시상태에 있어서, m은 2일 수 있다.
본 출원의 일 실시상태에 있어서, m은 3일 수 있다.
본 출원의 일 실시상태에 있어서, m은 4일 수 있다.
본 출원의 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; SiRR'R”; 또는 -P(=O)RR'일 수 있다.
또 다른 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고 각각 독립적으로 치환 또는 비치환된 C1 내지 C40의 알킬기; 치환 또는 비치환된 C6 내지 C40의 아릴기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고 각각 독립적으로 치환 또는 비치환된 C6 내지 C40의 아릴기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고 각각 독립적으로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고 각각 독립적으로 C1 내지 C10의 알킬기로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 C2 내지 C20의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 디메틸플루오레닐기; 치환 또는 비치환된 디벤조퓨란기 또는 치환 또는 비치환된 디벤조티오펜기일 수 있다.
또 다른 일 실시상태에 있어서, Ar1 및 Ar2는 서로 동일하거나 상이하고 각각 독립적으로 페닐기; 비페닐기; 터페닐기; 디메틸플루오레닐기; 디벤조퓨란기 또는 디벤조티오펜기일 수 있다.
또 다른 일 실시상태에 있어서, Ar1 및 Ar2는 중수소로 치환 또는 비치환 될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의
Figure PCTKR2022017207-appb-img-000020
는 하기 화학식 1-1 또는 1-2로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2022017207-appb-img-000021
[화학식 1-2]
Figure PCTKR2022017207-appb-img-000022
상기 화학식 1-1 및 1-2에 있어서,
X1 내지 X3, La1, La2, a, b 및 Ar1의 정의는 상기 화학식 1에서의 정의와 동일하고,
Xa는 O; 또는 S이고,
Ar12는 치환 또는 비치환된 C6 내지 C60의 아릴기이고,
R11 내지 R15는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되거나, 또는 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 방향족 탄화수소 고리 또는 치환 또는 비치환된 헤테로고리를 형성하며,
p는 0 내지 3의 정수이고, p가 2 이상인 경우, 괄호내 치환기는 서로 동일하거나 상이하다.
본 출원의 일 실시상태에 있어서, Ar12는 치환 또는 비치환된 C6 내지 C60의 아릴기이다.
또 다른 일 실시상태에 있어서, Ar12는 치환 또는 비치환된 C6 내지 C40의 아릴기이다.
또 다른 일 실시상태에 있어서, Ar12는 치환 또는 비치환된 C6 내지 C20의 아릴기이다.
또 다른 일 실시상태에 있어서, Ar12는 C1 내지 C10의 알킬기로 치환 또는 비치환된 C6 내지 C20의 아릴기이다.
또 다른 일 실시상태에 있어서, Ar12는 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 또는 치환 또는 비치환된 디메틸플루오레닐기일 수이었다.
또 다른 일 실시상태에 있어서, Ar12는 페닐기; 비페닐기; 터페닐기; 또는 디메틸플루오레닐기일 수이었다.
본 출원의 일 실시상태에 있어서, Ar12는 중수소로 치환 또는 비치환될 수 있다.
본 출원의 일 실시상태에 있어서, R11 내지 R15는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되거나, 또는 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 방향족 탄화수소 고리 또는 치환 또는 비치환된 헤테로고리를 형성할 수 있다.
또 다른 일 실시상태에 있어서, R11 내지 R15는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택될 수 있다.
또 다른 일 실시상태에 있어서, R11 내지 R15는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C40의 알킬기; 치환 또는 비치환된 C6 내지 C40의 아릴기; 및 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기;로 이루어진 군으로부터 선택될 수 있다.
또 다른 일 실시상태에 있어서, R11 내지 R15는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 3 내지 5 중 어느 하나로 표시될 수 있다.
[화학식 3]
Figure PCTKR2022017207-appb-img-000023
[화학식 4]
Figure PCTKR2022017207-appb-img-000024
[화학식 5]
Figure PCTKR2022017207-appb-img-000025
상기 화학식 3 내지 5에 있어서,
Rb1 내지 Rb11, X1 내지 X3, Ar1, La1, La2, a, b 및 Ar2의 정의는 상기 화학식 1에서의 정의와 동일하고,
상기 R2 내지 R7은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이고, n2 내지 n7은 서로 동일하거나 상이하고, 각각 독립적으로 0 내지 4의 정수이며, n2 내지 n7이 2 이상인 경우 괄호 내 치환기는 서로 동일하거나 상이하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 3은 하기 화학식 3-1 또는 3-2로 표시될 수 있다.
[화학식 3-1]
Figure PCTKR2022017207-appb-img-000026
[화학식 3-2]
Figure PCTKR2022017207-appb-img-000027
상기 화학식 3-1 및 3-2에 있어서,
R21 내지 R25는 서로 동일하거나 상이하고 각각 독립적으로, 수소; 또는 중수소이고,
나머지 치환기의 정의는 상기 화학식 3에서의 정의와 동일하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 4는 하기 화학식 4-1 내지 4-4 중 어느 하나로 표시될 수 있다.
[화학식 4-1]
Figure PCTKR2022017207-appb-img-000028
[화학식 4-2]
Figure PCTKR2022017207-appb-img-000029
[화학식 4-3]
Figure PCTKR2022017207-appb-img-000030
[화학식 4-4]
Figure PCTKR2022017207-appb-img-000031
상기 화학식 4-1 내지 4-4에 있어서,
R31 내지 R40는 서로 동일하거나 상이하고 각각 독립적으로, 수소; 또는 중수소이고,
나머지 치환기의 정의는 상기 화학식 4에서의 정의와 동일하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 5는 하기 화학식 5-1 내지 5-4 중 어느 하나로 표시될 수 있다.
[화학식 5-1]
Figure PCTKR2022017207-appb-img-000032
[화학식 5-2]
Figure PCTKR2022017207-appb-img-000033
[화학식 5-3]
Figure PCTKR2022017207-appb-img-000034
[화학식 5-4]
Figure PCTKR2022017207-appb-img-000035
상기 화학식 5-1 내지 5-4에 있어서,
R41 내지 R51은 서로 동일하거나 상이하고 각각 독립적으로, 수소; 또는 중수소이고,
a2는 0 내지 4의 정수이며, a2가 2 이상인 경우 괄호 내 치환기는 서로 동일하거나 상이하고,
나머지 치환기의 정의는 상기 화학식 5에서의 정의와 동일하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 중수소 함량은 40% 이상 100%이하일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 중수소 함량은 40% 이상 100%이하, 45% 이상 100% 이하, 50% 이상 100% 이하일 수 있으며, 구체적으로 70% 이상 90% 이하의 범위를 만족할 수 있다.
본 출원의 일 실시상태에 있어서, Rb1 내지 Rb11은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이고, Rb1 내지 Rb11 중 적어도 하나는 중수소일 수 있다.
또 다른 일 실시상태에 있어서, Rb1 내지 Rb11은 서로 동일하거나 상이하고, 각각 독립적으로 중수소일 수 있다.
또 다른 일 실시상태에 있어서, Rb1 내지 Rb11은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이고, Rb1 내지 Rb11 중 1 이상 10 이하는 중수소일 수 있다.
상기 Rb1 내지 Rb11 중 중수소의 개수는 1 이상 11 이하의 범위를 만족하면 제한없으며, 예를들어 3 이상 10 이하, 4 이상 9 이하의 범위를 모두 만족할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 구조식 A 내지 C로 표시되며, 하기 구조식 A의 중수소 함량은 1% 내지 100%이고, 하기 구조식 B의 중수소 함량은 0% 내지 100%이고, 하기 구조식 C의 중수소 함량은 0% 내지 100%일 수 있다.
[구조식 A]
Figure PCTKR2022017207-appb-img-000036
[구조식 B]
Figure PCTKR2022017207-appb-img-000037
[구조식 C]
Figure PCTKR2022017207-appb-img-000038
상기 구조식 A 내지 C에 있어서,
각 치환기 정의는 상기 화학식 1에서의 정의와 동일하고,
상기
Figure PCTKR2022017207-appb-img-000039
Figure PCTKR2022017207-appb-img-000040
는 서로 연결되는 위치를 의미하며, 동일 부호간 서로 연결된다.
본 출원의 일 실시상태에 있어서, 상기 구조식 A의 중수소 함량은 1% 내지 100%; 50% 내지 100%; 60% 내지 90%; 또는 70% 내지 90%일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 구조식 A의 중수소 함량은 100%일 수 있다. 이 때, 상기 구조식 A의 중수소 함량이 100%라는 것은 상기 Rb1 내지 Rb11이 모두 중수소임을 의미할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 구조식 B의 중수소 함량은 0% 내지 100%; 20% 내지 100%; 30% 내지 100%; 50% 내지 100%; 또는 70% 내지 90%일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 구조식 B의 중수소 함량은 0%일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 구조식 B의 중수소 함량은 100%일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 구조식 C의 중수소 함량은 0% 내지 100%; 20% 내지 100%; 30% 내지 100%; 50% 내지 100%; 또는 70% 내지 90%일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 구조식 C의 중수소 함량은 0%일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 구조식 C의 중수소 함량은 100%일 수 있다.
또 다른 일 실시상태에 있어서, 상기 구조식 A, B 및 C의 중수소 함량은 추가 치환기를 더 포함하는 경우, 중수소 치환 과정에 따라 증가 또는 감소할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 구조식 A 내지 C의 중수소 함량은 1% 이상 100% 이하, 45% 이상 100% 이하, 50% 이상 100% 이하, 60% 이상 90%; 또는 70% 이상 90% 이하의 범위를 만족할 수 있다.
구체적으로, 본 명세서에서 중수소의 함량을 모두 나열하지 않았지만, 후술하는 화학식 1의 구체예 화합물 1-1 내지 1-200의 중수소 함량을 각각 계산하여 상기 구조식 A 내지 C의 중수소 함량을 구체적으로 나타낼 수 있으며, 소수점 둘째 자리까지 중수소 함량부를 표현할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 R, R', 및 R"은 서로 동일하거나 상이하고 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 R, R', 및 R"은 서로 동일하거나 상이하고 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 또는 치환 또는 비치환된 C6 내지 C60의 아릴기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 R, R', 및 R"은 서로 동일하거나 상이하고 각각 독립적으로 C1 내지 C60의 알킬기; 또는 C6 내지 C60의 아릴기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 R, R', 및 R"은 서로 동일하거나 상이하고 각각 독립적으로 메틸기; 또는 페닐기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 R, R', 및 R"은 치환 또는 비치환된 메틸기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 R, R', 및 R"은 치환 또는 비치환된 페닐기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 R, R', 및 R"은 페닐기일 수 있다.
또 다른 일 실시상태에 있어서, 상기 R, R', 및 R"은 메틸기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 것인 헤테로고리 화합물을 제공한다. 또한, 본 출원의 일 실시상태에 있어서, 하기 화합물은 하나의 예시이며, 이에 한정되지 않고 추가의 치환기를 포함하는 화학식 1에 포함되는 다른 화합물을 포함할 수 있다. 즉, 하기 화합물의 중수소의 치환 위치는 전술한 중수소의 함량만 만족하면 중수소 치환 및 합성 과정에서 특정 위치가 제외되고, 수소와 중수소가 혼재하여 존재할 수 있다.
Figure PCTKR2022017207-appb-img-000041
Figure PCTKR2022017207-appb-img-000042
Figure PCTKR2022017207-appb-img-000043
Figure PCTKR2022017207-appb-img-000044
Figure PCTKR2022017207-appb-img-000045
Figure PCTKR2022017207-appb-img-000046
Figure PCTKR2022017207-appb-img-000047
Figure PCTKR2022017207-appb-img-000048
Figure PCTKR2022017207-appb-img-000049
Figure PCTKR2022017207-appb-img-000050
Figure PCTKR2022017207-appb-img-000051
Figure PCTKR2022017207-appb-img-000052
Figure PCTKR2022017207-appb-img-000053
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공주입층 물질, 정공 수송용 물질, 발광층 물질, 전자수송층 물질 및 전하 생성층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 에너지 밴드갭을 미세하게 조절이 가능하게 하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
한편, 상기 화합물은 유리 전이 온도(Tg)가 높아 열적 안정성이 우수하다. 이러한 열적 안정성의 증가는 소자에 구동 안정성을 제공하는 중요한 요인이 된다.
또한, 본 출원의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 있어서, 상기 제1 전극은 양극일 수 있고, 상기 제2 전극은 음극일 수 있다.
또 다른 일 실시상태에 있어서, 상기 제1 전극은 음극일 수 있고, 상기 제2 전극은 양극일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물은 청색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로고리 화합물은 녹색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로고리 화합물은 적색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물은 청색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로고리 화합물은 녹색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로고리 화합물은 적색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
상기 화학식 1로 표시되는 헤테로고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명의 유기 발광 소자는 전술한 헤테로고리 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 헤테로고리 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
본 발명의 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 헤테로고리 화합물을 포함할 수 있다.
본 발명의 유기 발광 소자에서 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트 물질을 포함하며, 상기 호스트 물질은 상기 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 헤테로고리 화합물을 발광층 호스트로 포함할 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자에 있어서, 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 유기물층은 하기 화학식 2로 표시되는 헤테로고리 화합물을 추가로 포함하는 것인 유기 발광 소자를 제공한다.
[화학식 2]
Figure PCTKR2022017207-appb-img-000054
상기 화학식 2에 있어서,
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택되거나, 또는 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 방향족 탄화수소 고리 또는 치환 또는 비치환된 헤테로고리를 형성하며,
L2는 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 -CN; -SiRR'R"; -P(=O)RR'; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 R, R' 및 R"는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 또는 치환 또는 비치환된 C6 내지 C60의 아릴기이고,
a1는 0 내지 4의 정수이며,
r 및 s는 0 내지 7의 정수이고,
a1, s 및 r이 2 이상인 경우, 괄호내 치환기는 서로 동일하거나 상이하다.
본 출원의 일 실시상태에 있어서, L2는 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, L2는 직접결합; 치환 또는 비치환된 C6 내지 C40의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C40의 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, L2는 직접결합; C6 내지 C40의 아릴렌기; 또는 C2 내지 C40의 헤테로아릴렌기일 수 있다.
또 다른 일 실시상태에 있어서, L2는 직접결합; 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 비페닐렌기; 또는 치환 또는 비치환된 2가의 디벤조퓨란기일 수 있다.
또 다른 일 실시상태에 있어서, L2는 직접결합; 페닐렌기; 비페닐렌기; 2가의 디벤조티오펜기; 2가의 디메틸플루오렌기; 또는 2가의 디벤조퓨란기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 L2는 중수소로 치환될 수 있다.
본 출원의 일 실시상태에 있어서, Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 -CN; -SiRR'R"; -P(=O)RR'; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ra는 -CN; -SiRR'R"; -P(=O)RR'; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ra는 -CN; -SiRR'R"; -P(=O)RR'; C1 내지 C40의 알킬기 또는 C6 내지 C40의 아릴기로 치환 또는 비치환된 C6 내지 C40의 아릴기; 또는 C6 내지 C40의 아릴기 또는 C2 내지 C40의 헤테로아릴기로 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Ra는 -CN; -SiRR'R"; -P(=O)RR'; 페닐기; 비페닐기; 터페닐기; 디메틸플루오레닐기; 디페닐플루오레닐기; 스피로비플루오레닐기; 페닐기 또는 디벤조퓨란기로 치환 또는 비치환된 디벤조티오펜기; 또는 페닐기 또는 디벤조퓨란기로 치환 또는 비치환된 디벤조퓨란기일 수 있다.
본 출원의 일 실시상태에 있어서, Rb는 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Rb는 C1 내지 C40의 알킬기, -CN, SiRR'R" 또는 C6 내지 C40의 아릴기로 치환 또는 비치환된 C6 내지 C60의 아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Rb는 C1 내지 C40의 알킬기, -CN, SiRR'R" 또는 C6 내지 C40의 아릴기로 치환 또는 비치환된 C6 내지 C40의 아릴기일 수 있다.
또 다른 일 실시상태에 있어서, Rb는 -CN 또는 SiRR'R"로 치환 또는 비치환된 페닐기; 페닐기로 치환 또는 비치환된 비페닐기; 터페닐기; 디메틸플루오레닐기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 Ra 및 Rb는 중수소로 치환될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 2의 -(L2)a-Ra 및 Rb는 서로 상이할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 2의 -(L2)a-Ra 및 Rb는 서로 동일할 수 있다.
또 다른 일 실시상태에 있어서, 상기 R, R', 및 R"은 페닐기일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 2의 중수소 함량은 0% 이상 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2의 중수소 함량은 10% 이상 100% 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 화학식 2의 중수소 함량은 0%, 100% 또는 10% 내지 80%일 수 있다.
본 출원의 일 실시상태에 있어서, Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택되거나, 또는 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 방향족 탄화수소 고리 또는 치환 또는 비치환된 헤테로고리를 형성할 수 있다.
또 다른 일 실시상태에 있어서, Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택될 수 있다.
또 다른 일 실시상태에 있어서, Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C40의 알킬기; 치환 또는 비치환된 C6 내지 C40의 아릴기; 치환 또는 비치환된 C2 내지 C40의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택될 수 있다.
또 다른 일 실시상태에 있어서, Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; C1 내지 C40의 알킬기; C6 내지 C40의 아릴기; C2 내지 C40의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택될 수 있다.
또 다른 일 실시상태에 있어서, Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; C1 내지 C20의 알킬기; C6 내지 C20의 아릴기; C2 내지 C20의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택될 수 있다.
또 다른 일 실시상태에 있어서, Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소;일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 r은 7이고, 상기 Rc는 수소일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 r은 7이고, 상기 Rc는 중수소일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 r은 7이고, 상기 Rc는 수소; 또는 중수소일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 s는 7이고, 상기 Rd는 수소일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 s는 7이고, 상기 Rd는 중수소일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 s는 7이고, 상기 Rd는 수소; 또는 중수소일 수 있다.
상기 화학식 1의 화합물 및 상기 화학식 2의 화합물을 동시에 유기 발광 소자의 유기물층에 포함하는 경우 더 우수한 효율 및 수명 효과를 보인다. 이 결과는 두 화합물을 동시에 포함하는 경우 엑시플렉스(exciplex) 현상이 일어남을 예상할 수 있다.
상기 엑시플렉스(exciplex) 현상은 두 분자간 전자 교환으로 donor(p-host)의 HOMO level, acceptor(n-host) LUMO level 크기의 에너지를 방출하는 현상이다. 정공 수송 능력이 좋은 donor(p-host)와 전자 수송 능력이 좋은 acceptor(n-host)가 발광층의 호스트로 사용될 경우 정공은 p-host로 주입되고, 전자는 n-host로 주입되기 때문에 구동 전압을 낮출 수 있고, 그로 인해 수명 향상에 도움을 줄 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 2의 헤테로고리 화합물은 하기 화합물 중 어느 하나로 표시될 수 있다.
Figure PCTKR2022017207-appb-img-000055
Figure PCTKR2022017207-appb-img-000056
Figure PCTKR2022017207-appb-img-000057
Figure PCTKR2022017207-appb-img-000058
Figure PCTKR2022017207-appb-img-000059
Figure PCTKR2022017207-appb-img-000060
Figure PCTKR2022017207-appb-img-000061
Figure PCTKR2022017207-appb-img-000062
Figure PCTKR2022017207-appb-img-000063
Figure PCTKR2022017207-appb-img-000064
또한, 본 출원의 다른 실시상태는, 상기 화학식 1로 표시되는 헤테로고리 화합물, 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자의 유기물층용 조성물을 제공한다.
상기 화학식 1로 표시되는 헤테로고리 화합물, 및 상기 화학식 2로 표시되는 헤테로고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
상기 조성물 내 상기 화학식 1로 표시되는 헤테로고리 화합물 : 상기 화학식 2로 표시되는 헤테로고리 화합물의 중량비는 1 : 10 내지 10 : 1일 수 있고, 1 : 8 내지 8 : 1일 수 있고, 1 : 5 내지 5 : 1일 수 있으며, 1 : 2 내지 2 : 1일 수 있으나, 이에만 한정되는 것은 아니다.
상기 조성물은 유기 발광 소자의 유기물 형성 시 이용할 수 있고, 특히 발광층의 호스트 형성시 보다 바람직하게 이용할 수 있다.
상기 조성물은 둘 이상의 화합물이 단순 혼합되어 있는 형태이며, 유기 발광 소자의 유기물층 형성 전에 파우더 상태의 재료를 혼합할 수도 있고, 적정 온도 이상에서 액상 상태로 되어있는 화합물을 혼합할 수 있다. 상기 조성물은 각 재료의 녹는점 이하에서는 고체 상태이며, 온도를 조정하면 액상으로 유지할 수 있다.
상기 조성물은 추가로 용매, 첨가제 등 당 기술분야에 공지된 재료들이 추가로 포함될 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 전술한 화학식 1로 표시되는 헤테로고리 화합물, 및 화학식 2로 표시되는 헤테로고리 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 헤테로고리 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1에 따른 헤테로고리 화합물 및 상기 화학식 2에 따른 헤테로고리 화합물은 청색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 헤테로고리 화합물은 녹색 유기 발광 소자의 재료로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 헤테로고리 화합물은 적색 유기 발광 소자의 재료로 사용될 수 있다.
본 발명의 유기 발광 소자는 발광층, 정공주입층, 정공수송층, 전자주입층, 전자수송층, 전자저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 정공저지층, 전자주입층 및 전자수송층 중 적어도 한 층을 포함하고, 상기 정공저지층, 전자주입층 및 전자수송층 중 적어도 한 층이 상기 화학식 1로 표시되는 헤테로고리 화합물, 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 헤테로고리 화합물, 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트 물질을 포함하며, 상기 호스트 물질은 상기 화학식 1로 표시되는 헤테로고리 화합물, 및 상기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
도 1 내지 3에 본 출원의 일 실시상태에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 출원의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기 발광 소자의 구조가 본 출원에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기 발광 소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기 발광 소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기 발광 소자는 정공주입층(301), 정공수송층(302), 발광층(303), 정공저지층(304), 전자수송층(305) 및 전자주입층(306)을 포함한다. 그러나, 이와 같은 적층 구조에 의하여 본 출원의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다.
본 출원의 일 실시상태에 있어서, 기판을 준비하는 단계; 상기 기판 상에 제1 전극을 형성하는 단계; 상기 제1 전극 상에 1층 이상의 유기물층을 형성하는 단계; 및 상기 유기물층 상에 제2 전극을 형성하는 단계를 포함하고, 상기 유기물층을 형성하는 단계는 본 출원의 일 실시상태에 따른 유기물층용 조성물을 이용하여 1층 이상의 유기물층을 형성하는 단계를 포함하는 것인 유기 발광 소자의 제조 방법을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층을 형성하는 단계는 상기 화학식 1의 헤테로고리 화합물 및 상기 화학식 2의 헤테로고리 화합물을 예비 혼합(pre-mixed)하여 열 진공 증착 방법을 이용하여 형성하는 것인 유기 발광 소자의 제조 방법을 제공한다.
상기 예비 혼합(pre-mixed)은 상기 화학식 1의 헤테로고리 화합물 및 상기 화학식 2의 헤테로고리 화합물을 유기물층에 증착하기 전 먼저 재료를 섞어서 하나의 공원에 담아 혼합하는 것을 의미한다.
예비 혼합된 재료는 본 출원의 일 실시상태에 따른 유기물층용 조성물로 언급될 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자에 있어서, 상기 화학식 1의 헤테로고리 화합물, 및 상기 화학식 2의 헤테로고리 화합물 이외의 재료를 하기에 예시하지만, 이들은 예시를 위한 것일 뿐 본 출원의 범위를 한정하기 위한 것은 아니며, 당 기술분야에 공지된 재료들로 대체될 수 있다.
양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다. 상기 양극 재료의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다. 상기 음극 재료의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공 주입 재료로는 공지된 정공 주입 재료를 이용할 수도 있는데, 예를 들면, 미국 특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 트리스(4-카바조일-9-일페닐)아민(TCTA), 4,4',4"-트리[페닐(m-톨릴)아미노]트리페닐아민(m-MTDATA), 1,3,5-트리스[4-(3-메틸페닐페닐아미노)페닐]벤젠(m-MTDAPB), 용해성이 있는 전도성 고분자인 폴리아닐린/도데실벤젠술폰산(Polyaniline/Dodecylbenzenesulfonic acid) 또는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), 폴리아닐린/캠퍼술폰산(Polyaniline/Camphor sulfonic acid) 또는 폴리아닐린/폴리(4-스티렌술포네이트)(Polyaniline/Poly(4-styrene-sulfonate))등을 사용할 수 있다.
정공 수송 재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자 수송 재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착체 등이 사용될 수 있으며, 저분자 물질 뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자 주입 재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 출원이 이에 한정되는 것은 아니다.
발광 재료로는 적색, 녹색 또는 청색 발광재료가 사용될 수 있으며, 필요한 경우, 2 이상의 발광 재료를 혼합하여 사용할 수 있다. 이 때, 2 이상의 발광 재료를 개별적인 공급원으로 증착하여 사용하거나, 예비 혼합(pre-mixed)하여 하나의 공급원으로 증착하여 사용할 수 있다. 또한, 발광 재료로서 형광 재료를 사용할 수도 있으나, 인광 재료로서 사용할 수도 있다. 발광 재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
발광 재료의 호스트를 혼합하여 사용하는 경우에는, 동일 계열의 호스트를 혼합하여 사용할 수도 있고, 다른 계열의 호스트를 혼합하여 사용할 수도 있다. 예를 들어, n 타입 호스트 재료 또는 p 타입 호스트 재료 중 어느 두 종류 이상의 재료를 선택하여 발광층의 호스트 재료로 사용할 수 있다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 출원의 일 실시상태에 따른 헤테로고리 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명하지만, 이들은 본 출원을 예시하기 위한 것일 뿐, 본 출원 범위를 한정하기 위한 것은 아니다.
<제조예>
<제조예 1> 화합물 1-1의 제조
Figure PCTKR2022017207-appb-img-000065
1) 화합물 1-1-2의 제조
2-(3-브로모페닐)트리페닐렌(2-(3-bromophenyl)triphenylene) 13.9g(36.2mM), 트리플릭산(triflic acid) 9.6mL(108.6mM), 벤젠-d6(benzene-d6) 140mL에 녹인 후 실온에서 환류하였다. 반응이 완결된 후, 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기물층을 MgSO4로 건조시킨 후, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(Hexane)로 정제하여 목적 화합물 1-1-2 11.2g(78%)을 얻었다.
2) 화합물 1-1-1의 제조
화합물 1-1-2 11.2g(28.2mM), 비스(피나콜라토)디보론(bis(pinacolato)diboron) 10.7g(42.3mM), PdCl2(dppf) 1.0g(1.4mM), KOAc 8.3g(84.6mM)를 1,4-dioxane 100mL에 녹인 후 12시간 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기물층을 MgSO4로 건조시킨 후, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:2)로 정제하여 목적 화합물 1-1-1 9.2g(73%)을 얻었다.
3) 화합물 1-1의 제조
화합물 1-1-1 11.0g(24.6mM), 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 7.9g(29.6M), Pd(PPh3)4 1.4g(1.2mM), K2CO3 6.8g(49.2mM)를 1,4-dioxane/H2O 100/20mL에 녹인 후 12시간 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기물층을 MgSO4로 건조시킨 후, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 1-1 11.0g(81%)을 얻었다.
참고로, 유기화합물의 수소를 중수소로 치환하는 반응은 강산인 triflic acid를 사용하여 당량을 올릴수록 중수소 치환율을 높아지나 특정 당량 이상을 사용할 경우 반응물과 생성물이 분해되어 수율 및 중수소 치환율도 낮아짐을 확인할 수 있다. 마찬가지로 반응속도를 높일 수 있는 농도, 반응온도는 특정 당량까지는 중수소 치환율을 향상시키지만 과하게 되면 화합물을 분해하여 수율 및 중수소 치환율을 저해할 수 있다.
여기서 치환율이란 [(화학반응 후 치환된 중수소의 갯수)/(화학반응 전 화합물의 수소 개수)]*100으로 계산한다.
상기 경향성을 고려하여, 상기 화합물 1-1-2의 제조의 경우 하기 표 1의 조건에 따라 중수소 치환 물질 합성법을 진행하며, 반응 조건 테스트(test) 실험을 하였다.
그 결과, 조건 2의 경우가 수율 및 치환율이 가장 높은 조건임을 확인하였다. 그에 따라, 치환율이 가장 높은 조건 2를 반응 조건으로 화합물 1-1-2를 합성하였다. 또한 강산에서 화합물의 분해는 고유한 특성으로 화합물이 변함에 따라 반응 조건을 변경하여 실험을 진행하였다.
조건 화합물 벤젠-D6 triflic acid 온도 수율 치환율
1 1g, 1eq 68eq,10mL 1eq RT 95% 72%
2 3eq RT 86% 93%
3 3eq 40℃ 77% 88%
4 3eq 80℃ 68% 84%
5 5eq RT 80% 81%
상기 제조예 1에서 2-브로모트리페닐렌(2-bromotriphenylene) 대신 하기 표 2의 중간체 A를 사용하고 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 하기 표 2의 중간체 B를 사용한 것을 제외하고 제조예 1과 동일한 방법으로 제조하여 목적 화합물을 합성하였다.
Figure PCTKR2022017207-appb-img-000066
Figure PCTKR2022017207-appb-img-000067
Figure PCTKR2022017207-appb-img-000068
Figure PCTKR2022017207-appb-img-000069
Figure PCTKR2022017207-appb-img-000070
<제조예 2> 화합물 2-3의 제조
Figure PCTKR2022017207-appb-img-000071
1) 화합물 2-3의 제조
3-브로모-1,1'-비페닐(3-bromo-1,1'-biphenyl) 3.7g(15.8mM), 9-페닐-9H,9'H-3,3'-비스카바졸(9-phenyl-9H,9'H-3,3'-bicarbazole) 6.5g(15.8mM), CuI 3.0g(15.8mM), 트랜스-1,2-디아미노시클로헥세인(trans-1,2-diaminocyclohexane) 1.9mL(15.8mM), K3PO4 3.3g(31.6mM)를 1,4-dioxane 100mL에 녹인 후, 24시간동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고, 유기물층을 MgSO4로 건조시킨 후, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 2-3 7.5g(85%)을 얻었다.
상기 제조예 2에서 3-브로모-1,1'-비페닐(3-bromo-1,1'-biphenyl) 대신 하기 표 3의 중간체 A를 사용하고, 9-페닐-9H,9'H-3,3'-비스카바졸(9-phenyl-9H,9'H-3,3'-bicarbazole) 대신 하기 표 3의 중간체 B를 사용한 것을 제외하고 제조예 2의 제조와 동일한 방법으로 제조하여 하기의 목적 화합물들을 합성하였다.
Figure PCTKR2022017207-appb-img-000072
<제조예 3> 화합물 2-73의 제조
Figure PCTKR2022017207-appb-img-000073
1) 화합물 2-73-2의 제조
2-브르모디벤조[b,d]티오펜\(2-Bromodibenzo[b,d]thiophene) 4.2g(15.8mM), 9-페닐-9H,9'H-3,3'-비스카바졸(9-phenyl-9H,9'H-3,3'-bicarbazole) 6.5g(15.8mM), CuI 3.0g(15.8mM), 트랜스-1,2-디아미노시클로헥세인(trans-1,2-diaminocyclohexane) 1.9mL(15.8mM), K3PO4 3.3g(31.6mM)를 1,4-dioxane 100mL에 녹인 후 24시간 동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고 유기물층을 MgSO4로 건조시킨 후 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 2-73-2 7.9g(85%)을 얻었다.
2) 화합물 2-73-1의 제조
화합물 2-73-2 8.4g(14.3mmol)를 THF 100mL에 녹인 후 -78℃에서 질소 치환하였다. 2.5M n-BuLi 7.4mL(18.6mmol)을 적가하고, 실온에서 1시간동안 교반하였다. 반응 혼합물에 trimethyl borate 4.8mL(42.9mmol)을 적가하고, 실온에서 2시간 동안 교반하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고, 유기물층을 MgSO4로 건조시킨 후 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:MeOH=100:3)로 정제하고, DCM으로 재결정하여 목적 화합물 2-73-1 3.9g(70%)을 얻었다.
3) 화합물 2-73의 제조
화합물 2-73-1 6.7g(10.5mM), 아이오도벤젠(iodobenzene) 2.1g(10.5mM), Pd(PPh3)4 606mg(0.52mM), K2CO3 2.9g(21.0mM)를 toluene/EtOH/H2O 100/20/20mL에 녹인 후 12시간동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고, 유기물층을 MgSO4로 건조시킨 후, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexand=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 2-73 4.9g(70%)을 얻었다.
<제조예 4> 화합물 3-2의 제조
Figure PCTKR2022017207-appb-img-000074
1) 화합물 3-2-1의 제조
9H,9'H-3,3'-비스카바졸(9H,9'H-3,3'-bicarbazole) 10g(30.0mM), 4-브로모-1,1'-비페닐-2,2',3,3',4',5,5',6,6'-D9 (4-bromo-1,1'-biphenyl-2,2',3,3',4',5,5',6,6'-D9) [A] 7.26g(30mM), CuI 0.57g(3.0mM), 트랜스-1,2-디아미노시클로헥세인(trans-1,2-diaminocyclohexane) 0.34g(3.0mM), K3PO4 12.7g(60.0mM)를 1,4-dioxane 100mL에 녹인 후 125℃에서 8시간 동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기물층은 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피 (DCM:Hexane=1:3)로 정제하였고 메탄올로 재결정하여 목적 화합물 3-2-1 13.9g(94%)을 얻었다.
2) 화합물 3-2의 제조
화합물 3-2-1 13.9g(28.0mM), 4-브로모-1,1'-비페닐-2,2',3,3',4',5,5',6,6'-D9 (4-bromo-1,1'-biphenyl-2,2',3,3',4',5,5',6,6'-D9) [A'] 6.8g(28.0mM), CuI 0.53g(2.8mM), 트랜스-1,2-디아미노시클로헥세인(trans-1,2-diaminocyclohexane) 0.32g(2.8mM), K3PO4 11.9g(56.0mM)를 1,4-dioxane 140mL에 녹인 후 125℃에서 8시간 동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기물층은 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피 (DCM:Hexane=1:3)로 정제하였고 메탄올로 재결정하여 목적 화합물 3-2 16.1g(88%)를 얻었다.
화합물 A와 화합물 A'가 동일한 경우 상기 제조예 4에서 화합물 A를 2당량 넣어 목적 화합물을 바로 합성할 수 있다. 즉, 화합물 A와 화합물 A'가 동일한 경우 화합물 3-2-1의 제조를 생략할 수 있다.
상기 제조예 4에 있어서, 4-브로모-1,1'-비페닐-2,2',3,3',4',5,5',6,6'-D9 [A] 대신 하기 표 4의 중간체 A를 사용하고, 4-브로모-1,1'-비페닐-2,2',3,3',4',5,5',6,6'-D9 [A'] 대신 하기 표 4의 중간체 A'을 사용한 것을 제외하고 제조예 4와 동일한 방법으로 제조하여 하기의 목적 화합물들을 합성하였다.
Figure PCTKR2022017207-appb-img-000075
Figure PCTKR2022017207-appb-img-000076
<제조예 5> 화합물 3-26의 제조
Figure PCTKR2022017207-appb-img-000077
1) 화합물 3-26-2의 제조
9H,9'H-3,3'-비스카바졸(9H,9'H-3,3'-bicarbazole) 12.0g(36.2mM), 트리플릭산(triflic acid) 9.6mL(108.6mM), benzene-d6 140mL에 녹인 후 실온에서 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기물층을 MgSO4로 건조시킨 후, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 3-26-2 8.9g(71%)을 얻었다.
2) 화합물 3-26-1의 제조
화합물 3-26-2 5.5g(15.8mM), 4-브로모-1,1'-비페닐(4-bromo-1,1'-biphenyl) [B] 3.7g(15.8mM), CuI 3.0g(15.8mM), 트랜스-1,2-디아미노시클로헥세인(trans-1,2-diaminocyclohexane) 1.9mL(15.8mM), K3PO4 3.3g(31.6mM)를 1,4-dioxane 100mL에 녹인 후 24시간동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고 유기물층을 MgSO4로 건조시킨 후 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하고, 메탄올로 재결정하여 목적 화합물 3-26-1 6.5g(83%)을 얻었다.
2) 화합물 3-26의 제조
화합물 3-26-1 14.0g(28.0mM), 4-브로모-1,1'-비페닐(4-bromo-1,1'-biphenyl) [B'] 6.8g(28.0mM), CuI 0.53g(2.8mM), 트랜스-1,2-디아미노시클로헥세인(trans-1,2-diaminocyclohexane) 0.32g(2.8mM), K3PO4 11.9g(56.0mM)를 1,4-dioxane 140mL에 녹인 후 125℃에서 8시간 동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기물층은 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피 (DCM:Hexane=1:3)로 정제하였고 메탄올로 재결정하여 목적 화합물 3-26 15.8g(87%)를 얻었다.
화합물 B와 화합물 B'가 동일한 경우 상기 제조예 5에서 화합물 B를 2당량 넣어 목적 화합물을 바로 합성할 수 있다. 즉, 화합물 B와 화합물 B'가 동일한 경우 상기 화합물 3-26-1의 제조를 생략할 수 있다.
상기 제조예 5에 있어서, 4-브로모-1,1'-비페닐(4-bromo-1,1'-biphenyl) [B] 대신 하기 표 5의 중간체 B를 사용하고, 4-브로모-1,1'-비페닐(4-bromo-1,1'-biphenyl) [B'] 대신 하기 표 5의 중간체 B'을 사용한 것을 제외하고 제조예 5와 동일한 방법으로 제조하여 하기의 목적 화합물들을 합성하였다.
Figure PCTKR2022017207-appb-img-000078
Figure PCTKR2022017207-appb-img-000079
<제조예 6> 화합물 3-50의 제조
Figure PCTKR2022017207-appb-img-000080
1) 화합물 3-50-1의 제조
9-([1,1'-비페닐]-4-일)-9H,9'H-3,3'-비스카바졸(9-([1,1'-biphenyl]-4-yl)-9H,9'H-3,3'-bicarbazole) 13.6g(28.0mM), 4-브로모-1,1'-비페닐(4-bromo-1,1'-biphenyl) 6.8g(28.0mM), CuI 0.53g(2.8mM), 트랜스-1,2-디아미노시클로헥세인(trans-1,2-diaminocyclohexane) 0.32g(2.8mM), K3PO4 11.9g(56.0mM)를 1,4-dioxane 140mL에 녹인 후 125℃에서 8시간 동안 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기물층은 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피 (DCM:Hexane=1:3)로 정제하였고 메탄올로 재결정하여 목적 화합물 3-50-1 15.9g(89%)를 얻었다.
2) 화합물 3-50의 제조
화합물 3-50-1 23.0g(36.2mM), 트리플릭산(triflic acid) 9.6mL(108.6mM), benzene-d6 140mL에 녹인 후 실온에서 환류하였다. 반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기물층을 MgSO4로 건조시킨 후, 회전 증발기를 이용하여 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(DCM:Hexane=1:3)로 정제하여 목적 화합물 3-50 16.9g(70%)을 얻었다.
상기 제조예 6에 있어서, 9-([1,1'-비페닐]-4-일)-9H,9'H-3,3'-비스카바졸(9-([1,1'-biphenyl]-4-yl)-9H,9'H-3,3'-bicarbazole) 대신 하기 표 6의 중간체 C를 사용하고, 4-브로모-1,1'-비페닐(4-bromo-1,1'-biphenyl) 대신 하기 표 6의 중간체 C'을 사용한 것을 제외하고 제조예 6과 동일한 방법으로 제조하여 하기의 목적 화합물들을 합성하였다.
Figure PCTKR2022017207-appb-img-000081
Figure PCTKR2022017207-appb-img-000082
Figure PCTKR2022017207-appb-img-000083
상기 제조예 1 내지 6 및 표 2 내지 표 6에 기재된 화합물 이외의 나머지 화합물도 전술한 제조예에 기재된 방법과 동일한 방법으로 제조하였으며, 하기 표 7 및 8에 합성결과를 나타내었다. 하기 표 7은 1H NMR(CDCl3, 200Mz)의 측정값이고, 하기 표 8는 FD-질량분석계(FD-MS: Field desorption mass spectrometry)의 측정값이다.
화합물
번호
1H NMR(CDCl3, 200Mz)
1-1 δ= 8.36 (4H, d), 7.50 (6H, m)
1-4 δ= 8.36 (2H, d), 7.96 (2H, d), 7.75 (2H, d), 7.50~7.41 (6H, m), 7.25(2H, d)
1-17 δ= 8.38 (2H, d), 7.94 (2H, s), 7.75~7.73 (3H, m), 7.61 (2H, d), 7.49~7.41 (6H, m)
1-19 δ= 7.96 (4H, d), 7.75 (4H, d), 7.49~7.41 (6H, m), 7.25 (2H, d)
1-51 δ= 중수소 함량 100%, peak 없음
1-77 δ= 8.36 (2H, d), 8.03~7.98 (2H, m), 7.82~7.76 (2H, m), 7.54~7.50 (4H, m), 7.39~7.31 (2H, m)
1-111 δ= 중수소 함량 100%, peak 없음
1-113 δ= 8.36 (4H, d), 7.50 (6H, m)
1-116 δ= 8.36 (2H, d), 7.96 (2H, d), 7.75 (2H, d), 7.50~7.41 (6H, m), 7.25(2H, d)
1-118 δ= 8.36 (2H, d), 8.03~7.98 (2H, m), 7.82~7.76 (2H, m), 7.54~7.50 (4H, m), 7.39~7.31 (2H, m)
1-127 δ= 중수소 함량 100%, peak 없음
1-133 δ= 8.36 (4H, d), 7.50 (6H, m)
1-142 δ= 중수소 함량 100%, peak 없음
1-147 δ= 8.38~8.36 (3H, m), 7.94 (1H, s), 7.75~7.73 (3H, m), 7.61 (2H, d), 7.50~7.41 (6H, m)
1-160 δ= 중수소 함량 100%, peak 없음
1-161 δ= 8.36 (4H, d), 7.50 (6H, m)
1-167 δ= 중수소 함량 100%, peak 없음
1-169 δ= 8.36 (4H, d), 7.50 (6H, m)
1-178 δ= 중수소 함량 100%, peak 없음
2-42 δ= 8.55 (1H, d), 8.30 (1H, d), 8.19~8.13 (2H, m), 7.99~7.89 (12H, m), 7.77~7.75 (5H, m), 7.50~7.35 (8H, m), 7.20~7.16 (2H, m)
3-2 δ= 8.55 (1H, d), 8.30 (1H, d), 8.19~8.13 (2H, m), 7.99~7.89 (4H, m), 7.77 (1H, d), 7.58~7.50 (2H, m), 7.35 (1H, m), 7.20~7.16 (2H, m)
3-26 δ= 7.92 (4H, d), 7.91 (4H, d), 7.75 (2H, d), 7.49~7.41 (6H, m)
3-50 δ= 중수소 함량 100%, peak 없음
화합물 FD-MS 화합물 FD-MS
1-1 Chemical Formula: C39H10D15N3Exact Mass: 550.299Molecular Weight: 550.742 1-4 Chemical Formula: C45H14D15N3
Exact Mass: 626.330
Molecular Weight: 626.840
1-17 Chemical Formula: C51H18D15N3Exact Mass: 702.362Molecular Weight: 702.938 1-19 Chemical Formula: C51H18D15N3
Exact Mass: 702.362
Molecular Weight: 702.938
1-51 Chemical Formula: C45D29N3Exact Mass: 640.418Molecular Weight: 640.925 1-77 Chemical Formula: C45H12D15N3O
Exact Mass: 640.310
Molecular Weight: 640.823
1-111 Chemical Formula: C45D27N3SExact Mass: 668.362Molecular Weight: 668.957 1-113 Chemical Formula: C45H10D19N3
Exact Mass: 630.355
Molecular Weight: 630.864
1-116 Chemical Formula: C51H14D19N3Exact Mass: 706.387Molecular Weight: 706.962 1-118 Chemical Formula: C51H12D19N3O
Exact Mass: 720.366
Molecular Weight: 720.945
1-127 Chemical Formula: C45D29N3Exact Mass: 640.418Molecular Weight: 640.925 1-133 Chemical Formula: C45H10D19N3
Exact Mass: 630.355
Molecular Weight: 630.864
1-142 Chemical Formula: C45D29N3Exact Mass: 640.418Molecular Weight: 640.925 1-147 Chemical Formula: C51H14D19N3
Exact Mass: 706.387
Molecular Weight: 706.962
1-160 Chemical Formula: C51D31N3OExact Mass: 732.441Molecular Weight: 733.018 1-161 Chemical Formula: C45H10D19N3
Exact Mass: 630.355
Molecular Weight: 630.864
1-167 Chemical Formula: C45D29N3Exact Mass: 640.418Molecular Weight: 640.925 1-169 Chemical Formula: C51H10D23N3
Exact Mass: 710.412
Molecular Weight: 710.986
1-178 Chemical Formula: C51D33N3Exact Mass: 720.475Molecular Weight: 721.047 2-42 Chemical Formula: C48H32N2
Exact Mass: 636.257
Molecular Weight: 636.798
3-2 Chemical Formula: C48H14D18N2Exact Mass: 654.370Molecular Weight: 654.908 3-26 Chemical Formula: C48H18D14N2
Exact Mass: 650.344
Molecular Weight: 650.883
3-50 Chemical Formula: C48D32N2Exact Mass: 668.457Molecular Weight: 668.993
<실험예>
<실험예 1>
1) 유기 발광 소자의 제작
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO 처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공주입층 2-TNATA(4,4′,4′′-Tris[2-naphthyl(phenyl)amino]triphenylamine) 및 정공수송층 NPB(N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine)을 형성시켰다.
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 하기 표 9의 화학식 1의 헤테로고리 화합물, 녹색 인광 도펀트로 Ir(ppy)3 (tris(2-phenylpyridine)iridium)을 사용하였으며, 호스트에 Ir(ppy)3를 7% 도핑하여 360Å 증착하였다. 이후 정공저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자수송층으로 Alq3를 200Å 증착하였다. 마지막으로 전자수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하여 전자주입층을 형성한 후, 전자주입층 위에 알루미늄(Al) 음극을 1200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-8 ~ 10-6 torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색좌표(CIE), 수명을 측정한 결과는 하기 표 9와 같았다.
발광층
화합물
구동전압
(V)
발광효율
(cd/A)

EL color
수명
(T90)
실시예 1 1-1 4.69 74.4 녹색 356
실시예 2 1-4 4.63 73.5 358
실시예 3 1-17 4.57 77.3 358
실시예 4 1-19 4.65 73.6 360
실시예 5 1-51 4.99 77.7 397
실시예 6 1-77 4.53 73.5 340
실시예 7 1-111 4.79 77.9 381
실시예 8 1-113 4.55 78.2 374
실시예 9 1-116 4.65 73.9 382
실시예 10 1-118 4.55 72.8 390
실시예 11 1-127 4.94 81.3 413
실시예 12 1-133 4.51 73.9 326
실시예 13 1-142 4.86 77.2 385
실시예 14 1-147 4.56 73.2 352
실시예 15 1-160 4.81 75.3 399
실시예 16 1-161 4.47 74.4 311
실시예 17 1-167 4.88 78.9 343
실시예 18 1-169 4.62 73.1 363
실시예 19 1-178 4.92 76.3 420
비교예 1 Ref. 1 5.56 63.6 176
비교예 2 Ref. 2 5.83 61.0 181
비교예 3 Ref. 3 5.64 62.4 185
비교예 4 Ref. 4 5.92 64.2 198
비교예 5 Ref. 5 5.73 62.6 193
비교예 6 Ref. 6 5.77 61.1 188
비교예 7 Ref. 7 5.74 61.3 170
비교예 8 Ref. 8 5.54 64.3 199
Figure PCTKR2022017207-appb-img-000084
상기 표 9의 결과에서 확인할 수 있듯, 본 발명의 헤테로고리 화합물을 발광층 재료로 이용한 유기 발광 소자는 비교예 1 내지 8의 유기 발광 소자에 비해 구동 전압이 낮고, 발광효율 및 수명이 현저히 개선되었음을 확인할 수 있었다.
본 발명에 따른 헤테로고리 화합물은 중수소로 치환된 화합물이고, 비교예 1 내지 8의 화합물은 수소로 치환되거나 일부 중수소로 치환된 화합물이다. 원자 질량이 수소 보다 2배 큰 중수소로 치환된 화합물은 수소로 치환된 화합물보다 더 낮은 영점 에너지 및 진동 에너지로 인해 기저 상태의 에너지가 낮아지고, 분자간 진동에 의한 충돌이 감소하여 박막을 비결정질 상태로 만들 수 있어 유기 발광 소자의 수명을 향상시킬 수 있다.
상기 중수소로 치환 화합물은 낮은 기저 상태의 에너지를 갖게 되어 화합물의 안정성이 향상되고, C-D 결합의 해리에너지가 높아 분자의 안정성이 향상되어, 유기 발광 소자의 수명을 개선할 수 있다.
구체적으로, 본 발명에 따른 중수소로 치환된 헤테로고리 화합물 1-118은 분자의 안정성 및 비결정성에 의해 수소로 치환된 비교예 화합물 Ref. 1, 2, 8보다 구동전압 및 수명이 향상됨을 확인할 수 있고, 중수소로 치환된 헤테로고리 화합물의 낮은 진동에너지로 인해 에너지의 손실을 최소화하고 도펀트로 에너지 전달을 용이하게 하여, 유기 발광 소자의 발광효율을 향상시킬 수 있었다.
또한, 본 발명에 따른 중수소로 치환된 헤테로고리 화합물 1-1, 1-133은 비교예 화합물 Ref. 5, 6과 비교하였을 때, 화합물 1-1, 1-133은 트리페닐렌과 linker인 아릴기에 중수소가 치환된 화합물이고 비교예 화합물 Ref. 5, 6은 트리아진 말단의 아릴기에 중수소가 치환되어 있다.
일반적으로, 유기 발광 소자의 호스트는 전자의 들뜸으로 인해 HOMO 오비탈을 갖는 치환기에 라디칼 양이온(radical cation)이 생성될 수 있고, 양이온을 효과적으로 안정화시키지 못하면 소자의 효율 및 수명을 저해할 수 있다.
구체적으로, 본 발명에 따른 중수소로 치환된 화합물 1-1, 1-133은 라디칼 양이온(radical cation)이 생성되었을 경우, 상기 중수소가 상기 라디칼 양이온을 안정화시켜 유기 발광 소자의 수명을 향상시킬 수 있다.
반면, 비교예 화합물 Ref. 5, 6은 트리아진 말단의 아릴기에만 중수소로 치환되어 라디칼 양이온(radical cation) 안정화에 기여하지 못함을 확인하였다.
따라서, 트리페닐렌 및 링커(linker)인 아릴기에 중수소로 치환된 화합물 1-1, 1-133을 발광층의 재료로 이용한 유기 발광 소자의 수명이 향상됨을 확인할 수 있었다.
또한, 본 발명에 따른 중수소로 치환된 헤테로고리 화합물 1-127은 화합물의 낮은 진동에너지로 에너지의 손실을 줄여 유기 발광 소자의 발광 효율을 향상시킬 수 있었고, 기저 상태의 에너지를 낮추어 유기 발광 소자의 수명을 향상시킬 수 있었다.
반면, 전체 중수소 치환된 화합물 1-127은 트리페닐렌과 linker인 아릴기만 중수소 치환된 화합물 1-113보다 낮은 진동에너지로 높은 packing density를 갖고, 이것은 유기 발광 소자의 발광층 내 과한 이동도를 형성하여 주변층으로 정공 및 전자를 누출시켜 구동전압을 저해할 수 있음을 확인할 수 있었다.
<실험예 2>
1) 유기 발광 소자의 제작
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공주입층 2-TNATA(4,4′,4′′-Tris[2-naphthyl(phenyl)amino]triphenylamine) 및 정공수송층 NPB(N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine)을 형성시켰다.
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 화학식 1의 헤테로고리 화합물 1종과 화학식 2의 화합물 1종을 pre-mixed하여 예비 혼합 후 하나의 공원에서 360Å 증착하였고 녹색 인광 도펀트는 Ir(ppy)3를 발광층 증착 두께의 7% 도핑하여 증착하였다. 이후 정공저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자수송층으로 Alq3를 200Å 증착하였다. 마지막으로 전자수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하여 전자주입층을 형성한 후, 전자주입층 위에 알루미늄(Al) 음극을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
하기 표 10에서 실시예 및 비교예는 녹색 호스트로 사용되었다. 그린 인광 도펀트로 Ir(piq)2(acac)를 사용하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-8 ~ 10-6torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
상기와 같이 제작된 유기 전계 발광 소자에 대하여 맥사이언스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다.
본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색좌표(CIE), 수명을 측정한 결과는 하기 표 10과 같았다.
발광층
화합물
비율 구동전압
(V)
효율
(cd/A)

EL color
수명
(T90)
실시예 20 1-118 :
2-42
1 : 8 4.62 53.7 녹색 315
실시예 21 1 : 5 4.58 56.1 423
실시예 22 1 : 2 4.41 82.3 565
실시예 23 1 : 1 4.47 70.1 512
실시예 24 2 : 1 4.38 69.4 487
실시예 25 5 : 1 4.31 68.1 420
실시예 26 8 : 1 4.20 67.3 335
실시예 27 1-19 :
3-2
1 : 2 4.34 82.7 571
실시예 28 1 : 1 4.42 80.2 530
실시예 29 2 : 1 4.57 78.1 508
실시예 30 1-169 :
3-26
1 : 2 4.38 81.0 615
실시예 31 1 : 1 4.45 79.8 562
실시예 32 2 : 1 4.58 78.4 527
실시예 33 1-127 :
3-50
1 : 2 4.59 84.3 642
실시예 34 1 : 1 4.72 82.6 622
실시예 35 2 : 1 4.94 80.2 597
비교예 9 Ref. 8 :
3-2
1 : 2 5.59 71.4 331
비교예 10 1 : 1 5.72 69.7 311
비교예 11 2 : 1 5.94 67.3 266
상기 표 10의 결과에서, 본 발명의 헤테로고리 화합물인 상기 화학식 1로 표시되는 화합물을 N 타입 host로 사용하고, 본 발명의 상기 화학식 2로 표시되는 화합물을 P 타입 host로 사용하여 상기 두 화합물을 혼합하여 증착하는 경우, 유기 발광 소자의 발광 효율 및 수명이 개선됨을 확인할 수 있었다. 이로부터 상기 두 화합물을 혼합하여 증착하는 경우, 엑시플렉스(exciplex) 현상이 일어남을 예상할 수 있다.
상기 엑시플렉스(exciplex) 현상은 두 분자간 전자 교환으로 도너(donor, p-host)의 HOMO 에너지 레벨, 억셉터(acceptor, n-host) LUMO 에너지 레벨 크기의 에너지를 방출하는 현상이다. 두 분자간 엑시플렉스(exciplex) 현상이 일어나면 역항간 교차(Reverse Intersystem Crossing, RISC)가 일어나게 되고, 이로 인하여 형광의 내부양자 효율이 100%까지 증가할 수 있다. 정공 수송 능력이 좋은 도너(donor, p-host)와 전자 수송 능력이 좋은 억셉터(acceptor, n-host)가 발광층의 호스트로 사용될 경우, 정공은 p-host로 주입되고, 전자는 n-host로 주입되기 때문에 유기 발광 소자의 구동 전압을 낮출 수 있고, 그로 인해 유기 발광 소자의 수명 향상에 도움을 줄 수 있다.
화학식 2로 표시되는 화합물의 경우, 수소로 치환되거나 부분적으로 중수소 또는 전체 중수소로 치환된 화합물이다. 원자 질량이 수소보다 2배 큰 중수소로 치환된 화합물은 수소와 치환된 화합물보다 더 낮은 영점 에너지와 진동 에너지로 인해 기저 상태의 에너지가 낮아지고, 분자간 진동에 의한 충돌이 감소하여, 박막을 비결정질 상태로 만들 수 있어 유기 발광 소자의 수명을 향상시킬 수 있다.
상기 중수소 치환 화합물은 낮은 기저 상태의 에너지를 갖게 되어 화합물의 안정성이 향상되고, C-D 결합의 해리에너지가 높아 분자의 안정성이 향상되어, 유기 발광 소자의 수명을 개선할 수 있다.
본 발명에서 상기 화학식 2로 표시되는 화합물이 도너(donor) 역할을 하고, 상기 화학식 1로 표시되는 화합물이 억셉터(acceptor) 역할을 하여, 상기 화합물들이 발광층의 호스트로 사용되었을 경우, 우수한 유기 발광 소자의 특성을 나타냄을 확인할 수 있었다.

Claims (16)

  1. 하기 화학식 1로 표시되는 헤테로고리 화합물:
    [화학식 1]
    Figure PCTKR2022017207-appb-img-000085
    상기 화학식 1에 있어서,
    X1 내지 X3은 서로 동일하거나 상이하고, 각각 독립적으로 N; 또는 CRa1이고, 적어도 하나는 N이며,
    La1 및 La2는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
    R1은 수소; 또는 중수소이고,
    Ra1, Ar1 및 Ar2는 서로 동일하거나 상이하고 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; SiRR'R”; 또는 -P(=O)RR'이고,
    Rb1 내지 Rb11은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이고, Rb1 내지 Rb11 중 적어도 하나는 중수소이며,
    상기 R, R' 및 R"는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 또는 치환 또는 비치환된 C6 내지 C60의 아릴기이며,
    a, b 및 m은 1 내지 4의 정수이고,
    n는 0 내지 4의 정수이며,
    a, b, n 및 m이 2 이상인 경우 괄호 내 치환기는 서로 동일하거나 상이하다.
  2. 청구항 1에 있어서,
    상기 화학식 1의
    Figure PCTKR2022017207-appb-img-000086
    는 하기 화학식 1-1 또는 1-2로 표시되는 것인 헤테로고리 화합물:
    [화학식 1-1]
    Figure PCTKR2022017207-appb-img-000087
    [화학식 1-2]
    Figure PCTKR2022017207-appb-img-000088
    상기 화학식 1-1 및 1-2에 있어서,
    X1 내지 X3, La1, La2, a, b 및 Ar1의 정의는 상기 화학식 1에서의 정의와 동일하고,
    Xa는 O; 또는 S이고,
    Ar12는 치환 또는 비치환된 C6 내지 C60의 아릴기이고,
    R11 내지 R15는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 및 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기;로 이루어진 군으로부터 선택되거나, 또는 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 방향족 탄화수소 고리 또는 치환 또는 비치환된 헤테로고리를 형성하며,
    p는 0 내지 3의 정수이고, p가 2 이상인 경우, 괄호내 치환기는 서로 동일하거나 상이하다.
  3. 청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 3 내지 5 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    [화학식 3]
    Figure PCTKR2022017207-appb-img-000089
    [화학식 4]
    Figure PCTKR2022017207-appb-img-000090
    [화학식 5]
    Figure PCTKR2022017207-appb-img-000091
    상기 화학식 3 내지 5에 있어서,
    Rb1 내지 Rb11, X1 내지 X3, Ar1, La1, La2, a, b 및 Ar2의 정의는 상기 화학식 1에서의 정의와 동일하고,
    상기 R2 내지 R7은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이고, n2 내지 n7은 서로 동일하거나 상이하고, 각각 독립적으로 0 내지 4의 정수이며, n2 내지 n7이 2 이상인 경우 괄호 내 치환기는 서로 동일하거나 상이하다.
  4. 청구항 1에 있어서,
    상기 화학식 1은 하기 구조식 A 내지 C로 표시되며, 하기 구조식 A의 중수소 함량은 1% 내지 100%이고, 하기 구조식 B의 중수소 함량은 0% 내지 100%이고, 하기 구조식 C의 중수소 함량은 0% 내지 100%인 것인 헤테로고리 화합물:
    [구조식 A]
    Figure PCTKR2022017207-appb-img-000092
    [구조식 B]
    Figure PCTKR2022017207-appb-img-000093
    [구조식 C]
    Figure PCTKR2022017207-appb-img-000094
    상기 구조식 A 내지 C에 있어서,
    각 치환기 정의는 상기 화학식 1에서의 정의와 동일하고,
    상기
    Figure PCTKR2022017207-appb-img-000095
    Figure PCTKR2022017207-appb-img-000096
    는 서로 연결되는 위치를 의미하며, 동일 부호간 서로 연결된다.
  5. 청구항 1에 있어서,
    상기 화학식 1의 중수소 함량은 70% 이상 90% 이하인 것인 헤테로고리 화합물.
  6. 청구항 4에 있어서,
    상기 구조식 A의 중수소 함량은 70% 이상 90% 이하인 것인 헤테로고리 화합물.
  7. 청구항 1에 있어서,
    상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    Figure PCTKR2022017207-appb-img-000097
    Figure PCTKR2022017207-appb-img-000098
    Figure PCTKR2022017207-appb-img-000099
    Figure PCTKR2022017207-appb-img-000100
    Figure PCTKR2022017207-appb-img-000101
    Figure PCTKR2022017207-appb-img-000102
    Figure PCTKR2022017207-appb-img-000103
    Figure PCTKR2022017207-appb-img-000104
    Figure PCTKR2022017207-appb-img-000105
    Figure PCTKR2022017207-appb-img-000106
    Figure PCTKR2022017207-appb-img-000107
    Figure PCTKR2022017207-appb-img-000108
    Figure PCTKR2022017207-appb-img-000109
  8. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 청구항 1 내지 7 중 어느 한 항에 따른 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  9. 청구항 8에 있어서,
    상기 헤테로고리 화합물을 포함하는 유기물층은 하기 화학식 2로 표시되는 헤테로고리 화합물을 추가로 포함하는 것인 유기 발광 소자:
    [화학식 2]
    Figure PCTKR2022017207-appb-img-000110
    상기 화학식 2에 있어서,
    Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택되거나, 또는 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 방향족 탄화수소 고리 또는 치환 또는 비치환된 헤테로고리를 형성하며,
    L2는 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
    Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 -CN; -SiRR'R"; -P(=O)RR'; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    상기 R, R' 및 R"는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 또는 치환 또는 비치환된 C6 내지 C60의 아릴기이고,
    a1는 0 내지 4의 정수이며,
    r 및 s는 0 내지 7의 정수이고,
    a1, s 및 r이 2 이상인 경우, 괄호내 치환기는 서로 동일하거나 상이하다.
  10. 청구항 9에 있어서,
    상기 화학식 2로 표시되는 헤테로고리 화합물은 하기 화합물 중 선택되는 어느 하나인 것인 유기 발광 소자:
    Figure PCTKR2022017207-appb-img-000111
    Figure PCTKR2022017207-appb-img-000112
    Figure PCTKR2022017207-appb-img-000113
    Figure PCTKR2022017207-appb-img-000114
    Figure PCTKR2022017207-appb-img-000115
    Figure PCTKR2022017207-appb-img-000116
    Figure PCTKR2022017207-appb-img-000117
    Figure PCTKR2022017207-appb-img-000118
    Figure PCTKR2022017207-appb-img-000119
    Figure PCTKR2022017207-appb-img-000120
  11. 청구항 9에 있어서,
    상기 화학식 2의 중수소 함량은 0%, 100% 또는 10% 내지 80%인 것인 유기 발광 소자.
  12. 청구항 8에 있어서,
    상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  13. 청구항 8에 있어서,
    상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트 물질을 포함하며, 상기 호스트 물질은 상기 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  14. 청구항 8에 있어서,
    상기 유기 발광 소자는 발광층, 정공주입층, 정공수송층, 전자주입층, 전자수송층, 전자저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함하는 것인 유기 발광 소자.
  15. 청구항 1 내지 7 중 어느 한 항에 따른 헤테로고리 화합물 및 하기 화학식 2로 표시되는 헤테로고리 화합물을 포함하는 것인 유기 발광 소자의 유기물층용 조성물:
    [화학식 2]
    Figure PCTKR2022017207-appb-img-000121
    상기 화학식 2에 있어서,
    Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택되거나, 또는 서로 인접하는 2 이상의 기는 서로 결합하여 치환 또는 비치환된 방향족 탄화수소 고리 또는 치환 또는 비치환된 헤테로고리를 형성하며,
    L2는 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
    Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 -CN; -SiRR'R"; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    상기 R, R' 및 R"는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 또는 치환 또는 비치환된 C6 내지 C60의 아릴기이고,
    a1는 0 내지 4의 정수이며,
    r 및 s는 0 내지 7의 정수이고,
    a1, s 및 r이 2 이상인 경우, 괄호내 치환기는 서로 동일하거나 상이하다.
  16. 청구항 15에 있어서,
    상기 조성물 내 상기 헤테로고리 화합물 : 상기 화학식 2로 표시되는 헤테로고리 화합물의 중량비는 1 : 10 내지 10 : 1인 것인 유기 발광 소자의 유기물층용 조성물.
PCT/KR2022/017207 2021-12-03 2022-11-04 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물 WO2023101238A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0172049 2021-12-03
KR1020210172049A KR20230083754A (ko) 2021-12-03 2021-12-03 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물

Publications (1)

Publication Number Publication Date
WO2023101238A1 true WO2023101238A1 (ko) 2023-06-08

Family

ID=86612701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017207 WO2023101238A1 (ko) 2021-12-03 2022-11-04 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물

Country Status (3)

Country Link
KR (1) KR20230083754A (ko)
TW (1) TW202330478A (ko)
WO (1) WO2023101238A1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
KR20120116282A (ko) * 2011-04-12 2012-10-22 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20150031396A (ko) * 2013-09-13 2015-03-24 (주)씨에스엘쏠라 신규한 유기발광화합물 및 이를 포함하는 유기전기발광소자
KR20180010130A (ko) * 2016-07-20 2018-01-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20190030963A (ko) * 2017-09-15 2019-03-25 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN111848590A (zh) * 2019-07-24 2020-10-30 广州华睿光电材料有限公司 化合物、高聚物、混合物、组合物及有机电子器件
KR20220122557A (ko) * 2021-02-26 2022-09-02 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
KR20220131204A (ko) * 2021-03-19 2022-09-27 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR20220136951A (ko) * 2021-04-01 2022-10-11 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
KR20120116282A (ko) * 2011-04-12 2012-10-22 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20150031396A (ko) * 2013-09-13 2015-03-24 (주)씨에스엘쏠라 신규한 유기발광화합물 및 이를 포함하는 유기전기발광소자
KR20180010130A (ko) * 2016-07-20 2018-01-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20190030963A (ko) * 2017-09-15 2019-03-25 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN111848590A (zh) * 2019-07-24 2020-10-30 广州华睿光电材料有限公司 化合物、高聚物、混合物、组合物及有机电子器件
KR20220122557A (ko) * 2021-02-26 2022-09-02 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
KR20220131204A (ko) * 2021-03-19 2022-09-27 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR20220136951A (ko) * 2021-04-01 2022-10-11 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Also Published As

Publication number Publication date
KR20230083754A (ko) 2023-06-12
TW202330478A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2022065761A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
WO2022092625A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조방법
WO2022035097A1 (ko) 유기 발광 소자 및 유기물층 형성용 조성물
WO2021137565A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2021133016A2 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2021071247A1 (ko) 유기 발광 소자, 이의 제조 방법 및 유기 발광 소자의 유기물층용 조성물
WO2021132984A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021241923A1 (ko) 유기 발광 소자, 이의 제조방법 및 유기 발광 소자의 유기물층용 조성물
WO2022270741A1 (ko) 헤테로고리 화합물, 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물
WO2022131547A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
WO2021215742A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2021261849A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021132982A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2023277446A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
WO2019245264A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2019132483A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022250228A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022119116A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2021101220A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2023101238A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
WO2024101687A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2023106626A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2023113389A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2024090775A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2023149718A1 (ko) 헤테로고리 화합물을 포함하는 유기 발광 소자, 상기 유기 발광 소자의 유기물층용 조성물 및 상기 유기 발광 소자의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901597

Country of ref document: EP

Kind code of ref document: A1