WO2023106458A1 - 경구 투여용 유전자 전달체 및 이를 유효성분으로 포함하는 당뇨병 예방 또는 치료용 약학적 조성물 - Google Patents

경구 투여용 유전자 전달체 및 이를 유효성분으로 포함하는 당뇨병 예방 또는 치료용 약학적 조성물 Download PDF

Info

Publication number
WO2023106458A1
WO2023106458A1 PCT/KR2021/018659 KR2021018659W WO2023106458A1 WO 2023106458 A1 WO2023106458 A1 WO 2023106458A1 KR 2021018659 W KR2021018659 W KR 2021018659W WO 2023106458 A1 WO2023106458 A1 WO 2023106458A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
oral administration
delivery system
nanoparticles
peg
Prior art date
Application number
PCT/KR2021/018659
Other languages
English (en)
French (fr)
Inventor
이용규
김유천
설웨이즈싸친수바시
박희원
Original Assignee
한국과학기술원
한국교통대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 한국교통대학교산학협력단 filed Critical 한국과학기술원
Publication of WO2023106458A1 publication Critical patent/WO2023106458A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0041Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0075Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the present invention relates to a gene delivery system for oral administration; A pharmaceutical composition for preventing or treating diabetes comprising the gene carrier as an active ingredient; and a method for preparing the gene delivery system for oral administration.
  • Gene therapy which treats a disease by delivering a therapeutic gene to a desired organ in the body and expressing a new protein in cells, is a method of treating disease by removing the cause of the disease, not treating the symptoms of the disease.
  • Gene therapy has an excellent selective treatment effect compared to treatment with general drugs, and can be applied for a long period of time by improving the cure rate and treatment speed for diseases that are difficult to control with other treatments.
  • Gene therapy is a next-generation treatment technology that has been described for the treatment of various diseases, but when macromolecules such as DNA and RNA are delivered into cells in an aqueous solution, they are rapidly degraded by specific enzymes in vivo and have a low cell delivery rate. In order to be effective, it is essential to develop a gene carrier capable of safely delivering a therapeutic gene to a desired target cell and obtaining high expression efficiency.
  • a gene delivery vehicle should have low or no toxicity and should be capable of selectively and effectively delivering a gene to a desired cell. These gene carriers can be largely divided into viral and non-viral.
  • Viral vectors are those using Retro Virus (RV), Adeno Virus (AV), Adeno Associated Virus (AAV), etc. -While gene transfer efficiency is higher than that of viral vectors), when applied to the body, problems such as immune response or cancer induction caused by the vector itself are problematic, and there is a limit to the size of the gene that can be inserted into the vector.
  • RV Retro Virus
  • AV Adeno Virus
  • AAV Adeno Associated Virus
  • Non-viral vectors such as polymers and nanoparticles have been studied recently due to their advantages such as low biological risk caused by viral vectors, non-immunogenicity, possibility of modification and mass production, and relatively unlimited size of genes that can be delivered. is being done
  • a method using a non-viral vector such as a cationic polymer has been extensively studied due to the simplicity of the manufacturing method and relatively low risk.
  • the specific mechanism forms a complex through electrostatic interaction with a negatively charged gene to stabilize the gene, and the positive charge on the surface of the complex and the negative charge on the cell surface bind to the cell surface through electrical interaction, and then the endosome (endosome) ), through which genes are released into the cytoplasm.
  • diabetes diabetes mellitus
  • Type 2 diabetes occurs when the blood sugar rises uncontrolled
  • type 1 diabetes occurs when the pancreas fails to secrete insulin and blood sugar rises.
  • Type 1 diabetes requires insulin treatment.
  • lifestyle correction is the basis, and oral hypoglycemic agents may be additionally administered.
  • oral medicine take 1 to 3 times a day, and depending on the action time of the medicine, the time to take it and side effects vary slightly.
  • Glucagon-like peptide 1 (GLP-1), a kind of insulin-secreting peptide, is an incretin hormone secreted from L-cells of the ileum and colon.
  • the main action of glucagon-like peptide-1 is to increase insulin secretion, and hypoglycemia does not occur because glucose dependent secretion is achieved. Due to these characteristics, it is applied as a treatment method for type 2 diabetes, but since the half-life in blood is very short, around 2 minutes, it has great limitations in developing it as a drug.
  • glucagon-like peptide-1 agonist agonist
  • Exendin a glucagon-like peptide-1 analog purified from the salivary glands of glia monster- There are 4. It has higher physiological activity than glucagon-like peptide-1 along with resistance to DPP-IV (dipeptidyl peptidase-4), and therefore has a longer in vivo half-life than glucagon-like peptide-1, with an in vivo half-life of 2-4 hours (US 5,424,286). However, it is not possible to expect sufficient duration of physiological activity only by increasing the resistance of DPP-IV. For example, in the case of exendin-4 (exenatide), which is currently on the market, it is injected twice a day to patients. It has to be administered, and the disadvantage of inducing vomiting and nausea caused by administration is a great burden on the patient.
  • the present inventors as a non-viral gene delivery system for oral administration, can effectively overcome physical barriers (gastric pH and enzymes) and biological barriers (intestinal epithelial barrier) and deliver therapeutic genes to target organs with high efficiency.
  • a glycol chitosan-polyethylene glycol copolymer is combined with a cell-permeable and follicle associated epithelium (FAE) targeting peptide to form a complex, and then the surface of the complex is coated with alginic acid.
  • FAE cell-permeable and follicle associated epithelium
  • digestive juice was completed by confirming that the degradation by is controlled and the gene can be effectively delivered to the organ to be targeted through M cells (microfold cells) of the intestinal epithelium.
  • an object of the present invention is to provide a gene delivery system for oral administration capable of effectively overcoming physical barriers (gastric pH and enzymes) and biological barriers (intestinal epithelial barrier) and delivering a therapeutic gene to a target organ with high efficiency.
  • Another object of the present invention is to provide a pharmaceutical composition for preventing or treating diabetes comprising the gene carrier for oral administration as an active ingredient.
  • Another object of the present invention is to provide a method for preparing the gene delivery system for oral administration.
  • the present invention is a glycol chitosan-polyethylene glycol copolymer; and a cell-permeable and follicle associated epithelium (FAE) targeting peptide linked to the copolymer.
  • FAE cell-permeable and follicle associated epithelium
  • the carrier may further include an alginate coating layer on the surface.
  • the peptide may have the amino acid sequence of SEQ ID NO: 1.
  • the delivery vehicle can deliver a gene to a target organ through intestinal epithelial M cells (microfold cells).
  • the delivery system may further include a gene.
  • the gene is single-stranded or double-stranded DNA (deoxyribonucleic acid), single-stranded or double-stranded RNA (ribonucleic acid), plasmid DNA, single-stranded or double-stranded small interfering RNA (siRNA), antisense It may be one or more selected from oligonucleotides, ribozymes, catalytic RNAs, and nucleotides.
  • the gene may be glucagon like peptide (GLP)-1.
  • GLP glucagon like peptide
  • the present invention provides a pharmaceutical composition for preventing or treating diabetes comprising the gene carrier as an active ingredient.
  • the pharmaceutical composition may be for oral administration.
  • the present invention a) polyethylene glycol-maleimide is added to the glycol chitosan solution, followed by sequential addition of N-hydroxysucciimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide to obtain reacting to prepare a glycol chitosan-polyethylene glycol-maleimide complex; b) preparing a glycol chitosan-polyethylene glycol-peptide by dissolving the complex in distilled water and reacting by adding a cell-permeable and follicle associated epithelium (FAE) targeting peptide; c) preparing a mixed solution of sodium triphosphate and gene; d) preparing gene-loaded nanoparticles by stirring while dropwise adding the sodium triphosphate and gene mixture solution to a glycol chitosan-polyethylene glycol-peptide solution dissolved in distilled water; and e) adding and reacting the nanoparticles to an alginate solution to coat the surface of
  • the gene delivery system for oral administration of the present invention can protect genes from degradation caused by gastric acid (digestive fluid) by having an alginate coating layer on the surface; It has a complex form in which a cell-permeable and follicle associated epithelium (FAE) targeting peptide is combined with a glycol chitosan-polyethylene glycol copolymer having cationic properties, condensing genes with anionic properties and at the same time condensing intestinal epithelial M cells ( The gene can be effectively delivered to the organ to be targeted through the microfold cell). Therefore, since the gene delivery system according to the present invention can effectively overcome physical barriers (gastric pH and enzymes) and biological barriers (intestinal epithelial barrier), it is expected to be useful as a delivery system for oral administration of various genes. .
  • FAE cell-permeable and follicle associated epithelium
  • FIG. 1 is a schematic diagram showing the gene delivery system for oral administration of the present invention.
  • FIG. 2 is a schematic diagram showing the process of lymphatic transport of the gene carrier for oral administration of the present invention through intestinal epithelial M cells (microfold cells).
  • FIG. 3 shows a vector map of the GLP1 plasmid (pBeta-SP-GLP-1) of the present invention.
  • 4A is a result of confirming the gene delivery system for oral administration of the present invention by transmission electron microscopy (TEM).
  • TEM transmission electron microscopy
  • 4B shows the results of measuring the particle size and zeta potential of the gene delivery system for oral administration according to the present invention using a dynamic light scattering photometer (DLS).
  • DLS dynamic light scattering photometer
  • 4C is a graphical representation of the measured particle size and zeta potential digitized.
  • 5A is a graph showing the particle size and zeta potential of the gene delivery system for oral administration of the present invention according to various polymer concentrations (mg/ml).
  • 5B is gel electrophoresis data showing GLP1 plasmid encapsulation as a function of the weight ratio of gene to carrier (GLP1:GC-PEG-CPPRGDfK).
  • 5C is a graph showing the particle size and zeta potential of the gene delivery system for oral administration of the present invention according to various GLP1 gene ratios (x-axis represents the weight ratio of polymer:GLP1. The amount of GLP1 gene remains constant while the amount of polymer in the whole is constant).
  • 1.00 means that the ratio of poly:GLP1 is 1:1 (weight ratio), and in the case of 0.75, the ratio of poly:GLP1 is 1:0.75 (weight ratio) , and 0.00 means that nanoparticles are formed only with polymers without genes).
  • Figure 6 shows the in vitro release profile of the gene delivery system for oral administration of the present invention under simulated physiological conditions of simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The amount of GLP1 gene release was measured.
  • SGF gastric fluid
  • SIF simulated intestinal fluid
  • Figure 7 is a result of in vitro mucus penetration (in vitro mucus penetration) measurement of the ratio of the gene delivery system for oral administration of the present invention transported across the mucus barrier.
  • Figure 8A shows the cytotoxicity by concentration of glycol chitosan (GC), glycol chitosan-polyethylene glycol (GC-PEG) and GC-PEG-CPPRGDfK complex (a complex in which GC-PEG is combined with peptides for cell permeation and targeting). is the graph shown.
  • 8B is a result of measuring electrical resistance (TEER) over time in order to confirm successful tight junction and M cell formation.
  • Figure 8C shows Z-scan images showing cell permeability (top) and successful membrane penetration of the GC-PEG-CPPRGDfK complex (bottom).
  • Non- Fasting Blood Glucose Level % is the result of measurement.
  • Figure 11 is a fasting blood glucose level ( Fasting Blood Glucose Level , %, ) is the result of measuring
  • FIG. 13 shows the results of an intraperitoneal glucose tolerance test (IPGTT) after orally administering the gene delivery system for oral administration of the present invention to a type 2 diabetic (Lep OB /Lep OB or Lepr DB /Lepr DB ) animal model.
  • 10A shows the blood glucose level over time after the last oral administration
  • 10B shows a graph after quantifying the blood glucose AUC and normalizing it to the PBS control group.
  • the present invention is a glycol chitosan-polyethylene glycol copolymer; and a cell-permeable and follicle associated epithelium (FAE)-targeting peptide linked to the copolymer.
  • FAE cell-permeable and follicle associated epithelium
  • glycol chitosan-polyethylene glycol copolymer refers to a copolymer formed by connecting glycol chitosan (GC) and polyethylene glycol (PEG).
  • cell permeable and FAE (follicle associated epithelium) targeting peptide refers to a tandem peptide in which two peptides capable of targeting cell permeability and FAE are conjugated.
  • the tandem peptide of the present invention can be prepared by modifying the N-terminus of a cell-permeable peptide (NH2-KKWKMRRNQFWIKIQR-OH) with cysteine and then conjugating it to a targeting peptide (cyclic RGDfK), and the amino acid sequence of SEQ ID NO: 1 (Cys Lys Lys Trp Lys Met Arg Arg Asn Gln Phe Trp Ile Lys Ile Gln Arg Arg Gly Asp Phe Lys).
  • a targeting peptide cyclic RGDfK
  • the amino acids constituting the amino acid sequence of SEQ ID NO: 1 include D-type and L-type amino acids, and therefore, the peptides employed in the tandem peptide of the present invention are all-D (except for glycine), all- L, or L,D-amino acids.
  • D-amino acids are represented by lowercase letters, such as 'f' for D-phenylalanine in the cyclic (cyclic) RGDfK peptide of the present invention.
  • the tandem peptide of the present invention can target the integrin receptor by having a cyclic (cyclic) RGDfK peptide, and can easily penetrate cells by having a cell-permeable peptide (NH2-KKWKMRRNQFWIKIQR-OH) Genes can be delivered to the tissue of interest.
  • the gene delivery system for oral administration of the present invention may further include an alginate coating layer on the surface.
  • the gene delivery system for oral administration of the present invention has an alginate coating layer on its surface, thereby protecting genes from degradation caused by gastric acid (digestive fluid).
  • the gene delivery system for oral administration of the present invention can effectively deliver a gene to a target organ by undergoing lymphatic transport through intestinal epithelial M cells (microfold cells).
  • the gene delivery system for oral administration of the present invention may further contain a gene.
  • the gene is single-stranded or double-stranded DNA (deoxyribonucleic acid), single-stranded or double-stranded RNA (ribonucleic acid), plasmid DNA, single-stranded or double-stranded small interfering RNA (siRNA), antisense oligo It may be one or more selected from nucleotides (oligonucleotides), ribozymes, catalytic RNAs, and nucleotides.
  • the gene may be glucagon like peptide (GLP)-1, and may have a polynucleotide sequence of SEQ ID NO: 2 (atgcgtcaac gtcgtcatgc tgaagggacc tttaccagtg atgtaagttc ttatttggaa ggccaagctg ccaaggaatt cattgcttgg ctggtgaaag gccgatagtc taga).
  • GLP glucagon like peptide
  • GLP-1 of the present invention is 70% or more, specifically 80% or more, more specifically 90% or more, more specifically 95% or more, and still more specifically 98% or more of the polynucleotide sequence of SEQ ID NO: 2 , and most specifically, polynucleotide sequences exhibiting 99% or more homology may also be included without limitation.
  • polynucleotide sequence having such homology as long as it is a polynucleotide sequence having the activity of the GLP-1 gene, it is interpreted that a polynucleotide sequence in which a part of the sequence is deleted, modified, substituted, or added is also included in the scope of the present invention. It should be.
  • homology refers to the percent identity between two polynucleotide or polypeptide moieties. Homology between sequences from one moiety to another can be determined by known art techniques. For example, homology aligns sequence information and sequence information between two polynucleotide molecules or two polypeptide molecules using an easily available computer program, such as score, identity and similarity It can be determined by directly sorting the parameters of the back (e.g. BLAST 2.0). In addition, homology between polynucleotides can be determined by hybridizing polynucleotides under the condition of forming stable duplexes between homologous regions, followed by digestion with a single-strand-specific nuclease to determine the size of the digested fragments.
  • the present invention relates to a pharmaceutical composition for preventing or treating diabetes, comprising the gene carrier as an active ingredient.
  • the term "active ingredient” includes those having an activity for preventing or treating diabetes when the composition is administered to a subject, compared to other cases.
  • the subject may be one or more selected from the group consisting of mammals, such as humans, mice, hamsters, dogs, cats, horses, cows, pigs, and goats.
  • prevention includes preventing the concentration of glucose in the blood from increasing compared to when the composition is not administered.
  • treatment includes lowering the concentration of glucose in the blood compared to when the composition is not administered.
  • the pharmaceutical composition of the present invention may include the oral gene delivery system alone or may further include one or more pharmaceutically acceptable carriers, reinforcing agents, or excipients.
  • the pharmaceutical composition of the present invention can be used in pharmaceutical preparations such as tablets, pills, soft capsules, solutions, suspensions, emulsifiers, syrups, granules, elixirs, oral preparations or intravenous preparations. It can be formulated as a preparation for parenteral administration in a sterile aqueous or oily solvent for subcutaneous, sublingual, and intramuscular administration.
  • Pharmaceutically acceptable carriers that can be used in the pharmaceutical composition of the present invention are those commonly used in formulation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and/or mineral oil; It is not limited to this.
  • Excipients that can be used in the pharmaceutical composition of the present invention include sweeteners, binders, solubilizers, dissolution aids, wetting agents, emulsifiers, isotonic agents, adsorbents, disintegrants, antioxidants, preservatives, lubricants, fillers, fragrances, and the like.
  • the proportions and properties of can be determined by the solubility and chemical properties of the chosen tablet, the chosen route of administration and standard pharmaceutical practice.
  • excipients examples include lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, glycine, silica, talc, stearic acid, sterin, magnesium stearate, magnesium aluminum silicate, starch, gelatin, gum tragacanth, arginic acid, sodium alginate, methylcellulose, sodium carboxylmethylcellulose, agar, water, ethanol, polyethylene glycol, polyvinylpyrrolidone, sodium chloride, calcium chloride, orange essence, strawberry essence, vanilla flavor and the like.
  • the pharmaceutical composition according to the present invention may preferably be in an oral dosage form.
  • the pharmaceutical composition of the present invention may be formulated in a parenteral administration form, in which case intravenous administration, intraperitoneal administration, intramuscular administration, subcutaneous administration, or local administration may be used, but is not limited thereto.
  • the pharmaceutical composition is prepared as a solution or suspension by mixing the active ingredient, that is, the gene delivery agent in water with a stabilizer or a buffer, and the solution or suspension is prepared in an ampoule or It can be prepared in unit dosage form in vials.
  • the pharmaceutical composition of the present invention may be sterilized, or may further contain adjuvants such as preservatives, stabilizers, hydration agents or emulsification accelerators, salts and/or buffers for osmotic pressure control, and may further contain other therapeutically useful substances, , can be formulated according to conventional methods of mixing, granulation or coating.
  • the dosage of the gene carrier, which is an active ingredient in the pharmaceutical composition according to the present invention, to mammals including humans may vary depending on the patient's age, weight, sex, dosage form, health condition, and degree of disease, once a day. Alternatively, it may be divided into two or more times and administered through an oral or parenteral route, but may be more preferably administered orally.
  • the present invention a) polyethylene glycol-maleimide is added to the glycol chitosan solution, followed by sequential addition of N-hydroxysucciimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide to obtain reacting to prepare a glycol chitosan-polyethylene glycol-maleimide complex; b) preparing a glycol chitosan-polyethylene glycol-peptide by dissolving the complex in distilled water and reacting by adding a cell-permeable and follicle associated epithelium (FAE) targeting peptide; c) preparing a mixed solution of sodium triphosphate and gene; d) preparing gene-loaded nanoparticles by stirring while dropwise adding the sodium triphosphate and gene mixture solution to a glycol chitosan-polyethylene glycol-peptide solution dissolved in distilled water; and e) adding and reacting the nanoparticles to an alginate solution to coat the surface of
  • Maleimide-PEG-CM 2000 (PEG-Mal, MW: 2 kDa) was purchased from JenKem Technology (USA). Glycol chitosan (GC), Alginic acid (Alg) (MW: 2kDa), sodium tripolyphosphate (TPP), Glucagon like peptide-1 (GLP-1), Rhoda rhodamine B isothiocyanate (RBITC), fluorescein 5-isothiocyanate (FITC), DAPI dihydrochloride, RPMI-1640, Dulbecco's Modified Eagle's Medium ( DMEM), methyl thiazolyl diphenyl-tetrazolium bromide (MTT), and Trypsin-EDTA solutions were purchased from Sigma-Aldrich (USA).
  • Fetal bovine serum was purchased from ATLAS bios (USA).
  • NHS N-hydroxysuccinimide
  • EDC N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride
  • Sigma-Aldrich USA.
  • Six-week-old C57Bl/6J male mice stock number 000664), Lep OB mutation (ob/ob, strain 000632) and Lepr DB mutation (db/db, strain 000697) homozygous male mice were purchased from Jackson Laboratories.
  • Cell lines Caco-2, Raji b, HEK293, HepG2 and MDCK were purchased from Korea Cell Line Bank.
  • the N-terminus of the cell-penetrating peptide (CPP: NH 2 -KKWKMRRNQFWIKIQR-OH) was first chemically bonded to the -COOH functional group of cysteine. , and conjugated to a targeting peptide (cyclic RGDfK). Standard solid-phase peptide synthesis was performed at Synpeptide co., Ltd., Shanghai, China for the two peptides mentioned above.
  • the conjugated peptide is briefly abbreviated as 'CPPRGDfK' and is represented by SEQ ID NO: 1.
  • a GC-FITC conjugate was obtained by reacting the isothiocyanate group of fluorescein 5-isothiocyanate (FITC) with the amino group of glycol chitosan (GC).
  • a fluorescein 5-isothiocyanate (FITC) solution was prepared by completely dissolving it in ethanol, and a glycol chitosan (GC) solution (molar ratio 1:9) was prepared by completely dissolving glycol chitosan in 0.1 M acetic acid.
  • 1 ml of a 2 mg/ml fluorescein 5-isothiocyanate (FITC) solution was added to 6 ml of a 10 mg/ml glycol chitosan (GC) solution in a dark room and reacted for 3 hours.
  • FITC fluorescein 5-isothiocyanate
  • the mixture was dialyzed for 24 hours using a 14 kD dialysis bag. After lyophilization for one day, a yellowish water-soluble GC-FITC conjugate was obtained.
  • the OD600 for each sample was measured with a full-spectrum ultraviolet-visible spectrophotometer (NanoDropTM 2000c, Thermo Fisher Scientific, USA) and then the maximum OD600 normalized bacterial growth was selected for large-scale overnight cultures.
  • the culture medium was centrifuged at 4500 xg for 12 minutes to collect E. coli transfected with the GLP1 plasmid (pBeta-SP-GLP-1).
  • GLP1 plasmid was purified from the pelleted cells using the pDNA purification kit assay according to the manufacturer's protocol (NucleoBond® Xtra Maxi Plus EF kit, MACHEREYNAGEL, USA). The purity of the purified pDNA was measured using a full-spectrum ultraviolet-visible spectrophotometer (NanoDropTM 2000c, Thermo Fisher Scientific, USA).
  • the vector map of the GLP1 plasmid (pBeta-SP-GLP-1) of the present invention is shown in FIG. 3 .
  • GC-PEG-CPPRGDfK was synthesized by combining the carboxyl group of PEG-maleimide with the primary amine group of glycol chitosan (GC) using the EDC/NHS coupling reaction and applying the maleimide reaction.
  • GLP-1 solution was prepared by dissolving plasmid GLP-1 (7.780 mg) in 10 mM HEPES buffer (pH 7.4) (1.922 mL).
  • a mixed solution of TPP and GLP-1 was prepared by mixing a solution of GLP-1 (1 mg/ml) and a 0.35% TPP solution;
  • Each polymer solution (1 mg/ml) of GC, GC-PEG-Mal, and GC-PEG-CPPRGDfK was prepared by completely dissolving the materials in distilled water.
  • nanoparticles loaded with plasmid GLP-1 were prepared.
  • these are respectively named 'GLP1-loaded GC', 'GLP1-loaded GC-PEG-Mal', and 'GLP1-loaded GC-PEG-CPPRGDfK'.
  • these nanoparticles were named ‘ALG:GLP1-loaded GC’, ‘ALG:GLP1-loaded GC-PEG-Mal’, and ‘ALG:GLP1-loaded GC-PEG-CPPRGDfK’ nanoparticles, respectively.
  • the size and zeta potential of the synthesized nanoparticles were measured using a dynamic light scattering photometer (DLS, ZetasizerNano ZS90, Malvern Panalytical, UK).
  • DLS dynamic light scattering photometer
  • the shape of the nanoparticles of the present invention was observed using a transmission electron microscope (TEM, JEM-3011 HR, JEOL Ltd., Japan).
  • 1% agarose gel was used. Electrophoretic analysis was performed using Naked pDNA (control) and nanoparticle-encapsulated pDNA samples (GLP1-loaded GC-PEG-CPPRGDfK) were mixed with loading buffer, and electrophoresis was performed at 100V for 45 minutes in a 1% agarose gel (TBE buffer) condition. did
  • the degree of cellular uptake of the nanoparticles was verified in various cell lines (Caco-2, HEK293, HepG2, MDCK) using FITC-labeled glycol chitosan (GC-FITC conjugate).
  • Cell lines treated with nanoparticles were cultured for 4 hours in a 37° C. cell incubator under 5% carbon dioxide conditions.
  • Intracellular uptake of FITC-labeled GC-PEG nanoparticles and GC-PEG-CPPRGDfK nanoparticles was measured using a confocal laser scanning electron microscope (CLSM, LSM880, Carl Zeiss).
  • CLSM confocal laser scanning electron microscope
  • LSM880 Carl Zeiss
  • the percentage of cells expressing FITC was analyzed using a flow cytometer (BD LSRFortessa).
  • Mucin type II Sigma-Aldrich
  • Mucin was prepared by dissolving 5% mucin in PBS, and fluorescently labeled nanoparticles were added to the top of the plate insert. Samples were extracted from the lower portion of the insert at predetermined times and absorbance was analyzed using a plate reader. The proportion of nanoparticles transported across the mucus barrier was determined.
  • caco-2 cells were added to the top of a Transwell insert and grown as a monolayer. Based on the insert, the potential difference between the lower and upper parts was measured through the TEER test method. The TEER value gradually increased over time, and at the 20th day, Raji B cells were co-cultured on the insert. As M cells are formed, the binding between the cells is weakened, so the in vitro M cell model was confirmed by the phenomenon in which the TEER value decreased after adding Raji B cells.
  • the cell permeability of the nanoparticles (GC-PEG-CPPRGDfK) modified with PEG and the target peptide was measured using a confocal laser scanning electron microscope (CLSM, LSM880, Carl Zeiss). After adding the nanoparticles to the upper layer of the Transwell insert and permeabilizing for 3 hours, the insert was washed with PBD and the cells were fixed with 4% paraformaldehyde. Cell membranes were labeled with wheat germ agglutinin (WGA) containing CF-640R staining. M cells were stained with UEA-I-rhodamine B, and cell nuclei were labeled with DAPI dye. After that, inserts were carefully cut and mounted on glass slides with a mounting solution. The cell penetration ability of the nanoparticles from the upper layer to the lower layer of the insert was observed on the Z-axis side of the cell.
  • CLSM confocal laser scanning electron microscope
  • Caco-2 cells were dispensed in a 96-well plate at a density of 1 ⁇ 10 4 cells/well and cultured for 48 hours. Then, after diluting various polymers (GC, GC-PEG, GC-PEG-CPPRGDfK) at various concentrations in the culture medium, they were added to each well and incubated for 24 hours. Thereafter, the MTT solution was added to each well and reacted for 3 hours. After removing all the cell medium, 200 ul of DMSO was added to dissolve the formazan crystals. The absorbance of the solution was measured using a microplate reader (Multiskan GO, Thermo Scientific, USA).
  • various polymers GC, GC-PEG, GC-PEG-CPPRGDfK
  • the electrical resistance (TEER, transepithelial electrical resistance, ⁇ cm 2 ) was measured using a Millicell ERS-2 Voltohmmeter (Merck Millipore) device. .
  • GC-PEG pure nanoparticles
  • GC-PEG-CPPRGDfK modified nanoparticles
  • mice All experimental procedures were performed according to protocols approved by the KAIST Animal Care and Use Committee (IACUC). Mice were group-housed in a room with a controlled photoperiod (12-hour light/dark cycle) and had an acclimatization period of at least 1 week in the facility prior to the start of the procedure. Food and water were provided ad libitum. Mice were fed a standard rodent diet (LabDiet 5001) and observed daily unless otherwise indicated.
  • IACUC KAIST Animal Care and Use Committee
  • the first drop of blood was wiped clean and the second drop was measured using an AlphaTrak2 portable glucometer (Abbott) that measures blood glucose using the glucose oxidase method. Blood glucose was measured periodically for 0 days, and was measured every 24 hours after oral administration.
  • Abbott AlphaTrak2 portable glucometer
  • IPGTT Intraperitoneal blood glucose tolerance test
  • the mouse animal model is a drug ('ALG:GLP1-loaded GC', 'ALG:GLP1-loaded GC-PEG-Mal', 'ALG:GLP1-loaded GC-PEG-CPPRGDfK') or equivalent on day 0.
  • a volume of PBS was orally administered once. When 48 hours elapsed after oral administration, the mice were fasted for 6 hours, and then 10 w/v% sterile glucose (Sigma-Aldrich) 1 g/kg was injected intraperitoneally.
  • Blood glucose was measured at 72 hours after injection and at different time points up to 120 hours after glucose administration. Blood glucose meters cannot read blood glucose levels below 20 mg/dl or above 750 mg/dl. When the measured value of the measuring instrument was 'HI', it was replaced with the maximum value of 750 mg/dl to enable statistical analysis.
  • glycol chitosan (GC) nanoparticles which is a biocompatible polysaccharide
  • PEG low molecular weight polyethylene glycol
  • bifunctional polyethylene glycol (PEG) was prepared by EDC/NHS reaction through carboxyl group leaving maleimide group intact for peptide reaction. It was conjugated to glycol chitosan (GC).
  • GC-PEG-Mal reacted with the cysteine residue of the peptide (CPPRGDfK) through the maleimide residue to form a new tandem peptide.
  • Mass spectrometry and HPLC were used to confirm the structure and purity of the synthesized cysteine-conjugated tandem peptide (GC-PEG-CPPRGDfK).
  • 1HNMR analysis confirmed the conjugation of the peptide (CPPRGDfK) to GC-PEG and the conjugation of PEG-Mal to GC (GC-PEG-Mal) (specific maleimide peak at 6.7 ppm). While multiple peaks appeared between 0.2 and 0.5, the maleimide peak disappeared in the synthesis of GC-PEG-CPPRGDfK in the NMR results, indicating successful conjugation of the peptide to GC-PEG-Mal.
  • ‘GLP1-loaded GC’, ‘GLP1-loaded GC-PEG-Mal’, and ‘GLP1-loaded GC-PEG-CPPRGDfK’ nanoparticles were formed using an ion gelation technique using sodium triphosphate (TPP).
  • TPP sodium triphosphate
  • the negative charge of alginate was used to reduce the interaction between nanoparticles and mucus.
  • the coating layer was designed using the interaction between the negative carboxyl group of alginate and the amino group of glycol chitosan (GC).
  • a polymer (GC-PEG-CPPRGDfK) with various concentrations (5 to 0.5 mg/ml) was dissolved in distilled water.
  • PDI polydispersity index
  • DLS dynamic light scattering photometer
  • the ratio of the polymer (GC-PEG-CPPRGDfK) As the concentration decreased from 5 mg/ml to 1 mg/ml, the size and zeta potential of the nanoparticles steadily decreased, but at a concentration of 0.5 mg/ml, the size of the nanoparticles slightly increased (see FIG. 5A).
  • the optimal hydrodynamic size for forming polymer nanoparticles for oral delivery of the GLP-1 gene was an average size of about 150 nm and a zeta potential of +10 for 1 mg/ml polymer (see Fig. 5C). .
  • the zeta potential of the ‘GLP1-loaded GC-PEG-CPPRGDfK’ nanoparticles was significantly reduced after coating with negatively charged alginate to eliminate the interaction between mucus and nanoparticles (see Fig. 4C).
  • the final formulation before coating was obtained by varying the GLP-1 ratio to increase the loading of GLP-1 to a size suitable for oral delivery.
  • gel retardation assay was performed to investigate the ability of the nanoparticles.
  • a visible band was observed for GLP-1, and the 'GC-PEG-CPPRGDfK' nanoparticles containing the cell-penetrating peptide were GLP-1 starting at a weight ratio of 1:5 (GLP1:GC-PEG-CPPRGDfK). 1 band was protected (see Fig. 5B).
  • nanoparticles of the present invention (ALG:GLP1-loaded GC-PEG-CPPRGDfK) to which PEG and cell-penetrating peptides were bound and coated with alginate gave the highest mucus penetration efficiency.
  • FIG. 9 The results of measuring the transfection efficiency of the EGFP plasmid (pEGFP-N1) in vitro using HEK293 cells are shown in FIG. 9 .
  • green means the expressed EGFP protein
  • red means the cell nucleus. It was shown that the EGFP gene alone could not express cells, and in the case of GC-PEG nanoparticles, some cells were expressed. In the case of GC-PEG-CPPRGDfK nanoparticles, it was confirmed that high expression efficiency was exhibited due to increased cell permeability.
  • the therapeutic efficacy of the ‘ALG:GLP1-loaded GC-PEG-CPPRGDfK’ nanoparticles was confirmed.
  • the ‘ALG:GLP1-loaded GC-PEG-CPPRGDfK’ nanoparticles were selected because they had the optimal size and the highest expression in Caco2, resulting in minimal burst release, indicated by a rapid decrease in blood glucose during the first few days of treatment.
  • mice After confirming that 100 ⁇ g is the optimal dose through a dose-response experiment, the present invention in two diabetes models with varying degrees of severity (ob/ob mice with a mutant leptin gene and db/db mice with a mutant leptin receptor gene)
  • the efficacy of the nanoparticles was tested. All mice were orally administered biweekly with 100 ⁇ g or 50 ⁇ g ‘ALG:GLP1-loaded GC-PEG-CPPRGDfK’ nanoparticles or equivalent volume of saline. Blood glucose and body weight were monitored for 288 hours after treatment, and blood glucose AUC was quantified and normalized to the PBS control.
  • IPGTT intraperitoneal glucose tolerance test
  • ‘ALG:GLP1-loaded GC-PEG-CPPRGDfK’ nanoparticles provide up to 72 h of glucose control with a single oral injection in two different mouse models of type 2 diabetes (ob/ob and db/db) followed by PBS treatment It was found to significantly reduce glucose AUC compared to the control group.
  • Leptin a satiety hormone produced by fat cells, helps curb hunger and regulate energy balance.
  • leptin protein ob/ob
  • db/db a satiety hormone produced by fat cells
  • Our results suggest that an intact leptin pathway is required for GLP1 to exert an appetite suppressant effect in the hypothalamus.
  • leptin enhances anorexia and weight loss responses to postprandial incretin cues and food intake in leptin receptor deficient mice is not suppressed by incretin treatment.
  • Treatment with ‘ALG:GLP1-loaded GC-PEG-CPPRGDfK’ nanoparticles clearly showed a tendency to reduce body weight loss in type 2 diabetes (ob/ob and db/db) animal models.
  • ALG Alginic acid
  • TPP sodium tripolyphosphate
  • GLP-1 Glucagon like peptide-1
  • DMEM Dulbecco's Modified Eagle's Medium
  • FBS Fetal bovine serum

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Diabetes (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Emergency Medicine (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 경구 투여용 유전자 전달체; 상기 유전자 전달체를 유효성분을 포함하는 당뇨병 예방 또는 치료용 약학적 조성물; 및 상기 경구 투여용 유전자 전달체의 제조방법에 관한 것이다. 본 발명의 경구 투여용 유전자 전달체는 표면에 알긴산 코팅층을 가짐으로써 위산(소화액)으로 인한 분해 작용으로부터 유전자를 보호할 수 있으며; 양이온성 성질을 가지는 글리콜 키토산-폴리에틸렌글리콜 공중합체에 세포투과성 및 FAE(follicle associated epithelium) 표적화 펩타이드가 결합된 복합체 형태를 갖는바, 음이온성 성질을 지닌 유전자를 응축시킴과 동시에 장 상피의 M 세포(microfold cell)를 통해 표적하고자 하는 장기에 유전자를 효과적으로 전달시킬 수 있다. 이에, 본 발명에 따른 유전자 전달체는 물리적 장벽(위 pH 및 효소) 및 생물학적 장벽(장 상피 장벽)을 효과적으로 극복할 수 있는바, 다양한 유전자의 경구 투여용 전달체로서 유용하게 이용될 수 있을 것으로 기대된다.

Description

경구 투여용 유전자 전달체 및 이를 유효성분으로 포함하는 당뇨병 예방 또는 치료용 약학적 조성물
본 발명은 경구 투여용 유전자 전달체; 상기 유전자 전달체를 유효성분을 포함하는 당뇨병 예방 또는 치료용 약학적 조성물; 및 상기 경구 투여용 유전자 전달체의 제조방법에 관한 것이다.
치료 유전자를 체내의 원하는 장기로 전달하여 세포 내에서 새로운 단백질이 발현되도록 하여 질병을 치료하는 유전자 치료(gene therapy)는 질병의 증상을 치료하는 것이 아니고 질병의 원인을 제거하여 치료하는 방식이다. 유전자 치료는 일반적인 약물에 의한 치료에 비해 우수한 선택적 치료효과를 가지고, 다른 치료법으로는 조절하기 힘든 질병의 치료율 및 치료 속도를 개선하여 오랜 기간 동안 적용할 수 있다.
유전자 치료는 다양한 질병 치료를 위하여 기재되고 있는 차세대 치료 기술이나, 거대분자인 DNA, RNA 등을 수용액 상태로 세포내로 전달하는 경우 생체 내 특정효소에 의해 급속하게 분해되고 세포전달률이 낮아, 유전자 치료를 효과적으로 하기 위해서는 치료 유전자를 원하는 표적세포로 안전하게 전달하여 높은 발현 효율을 얻을 수 있도록 하는 유전자 전달체(gene carrier)를 개발하는 것이 필수적이다.
유전자 전달체는 독성이 낮거나 없어야 하며, 유전자를 선택적이고 효과적으로 원하는 세포에 전달할 수 있어야 한다. 이러한 유전자 전달체는 크게 바이러스성과 비바이러스성으로 나눌 수 있다.
바이러스성 벡터(viral vector)는 레트로 바이러스(RV; Retro Virus), 아데노 바이러스(AV; Adeno Virus), 아데노 부속 바이러스 (AAV; Adeno Associated Virus) 등을 유전자 전달체로 이용한 것으로서, 비바이러스성 벡터(non-viral vector)에 비하여 유전자 전달 효율이 높은 반면, 체내 적용 시 벡터 자체가 유발하는 면역반응이나 암 유발 등이 문제가 되며, 벡터에 삽입할 수 있는 유전자의 크기에도 제한이 있다.
고분자나 나노입자 등의 비바이러스성 벡터는 바이러스성 벡터에 의한 생물학적 위험성이 낮고, 비면역원성이며, 변형 및 대량생산이 가능하고, 전달할 수 있는 유전자의 크기에도 비교적 제한이 없다는 장점 때문에 최근 많은 연구가 이루어지고 있다. 특히, 양이온성 고분자 등의 비 바이러스성 벡터를 이용하는 방법이 제조방법의 간편성이나 상대적으로 낮은 위험성 때문에 많이 연구되고 있다. 구체적인 메커니즘은 음전하를 띄고 있는 유전자와 정전기적 상호 작용을 통해 복합체를 형성하여 유전자를 안정화시키고, 복합체 표면의 양전하와 세포 표면의 음전하가 전기적 상호작용에 의하여 복합체가 세포 표면에 결합한 후 엔도좀(endosome)으로부터 세포질로 유전자가 방출되는 과정을 거친다.
한편, 당뇨병(diabetes mellitus)은 인슐린의 분비량이 부족하거나 정상적인 기능이 이루어지지 않아 혈중 포도당의 농도가 높아지는 대사질환으로, 인슐린이 제대로 분비되지 않거나 분비된 인슐린이 체내에서 제대로 작용하지 못하여 체내의 혈당이 조절되지 못하고 상승하는 경우를 제 2형 당뇨병이라고 하며, 췌장에서 인슐린을 분비하지 못하여 혈당이 상승하는 경우를 제 1형 당뇨병이라고 한다. 제1형 당뇨병의 경우에는 반드시 인슐린 투여 치료가 필요하다. 제2형 당뇨병의 경우에는 생활 습관 교정을 기본으로 하며 추가로 경구용 혈당 강하제의 투여가 필요할 수 있다. 먹는 약의 경우 하루 1~3회 복용하며 약의 작용 시간에 따라 먹는 시간이라든지 부작용 등이 조금씩 다르다.
인슐린 분비 펩타이드의 일종인 글루카곤 유사 펩타이드-1 (Glucagon like peptide 1, GLP-1)은 회장과 대장의 L-세포에서 분비되는 인크레틴 (incretin) 호르몬이다. 글루카곤 유사 펩타이드-1의 주요한 작용은 인슐린 분비를 증가시키며, 포도당의 농도에 따른 인슐린 분비 (Glucose dependent secretion)가 이루어져 저혈당이 발생하지 않는다. 이런 특징으로 제 2형 당뇨병의 치료방법으로 적용되나, 혈중 반감기가 2분 내외로 매우 짧기 때문에 약제로 개발하는데 큰 제약을 갖고 있다. 이에 따라 개발되어 시판되는 글루카곤 유사 펩타이드-1(Glucagon like peptide-1) 작용제 (아고니스트)로서는 글리아 몬스터 도마뱀(glia monster)의 침샘으로부터 정제된 글루카곤 유사 펩타이드-1 유사체인 엑센딘(Exendin)-4가 있다. 이는 DPP-IV(Dipeptidyl peptidase-4)에 대한 저항성과 함께 글루카곤 유사 펩타이드-1 보다 높은 생리 활성을 가지며, 따라서 체내 반감기가 2-4시간으로 글루카곤 유사 펩타이드-1에 비해 길어진 체내 반감기를 가진다(US 5,424,286). 그러나 DPP-IV의 저항성을 증가시키는 방법만으로는 충분한 생리활성의 지속기간을 기대할 수 없는데, 예를 들어 현재 시판되고 있는 엑센딘-4(엑세나티드, exenatide)의 경우 환자에게 하루 2회 주사를 통해 투여되어야 하며, 투여에 따른 구토유발 및 메스꺼움 현상이 환자에게 큰 부담으로 작용되는 단점이 여전히 남아있다.
이러한 배경 하에, 본 발명자는 경구 투여용 비 바이러스성 유전자 전달체로서 물리적 장벽(위 pH 및 효소) 및 생물학적 장벽(장 상피 장벽)을 효과적으로 극복하고 치료 유전자를 표적기관에 높은 효율로 전달할 수 있는 유전자 전달체를 개발하고자 노력하였으며, 그 결과 글리콜 키토산-폴리에틸렌글리콜 공중합체에 세포투과성 및 FAE(follicle associated epithelium) 표적화 펩타이드를 결합시켜 복합체를 형성한 후, 상기 복합체 표면을 알긴산으로 코팅시킨 나노입자의 경우, 소화액에 의한 분해가 제어되며 장 상피의 M 세포(microfold cell)를 통해 표적하고자 하는 장기에 유전자가 효과적으로 전달될 수 있음을 확인함으로써 본 발명을 완성하였다.
따라서 본 발명의 목적은 물리적 장벽(위 pH 및 효소) 및 생물학적 장벽(장 상피 장벽)을 효과적으로 극복하고 치료 유전자를 표적기관에 높은 효율로 전달할 수 있는 경구 투여용 유전자 전달체를 제공하는 것이다.
본 발명의 다른 목적은, 상기 경구 투여용 유전자 전달체를 유효성분으로 포함하는 당뇨병 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은, 상기 경구 투여용 유전자 전달체의 제조방법을 제공하는 것이다.
상기와 같은 본 발명의 목적을 달성하기 위해서,
본 발명은 글리콜 키토산-폴리에틸렌글리콜 공중합체; 및 상기 공중합체에 결합된 세포투과성 및 FAE(follicle associated epithelium) 표적화 펩타이드를 포함하는, 경구 투여용 유전자 전달체를 제공한다.
본 발명의 일실시예에 있어서, 상기 전달체는 표면에 알긴산 코팅층을 더 포함할 수 있다.
본 발명의 일실시예에 있어서, 상기 펩타이드는 서열번호 1의 아미노산 서열을 가질 수 있다.
본 발명의 일실시예에 있어서, 상기 전달체는 장 상피 M 세포(microfold cell)를 통해 표적하고자 하는 장기에 유전자를 전달할 수 이 있다.
본 발명의 일실시예에 있어서, 상기 전달체는 유전자를 더 포함할 수 있다.
본 발명의 일실시예에 있어서, 상기 유전자는 단일가닥 또는 이중가닥 DNA(deoxyribonucleic acid), 단일가닥 또는 이중가닥 RNA(ribonucleic acid), 플라스미드 DNA, 단일가닥 또는 이중가닥 siRNA(small interfering RNA), 안티센스 올리고뉴클레오타이드(oligonucleotide), 리보자임, 촉매적 RNA 및 뉴클레오타이드 중에서 선택되는 1종 이상일 수 있다.
본 발명의 일실시예에 있어서, 상기 유전자는 GLP(glucagon like peptide)-1일 수 있다.
또한, 본 발명은 상기 유전자 전달체를 유효성분으로 포함하는, 당뇨병 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 일실시예에 있어서, 상기 약학적 조성물은 경구 투여용일 수 있다.
또한, 본 발명은 a) 글리콜 키토산 용액에 폴리에틸렌글리콜-말레이미드를 첨가한 다음, 이어서 N-하이드록시숙시이미드 및 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드를 순차적으로 첨가하여 반응시켜 글리콜 키토산-폴리에틸렌글리콜-말레이미드 복합체를 제조하는 단계; b) 상기 복합체를 증류수로 녹인 후 세포투과성 및 FAE(follicle associated epithelium) 표적화 펩타이드를 첨가하여 반응시켜 글리콜 키토산-폴리에틸렌글리콜-펩타이드를 제조하는 단계; c) 삼인산나트륨 및 유전자 혼합용액을 제조하는 단계; d) 증류수로 녹인 글리콜 키토산-폴리에틸렌글리콜-펩타이드 용액에 상기 삼인산나트륨 및 유전자 혼합용액을 적가하면서 교반하는 과정을 통해 유전자가 로딩된 나노입자를 제조하는 단계; 및 e) 상기 나노입자를 알긴산 용액에 첨가하여 반응시킴으로써 나노입자 표면에 알긴산을 코팅시키는 단계를 포함하는, 경구 투여용 유전자 전달체의 제조방법을 제공한다.
본 발명의 경구 투여용 유전자 전달체는 표면에 알긴산 코팅층을 가짐으로써 위산(소화액)으로 인한 분해 작용으로부터 유전자를 보호할 수 있으며; 양이온성 성질을 가지는 글리콜 키토산-폴리에틸렌글리콜 공중합체에 세포투과성 및 FAE(follicle associated epithelium) 표적화 펩타이드가 결합된 복합체 형태를 갖는바, 음이온성 성질을 지닌 유전자를 응축시킴과 동시에 장 상피의 M 세포(microfold cell)를 통해 표적하고자 하는 장기에 유전자를 효과적으로 전달시킬 수 있다. 이에, 본 발명에 따른 유전자 전달체는 물리적 장벽(위 pH 및 효소) 및 생물학적 장벽(장 상피 장벽)을 효과적으로 극복할 수 있는바, 다양한 유전자의 경구 투여용 전달체로서 유용하게 이용될 수 있을 것으로 기대된다.
도 1은 본 발명의 경구 투여용 유전자 전달체를 보여주는 모식도이다.
도 2는 본 발명의 경구 투여용 유전자 전달체가 장 상피의 M 세포(microfold cell)를 통해 림프 수송되는 과정을 나타낸 모식도이다.
도 3은 본 발명의 GLP1 플라스미드(pBeta-SP-GLP-1)의 벡터맵을 나타낸 것이다.
도 4A는 본 발명의 경구 투여용 유전자 전달체를 투과전자현미경(TEM)으로 확인한 결과이다. 도 4B는 본 발명의 경구 투여용 유전자 전달체의 입자 크기 및 제타 전위를 동적광산란광도계(DLS)를 이용하여 측정한 결과이다. 도 4C는 측정된 입자 크기 및 제타 전위를 수치화하여 그래프로 나타낸 것이다.
도 5A는 다양한 폴리머 농도(mg/ml)에 따른 본 발명의 경구 투여용 유전자 전달체의 입자 크기 및 제타 전위를 나타낸 그래프이다. 도 5B는 유전자와 캐리어(GLP1:GC-PEG-CPPRGDfK)의 중량비에 따른 GLP1 플라스미드 캡슐화를 보여주는 겔 전기영동 데이터이다. 도 5C는 다양한 GLP1 유전자 비율에 따른 본 발명의 경구 투여용 유전자 전달체의 입자 크기 및 제타 전위를 나타낸 그래프이다(x축은 폴리머:GLP1의 중량비를 나타냄. 전체에서 폴리머의 양은 일정하게 유지한채로 GLP1 유전자의 양을 각각의 비율대로 첨가한 것임. 도 5C에서 1.00이 의미는 폴리며:GLP1의 비율이 1:1(중량비)을 의미하며, 0.75의 경우 폴리며:GLP1의 비율이 1:0.75(중량비)를 의미하고, 0.00의 경우 유전자 없이 폴리머 만으로 나노입자를 형성한 경우를 의미함).
도 6은 시험관 내 방출 프로파일(In vitro release profile) 결과로서 모사 위액(simulated gastric fluid, SGF) 및 모사 장액(simulated intestinal fluid, SIF)의 시뮬레이션된 생리학적 조건에서 본 발명의 경구 투여용 유전자 전달체의 GLP1 유전자 방출량을 측정한 것이다.
도 7은 시험관 내 점액 침투(In vitro mucus penetration) 결과로서 점액 장벽을 가로질러 운반되는 본 발명의 경구 투여용 유전자 전달체의 비율을 측정한 것이다.
도 8A는 글리콜 키토산(GC), 클리콜 키토산-폴리에틸렌글리콜(GC-PEG) 및 GC-PEG-CPPRGDfK 복합체(GC-PEG에 세포투과 및 표적을 위한 펩타이드가 결합된 복합체)의 농도별 세포독성을 나타낸 그래프이다. 도 8B는 성공적인 밀착연접(tight junction) 및 M 세포 형성을 확인하기 위하여 시간 경과에 따른 전기저항치(TEER)를 측정한 결과이다. 도 8C는 GC-PEG-CPPRGDfK 복합체의 세포 투과능(위쪽) 및 성공적인 막 침투를 보여주는 Z-스캔 이미지를 나타낸 것이다(아래쪽).
도 9는 HEK293 세포를 사용한 시험관 내 EGFP 플라스미드 형질감염 효율 측정한 결과이다. 형광현미경 사진에서 초록색은 발현된 EGFP 단백질, 빨간색은 세포핵을 의미한다.
도 10은 제2형 당뇨병(LepOB/LepOB 또는 LeprDB/LeprDB) 동물모델에 본 발명의 경구 투여용 유전자 전달체를 경구투여한 후 시간경과에 따른 비 공복 혈당 수준(Non-Fasting Blood Glucose Level, %)을 측정한 결과이다.
도 11은 제2형 당뇨병(LepOB/LepOB 또는 LeprDB/LeprDB) 동물모델에 본 발명의 경구 투여용 유전자 전달체를 경구투여한 후 시간경과에 따른 공복 혈당 수준(Fasting Blood Glucose Level, %)을 측정한 결과이다.
도 12는 제2형 당뇨병(LepOB/LepOB 또는 LeprDB/LeprDB) 동물모델에 본 발명의 경구 투여용 유전자 전달체를 경구투여한 후 시간경과에 따른 체중 및 누적 식품 섭취량을 측정한 결과이다.
도 13은 제2형 당뇨병(LepOB/LepOB 또는 LeprDB/LeprDB) 동물모델에 본 발명의 경구 투여용 유전자 전달체를 경구투여한 후 복강 내 당부하 검사(IPGTT)를 수행한 결과이다. 10A는 마지막 경구투여 후 시간경과에 따른 혈당수치를 나타낸 것이며, 10B는 혈당 AUC를 정량하고 PBS 대조군으로 정규화하여 그래프로 나타낸 것이다.
본 발명은 글리콜 키토산-폴리에틸렌글리콜 공중합체; 및 상기 공중합체에 결합된 세포투과성 및 FAE(follicle associated epithelium) 표적화 펩타이드를 포함하는, 경구 투여용 유전자 전달체에 관한 것이다.
본 발명에서 용어, "글리콜 키토산-폴리에틸렌글리콜 공중합체"는 글리콜 키토산(Glycol chitosan, GC) 및 폴리에틸렌글리콜(Polyethylene glycol, PEG)이 연결되어 이루어진 공중합체를 의미한다.
본 발명에서 용어, "세포투과성 및 FAE(follicle associated epithelium) 표적화 펩타이드"란 세포투과성을 갖는 펩타이드 및 FAE를 표적화할 수 있는 펩타이드 2개가 접합된 탬덤 펩타이드(tandem peptide)를 의미한다.
본 발명의 상기 탬덤 펩타이드(tandem peptide)는 세포 투과성 펩타이드(NH2-KKWKMRRNQFWIKIQR-OH)의 N 말단을 시스테인으로 변형시킨 다음 표적화 펩타이드(cyclic RGDfK)에 접합시켜 제조될 수 있으며, 서열번호 1의 아미노산 서열(Cys Lys Lys Trp Lys Met Arg Arg Asn Gln Phe Trp Ile Lys Ile Gln Arg Arg Gly Asp Phe Lys)을 가질 수 있다.
상기 서열번호 1의 아미노산 서열을 구성하는 아미노산은 D형 및 L형의 아미노산을 포함하며, 따라서, 본 발명의 탬덤 펩타이드(tandem peptide)에 채용되는 펩타이드는 모두-D (글라이신은 제외), 모두-L, 또는 L,D-아미노산일 수 있다. 본 발명에서 D-아미노산은, 예를 들어 본 발명의 cyclic(고리형) RGDfK 펩타이드에서 D-페닐알라닌을 'f' 로 기재한 것과 같이, 소문자로 표시한다.
본 발명의 상기 탬덤 펩타이드(tandem peptide)는 cyclic(고리형) RGDfK 펩타이드를 가짐으로써 인테그린 수용체를 표적화할 수 있으며, 세포 투과성 펩타이드(NH2-KKWKMRRNQFWIKIQR-OH)를 가짐으로써 쉽게 세포를 투과할 수 있어 목적하고자 하는 조직으로 유전자를 전달할 수 있다.
본 발명의 경구 투여용 유전자 전달체는 표면에 알긴산 코팅층을 더 포함할 수 있다.
본 발명의 경구 투여용 유전자 전달체는 표면에 알긴산 코팅층을 가짐으로써 위산(소화액)으로 인한 분해 작용으로부터 유전자를 보호할 수 있다.
본 발명의 경구 투여용 유전자 전달체는 장 상피 M 세포(microfold cell)를 통해 림프 수송을 거침으로써 표적하고자 하는 장기에 유전자를 효과적으로 전달할 수 있다.
본 발명의 경구 투여용 유전자 전달체는 유전자를 더 포함할 수 있다.
본 발명의 일구체예에서, 상기 유전자는 단일가닥 또는 이중가닥 DNA(deoxyribonucleic acid), 단일가닥 또는 이중가닥 RNA(ribonucleic acid), 플라스미드 DNA, 단일가닥 또는 이중가닥 siRNA(small interfering RNA), 안티센스 올리고뉴클레오타이드(oligonucleotide), 리보자임, 촉매적 RNA 및 뉴클레오타이드 중에서 선택되는 1종 이상일 수 있다.
본 발명의 다른 구체예에서, 상기 유전자는 GLP(glucagon like peptide)-1일 수 있으며, 서열번호 2(atgcgtcaac gtcgtcatgc tgaagggacc tttaccagtg atgtaagttc ttatttggaa ggccaagctg ccaaggaatt cattgcttgg ctggtgaaag gccgatagtc taga)의 폴리뉴클레오티드 서열을 가질 수 있다.
본 발명의 GLP-1은 서열번호 2의 폴리뉴클레오티드 서열과 70 % 이상, 구체적으로는 80 % 이상, 보다 구체적으로는 90 % 이상, 더욱 구체적으로는 95 % 이상, 보다 더욱 구체적으로는 98 % 이상, 가장 구체적으로는 99 % 이상의 상동성을 나타내는 폴리뉴클레오티드 서열도 제한 없이 포함될 수 있다. 또한, 이러한 상동성을 가지는 폴리뉴클레오티드 서열로서, GLP-1 유전자의 활성을 가지는 폴리뉴클레오티드 서열이라면, 일부 서열이 결실, 변형, 치환, 또는 부가된 폴리뉴클레오티드 서열도 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명에서 용어, "상동성"은 두 개의 폴리뉴클레오티드 또는 폴리펩타이드 모이티 사이의 동일성의 퍼센트를 말한다. 하나의 모이티로부터 다른 하나의 모이티까지의 서열 간 상동성은 알려진 당해 기술에 의해 결정될 수 있다. 예를 들면, 상동성은 서열정보를 정렬하고 용이하게 입수 가능한 컴퓨터 프로그램을 이용하여 두 개의 폴리뉴클레오티드 분자 또는 두 개의 폴리펩티드 분자 간의 서열 정보, 예로는 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)를 직접 정렬하여 결정될 수 있다(예: BLAST 2.0). 또한, 폴리뉴클레오티드 간 상동성은 상동 영역 간의 안정된 이중가닥을 이루는 조건하에서 폴리뉴클레오티드의 혼성화한 후, 단일-가닥-특이적 뉴클레아제로 분해시켜 분해된 단편의 크기를 결정함으로써 결정할 수 있다.
또한, 본 발명은 상기 유전자 전달체를 유효성분으로 포함하는, 당뇨병 예방 또는 치료용 약학적 조성물에 관한 것이다.
본 발명에서 용어 "유효성분"이란 상기 조성물이 개체에 투여되는 경우, 그렇지 않은 경우에 비하여 당뇨병의 예방 또는 치료하는 활성을 갖는 것을 포함한다. 상기 개체는 포유동물, 예를 들면, 사람, 마우스, 햄스터, 개, 고양이, 말, 소, 돼지 및 염소로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 용어 "예방"이란, 상기 조성물이 투여되지 않은 것에 비하여 혈중 포도당의 농도가 높아지는 것을 방지하는 것을 포함한다. 용어 "치료"란 상기 조성물이 투여되지 않은 것에 비하여, 혈중 포도당의 농도를 낮추는 것을 포함한다.
본 발명의 약학 조성물은 상기 경구 투여용 유전자 전달체를 단독으로 포함하거나 하나 이상의 약학적으로 허용되는 담체, 보강제 또는 부형제 등을 더 포함할 수 있다.
본 발명의 약학 조성물은 약학 분야에서 통상적인 제제, 예를 들면 정제, 환제, 경연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 과립제, 엘릭서제(elixirs) 등의 경구투여용 제제 또는 정맥내, 피하, 설하, 근육내 투여용 멸균성 수성 또는 오일상 용제의 비경구투여용 제제로 제제화할 수 있다.
본 발명의 약학 조성물에 사용될 수 있는 약학적으로 허용 가능한 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및/또는 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다.
본 발명의 약학 조성물에 사용될 수 있는 부형제로는 감미제, 결합제, 용해제, 용해보조제, 습윤제, 유화제, 등장화제, 흡착제, 붕해제, 산화방지제, 방부제, 활탁제, 충진제, 방향제 등이 있으며, 이러한 부형제의 비율 및 성질은 선택된 정제의 용해도 및 화학적 특성, 선택된 투여경로 및 표준 약제 실무에 의해 결정될 수 있다. 부형제의 예로는 락토스, 덱스트로스, 슈크로스, 만니톨, 솔비톨, 셀룰로오스, 글라이신, 실리카, 탈크, 스테아린산, 스테린, 마그네슘 스테아린산염, 마그네슘 알루미늄 규산염, 녹말, 젤라틴, 트라가칸트 고무, 알지닌산, 소디움 알진산염, 메틸셀룰로오스, 소디움 카르복실메틸셀룰로오스, 아가, 물, 에탄올, 폴리에틸렌글리콜, 폴리비닐피롤리돈, 염화나트륨, 염화칼슘, 오렌지 엣센스, 딸기 엣센스, 바닐라 향 등을 들 수 있다.
본 발명에 따른 약학 조성물은 바람직하게는 경구 투여 제형일 수 있다.
본 발명의 약학 조성물은 비경구 투여 형태로 제형화될 수도 있는데, 이러한 경우 정맥 내 투여, 복강 내 투여, 근육 내 투여, 피하 투여 또는 국부 투여 등을 이용할 수 있으나, 이에 제한되지 않는다. 이 때, 상기 비경구 투여용 제형으로 제제화하기 위하여, 상기 약학 조성물은 유효성분, 즉, 상기 유전자 전달체가 안정제 또는 완충제와 함께 물에서 혼합되어 용액 또는 현탁액으로 제조되고, 이러한 용액 또는 현탁액이 앰플 또는 바이알의 단위 투여형으로 제조될 수 있다.
본 발명의 약학 조성물은 멸균되거나, 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 보조제를 더 포함할 수도 있고, 기타 치료적으로 유용한 물질을 더 포함할 수도 있으며, 혼합, 과립화 또는 코팅의 통상적인 방법에 따라 제제화될 수 있다.
본 발명에 따른 약학 조성물에서 유효성분인 상기 유전자 전달체는 사람을 포함하는 포유류에 대한 투여용량은 환자의 나이, 몸무게, 성별, 투여형태, 건강상태 및 질병정도에 따라 달라질 수 있고, 1 일 1회 또는 2 회 이상 분할되어 경구 또는 비경구적 경로를 통해 투여될 수 있으나, 보다 바람직하게는 경구 투여될 수 있다.
또한, 본 발명은 a) 글리콜 키토산 용액에 폴리에틸렌글리콜-말레이미드를 첨가한 다음, 이어서 N-하이드록시숙시이미드 및 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드를 순차적으로 첨가하여 반응시켜 글리콜 키토산-폴리에틸렌글리콜-말레이미드 복합체를 제조하는 단계; b) 상기 복합체를 증류수로 녹인 후 세포투과성 및 FAE(follicle associated epithelium) 표적화 펩타이드를 첨가하여 반응시켜 글리콜 키토산-폴리에틸렌글리콜-펩타이드를 제조하는 단계; c) 삼인산나트륨 및 유전자 혼합용액을 제조하는 단계; d) 증류수로 녹인 글리콜 키토산-폴리에틸렌글리콜-펩타이드 용액에 상기 삼인산나트륨 및 유전자 혼합용액을 적가하면서 교반하는 과정을 통해 유전자가 로딩된 나노입자를 제조하는 단계; 및 e) 상기 나노입자를 알긴산 용액에 첨가하여 반응시킴으로써 나노입자 표면에 알긴산을 코팅시키는 단계를 포함하는, 경구 투여용 유전자 전달체의 제조방법에 관한 것이다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예>
1. 재료 및 방법
재료
Maleimide-PEG-CM 2000(PEG-Mal, MW: 2kDa)은 JenKem Technology(USA)에서 구입하였다. 글리콜 키토산(Glycol chitosan, GC), 알긴산(Alginic acid, Alg)(MW: 2kDa), 트리폴리인산나트륨(sodium tripolyphosphate, TPP), 글루카곤 유사 펩타이드-1(Glucagon like peptide-1, GLP-1), 로다민 B 이소티오시아네이트(rhodamine B isothiocyanate, RBITC), 플루오레세인 5-이소티오시아네이트(fluorescein 5-isothiocyanate, FITC), DAPI 디하이드로클로라이드(DAPI dihydrochloride), RPMI-1640, Dulbecco's Modified Eagle's Medium(DMEM), methyl thiazolyl diphenyl-tetrazolium bromide(MTT) 및 Trypsin-EDTA 용액은 Sigma-Aldrich(USA)에서 구입하였다. 소태아혈청(Fetal bovine serum, FBS)은 ATLAS bios(USA)에서 구입하였다. NHS (N-hydroxysuccinimide), EDC(N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride)는 Sigma-Aldrich(USA)로부터 구입하였다. 6주령 C57Bl/6J 수컷 마우스(stock number 000664), LepOB 돌연변이(ob/ob, strain 000632) 및 LeprDB 돌연변이(db/db, strain 000697) 동형접합성인 수컷 마우스는 Jackson Laboratories로부터 구입하였다. 세포주 Caco-2, Raji b, HEK293, HepG2 및 MDCK는 한국세포주은행으로부터 구입하였다.
세포투과정 펩타이드 제조
독특한 세포 투과성 및 follicle associated epithelium(FAE) 표적화 펩타이드를 설계하기 위해, 먼저 세포 투과성 펩타이드(Cell Penetrating Peptide, CPP: NH2-KKWKMRRNQFWIKIQR-OH)의 N 말단을 시스테인의 -COOH 작용기와 화학적으로 결합시킨 후, 표적화 펩타이드(cyclic RGDfK)에 접합시켰다. 표준 고체상 펩티드 합성은 앞서 언급한 두 펩타이드는 Synpeptide co., Ltd., Shanghai, China에서 진행되었다. 본 발명에서는 상기 접합된 펩타이드를 간략하게 ‘CPPRGDfK’로 약칭하였으며, 서열번호 1로 표시하였다.
GC-FITC 컨쥬게이트의 합성
플루오레세인 5-이소티오시아네이트(FITC)의 이소티오시아네이트 그룹과 글리콜 키토산(GC)의 아미노 그룹을 반응시켜 GC-FITC 컨쥬게이트를 얻었다.
먼저, 플루오레세인 5-이소티오시아네이트(FITC) 용액은 에탄올에 완전히 녹여서 제조하였으며, 글리콜 키토산(GC) 용액(몰비 1:9)은 글리콜 키토산을 0.1 M의 아세트산에 완전히 녹여서 제조하였다. 암실 조건에서 2mg/ml 농도의 플루오레세인 5-이소티오시아네이트(FITC) 용액 1ml에 10 mg/ml 농도의 글리콜 키토산(GC) 용액 6ml에 첨가하고 3시간 동안 반응시켰다. 반응하지 않은 플루오레세인 5-이소티오시아네이트(FITC)를 제거하기 위해 혼합물을 14kD 투석 백을 사용하여 24시간 동안 투석을 진행하였다. 하루 동안 동결 건조시킨 후 황색을 띤 수용성 GC-FITC 컨쥬게이터를 수득하였다.
플라스미드 GLP-1 준비
스타터 배양을 준비하기 위해 50㎍/mL의 암피실린 작업 용액을 포함하는 3mL의 멸균된 LB 배지를 각 15mL 원뿔형 튜브에 부은 다음, GLP1 플라스미드(pBeta-SP-GLP-1)를 포함하는 E. coli 균주의 단일 콜로니를 새로 줄무늬 LB에서 얻었다. 멸균된 피펫 팁으로 한천 플레이트를 용액에 접종하였다. 15mL 원뿔형 튜브의 상단을 작은 구멍이 있는 알루미늄 호일로 밀봉하여 배양 중 산소의 흐름을 보장한 다음, 진탕 인큐베이터(3℃, ~300rpm, 8시간)에 넣었다. full-spectrum ultraviolet-visible spectrophotometer(NanoDropTM 2000c, Thermo Fisher Scientific, USA)로 각 샘플에 대한 OD600을 측정한 다음 대규모 하룻밤 배양에 대해 최대 OD600 표준화된 박테리아 성장을 선별하였다. 100μL의 스타터 배양물을 300mL LB 배지에 첨가하고 OD600 = 2가 되도록 인큐베이터(37℃, ~300rpm, 16시간)에 넣었다. 배양액은 4500 x g에서 12분 동안 원심분리하여 GLP1 플라스미드(pBeta-SP-GLP-1)로 형질감염된 대장균을 수집하였다.
제조업체의 프로토콜(NucleoBond® Xtra Maxi Plus EF 키트, MACHEREYNAGEL, USA)에 따라 pDNA 정제 키트 분석을 사용하여 펠릿화된 세포에서 GLP1 플라스미드를 정제하였다. 정제된 pDNA의 순도는 full-spectrum ultraviolet-visible spectrophotometer(NanoDropTM 2000c, Thermo Fisher Scientific, USA)를 사용하여 측정하였다.
본 발명의 GLP1 플라스미드(pBeta-SP-GLP-1)의 벡터맵은 도 3에서 나타내었다.
GC-PEG-CPPRGDfK 복합체 합성
EDC/NHS 결합 반응을 이용하여 PEG-말레이미드의 카르복실기와 글리콜 키토산(GC)의 1차 아민기를 결합시키고 말레이미드 반응을 적용하여 GC-PEG-CPPRGDfK를 합성하였다.
먼저, 증류수에 녹인 글리콜 키토산(GC) 용액(1:4 w/w) 5ml에 PEG-말레이미드 15mg을 첨가하고, 이어서 N-하이드록시숙시이미드(NHS) 25mg을 첨가한 다음, 10분 후 상기 혼합물에 EDC 12mg를 첨가하고 하루 동안 반응시켰다. 2일간 투석을 진행한 다음, 수득한 용액을 2일 동안 동결 건조하여 글리콜 키토산(GC)에 PEG-말레이미드가 결합된 GC-PEG-Mal 복합체를 분말상태로 수득하였다. 상기 과정을 통해 수득한 GC-PEG-Mal 복합체를 증류수(10mg/ml, pH=7)에 녹인 후 펩타이드(CPPRGDfK) 2.5mg을 첨가하여 하루 동안 교반하였다. 24시간 내에 8kD 투석 백을 사용하여 미반응 물질을 제거하고, 동결 건조하여 GC-PEG에 펩타이드(CPPRGDfK)가 결합된 GC-PEG-CPPRGDfK 복합체를 분말상태로 수득하였다. 상기 수득한 GC-PEG-CPPRGDfK 복합체는 사용전까지 4℃ 냉장고에 보관하였다.
플라스미드 DNA 로딩 및 코팅된 나노입자의 제조
먼저, 플라스미드 GLP-1(7.780 mg)을 10 mM HEPES 버퍼(pH 7.4) (1.922 mL)에 용해시켜 GLP-1 용액을 제조하였다. TPP 및 GLP-1 혼합 용액은 GLP-1 용액(1mg/ml)과 0.35% TPP 용액을 혼합하여 제조하였으며; GC, GC-PEG-Mal, GC-PEG-CPPRGDfK 각각의 고분자 용액(1mg/ml)은 상기 소재를 증류수에 완전히 녹여서 제조하였다. 별도의 4ml 유리 바이알에 각 고분자 용액 1ml를 첨가한 다음, TPP 및 GLP-1 혼합 용액 100㎕를 적가하면서 용액을 400rpm으로 교반하여 나노캐리어를 형성하였으며, 코팅 전에 실온에서 15분 동안 인큐베이션하였다. 상기 과정을 통해 플라스미드 GLP-1이 로딩된 나노입자가 제조되었다. 본 발명에서는 이들 각각을 ‘GLP1-로딩된 GC’, ‘GLP1-로딩된 GC-PEG-Mal’, ‘GLP1-로딩된 GC-PEG-CPPRGDfK’로 명명하였다.
상기에서 제조된 플라스미드 GLP-1이 로딩된 각각의 나노입자(GLP1-로딩된 GC, GLP1-로딩된 GC-PEG-Mal, GLP1-로딩된 GC-PEG-CPPRGDfK) 200μl를 알긴산 용액 1ml에 첨가하여 교반하면서 pH를 5.5로 조절하여 알긴산 코팅을 진행하였다. 10분 동안 반응시킨 후 원심분리하고, 증류수로 재분산시킨 후 동결 건조하여 최종적으로 분말형태의 알긴산이 코팅된 나노입자를 제조하였다. 본 발명에서는 이들 각각을 ‘ALG:GLP1-로딩된 GC’, ‘ALG:GLP1-로딩된 GC-PEG-Mal’, ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자로 명명하였다.
플라스미드 DNA 로딩 및 코팅된 나노입자의 특징화
합성된 나노입자(‘GC-PEG’, ‘GLP1-로딩된 GC-PEG-CPPRGDfK’ 및 ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’)의 크기 및 제타 전위는 동적광산란광도계(DLS, ZetasizerNano ZS90, Malvern Panalytical, UK)를 이용하여 측정하였다. 또한 본 발명의 나노입자의 형태는 투과전자현미경(TEM, JEM-3011 HR, JEOL Ltd., Japan)을 이용하여 관찰하였다.
겔 전기영동(Gel electrophoresis)
플라스미드 GLP1와 GC-PEG-CPPRGDfK 나노입자의 다양한 혼합비(1:5, 1:10, 1:20 중량비)에 따른 상승된 상호작용과 봉입률을 확인하기 위해 1% 아가로스 겔(agarose gel)을 이용한 전기영동 분석을 진행하였다. naked pDNA(대조군) 및 나노입자에 봉입된 pDNA 샘플(GLP1-로딩된 GC-PEG-CPPRGDfK)을 로딩 완충액과 혼합하고, 1% 아가로스 겔(TBE 버퍼) 조건에서 100V로 45분간 전기영동을 시행하였다.
시험관 내 방출 프로파일( In vitro release profile)
유전자 방출 속도의 경향성을 확인하기 위하여 BOBO-3 형광이 표지된 pDNA로 실험을 진행하였다. 형광이 표지된 pDNA를 알지네이트 코팅된 나노입자에 봉입한 후, 모사 위액(simulated gastric fluid, SGF)과 모사 장액(simulated intestinal fluid, SIF)에 각각 분산시켰다. 정해진 시간 간격마다 나노입자를 12000rpm, 5분 조건으로 원심분리하여 얻어진 상층액을 플레이트 판독기로 판독할때까지 4℃에서 냉장보관하였다. 신선한 모사 위액 또는 모사 장액을 보충하여 싱크 조건을 유지하였다.
공초점 레이저 현미경 및 FACS를 이용한 나노입자의 세포 내 흡수 확인
FITC가 형광 표지된 글리콜 키토산(GC-FITC 컨쥬게이터)을 이용하여 나노입자의 세포 내 흡수 정도를 다양한 세포주(Caco-2, HEK293, HepG2, MDCK)에서 검증하였다. 나노입자를 처리한 세포주들은 37℃ 세포배양기에서 5% 이산화탄소 조건으로 4시간 배양하였다. FITC가 형광 표지된 GC-PEG 나노입자와 GC-PEG-CPPRGDfK 나노입자의 세포내 흡수를 공초점 레이저 스캐닝 전자현미경(CLSM, LSM880, Carl Zeiss)을 이용하여 측정하였다. 또한, FITC가 발현되는 세포의 비율을 유세포분석기(BD LSRFortessa)를 이용하여 분석하였다.
시험관 내 점액 침투( In vitro mucus penetration)
돼지의 위에서 추출한 뮤신 타입 Ⅱ(Sigma-Aldrich)를 이용하여 시험관 내(in vitro) 점액 환경을 제조하였다. PBS에 5% 뮤신을 용해하여 점액을 제조하고, 형광이 표지된 나노입자를 플레이트의 인서트(insert) 상층부에 첨가하였다. 정해진 시간 마다 샘플을 인서트(insert) 하층부에서 추출하였고 플레이트 리더(plate reader)를 통해 흡광도를 분석하였다. 점액 장벽을 가로질러 운반되는 나노입자의 비율을 결정하였다.
시험관 내 M 세포 모델( in vitro M cell model)
먼저 트랜스웰 인서트(Transwell insert)의 상층부에 caco-2 세포를 첨가하여 monolayer로 성장시켰다. 인서트 기준으로 하부와 상부의 전위차를 TEER 실험 방법을 통해 측정하였다. 시간이 지남에 따라 TEER 값은 점점 올라가고, 20일 차 되는 시점에서 인서트 부분에 Raji B 세포를 co-culture 하였다. M 세포가 형성 됨에 따라 세포들의 결합이 약해지기 때문에 Raji B 세포 첨가후 TEER 값이 줄어드는 현상으로 시험관 내 M 세포 모델을 확인하였다.
시험관 내 세포 침투( In vitro cell penetration, Z scan)
PEG 및 표적 펩타이드로 변형된 나노입자(GC-PEG-CPPRGDfK)의 세포 투과능력을 공초점 레이저 스캐닝 전자현미경(CLSM, LSM880, Carl Zeiss)을 이용하여 측정하였다. 트랜스웰 인서트(Transwell insert)의 상층부에 나노입자를 첨가하고 3시간 동안 투과하도록 한 후, 인서트(insert)를 PBD로 세척하고, 세포를 4% 파라포름 알데하이드로 고정하였다. 세포막은 CF-640R 염색을 포함하는 소맥배아응집소(wheat germ agglutinin, WGA) 로 표지되었다. M 세포의 경우, UEA-I-로다민B로 염색되었으며, 세포핵은 DAPI 염색약으로 표지하였다. 그 이후에 인서트(insert)를 조심스럽게 잘라서 마운팅(mounting) 용액과 함께 유리 슬라이드에 장착하였다. 인서트(insert)의 상층부부터 하층부까지 향하는 나노입자의 세포 투과력을 세포의 Z축 측면에서 관찰하였다.
세포 생존력 분석(Cell viability assay)
Caco-2 세포를 96 웰 플레이트에 1×104 cells/well 밀도로 분주한 후 48시간 동안 배양하였다. 그런 다음, 다양한 고분자(GC, GC-PEG, GC-PEG-CPPRGDfK)를 다양한 농도로 배양 배지에 희석한 후, 각 웰(well)에 첨가하고 24시간 동안 인큐베이션하였다. 이후 MTT 용액을 각각의 웰(well)에 넣고 3시간 반응시켰다. 세포 배지를 모두 제거한 후 200 ul의 DMSO를 넣고 포르마잔 결정을 용해시켰다. 용액의 흡광도는 마이크로플레이트 리더(Multiskan GO, Thermo Scientific, USA)를 사용하여 측정하였다.
TEER 측정
Raji-b 세포를 넣기 전·후의 밀착연접(tight junction) 강도를 확인하기 위해 Millicell ERS-2 Voltohmmeter (Merck Milllipore) 장치를 이용하여 전기저항치(TEER, transepithelial electrical resistance, Ω·cm2)를 측정하였다.
EGFP 플라스미드 HEK293 세포를 사용한 시험관 내 형질감염 효율 측정
순수 나노입자(GC-PEG)와 변형된 나노입자(GC-PEG-CPPRGDfK)의 유전자 발현 효율의 경우 EGFP pDNA를 이용하여 HEK293 세포주에서 분석하였다. 세포를 24 웰 플레이트에 웰(well) 당 5.0×104 cells/well 농도로 분주한 후, 세포의 confluency가 70~90% 되었을 때 유전자를 처리하였다. 처리하기 직전 세포 배지를 새롭게 교체해주었고, EGFP pDNA를 포함하는 나노입자를 1ug pDNA/well 농도로 투여하였다. 12 내지 24시간 형질발현 후 공초점 레이저 스캐닝 전자현미경(CLSM, LSM880, Carl Zeiss)을 이용하여 형광 발현을 확인하였다. 정량적인 분석을 위해 유세포분석기(BD LSRFortessa)를 이용하여 형광 발현되는 세포의 비율을 확인하였다.
마우스 생체 내 연구
모든 실험 절차는 KAIST 동물 동물 관리 및 사용 위원회(IACUC)에서 승인한 프로토콜에 따라 수행되었다. 마우스는 통제된 광주기(12시간 명암 주기)가 있는 방에서 집단 사육하였으며 절차 시작 전에 시설에서 적어도 1주일 동안 적응 기간을 갖았다. 먹이와 물을 자유렵게 섭취하도록 하였다. 마우스는 달리 지시되지 않는 한 표준 설치류 식이(LabDiet 5001)를 먹이고 매일 관찰하였다.
약력학(Pharmacodynamics)
6주령 C57Bl/6J 수컷 마우스(처리군당 n = 5~6마리)는 즉시 60kcal% 지방 식이(Research Diets D12492)를 하고 시설에 1주일 동안 적응시켰다. 치료 그룹은 무작위로 지정하였다. 0 일차에 초기 체중, 음식 섭취 및 혈당을 측정하였다. 그런 다음 마우스에 ‘ALG:GLP1-로딩된 GC’, ‘ALG:GLP1-로딩된 GC-PEG-Mal’, ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’, 또는 얼음에 보관된 등가 부피의 PBS를 경구투여하였다. 란셋을 이용하여 마우스의 꼬리 정맥에 작은 흠집을 만들었다. 첫 번째 혈액 한 방울을 깨끗이 닦고 두 번째 한 방울은 포도당 산화효소법을 사용하여 혈당을 측정하는 AlphaTrak2 휴대용 혈당계(Abbott)를 사용하여 측정하였다. 혈당 측정은 0일 동안 주기적으로 실시하였으며, 경구투여 후 24 시간마다 측정하였다. 제2형 당뇨모델 db/db 마우스에서 효능 및 용량 반응 연구를 위하여 6주령 수컷 C57Bl/6J 마우스(n = 5)를 치료 전 11주 동안 고지방식이로 유지하였다. 용량 반응 연구를 위하여 약물(‘ALG:GLP1-로딩된 GC’, ‘ALG:GLP1-로딩된 GC-PEG-Mal’, ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’) 농도를 일정하게 유지하고 다양한 치료 그룹에 대해 주입량을 조정하였다. 당뇨병이 더 진행된 동물모델에 대한 효능 연구를 위하여 자발적인 LepOB 돌연변이(ob/ob, strain 000632) 또는 LeprDB 돌연변이(db/db, strain 000697)에 대해 동형접합성인 수컷 마우스를 사용하였다. 상기 마우스에 동일한 용량의 약물을 처리하고 이전에 설명한 대로 혈당을 측정하였다.
복강 내 당부하 검사(intraperitoneal blood glucose tolerance test; IPGTT)
ob/ob 마우스(n = 4) 및 db/db 마우스(n = 4)에서 연구 첫 주 동안 복강내 당부하 검사(IPGTT)를 수행하였다. 상기 마우스 동물모델은 0 일째에 약물(‘ALG:GLP1-로딩된 GC’, ‘ALG:GLP1-로딩된 GC-PEG-Mal’, ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’) 또는 동등한 부피의 PBS를 1회 경구투여하였다. 경구투여 후 48시간이 경과하였을 때 마우스를 6시간 동안 금식시킨 다음, 복강 내로 10w/v% 멸균 포도당(Sigma-Aldrich) 1g/kg을 주사하였다. 주사 후 72시간에, 포도당 투여 후 120 시간까지 다른 시점에서 혈당을 측정하였다. 혈당 측정기는 20 mg/dl 미만 또는 750 mg/dl 이상의 혈당 수치를 판독할 수 없다. 측정기의 측정값이 'HI'인 경우, 통계적 분석이 가능하도록 최대값인 750 mg/dl로 대체하였다.
통계 분석
시험관 내(in vitro) 및 생체 내(in vivo) 연구 모두에 대한 실험 수는 이전 실험 또는 기타 발표된 데이터에서 수집한 지식에 기반하여 선택하였다. 표본 크기가 작아(n ≤ 6) 그룹의 정규성은 테스트되지 않았다. 모든 데이터는 달리 명시되지 않는한 평균±표준편차로 나타내었다. 반복 측정 분산분석(repeated measures ANOVA)을 사용하여 혈당과 체중 연구의 백분율 변화를 분석한 후, 다중 비교를 위하여 하위 분산분석(lower-order ANOVA) 및 Dunnett's Test를 수행하였다. 포도당 AUC 값은 사다리꼴 방법을 사용하여 계산된 다음, 표시된 대로 Tukey 또는 Bonferroni의 다중 비교가 뒤따르는 일원 분산분석(one-way ANOVA)을 사용하여 비교하였다. 두 그룹을 비교하기 위해 양측 스튜던트 t-검정이 사용되었다. 동물 실험의 경우 그룹은 www.random.org의 목록 생성기를 사용하여 무작위로 지정되었다. 블라인드는 수행되지 않았다. 모든 분석 및 데이터 처리는 GraphPad Prism 6 소프트웨어를 사용하여 수행되었다.
2. 결과
GC-PEG-Mal 및 GC-PEG-peptide 합성
본 발명에서는 생체 적합성 다당류인 글리콜 키토산(GC) 나노입자 표면의 양전하를 떨어뜨릴 뿐만 아니라 점막 투과성을 향상시키기 위하여 저분자량의 폴리에틸렌 글리콜(PEG)로 글리콜 키토산(GC)의 표면을 개질하였다. 글리콜 키토산(GC) 나노입자의 점액과의 상호작용과 점액 내부의 포획을 방지하기 위하여, 펩타이드와 반응을 위해 말레이미드기를 그대로 남겨둔 카르복실기를 통해 EDC/NHS 반응으로 2작용성 폴리에틸렌 글리콜(PEG)을 글리콜 키토산(GC)에 접합시켰다.
GC-PEG-Mal은 말레이미드 잔기를 통해 펩타이드(CPPRGDfK)의 시스테인 잔기와 반응하여 새로운 탠덤 펩타이드를 형성하였다. 합성된 시스테인 접합 탠덤 펩타이드(GC-PEG-CPPRGDfK)의 구조 및 순도를 확인하기 위해 질량 분광법 및 HPLC를 사용하였다. 또한, 1HNMR 분석을 통해 펩타이드(CPPRGDfK)의 GC-PEG에 접합 및 PEG-Mal의 GC(GC-PEG-Mal)에 접합을 확인하였다(6.7 ppm에서 말레이미드기의 특정 피크). 0.2 내지 0.5 사이에 다중 피크가 나타나는 반면, NMR 결과에서 GC-PEG-CPPRGDfK의 합성에서 말레이미드 피크는 사라지면서 펩타이드가 GC-PEG-Mal에 성공적으로 접합되었음을 보여주었다.
GLP-1 로딩된 나노입자 준비 및 특성화
삼인산나트륨(TPP)를 사용한 이온 겔화 기술을 사용하여 ‘GLP1-로딩된 GC’, ‘GLP1-로딩된 GC-PEG-Mal’, ‘GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자를 형성하였다. 점액 포획을 줄이기 위하여 알긴산의 음전하를 사용하여 나노입자와 점액 간의 상호 작용을 감소시켰다. 알지네이트의 음의 카르복실기와 글리콜 키토산(GC)의 아미노기 사이의 상호 작용을 이용하여 코팅층을 설계하였다.
‘GC-PEG’, ‘GLP1-로딩된 GC-PEG-Mal’ 및 ‘ALG:GLP1-로딩된 GC-PEG-Mal’ 각각의 나노입자를 투과전자현미경(TEM)으로 확인한 결과, 알긴산 코팅이 이루어진 본 발명의 ‘ALG:GLP1-로딩된 GC-PEG-Mal’ 나노입자의 경우 크기가 약 200nm 내외인 것으로 관찰되었다(도 4A 참조).
준비 매개변수 영향
GC-PEG-CPPRGDfK 나노입자의 크기를 최적화하기 위하여, 증류수에 녹인 다양한 농도(5 ~ 0.5 mg/ml) 비율을 갖는 폴리머(GC-PEG-CPPRGDfK)를 적용하였다. 동적광산란광도계(Dynamic light scattering, DLS)를 이용하여 나노입자의 크기(Size), 다분산 지수(PDI) 및 제타 전위(Zeta Potential)를 측정한 결과, 폴리머(GC-PEG-CPPRGDfK)의 비율이 5 mg/ml에서 1 mg/ml로 낮아질수록 나노입자의 크기와 제타 전위가 꾸준히 떨여졌으며, 다만 0.5 mg/ml의 농도에서는 나노입자 크기가 약간 증가하는 것으로 나타났다(도 5A 참조).
한편, GLP-1 유전자의 경구 전달을 위한 폴리머 나노입자를 형성하기 위한 최적의 유체역학적 크기는 1 mg/ml 폴리머에 대해 약 150nm의 평균 크기 및 제타 전위가 +10임을 시사하였다(도 5C 참조). ‘GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자의 제타 전위는 점액과 나노입자 사이의 상호작용을 제거하기 위해 음전하 알긴산으로 코팅한 후 두드러지게 감소되는 것으로 나타났다(도 4C 참조).
다음으로, 경구 전달에 적합한 크기로 GLP-1의 로딩을 증가시키기 위해 GLP-1 비율을 다양화하여 코팅 전 최종 제형을 수득하였다. 플라스미드 GLP-1과 다양한 비율의 나노입자를 형성한 후 나노입자의 능력을 조사하기 위해 젤 지연 분석(Gel retardation assay)을 진행하였다. 그 결과, GLP-1에 대해 가시적인 밴드가 관찰되었고 세포투과정 펩타이드를 포함하는 ‘GC-PEG-CPPRGDfK’ 나노입자는 1:5(GLP1:GC-PEG-CPPRGDfK)의 중량비에서 시작하여 GLP-1 밴드를 보호하였다(도 5B 참조).
참고로, 전기영동 실험의 경우, 유전자를 가시화 화여 눈으로 확인하는 실험이다. 도 5B에서 1번 lane의 경우, 유전자가 단독으로 사용되어 하얀색의 밴드가 보이는 반면, 2~4번 lane의 경우 해당 GC-PEG-CPPRGDFK 폴리머가 유전자를 성공적으로 봉입하여 하얀색 밴드가 안보이게 된다. 이러한 결과를 통해, 본 발명의 폴리머(GC-PEG-CPPRGDFK)가 유전자(GLP-1)를 나노입자 안쪽으로 성공적으로 봉입한 것을 확인할 수 있었다.
GLP1-로딩된 GC-PEG-CPPRGDfK 나노입자의 특징(n=3, 평균±표준편차(SD))
제형 GLP1 양 (mg) 중합체 최종농도 (mg/ml) 캡슐화 효율 (EE%) 입자 크기 (nm) 다분산지수 (PDI) 제타 전위(mV)
GLP1-로딩된 GC-PEG-CPPRGDfK 80 ug 1 mg/ml 95 % 160±11 0.18±0.03 8.5±0.27
ALG:GLP1-로딩된 GC-PEG-CPPRGDfK 80 ug 1 mg/ml 90 % 200±10 0.26±0.05 -32±0.1
나노입자가 위장(GI)관 조건을 통해 생존하는 것이 중요하므로, ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자의 안정성을 모사 위액(simulated gastric fluid, SGF)과 모사 장액(simulated intestinal fluid, SIF)의 시뮬레이션된 생리학적 조건에서 조사하였다. 그 결과 도 6에서 나타낸 바와 같이, 모사 위액 (SGF)의 경우 알긴산의 코팅으로 인해 GLP1 유전자가 방출되지 않는 것으로 나타났으며, 반면에, 모사 장액 (SIF)의 경우 알긴산 코팅층이 pH 변화에 반응하여 부풀기 시작하면서 봉입되어 있는 GLP1 유전자를 방출하기 시작하는 것으로 나타났다. 이에, 상기와 같은 시험관 내 방출 프로파일 실험을 통해, 본 발명의 나노입자는 위액으로부터 유전자를 보호하고 소장에서 선택적으로 유전자를 방출시킬 수 있음을 확인할 수 있었다.
한편, 본 발명의 나노입자의 점액 침투 효과를 확인하기 위하여, 시험관 내 점액침투 실험을 진행하였다. 그 결과 도 7에서 나타낸 바와 같이, GC 고분자의 경우 양전하를 띄고 있기 때문에 음전하를 띄는 점액과의 상호작용으로 인해 점액침투가 쉽지 않은 것으로 나타났지만, PEG를 결합함으로서 표면의 양전하를 줄이면 더 높은 점액 침투가 가능한 것을 확인하였다. 또한 알긴산으로 나노입자를 코팅하게 되면 알긴산의 음전하로 인해 점액과의 상호작용이 줄어들게 되어 더 높은 점액침투가 관찰되었다. 최종적으로 본 발명의 나노입자(ALG:GLP1-로딩된 GC-PEG-CPPRGDfK)에 해당하는 PEG, 세포침투성 펩타이드가 결합되고 알긴산으로 코팅된 물질이 가장 높은 점액침투 효율을 부여주었다.
HEK293 세포를 사용한 시험관 내 EGFP 플라스미드(pEGFP-N1) 형질감염 효율 측정한 결과는 도 9에서 나타내었다. 도 9의 형광현미경 사진에서 초록색은 발현된 EGFP 단백질, 빨간색은 세포핵을 의미한다. EGFP 유전자 단독으로는 세포를 형질발현 시키지 못하는 것으로 나타났으며, GC-PEG 나노입자의 경우 일정부분의 세포들을 형질발현 시키는 것으로 나타났다. GC-PEG-CPPRGDfK 나노입자의 경우 높아진 세포투과성 능력으로 인해 높은 형질발현 효율을 보이는 것을 확인할 수 있었다.
나노입자를 최적화한 후 ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자의 치료 효능을 확인하였다. ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자는 최적의 크기와 Caco2에서 가장 높은 발현을 가졌기 때문에 선택되었으며, 치료 첫 몇일 동안 혈당이 급격히 감소하는 것으로 나타나는 최소 폭발 방출이 나타났다. 용량-반응 실험을 통해 100μg이 최적의 용량임을 확인한 후, 다양한 정도의 중증도를 가진 두 가지 당뇨병 모델(돌연변이 렙틴 유전자가 있는 ob/ob 마우스 및 돌연변이 렙틴 수용체 유전자를 가진 db/db 마우스)에서 본 발명의 나노입자의 효능을 실험하였다. 모든 마우스는 격주로 100μg 또는 50μg ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자 또는 동량의 식염수를 경구 투여하였다. 혈당 및 체중은 치료 후 288시간 동안 모니터링하였으며, 혈당 AUC를 정량화하고 PBS 대조군으로 정규화하였다. 100μg 용량의 ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자를 경구 투여한 경우 모든 동물모델에서 총 포도당 노출(포도당 AUC)이 50% 이상 유의하게 감소되는 것으로 나타났다(도 10 및 도 11 참조). 한편, db/db 또는 ob/ob 동물모델에서 약물 투여는 체중에 영향을 미치지는 못하는 것으로 나타났다(도 12 참조). 상기 나노입자 치료는 2가지 마우스 모델 모두에서 최대 288시간 동안 혈당을 조절하는 것으로 나타났다. 단식 상태에서도 데이터는 동일하였다.
본 발명의 ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자 전달 시스템의 견고성을 추가로 검증하기 위해 ob/ob 및 db/db 동물모델에서 복강 내 당부하 검사(IPGTT)를 수행하였다. 그 결과 도 13에서 나타낸 바와 같이, IPGTT AUC에 대한 치료 효과는 상당한 것으로 나타났다. 그러나 치료 후 시간이나 치료와 시간 사이의 상호 작용 기간의 유의미한 효과는 없었다. 데이터는 ob/ob 마우스에 대한 포도당 챌린지에 대한 반응 정도가 db/db 마우스의 동일한 날과 통계적으로 다르지 않음을 시사하며, 이는 본 발명의 ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자 시스템이 72시간 동안 혈당 제어를 동적으로 조절하는 능력을 유지되었음을 나타낸다. 처리군과 대조군 사이의 AUC 차이는 두 시점 모두에서 유의한 것으로 나타났다.
상기와 같은 결과는 ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자에서 방출을 제어하는 매개변수의 체계적인 분자 최적화가 융합의 생체 내 성능을 크게 향상시킬 수 있음을 보여준다. ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자는 2형 당뇨병(ob/ob 및 db/db)의 2가지 다른 마우스 모델에서 단일 경구 주사로 최대 72 시간의 포도당 조절을 제공하고 PBS 처리 대조군과 비교하여 포도당 AUC를 상당히 감소시킨 것으로 나타났다.
이것은 렙틴 단백질(ob/ob) 또는 동족 수용체(db/db)에 대한 동형 접합 돌연변이가 있는 유전 모델에서 렙틴 경로 조절 장애로 설명될 수 있다. 지방세포에서 생성되는 포만감 호르몬인 렙틴은 배고픔을 억제하고 에너지 균형을 조절하는 데 도움이 된다. 본 실험 결과는 GLP1이 시상하부에서 식욕 억제 효과를 발휘하기 위해서는 손상되지 않은 렙틴 경로가 필요함을 시사한다. 이것은 렙틴이 식후 인크레틴 신호에 대한 식욕 부진 및 체중 감소 반응을 향상시키고 렙틴 수용체 결핍 쥐에서 음식 섭취가 인크레틴 치료에 의해 억제되지 않는다는 것을 보여주는 문헌에 의해 뒷받침된다. ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자 처리는 2형 당뇨병(ob/ob 및 db/db) 동물모델에서 체중 손실을 감소시키는 경향이 명확하게 나타났다.
본 실험에서는 GLP-1 유전자를 위장관의 효소 및 산성 분해로부터 효과적으로 보호하고 M 세포에서 GLP-1 유전자를 성공적으로 방출할 수 있는 제2형 당뇨병 치료를 위한 비바이러스성 ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자 기반 경구 유전자 전달 시스템을 개발하였다. 본 실험에서는 ‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자의 경구투여에 따라 췌도에서 GLP-1 유전자와 인슐린이 발현되는 것을 확인하였으며, 이를 통해 GLP-1 유전자 제제를 처리한 당뇨병 마우스에서 혈당 수준을 효과적으로 유지함으로써 제2형 당뇨병을 치료할 수 있음을 확인하였다. 결과적으로, 본 발명의‘ALG:GLP1-로딩된 GC-PEG-CPPRGDfK’ 나노입자 전달 시스템이 경구 유전자 전달을 위한 수단으로 유용할 수 있음을 알 수 있었다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
[부호의 설명]
GC: Glycol chitosan
ALG: Alginic acid
TPP: Sodium tripolyphosphate
GLP-1: Glucagon like peptide-1
RBITC: Rhodamine B isothiocyanate
FITC: Fluorescein 5-isothiocyanate
DMEM: Dulbecco's Modified Eagle's Medium
MTT: Methyl thiazolyl diphenyl-tetrazolium bromide
FBS: Fetal bovine serum
NHS: N-hydroxysuccinimide
EDC: N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
FAE: Follicle associated epithelium

Claims (10)

  1. 글리콜 키토산-폴리에틸렌글리콜 공중합체; 및
    상기 공중합체에 결합된 세포투과성 및 FAE(follicle associated epithelium) 표적화 펩타이드를 포함하는, 경구 투여용 유전자 전달체.
  2. 제1항에 있어서,
    상기 전달체는 표면에 알긴산 코팅층을 더 포함하는 것을 특징으로 하는, 경구 투여용 유전자 전달체.
  3. 제1항에 있어서,
    상기 펩타이드는 서열번호 1의 아미노산 서열을 갖는 것을 특징으로 하는, 경구 투여용 유전자 전달체.
  4. 제1항에 있어서,
    상기 전달체는 장 상피 M 세포(microfold cell)를 통해 표적하고자 하는 장기에 유전자를 전달하는 것을 특징으로 하는, 경구 투여용 유전자 전달체.
  5. 제1항에 있어서,
    상기 전달체는 유전자를 더 포함하는 것을 특징으로 하는, 경구 투여용 유전자 전달체.
  6. 제5항에 있어서,
    상기 유전자는 단일가닥 또는 이중가닥 DNA(deoxyribonucleic acid), 단일가닥 또는 이중가닥 RNA(ribonucleic acid), 플라스미드 DNA, 단일가닥 또는 이중가닥 siRNA(small interfering RNA), 안티센스 올리고뉴클레오타이드(oligonucleotide), 리보자임, 촉매적 RNA 및 뉴클레오타이드 중에서 선택되는 1종 이상인 것을 특징으로 하는, 경구 투여용 유전자 전달체.
  7. 제5항에 있어서,
    상기 유전자는 GLP(glucagon like peptide)-1인 것을 특징으로 하는, 경구 투여용 유전자 전달체.
  8. 제1항 내지 제7항 중 어느 한 항의 유전자 전달체를 유효성분으로 포함하는, 당뇨병 예방 또는 치료용 약학적 조성물.
  9. 제8항에 있어서,
    상기 약학적 조성물은 경구 투여용인 것을 특징으로 하는, 당뇨병 예방 또는 치료용 약학적 조성물.
  10. a) 글리콜 키토산 용액에 폴리에틸렌글리콜-말레이미드를 첨가한 다음, 이어서 N-하이드록시숙시이미드 및 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드를 순차적으로 첨가하여 반응시켜 글리콜 키토산-폴리에틸렌글리콜-말레이미드 복합체를 제조하는 단계;
    b) 상기 복합체를 증류수로 녹인 후 세포투과성 및 FAE(follicle associated epithelium) 표적화 펩타이드를 첨가하여 반응시켜 글리콜 키토산-폴리에틸렌글리콜-펩타이드를 제조하는 단계;
    c) 삼인산나트륨 및 유전자 혼합용액을 제조하는 단계;
    d) 증류수로 녹인 글리콜 키토산-폴리에틸렌글리콜-펩타이드 용액에 상기 삼인산나트륨 및 유전자 혼합용액을 적가하면서 교반하는 과정을 통해 유전자가 로딩된 나노입자를 제조하는 단계; 및
    e) 상기 나노입자를 알긴산 용액에 첨가하여 반응시킴으로써 나노입자 표면에 알긴산을 코팅시키는 단계를 포함하는, 경구 투여용 유전자 전달체의 제조방법.
PCT/KR2021/018659 2021-12-08 2021-12-09 경구 투여용 유전자 전달체 및 이를 유효성분으로 포함하는 당뇨병 예방 또는 치료용 약학적 조성물 WO2023106458A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210175084A KR20230086452A (ko) 2021-12-08 2021-12-08 경구 투여용 유전자 전달체 및 이를 유효성분으로 포함하는 당뇨병 예방 또는 치료용 약학적 조성물
KR10-2021-0175084 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023106458A1 true WO2023106458A1 (ko) 2023-06-15

Family

ID=86730708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018659 WO2023106458A1 (ko) 2021-12-08 2021-12-09 경구 투여용 유전자 전달체 및 이를 유효성분으로 포함하는 당뇨병 예방 또는 치료용 약학적 조성물

Country Status (2)

Country Link
KR (1) KR20230086452A (ko)
WO (1) WO2023106458A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110114952A (ko) * 2010-04-14 2011-10-20 광주과학기술원 유전자 운반체

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741977B1 (ko) 2016-04-26 2017-05-31 한국교통대학교산학협력단 경구 투여용 유전자 전달을 위한 나노입자 및 이를 포함하는 약학 조성물

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110114952A (ko) * 2010-04-14 2011-10-20 광주과학기술원 유전자 운반체

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LAYEK BUDDHADEV, LIPP LINDSEY, SINGH JAGDISH: "Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 16, no. 12, 4 December 2015 (2015-12-04), pages 28912 - 28930, XP093071131, DOI: 10.3390/ijms161226142 *
LIN FENGMING, JIA HAO-RAN, WU FU-GEN: "Glycol Chitosan: A Water-Soluble Polymer for Cell Imaging and Drug Delivery", MOLECULES, vol. 24, no. 23, 29 November 2019 (2019-11-29), pages 4371, XP093071128, DOI: 10.3390/molecules24234371 *
SATYA PRAKASH, CATHERINE TOMARO-DUCHESNEAU, SHYAMALI SAHA, KAHOULI, MEENAKSHI MALHOTRA: "Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA", INTERNATIONAL JOURNAL OF NANOMEDICINE, vol. 8, 21 May 2013 (2013-05-21), pages 2041 - 2052, XP055384006, DOI: 10.2147/IJN.S43683 *
SURWASE, S. S. et al. Lymphatic transport inspired oral GLP-1 gene delivery with non-viral particles for the treatment of diabetes. The 50th Anniversary Annual Meeting and International Conference of KSPST. 01 December 2021, abstract. *

Also Published As

Publication number Publication date
KR20230086452A (ko) 2023-06-15

Similar Documents

Publication Publication Date Title
Li et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra-and paracellular pathways
US11623011B2 (en) Dually derivatized chitosan nanoparticles and methods of making and using the same for gene transfer in vivo
AU2015268199B2 (en) Composition for treating diabetes mellitus comprising insulin and a GLP-1/glucagon dual agonist
US9522945B2 (en) Long-acting oxyntomodulin variants and methods of producing same
WO2021145595A1 (ko) 생체 내 약물 전달을 위한 지질 나노입자 및 이의 용도
He et al. The use of low molecular weight protamine chemical chimera to enhance monomeric insulin intestinal absorption
EP3302567B1 (en) Prodrugs comprising an glp-1/glucagon dual agonist linker hyaluronic acid conjugate
US11266747B2 (en) Orally administered nanoparticles for gene delivery and pharmaceutical composition containing same
WO2012077950A2 (ko) 히알루론산-단백질 컨쥬게이트 및 이의 제조 방법
CA2848656A1 (en) Systems and methods of delivery of bioactive agents using bacterial toxin-derived transport sequences
AU2020334967A1 (en) Compositions and particles for payload delivery
WO2015199511A1 (en) Novel long-acting insulin analogue and use thereof
WO2023106458A1 (ko) 경구 투여용 유전자 전달체 및 이를 유효성분으로 포함하는 당뇨병 예방 또는 치료용 약학적 조성물
WO2016068617A1 (ko) 폴리올계 삼투압적 폴리디자일리톨 폴리머 유전자 전달체 및 이의 용도
US9415088B2 (en) Use of AGR3 for treating cancer
WO2022139071A1 (ko) 신규한 세포 투과성 펩타이드 및 이의 용도
US20190160152A1 (en) Long-acting oxyntomodulin formulation and methods of producing and administering same
WO2012133997A1 (ko) 폴리소르비톨계 삼투압적 활성 전달체 및 이를 이용한 유전자 치료
TW202039531A (zh) 用於治療平滑肌功能不良之組成物及方法
WO2024123139A1 (ko) 타겟 세포 내로 올리고뉴클레오티드를 전달하기 위한 펩타이드 기반 결합체를 포함하는 나노입자 및 이를 포함하는 약학적 조성물
WO2021141368A2 (ko) 세포 투과성 핵산 복합체를 유효성분으로 함유하는 황반변성의 예방 또는 치료용 조성물
WO2022139070A1 (ko) 신규한 세포 투과성 펩타이드 및 이의 용도
WO2023038479A1 (ko) 생체분자의 안정적 발현 및 전달을 위한 플라스미드 플랫폼
WO2012134135A2 (ko) 스페르민 공중합체 및 이를 핵산 전달체로 이용하는 유전자 치료
WO2024205326A1 (ko) 양이온성 젤라틴 및 알지네이트를 포함하는 약물 전달용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE