WO2023106414A1 - 加工変質層の評価方法及び評価システム - Google Patents

加工変質層の評価方法及び評価システム Download PDF

Info

Publication number
WO2023106414A1
WO2023106414A1 PCT/JP2022/045532 JP2022045532W WO2023106414A1 WO 2023106414 A1 WO2023106414 A1 WO 2023106414A1 JP 2022045532 W JP2022045532 W JP 2022045532W WO 2023106414 A1 WO2023106414 A1 WO 2023106414A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
light
intensity
work
scattered light
Prior art date
Application number
PCT/JP2022/045532
Other languages
English (en)
French (fr)
Inventor
忠昭 金子
大地 堂島
和宣 浅川
Original Assignee
学校法人関西学院
株式会社山梨技術工房
豊田通商株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, 株式会社山梨技術工房, 豊田通商株式会社 filed Critical 学校法人関西学院
Priority to JP2023524734A priority Critical patent/JP7457896B2/ja
Priority to CN202280063703.1A priority patent/CN117981065A/zh
Priority to EP22904341.9A priority patent/EP4276884A1/en
Priority to US18/261,101 priority patent/US20240068958A1/en
Publication of WO2023106414A1 publication Critical patent/WO2023106414A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4733Discriminating different types of scatterers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8438Mutilayers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8461Investigating impurities in semiconductor, e.g. Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8835Adjustable illumination, e.g. software adjustable screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/104Mechano-optical scan, i.e. object and beam moving

Definitions

  • the present invention relates to a method and system for evaluating a work-affected layer.
  • semiconductor substrates are formed by slicing a semiconductor material ingot and grinding and polishing the surface.
  • a surface layer hereinafter referred to as a work-affected layer
  • crystal strain, scratches, etc. introduced during slicing, grinding, and polishing. It is preferable to remove the work-affected layer because it causes a decrease in device yield in the device manufacturing process.
  • the conventional evaluation of a work-affected layer has mainly been a destructive inspection that cleaves the semiconductor substrate. Therefore, there is a problem that a semiconductor substrate whose work-affected layer has been evaluated cannot be returned to the device manufacturing process. Further, the destructive inspection is an inspection for locally evaluating the work-affected layer, and there is a problem that it is difficult to evaluate the distribution of the work-affected layer in the plane of the semiconductor substrate over a wide range.
  • Raman spectroscopy for evaluation of a process-affected layer of a semiconductor substrate is being studied in various ways.
  • Raman spectroscopy requires measurement of Raman scattering, which is weaker than elastic scattering such as Rayleigh scattering, it takes time to evaluate the entire surface of a single semiconductor substrate. Therefore, when Raman spectroscopy is introduced into the manufacturing process as a method for evaluating a work-affected layer, there is a problem that the throughput is lowered.
  • the present invention which solves the above-mentioned problems, is a measurement step of making a laser beam having penetrating properties incident from the surface of a semiconductor substrate having a work-affected layer below the surface, and measuring the intensity of the scattered light scattered below the surface. and an evaluation step of evaluating the work-affected layer based on the intensity of the scattered light obtained in the measurement step.
  • the semiconductor substrate is a silicon carbide substrate.
  • the work-affected layer includes strain
  • the evaluation step includes calculating the amount of strain based on the intensity of the scattered light.
  • the measuring step acquires the intensity of the scattered light at a predetermined depth over the plane direction of the semiconductor substrate in association with the positional information in the plane direction, and the evaluating step acquires the strain amount from the positional information. including calculating in relation to
  • the laser light has photon energy greater than the bandgap of the semiconductor substrate.
  • the laser light has a photon energy of about 101-122% of the bandgap of the semiconductor substrate.
  • a preferred embodiment of the present invention includes a measurement step using S-polarized light, in which an S-polarized laser beam is incident from the surface of a semiconductor substrate having a work-affected layer, and the intensity of the scattered light scattered under the surface is measured.
  • a preferred embodiment of the present invention includes a measurement step using P-polarized light, in which P-polarized laser light is incident from the surface of a semiconductor substrate having a work-affected layer, and the intensity of scattered light scattered under the surface is measured.
  • an S-polarized laser beam is incident from the surface of a semiconductor substrate having a work-affected layer, and the intensity of the scattered light scattered under the surface is measured using S-polarized light;
  • a method for evaluating a work-affected layer including a measurement step using P-polarized light, in which a P-polarized laser beam is incident from the surface and the intensity of the scattered light scattered under the surface is measured.
  • the semiconductor substrate has a planarized surface.
  • the laser light is incident on the semiconductor substrate at an incident angle ⁇ of 40° ⁇ 80° with respect to the normal to the surface of the semiconductor substrate.
  • an inspection area information acquiring step of acquiring information of an inspection area in a depth direction from the surface of the semiconductor substrate is included, and the measuring step is performed in such a manner that the laser beam penetrates into the inspection area.
  • a light selection step of selectively measuring the scattered light generated in the inspection area is not limited to measuring only scattered light generated in the inspection area. The term includes not detecting a portion of scattered light generated in a non-inspection area to an extent that the intensity of scattered light generated in the inspection area is discernible.
  • the light selection step includes shielding scattered light generated in a non-inspection area outside the inspection area.
  • the light selection step includes shielding reflected light and/or scattered light generated on the back surface of the semiconductor substrate.
  • the measuring step includes a scanning step of scanning the laser beam while rotating the semiconductor substrate.
  • the measuring step is a step of measuring the scattered light including elastic scattering.
  • the present invention for solving the above-described problems includes a stage capable of holding a semiconductor substrate to be measured, a light projecting system capable of irradiating the semiconductor substrate with a laser beam having penetrating characteristics, and the semiconductor substrate.
  • a light receiving system capable of receiving scattered light scattered under the surface of the, and a data processing unit that evaluates the work-affected layer based on the intensity of the scattered light measured using the laser light. This is an evaluation system for a work-affected layer.
  • the work-affected layer includes strain
  • the data processing section calculates the amount of strain based on the intensity of the scattered light.
  • the light projecting system irradiates the laser light over the entire surface of the semiconductor substrate, and the light receiving system measures the intensity of the scattered light scattered at a predetermined depth to the semiconductor substrate. , and the data processing unit records the calculated distortion amount in association with the position information.
  • the light projection system irradiates the laser light having photon energy larger than the bandgap of the semiconductor substrate.
  • the light projection system irradiates the laser light having photon energy of about 101 to 122% of the bandgap of the semiconductor substrate.
  • a stage capable of holding a semiconductor substrate to be measured, a light projecting system capable of irradiating S-polarized and/or P-polarized laser light, and scattering scattered under the surface of the semiconductor substrate
  • a light-receiving system capable of receiving light and a data processing unit that evaluates the work-affected layer based on the intensity of the scattered light measured using S-polarized and/or P-polarized laser light.
  • the light projection system irradiates the semiconductor substrate with the laser beam at an incident angle ⁇ of 40° ⁇ 80° with respect to the normal to the surface of the semiconductor substrate.
  • an inspection area setting unit for setting an inspection area in a depth direction from the surface of the semiconductor substrate is included, and the light projecting system is arranged so that a laser beam penetrates into the inspection area.
  • a light projecting condition including at least penetration characteristics is determined, and the light receiving system determines a light receiving condition so as to selectively measure scattered light generated in the inspection area.
  • “selectively measuring” is not limited to measuring only scattered light generated in the inspection area. The term includes not detecting a portion of scattered light generated in a non-inspection area to an extent that the intensity of scattered light generated in the inspection area is discernible.
  • the light projecting system has a light adjuster for adjusting the penetration characteristics of the laser light
  • the light receiving system is a light selector for selectively measuring scattered light generated in the inspection area.
  • the light selector includes a slit that shields scattered light generated in a non-inspection area outside the inspection area.
  • the light selector includes a slit that shields reflected light and/or scattered light generated on the back surface of the semiconductor substrate.
  • the semiconductor substrate is a silicon carbide substrate.
  • the data processing unit extracts the position parameter and/or the scale parameter of the statistic calculated based on the intensity of the scattered light.
  • the present invention for solving the above-mentioned problems relates the intensity measurement value of the scattered light scattered under the surface of the semiconductor substrate, which is measured by making a laser beam incident from the surface of the semiconductor substrate, to the measurement position information.
  • the semiconductor substrate is a silicon carbide substrate.
  • the data acquisition step includes measuring a plurality of types of intensity measurement values obtained by irradiating a plurality of laser beams having different penetrating characteristics, in a plane direction and a depth direction of the semiconductor substrate. acquiring a plurality of types of scattered light intensity data in association with measurement position information, and the statistic calculation step calculates the statistic of the intensity measurement values in association with the measurement position information including the plane direction and the depth direction. Including calculating.
  • the laser light has polarization properties.
  • the laser light is S-polarized light and/or P-polarized light.
  • the evaluation step includes a strain amount calculation step of calculating a strain amount below the surface of the semiconductor substrate from the statistical quantity.
  • the evaluating step further comprises a peak identifying step of identifying and labeling intensity measurements greater than a predetermined upper limit.
  • the semiconductor substrate has a planarized surface
  • the evaluation step is based on the measurement position information and the intensity measurement, and the numerical value is discontinuous with respect to the measurement position information.
  • a peak identification step of identifying and labeling said intensity measurements that are different from each other.
  • a preferred embodiment of the present invention includes a mapping step of creating a distribution map of the intensity measurement values based on a threshold for dividing the intensity measurement values from the lower limit to the upper limit into a plurality of values.
  • the mapping step includes creating a distribution map of the intensity measurements based on a plurality of thresholds so that the distortion amount can be identified step by step.
  • the evaluation step includes a parameter extraction step of extracting parameters of the plurality of intensity measurement values, and an analysis step of analyzing the semiconductor substrate based on the extracted parameters.
  • the parameter extraction step includes a position parameter extraction step of extracting position parameters of the plurality of intensity measurement values.
  • the position parameter extraction step is a step of extracting the mode of the plurality of intensity measurement values.
  • the parameter extraction step includes a scale parameter extraction step of extracting scale parameters of the plurality of intensity measurement values.
  • the scale parameter extraction step is a step of extracting half widths of the plurality of intensity measurement values.
  • the parameter extraction step is a step of extracting a plurality of types of the parameters from a plurality of the intensity measurement values for one semiconductor substrate, and the analysis step includes a plurality of types of the parameters.
  • the semiconductor substrate is analyzed based on the combination of numbers.
  • the analyzing step analyzes the semiconductor substrate based on a combination of the position parameter and the scale parameter.
  • a preferred embodiment of the present invention includes a classification step of classifying a plurality of semiconductor substrates based on the combination of the position parameter and the scale parameter.
  • classification criteria for features of process-affected layers of semiconductor substrates are created according to the combination of the position parameter and the scale parameter obtained by analyzing a plurality of semiconductor substrates to be evaluated. , further comprising a classification criteria creation step, wherein the classification step includes a classification step of classifying the plurality of semiconductor substrates to be evaluated in light of the classification criteria based on the combination of the position parameter and the scale parameter. .
  • the data acquisition step comprises: a first intensity measurement of scattered light measured by incident first laser light having a first penetration characteristic; First scattered light intensity data and second scattered light intensity data in which a second intensity measurement value of the scattered light measured by incident laser light of No. 2 is respectively associated with measurement position information including the surface direction of the semiconductor substrate.
  • obtaining intensity data wherein the statistic calculating step calculates a first statistic and a second statistic from the first intensity measurement and the second intensity measurement associated with the measurement location information, respectively;
  • the step of extracting parameters includes extracting a first parameter and a second parameter from the calculated first and second statistics, respectively, and performing the analysis The step analyzes the semiconductor substrate based on the combination of the first parameter and the second parameter.
  • the first laser light is S-polarized light
  • the second laser light is P-polarized light
  • a preferred embodiment of the present invention includes an evaluation step of evaluating the work-affected layer based on the intensity of the scattered light obtained in the measurement step.
  • the evaluation step includes a mapping step of creating a distribution map of statistics calculated based on the intensity of the scattered light.
  • the evaluation step includes a position parameter extraction step of extracting a position parameter of the statistic calculated based on the intensity of the scattered light.
  • the position parameter extraction step is a step of extracting the mode.
  • the evaluation step has a scale parameter extraction step of extracting a scale parameter of the statistic calculated based on the intensity of the scattered light.
  • the scale parameter extraction step is a step of extracting a half width.
  • the present invention which solves the above-described problems, is a method for evaluating a work-affected layer, which evaluates the work-affected layer based on the intensity of scattered light generated in the boundary region between the oxide layer and the strained layer of the semiconductor substrate.
  • the present invention which solves the above-described problems, is a method for evaluating a work-affected layer, which evaluates the work-affected layer based on the intensity of scattered light generated in the boundary region between the strained layer and the bulk layer of the semiconductor substrate.
  • the present invention for solving the above-mentioned problems is the intensity of the scattered light generated in the boundary region between the oxide layer and the strained layer of the semiconductor substrate, and the intensity of the scattered light generated in the boundary region between the strained layer and the bulk layer of the semiconductor substrate.
  • a work-affected layer evaluation method for evaluating a work-affected layer based on strength and strength.
  • the present invention also provides a step of evaluating a work-affected layer of a semiconductor substrate by any of the semiconductor substrate evaluation methods or evaluation systems described above; and a removing step of removing the specified layer.
  • the disclosed technique it is possible to provide a novel technique that can evaluate a work-affected layer without destroying the semiconductor substrate. Moreover, according to the disclosed technique, it is possible to provide a novel technique capable of evaluating the distribution of the damaged layer at high speed without destroying the semiconductor substrate.
  • FIG. 4 is an explanatory diagram of a measurement process of the evaluation method according to the embodiment;
  • FIG. 4 is an explanatory diagram of an evaluation process of the evaluation method according to the embodiment;
  • FIG. 4 is an explanatory diagram of an evaluation process of the evaluation method according to the embodiment;
  • It is an explanatory view explaining the measurement result concerning an example.
  • It is an explanatory view explaining the measurement result concerning an example.
  • FIG. 4 is an explanatory diagram illustrating an example of analysis according to an example; It is an explanatory view explaining an evaluation system concerning an embodiment. It is an explanatory view explaining an evaluation system concerning an embodiment.
  • One aspect of the present invention is a method for evaluating a work-affected layer of a semiconductor substrate.
  • the method for evaluating the work-affected layer is preferably a strain evaluation method.
  • the method for evaluating the work-affected layer is more preferably a method for evaluating the amount of strain.
  • the term "work-affected layer” refers to a layer containing alteration introduced by mechanical processing.
  • the object to be detected in the method for evaluating a work-affected layer of the present invention is strain located below the surface of the semiconductor substrate. This strain is typically introduced by the processing of the semiconductor substrate. Depending on the degree of this distortion to be detected, it can adversely affect the post-process of semiconductor device manufacturing. 1 ⁇ m to 20 ⁇ m, 1 ⁇ m to 10 ⁇ m, 1 ⁇ m to 8 ⁇ m, 1 ⁇ m to 6 ⁇ m, below the depth range.
  • the work-affected layer and the inspection area in the depth direction in the evaluation method of the present invention are in the depth range of ⁇ 20 ⁇ m, ⁇ 10 ⁇ m, ⁇ 8 ⁇ m, and ⁇ 6 ⁇ m below the surface of the semiconductor substrate. .
  • Distortion refers to the deviation of the actual crystal lattice from the reference when the ideal crystal lattice is used as the reference. Also, the amount of distortion is a value that indicates the degree of distortion.
  • the method for evaluating a work-affected layer of the present invention includes evaluating the amount of distortion of a semiconductor substrate, its distribution, or its uniformity. That is, the method for evaluating a work-affected layer of a semiconductor substrate according to the present invention is a method for evaluating a strain amount including measurement of the strain amount of the target substrate, visualization of the measured value, and analysis using the measured value.
  • FIG. 1 is an explanatory diagram illustrating a method for evaluating a work-affected layer according to an embodiment.
  • the method for evaluating a work-affected layer according to the present invention is characterized by evaluating the work-affected layer 102 based on the intensity of the scattered light L4 scattered by the work-affected layer 102 existing below the surface 101 .
  • the laser beam L1 emitted from the light projecting system 10 is caused to enter the inside from the surface 101 of the semiconductor substrate 100 .
  • Scattered light L4 is generated by the incident light L3 entering the inside of the semiconductor substrate 100 being scattered by the work-affected layer 102 .
  • This scattered light L4 is measured by the light receiving system 20, and the work-affected layer 102 is evaluated based on the intensity of the scattered light L4.
  • the scattered light L4 may include surface scattered light and internal scattered light.
  • Surface scattered light may include scattered light derived from surface deposits, scattered light derived from surface irregularities, and scattered light derived from lattice defects.
  • Internally scattered light may include scattered light derived from lattice defects and scattered light derived from internal strain.
  • the object to be detected in the method for evaluating a work-affected layer of the present invention is scattered light derived from internal strain among internally scattered light. Therefore, scattered light other than the scattered light derived from internal strain, including scattered light derived from surface deposits, scattered light derived from surface unevenness, and scattered light derived from lattice defects, should be generated by an appropriate method. and/or its detection is preferably suppressed.
  • the scattered light L4 may include scattered light outside the detection target within a range in which the intensity of the scattered light derived from internal strain can be determined.
  • the semiconductor substrate 100 is a semiconductor material manufactured by a process including at least one of a slicing process, a polishing process, and a grinding process.
  • a silicon (Si) substrate can be exemplified as the semiconductor substrate 100 manufactured through these steps.
  • the work-affected layer 102 that adversely affects the manufacturing of the device may be introduced.
  • recent research has revealed that the process-affected layer 102 of a compound semiconductor material, which is classified as a difficult-to-process material, adversely affects the device.
  • the method for evaluating a work-affected layer according to the present invention is a silicon carbide (SiC) substrate, a gallium nitride (GaN) substrate, an aluminum nitride (AlN) substrate, a gallium oxide (Ga 2 O 3 ) substrate, a compound semiconductor material such as a sapphire substrate. It is suitable for evaluating the process-affected layer 102 of the substrate.
  • a semiconductor substrate 100 has a surface 101 planarized by chemical mechanical polishing or the like, a process-affected layer 102 introduced by a process including mechanical processing such as a slicing process, a grinding process, and a polishing process, and a bulk layer 103. are doing.
  • the work-affected layer 102 is a layer introduced below the surface 101 of the semiconductor substrate 100 and includes an oxide layer 1021 and a strained layer 1022, as shown in FIG.
  • the process-affected layer 102 is a concept that indicates a layer with a relatively large amount of strain
  • the bulk layer 103 is a concept that indicates a layer with a relatively small or negligible amount of strain.
  • the surface 101 is flattened by flattening treatment such as chemical mechanical polishing.
  • surface 101 includes surfaces with an arithmetic mean roughness (Ra) of 0.5 nm or less.
  • surface 101 includes a surface having an arithmetic mean roughness (Ra) of 0.4 nm or less, 0.3 nm or less, or 0.2 nm or less.
  • a laser beam L1 is incident inside from the surface 101 of the semiconductor substrate 100 . That is, the surface 101 is a boundary surface on which the laser beam L1 is incident. Therefore, when the semiconductor substrate 100 has the surface 101 that is planarized by the planarization treatment, scattered light due to the unevenness of the surface 101 is less likely to occur, or the intensity of the scattered light generated on the surface 101 is low. Become. As a result, the proportion of scattered light generated in the work-affected layer 102 below the surface 101 in the scattered light L4 increases.
  • the surface 101 of the semiconductor substrate 100 is flattened to such an extent that at least the scattered light generated on the surface 101 does not interfere with the detection of the scattered light generated by the work-affected layer 102, so that the work-affected layer can be detected by threshold value or mapping. 102 distortion evaluations are possible.
  • the flattened surface 101 has the effect of suppressing the generation of scattered light derived from surface unevenness or reducing the intensity of scattered light derived from surface unevenness.
  • the scattered light L4 the ratio of the scattered light originating from the surface unevenness that is not the object of detection can be reduced.
  • FIG. 2 is an explanatory diagram explaining the relationship between the polarization of the laser beam L1 and the work-affected layer 102.
  • FIG. FIG. 2A is an explanatory diagram illustrating a case where the semiconductor substrate 100 is irradiated with the S-polarized laser beam L1.
  • FIG. 2B is an explanatory diagram illustrating a case where the semiconductor substrate 100 is irradiated with the P-polarized laser light L1.
  • an S-polarized laser beam L1 is incident from the surface 101 of a semiconductor substrate 100 having a work-affected layer 102, and the intensity of scattered light L4 scattered under the surface 101 is measured. It includes a measurement step using S-polarized light (see FIG. 2(a)). Note that the S-polarized light has a lower transmittance than the P-polarized light irradiated under the same conditions because the electric field of the laser beam L1 oscillates in the direction perpendicular to the plane of incidence.
  • S-polarized light is suitable for strain measurements located in the depth range of ⁇ 10 ⁇ m, ⁇ 8 ⁇ m, ⁇ 6 ⁇ m or ⁇ 4 ⁇ m from the substrate surface. It is considered that when the S-polarized laser beam L1 is used, the scattered light L4 is generated in the boundary region between the oxide layer 1021 and the strained layer 1022 closer to the surface 101 .
  • the method for evaluating the work-affected layer according to the present invention is considered to be a method for evaluating the work-affected layer 102 based on the intensity of the scattered light L4 generated in the boundary region between the oxide layer 1021 and the strained layer 1022.
  • FIG. The boundary region mentioned here includes the interface between the oxide layer 1021 and the strained layer 1022 .
  • the method for evaluating a work-affected layer uses P-polarized light for measuring the intensity of scattered light L4 scattered under the surface 101 of the semiconductor substrate 100 by causing the P-polarized laser light L1 to enter from the surface 101 of the semiconductor substrate 100. (see FIG. 2(b)).
  • the electric field of the laser light L1 oscillates in the direction parallel to the plane of incidence of the P-polarized light, and the transmittance of the P-polarized light is higher than that of the S-polarized light irradiated under the same conditions.
  • P-polarized light is suitable for measurements of strains located in the range of ⁇ 47 ⁇ m, ⁇ 30 ⁇ m, ⁇ 20 ⁇ m, or ⁇ 10 ⁇ m from the substrate surface. It is considered that when the P-polarized laser beam L1 is used, the scattered light L4 is generated in the boundary region between the strained layer 1022 and the bulk layer 103 existing below the oxide layer 1021 .
  • the method for evaluating the work-affected layer according to the present invention is considered to be a method for evaluating the work-affected layer 102 based on the intensity of the scattered light L4 generated in the boundary region between the strained layer 1022 and the bulk layer 103.
  • FIG. The boundary region referred to here includes the interface between the strained layer 1022 and the bulk layer 103 .
  • the inspection area IA in the depth direction when the S-polarized laser beam L1 is used can be adjusted to be included in the depth range from the substrate surface to 10 ⁇ m, to 8 ⁇ m, to 6 ⁇ m, or to 4 ⁇ m.
  • the inspection area IA in the depth direction when using the P-polarized laser beam L1 can be adjusted to be included in a depth range of ⁇ 47 ⁇ m, ⁇ 30 ⁇ m, ⁇ 20 ⁇ m, or ⁇ 10 ⁇ m from the substrate surface.
  • the inspection area IA in the depth direction when the laser beam L1 is used changes according to the penetration characteristics including the polarization characteristics and wavelength characteristics of the laser beam L1 and the incident angle to the semiconductor substrate 100 . That is, by adjusting the penetration characteristics of the laser light L1, it is possible to adjust the inspection area IA in the depth direction when the laser light L1 is used.
  • the method for evaluating a work-affected layer includes an evaluation step of evaluating the work-affected layer 102 based on the result of the intensity of the scattered light L4 obtained in the above-described measurement step.
  • This evaluation step is, for example, a step of calculating a statistic from the intensity of the scattered light L4 obtained in the measurement using S-polarized light and/or P-polarized light, and visualizing and quantifying it to evaluate the work-affected layer 102. is.
  • the method for evaluating a work-affected layer includes a cleaning step S10 for cleaning the surface of the semiconductor substrate 100, and a laser beam L1 incident on the work-affected layer 102 of the semiconductor substrate 100 and measuring the intensity of the scattered light L4. It may include a measurement step S20 of measuring and an evaluation step S30 of evaluating the work-affected layer 102 based on the intensity of this scattered light L4. Each step will be described in detail below according to the embodiment of the present invention.
  • the cleaning step S10 is a step for removing factors that cause the laser light L1 to scatter on the surface 101 of the semiconductor substrate 100 due to organic substance contamination, particle contamination, oxide layer, ion contamination, etc. adhering to the surface of the semiconductor substrate 100.
  • organic substance contamination, particle contamination, oxide layer, ion contamination, etc. adhering to the surface of the semiconductor substrate 100 In particular, when particles adhere to the surface of the semiconductor substrate 100, scattering stronger than the scattered light L4 generated in the work-affected layer 102 occurs. Therefore, it is desirable to remove particle contamination and the like before measuring the work-affected layer 102 .
  • the cleaning step S10 has the effect of suppressing the generation of scattered light derived from surface deposits or reducing the intensity of scattered light derived from surface deposits.
  • the scattered light L4 the ratio of the scattered light originating from the surface deposits that are not to be detected can be reduced.
  • any method that can remove at least one of organic matter contamination, particle contamination, oxide layer, and ion contamination adhering to the surface 101 of the semiconductor substrate 100 can be used as the method of the cleaning step S10.
  • chemical cleaning such as general RCA cleaning (NH 4 OH, H 2 O 2 , H 2 O), acid cleaning (HCl, HF), and physical cleaning such as bubbles and brushes can be employed.
  • any method that can clean the surface 101 of the semiconductor substrate 100 can be employed.
  • the cleaning step S10 according to the embodiment has been described above.
  • the method for evaluating a work-affected layer according to the present invention can also be exemplified by a form that does not include the cleaning step S10. That is, when the surface 101 of the semiconductor substrate 100 is sufficiently clean, the processing-affected layer 102 may be evaluated by including the measurement step S20 and the evaluation step S30, which will be described later, without performing the cleaning step S10.
  • ⁇ Measurement step S20> In the measurement step S20, as shown in FIG. 1, the incident light L3, which is emitted from the light projection system 10 of the evaluation system and is incident from the surface 101 of the semiconductor substrate 100, is scattered inside the work-affected layer 102, and the scattered scattering This is the step of measuring the light L4 with the light receiving system 20. FIG. Therefore, it is desirable that the surface 101 of the semiconductor substrate 100 is sufficiently planarized by chemical mechanical polishing or the like. In other words, the measurement step S20 is preferably performed on the surface 101 after chemical mechanical polishing.
  • the measurement step S20 is a step of making the laser beam L1 incident at an incident angle ⁇ that is inclined with respect to the normal line N of the surface 101 of the semiconductor substrate 100 .
  • Part of the laser light L1 emitted from the light projecting system 10 at the incident angle ⁇ is specularly reflected by the surface 101 of the semiconductor substrate 100 to become reflected light L2, and part of the laser light L1 is reflected inside the semiconductor substrate 100. It enters and becomes incident light L3. Further, the incident light L3 is scattered by the work-affected layer 102 to generate scattered light L4.
  • the reflected light L2 is specularly reflected at the same angle as the incident angle ⁇ of the laser light L1, and has a higher intensity than the scattered light L4.
  • the present invention is a method of evaluating the work-affected layer 102 based on the intensity of the scattered light L4. Therefore, it is necessary to prevent the reflected light L2 from entering the light receiving sensor 24 in order to accurately measure the scattered light L4. For example, it is possible to adopt a method of arranging the light receiving system 20 so as to avoid the reflected light L2, or a method of limiting the incidence of light to the light receiving sensor 24 by placing a light shielding tape on the optical path of the reflected light L2. can.
  • the scattered light L4 measured in the present invention includes elastic scattering. That is, by measuring the scattered light L4 including elastic scattering with a higher intensity than inelastic scattering, it is possible to improve the measurement sensitivity and realize high-speed measurement.
  • the measurement step S20 can include a measurement step S21 using S-polarized light and a measurement step S22 using P-polarized light. Since the easiness of detection of the generated scattered light differs between S-polarized light and P-polarized light depending on the generation depth of the scattered light, the measurement area of the work-affected layer 102 is changed by selecting the polarization of the laser beam L1. can do. That is, in the measurement step S21 using S-polarized light, it is considered possible to measure the scattered light L4 of the work-affected layer 102 closer to the surface 101 . On the other hand, in the measurement step S22 using P-polarized light, it is considered possible to measure the scattered light L4 of the work-affected layer 102 closer to the bulk layer 103 .
  • an appropriate incident angle ⁇ is naturally selected according to the physical properties of the semiconductor substrate 100 to be measured and the thickness of the work-affected layer 102. be able to.
  • the incident angle ⁇ of the laser beam L1 satisfies 40° ⁇ , 45° ⁇ , or 50° ⁇ at its lower limit, and ⁇ 80°, ⁇ 75°, or ⁇ 70° at its upper limit. is preferred.
  • the incident angle ⁇ is close to the Brewster angle of the semiconductor substrate 100 (Brewster angle ⁇ approximately 10°)
  • the P-polarized light penetrates deeper into the semiconductor substrate 100, and distortion deep below the surface can be detected. more preferred.
  • the evaluation system used for evaluating the work-affected layer has an apparatus configuration that can measure the intensity of the scattered light L4 that is incident on the semiconductor substrate 100 and scattered by the work-affected layer 102, it is of course possible. can be adopted. An example of an evaluation system used in the embodiment will be described below with reference to FIGS. 1 to 4. FIG.
  • FIG. 3 is a block diagram of an evaluation system used in the evaluation method according to the embodiment;
  • the evaluation system according to the embodiment includes a light projecting system 10 that emits laser light L1, a light receiving system 20 that receives scattered light L4, a stage 30 on which a semiconductor substrate 100 to be measured is installed, and a light projecting system. 10 and the light receiving system 20 are installed, a signal processing unit 50 that performs signal processing of the signal measured by the light receiving system 20, a data processing unit 60 that performs data processing, and a control unit 70 that performs various controls. , provided.
  • the evaluation system includes a stage 30 capable of holding a semiconductor substrate 100 to be measured, a light projection system 10 capable of irradiating S-polarized and/or P-polarized laser light L1, and a semiconductor substrate.
  • a light receiving system 20 capable of receiving scattered light L4 scattered under the surface 101 of 100, and data processing for evaluating the work-affected layer 102 based on the intensity of the scattered light L4 measured using S-polarized light and P-polarized light. a portion 60;
  • the projection system 10 has a laser output section 11 and a wave plate 12 .
  • the light projecting system 10 is attached to the housing 40 so that the laser light L1 is incident at an incident angle .theta.
  • the light projection system 10 may be attached to the housing 40 so that the incident angle ⁇ can be adjusted.
  • the laser output unit 11 is a source of the laser light L1, and can employ, for example, a gas laser such as a He--Ne laser, a solid laser such as a semiconductor laser and a YAG laser.
  • a gas laser such as a He--Ne laser
  • a solid laser such as a semiconductor laser and a YAG laser.
  • the wavelength plate 12 performs adjustments such as wavelength separation, fine adjustment, ellipticity adjustment, and polarization rotation for the laser light L1 generated by the laser output unit 11 .
  • the wavelength plate 12 can switch between S-polarized light and P-polarized light of the laser light L1, and can control the penetration characteristics of the laser light L1 without changing the measurement conditions such as the incident angle ⁇ and the wavelength ⁇ . can.
  • Appropriate material and configuration of the wave plate 12 are selected according to the material and conditions of the semiconductor substrate 100 to be measured.
  • the wavelength plate 12 is one of the optical regulators that performs adjustments such as wavelength separation, fine adjustment, ellipticity adjustment, and polarization rotation for the laser light L1 to control the penetration characteristics of the laser light L1. It is a mode.
  • the evaluation system can adjust the penetration depth PD and/or the inspection area IA in the depth direction of the incident light L3 to an arbitrary depth of the semiconductor substrate 100. It becomes possible to selectively detect the distortion located in the wide range.
  • various optical elements filters, lenses, mirrors, etc.
  • various optical elements can be used to adjust the penetration characteristics (polarization characteristics, wavelength, incident angle, etc.) of the laser light L1.
  • the wavelength of the laser light L1 preferably has a photon energy greater than the bandgap of the semiconductor substrate 100 because the light receiving system 20 can detect the scattered light L4. That is, the wavelength ⁇ of the laser light L1 preferably satisfies the relational expression “ ⁇ [nm] ⁇ 1239.8/bandgap [eV]”.
  • the measurement target is 4H-SiC
  • the object to be measured is GaN
  • the lower limit of the photon energy of the laser beam L1 is preferably 101% of the bandgap of the semiconductor substrate 100, more preferably 103% of the bandgap, still more preferably 105% of the bandgap, still more preferably 107% of the bandgap. %.
  • the upper limit of the photon energy of the laser beam L1 is preferably 122% of the bandgap of the semiconductor substrate 100, more preferably 120% of the bandgap, still more preferably 115% of the bandgap, still more preferably 112% of the bandgap. %, more preferably 110% of the bandgap.
  • the laser beam L1 having photon energy defined in the range between the lower limit and the upper limit described above penetrates the process-affected layer, particularly the range including the strain to be evaluated, while retaining sufficient energy, and the process-affected layer. Scattered light due to the layer, particularly strain, is produced at a detectable intensity.
  • the relationship between the wavelength of the laser light L1 (photon energy possessed by the laser light L1) and the depth at which distortion can be detected is, for example, "Penetration depths in the ultraviolet for 4H, 6H and 3C silicon carbide at seven common laser pumping wavelengths.”
  • S.G SRIDHARA, TN DEVATY, W.J CHOYKE, Materials Science and Enginieling: B Volumes 61.62, 30 JULY 1999, PAGES Considering the absorption coefficient described in 229-233) can be calculated with
  • the depth at which strain can be detected can be estimated to be about 4 ⁇ m.
  • the depth at which strain can be detected can be estimated to be about 16 ⁇ m. can.
  • the depth at which strain can be detected can be estimated to be about 50 ⁇ m. can.
  • the intensity of the laser light L1 is desirably set to an intensity that does not pass through the semiconductor substrate 100. That is, it is desirable that the penetration depth PD of the incident light L3 is set to be equal to or less than the thickness of the semiconductor substrate 100.
  • the light receiving system 20 has an objective lens 21 , an imaging lens 22 , a beam splitter 23 , a light receiving sensor 24 and a slit 25 .
  • the light receiving system 20 is preferably attached to the housing 40 at a measurement angle ⁇ different from the incident angle ⁇ so that the reflected light L2 does not enter.
  • the measurement angle ⁇ of the light receiving system 20 preferably satisfies 20° ⁇ , 25° ⁇ or 30° ⁇ at its lower limit and ⁇ 70°, ⁇ 65° or ⁇ 60° at its upper limit. . Since such a measurement angle ⁇ makes it difficult for scattered light generated in a shallow portion near the surface 101 of the semiconductor substrate 100 to enter the light receiving system 20, distortion under the surface 101 can be accurately detected.
  • the light receiving system 20 may be attached to the housing 40 so that the measurement angle ⁇ can be adjusted.
  • the beam splitter 23 is desirably a cube-shaped beam splitter.
  • the light receiving sensor 24 may have a configuration capable of converting the intensity of the scattered light L4 into an electric signal.
  • a photomultiplier tube, a photodiode, or the like can be used.
  • the slit 25 is arranged to determine the inspection area of the laser beam L1.
  • the inspection area of the laser light L1 is determined from an arbitrary depth range under the surface 101 of the semiconductor substrate 100 within the penetration depth PD of the incident light L3. That is, the slit 25 is a mode of a light selector that selectively allows the scattered light L4 generated in the inspection area among the scattered light generated under the surface 101 of the semiconductor substrate 100 to enter the light receiving sensor 24. be.
  • the slit 25 cuts the scattered light generated under the front surface 101 of the semiconductor substrate 100 into a non-inspection area outside the inspection area (a portion of the semiconductor substrate 100 that is shallower or deeper than the inspection area, or the back surface of the semiconductor substrate 100).
  • a non-inspection area outside the inspection area a portion of the semiconductor substrate 100 that is shallower or deeper than the inspection area, or the back surface of the semiconductor substrate 100.
  • the light selector that shields the light-receiving sensor 24 from entering the light-receiving sensor 24 .
  • the scattered light L4 the ratio of the scattered light originating from the surface unevenness that is not
  • the light receiving system 20 has an objective lens 21 , an imaging lens 22 , a beam splitter 23 , a light receiving sensor 24 and a slit 25 .
  • the laser light L1 is refracted at the surface 101 of the semiconductor substrate 100 and penetrates up to the penetration length PL while repeating scattering and attenuation (incident light L3). At this time, the distance from the surface 101 of the deepest portion reached by the incident light L3 is the penetration depth PD.
  • Each scattered light L41, L42, L43 passes through the objective lens 21 and the imaging lens 22 and reaches the slit 25.
  • the slit 25 is displaced (offset) with respect to the optical axis O so as to block scattered light scattered on the optical axis O.
  • the slit 25 shields the surface scattered light L41 so that the surface scattered light L41 does not reach the light receiving sensor 24 .
  • the slit 25 is arranged at a position and/or width that shields scattered light generated in a shallower portion than the scattered light L42. Also, the slit 25 is arranged at a position and/or width that shields scattered light generated in a portion deeper than the scattered light L43.
  • the depth range including the locations where the scattered lights L42 and L43 are generated is set in the inspection area IA, and the scattered light generated in this range is can selectively reach the light receiving sensor 24 .
  • the objective lens 21 and the imaging lens 22 widen the distance between the arrival points of the scattered light L42 and the scattered light L43 on the slit 25 side perpendicularly to the slit 25 .
  • the objective lens 21 and the imaging lens 22 can further narrow the inspection area IA, thereby enabling highly accurate measurement.
  • the total magnification of the objective lens 21 and the imaging lens 22 is preferably about 1 to 100 times, and more preferably about 10 times.
  • the light selector may be any device that can selectively cause the scattered light L4 generated within a specific depth range to enter the light receiving sensor 24 .
  • the position of the inspection area IA in the depth direction can be adjusted by adjusting the position thereof.
  • the position of the light receiving sensor 24 may also be adjusted according to the position of the slit 25 .
  • the width of the inspection area IA can be adjusted by adjusting the width. That is, by adjusting the optical selector, it is possible to selectively detect distortion located in an arbitrary depth range below the surface 101 of the semiconductor substrate 100 within the range of the penetration depth PD of the incident light L3. Become.
  • the penetration depth PD of the incident light L3 can be changed by changing the penetration characteristics (polarization characteristics, wavelength, incident angle ⁇ , etc.) of the laser light L1, the penetration characteristics of the laser light L1 and the light receiving conditions (
  • the position and width of the inspection area IA can be arbitrarily adjusted by adjusting the detection angle, the position and width of the slit 25, the magnification of the objective lens 21 and the imaging lens 22, etc. and combining them arbitrarily. .
  • the slit 25 is provided at a position and width that shields scattered light (or reflected light) generated at a depth deeper than the scattered light L43.
  • the slit 25 shields the light L5 generated by the reflection or scattering of the incident light L3 on the back surface 104 and prevents the light L5 from reaching the light receiving sensor 24 .
  • the slit 25 is provided at a position and width that does not shield the scattered light generated at a shallower depth than the scattered light L42. That is, the surface scattered light L41 and the like explained in FIG. However, since the detection intensity of the surface scattered light L41 can be suppressed by eliminating the causes of the surface scattered light L41 as much as possible by cleaning or flattening the substrate surface, the scattered light L42, L43, etc. can be suppressed. It becomes possible to detect the intensity of the internally scattered light in a distinguishable manner.
  • the light receiving system 20 preferably has a bandpass filter 26 corresponding to the wavelength of the laser light L1.
  • the bandpass filter 26 enables the light receiving system 20 to selectively detect scattered light mainly caused by elastic scattering.
  • FIG. 4 is an explanatory diagram of the measurement step S20 of the evaluation method according to the embodiment.
  • a semiconductor substrate 100 to be measured is placed on the stage 30, and the stage 30 is horizontally rotatable around the center of the semiconductor substrate 100.
  • the stage 30 is configured to be able to move the semiconductor substrate 100 in parallel with respect to the housing 40 (light projecting system 10 and light receiving system 20). In this manner, by rotating and translating the semiconductor substrate 100, the semiconductor substrate 100 can be scanned over a wide area (or the entire surface) with the laser light L1.
  • the semiconductor substrate 100 may be scanned with the laser beam L1 by moving the light projecting system 10 and the light receiving system 20.
  • the data processing unit 60 acquires information on the inspection area in the depth direction (measurement position information in the depth direction) from the inspection area setting unit 80 (inspection area information acquiring step), and based on this, the laser beam is directed to the inspection area.
  • the user inputs in advance the information of the inspection area in the depth direction (measurement position information in the depth direction) in the inspection area setting unit 80, so that the data processing unit 60 can perform the measurement based on this data.
  • data including the light projection condition and/or the light reception condition may be obtained by
  • the control unit 70 acquires data including the light projection conditions and/or the light reception conditions from the data processing unit 60, and based on this data, causes the laser light L1 to enter the inspection area and to generate light in the inspection area.
  • Each component of the evaluation system including the light projecting system 10, the light receiving system 20, and the stage 30 is controlled so as to selectively measure the scattered light (light selection process).
  • the signal processing unit 50 amplifies the electrical signal (analog signal) measured by the light receiving sensor 24 (photomultiplier tube) and then converts it into a digital signal. In addition, the signal processing unit 50 acquires the position information in the surface direction of the semiconductor substrate 100 from the encoder information of the stage 30, and associates the intensity information (intensity measurement value) of the scattered light L4 with the position information.
  • the data processing unit 60 outputs, from the signal processing unit 50, a plurality of intensity information (intensity measurement values) and a plurality of intensity Scattered light intensity data including measurement position information linked to each piece of information (intensity measurement value) is acquired.
  • Intensity information is the intensity measurement value of scattered light measured at a certain measurement position, and is indicated by a single numerical value.
  • the measurement position information includes position information in the plane direction (XY plane direction) of the semiconductor substrate 100 and position information in the depth direction (Z direction). Of the measurement position information, the position information in the depth direction is determined based on the light projection conditions and the light reception conditions.
  • the data processing unit 60 classifies according to the intensity of the scattered light L4 based on the data acquired from the signal processing unit 50, and performs data processing for creating a distribution map and histogram of the work-affected layer 102.
  • the control unit 70 controls laser light irradiation and scanning.
  • the data processing unit 60 and the control unit 70 employ, for example, a hardware configuration such as a processor and a storage, and include the light projecting system 10, the light receiving system 20, the stage 30, the signal processing unit 50, and the inspection area setting unit 80. It is desirable that they are configured to be able to communicate with each other via a local area network or the like.
  • Embodiment 1 of the evaluation process will be described below.
  • 5 and 6 are explanatory diagrams of the evaluation step S30 of the evaluation method according to the embodiment.
  • the evaluation step S30 is a step of evaluating the work-affected layer 102 of the semiconductor substrate 100 from the intensity of the scattered light L4 obtained in the measurement step S20. Specifically, by setting an arbitrary area AA on the semiconductor substrate 100 and calculating a statistic based on the intensity of the scattered light L4 for each arbitrary area AA, the process-affected layer 102 introduced into the semiconductor substrate 100 is This is the process of grasping the amount of strain and the state of distribution.
  • the evaluation step S30 includes an area setting step S31 for setting an arbitrary area AA by partitioning the semiconductor substrate 100 with an arbitrary area, and a statistic calculation step for calculating a statistic for each arbitrary area AA based on the intensity of the scattered light L4.
  • S32 a threshold setting step S33 for setting a threshold value for determining the quality of the work-affected layer 102, a mapping step S34 for mapping the statistics in the arbitrary area AA, and analyzing the work-affected layer 102 using the statistics. and an analysis step S35.
  • the area setting step S31 is a step of dividing the measurement data measured in the measurement step S20 into a plurality of sections and setting an arbitrary area AA.
  • the fan-shaped arbitrary area AA is set on the concentric circles, but it can be set in an arbitrary shape and area such as a grid shape or a spiral shape.
  • the statistic calculation step S32 is a step of calculating the statistic such as the average value, median value, and mode of the intensity of the scattered light L4 for each set arbitrary area AA. For example, when the average value is used as the statistic, an integration step S321 of integrating the intensity of the scattered light L4 within the arbitrary area AA, and the integrated value obtained in this integration step S321 and a division step S322 of dividing by the number of acquired data.
  • the integration step S321 is a step of calculating an integrated value of the scattered light L4 within the set arbitrary area AA from the intensity information (intensity measurement value) and the position information of the scattered light L4 linked by the signal processing unit 50. .
  • the division step S322 is a step of obtaining the average value of the set arbitrary area AA range by dividing the integrated value obtained in the accumulation step S321 by the number of acquired data in the arbitrary area of the arbitrary area AA.
  • the threshold setting step S33 is a step of setting a threshold for extracting an unsuitable work-affected layer 102 that adversely affects device manufacturing. It should be noted that multiple thresholds may be set, for example, by setting thresholds that are evenly divided into 256 from the lower limit value to the upper limit value of the statistic, so that the height of the statistic can be expressed in monochrome or color gradation. You can do it.
  • the mapping step S34 is a step of creating a distribution map that visualizes the strain distribution of the work-affected layer 102 .
  • threshold values are set by equally dividing the statistic from the lower limit to the upper limit into 256, it is possible to create a contour diagram that visualizes the strain amount and distribution of the work-affected layer 102. It is possible to visually distinguish a region in which the work-affected layer 102 suitable for manufacturing a device is distributed and a region in which a work-affected layer 102 unsuitable for device manufacturing is distributed.
  • the analysis step S35 is a step of analyzing the quality of the work-affected layer 102 using the results obtained in the measurement step S20.
  • the position parameters of the distribution of statistics at the threshold set in the threshold setting step S33 for example, the mean (arithmetic/geometric/harmonic), the median (quantile/order statistic), the mode , class value, etc.
  • a position parameter extraction step S351 for example, the mean (arithmetic/geometric/harmonic), the median (quantile/order statistic), the mode , class value, etc.
  • a statistical scale parameter of the distribution for example, variance, deviation value, standard deviation, average deviation, median absolute deviation, scale parameter extraction step S352 for extracting a scale parameter extraction step S352, and a position parameter extraction step S351 and/or a scale parameter extraction step S352.
  • a classification step S353 that classifies the quality.
  • FIG. 6 is an explanatory diagram for explaining an example of the analysis step S35 according to the embodiment, and is a histogram in which the horizontal axis is the intensity of the scattered light L4 and the vertical axis is the count number (frequency).
  • the position parameter extraction step S351 is, for example, a step of extracting the intensity (mode value) of the scattered light L4 having the highest frequency in the work-affected layer 102 from among the intensities of the scattered light L4 measured in the measurement step S20. .
  • this mode value the value with the highest count number in the histogram of FIG. 6 can be adopted. By extracting this mode value, it is possible to quantify the quality of the measured work-affected layer 102, and it is possible to grasp how much strain it has compared to other semiconductor substrates. .
  • the scale parameter extraction step S352 is, for example, a step of extracting the half-value width of a chevron-shaped function whose peak is the mode in the histogram of FIG. By extracting this half-value width, it is possible to quantify the variation in the measured process-affected layer 102 of the semiconductor substrate 100, and it is possible to determine how much the variation in the amount of strain is in comparison with other semiconductor substrates. can grasp.
  • the classification step S353 is a step of classifying the work-affected layer 102 based on the extraction results of the position parameter extraction step S351 and/or the scale parameter extraction step S352. For example, the mode obtained by the measurement using the S-polarized laser beam L1, the half width obtained by the measurement using the S-polarized laser beam L1, and the measurement using the P-polarized laser beam L1 The quality of the work-affected layer 102 of the semiconductor substrate 100 measured by plotting on a graph an arbitrary combination of the mode obtained by using the P-polarized laser beam L1 and the half-value width obtained by the measurement using the P-polarized laser beam L1. can be classified (see FIG. 9).
  • the evaluation step S30 has a configuration in which an area setting step S31, a statistic calculation step S32, a threshold value setting step S33, a mapping step S34, and an analysis step S35 are executed by a computer processor. can be adopted.
  • a laser beam L1 is incident from the surface 101 of the semiconductor substrate 100, and the incident light L3 is scattered inside the work-affected layer 102, resulting in scattered light L4.
  • the work-affected layer 102 can be evaluated non-destructively. Therefore, the semiconductor substrate 100 having the work-affected layer 102 that adversely affects the device is discriminated in a non-destructive manner, and after undergoing appropriate processing such as removing the work-affected layer 102, it is sent to the device manufacturing process again. be able to.
  • an S-polarized laser beam L1 is incident from the surface 101 of the semiconductor substrate 100 having the work-affected layer 102, and the scattered light L4 scattered under the surface 101 is It includes a measurement step using S-polarized light to measure the intensity.
  • the classification step S353 of classifying the work-affected layer 102 based on the extraction results of the position parameter extraction step S351 and/or the scale parameter extraction step S352 is performed. include. In this way, by visualizing and quantifying the strain amount and distribution of the work-affected layer 102, it is possible to classify the semiconductor substrates 100 appropriately for device manufacturing.
  • the method for evaluating a work-affected layer according to the present invention, by selecting the polarization of the laser beam L1, it is possible to evaluate the strain amount and distribution of the work-affected layer 102 in the depth direction.
  • the wavelength plate 12 can switch between the S-polarized light and the P-polarized light of the laser light L1. Therefore, the inspection area IA in the depth direction can be easily adjusted for measurement and evaluation without changing the measurement conditions such as the incident angle ⁇ and the wavelength ⁇ .
  • the sensitivity of measurement can be improved by measuring the scattered light L4 including elastic scattering. That is, most of the scattered light L4 generated by scattering inside the work-affected layer 102 is elastic scattering.
  • the present invention can perform highly sensitive measurement by measuring the scattered light L4 so as to include this elastic scattering.
  • the work-affected layer 102 can be mapped at high speed. Specifically, if it is a semiconductor substrate 100 of 6 inches, the entire surface can be mapped within 5 minutes for one substrate.
  • the step of setting an arbitrary area AA (area setting step S31) and calculating the statistic of the arbitrary area AA (statistic calculation step S32) is included. .
  • the process-affected layer 102 that could not be evaluated by the conventional method can be visualized and/or It can be evaluated numerically.
  • the evaluation step S50 is a step of evaluating the work-affected layer 102 of the semiconductor substrate 100 from the intensity of the scattered light L4 obtained in the measurement step S20. Specifically, in the process of grasping the strain amount and distribution of the process-affected layer 102 introduced into the semiconductor substrate 100 by calculating statistics based on a plurality of intensity measurement values included in the scattered light intensity data. be.
  • the intensity measurement value of the scattered light L4 scattered under the surface 101 of the semiconductor substrate 100 which is measured by making the laser light L1 enter from the surface 101 of the semiconductor substrate 100, is correlated with the measurement position information, and the scattered light is obtained.
  • a data acquisition step S51 of acquiring as intensity data a peak specifying step S52 of specifying and labeling intensity measurements that satisfy predetermined criteria, and a plurality of intensity measurements included in the scattered light intensity data of the scattered light L4
  • a strain amount calculation step S54 for further calculating the strain amount under the surface of the semiconductor substrate from the calculated statistic, and the scattered light intensity data of the scattered light L4.
  • the data acquisition step S51 is a step of acquiring the intensity measurement value of the scattered light L4 obtained in the measurement step S20 as scattered light intensity data together with the associated measurement position information.
  • the measurement step S20 as a result of processing the signal obtained by scanning the semiconductor substrate 100 with the laser light L1, a plurality of intensity information (measured intensity values) and a plurality of intensity information (measured intensity values) of the scattered light L4 are obtained. Measurement position information associated with each can be obtained. That is, the scattered light intensity data acquired in the data acquisition step S51 includes at least a plurality of intensity information (measured intensity values) of the scattered light L4 and measurement position information associated with each of the plurality of intensity information (measured intensity values). .
  • incident laser light e.g., P-polarized light
  • Light intensity data and second scattered light intensity data may be obtained.
  • the difference between the penetration characteristics of the first laser beam having the first penetration characteristics and the penetration characteristics of the second laser beam having the second penetration characteristics is the penetration characteristics of each laser beam (polarization characteristics, wavelength, incident angle etc.) or any combination thereof.
  • the peak identification step S52 is the step of identifying and labeling intensity measurements that meet predetermined criteria.
  • the peak identification step S52 is a step of identifying and labeling an intensity measurement value that is greater than a predetermined upper limit value among a plurality of intensity measurement values included in the scattered light intensity data of the scattered light L4.
  • the peak specifying step S52 is based on the measurement position information and the intensity measurement value among the plurality of intensity measurement values included in the scattered light intensity data of the scattered light L4, and the numerical value is discontinuous in light of the measurement position information. It is the process of identifying and labeling the relevant intensity measurements.
  • Such a peak identification step S52 is preferably performed for a plurality of intensity measurement values included in the scattered light intensity data of the scattered light L4 obtained by measuring the semiconductor substrate 100 having the flattened surface.
  • Such a peak identification step S52 is presumed to be derived from an intensity measurement value that does not match the spatial continuity and typical scattered light intensity of the strain located in the work-affected layer 102, that is, due to factors other than strain.
  • the scattered light intensity measurements can be labeled. As a result, it is possible to prevent the use of the intensity measurement value of the scattered light presumed to be derived from factors other than distortion in the subsequent steps, or to reduce the specific gravity of the scattered light.
  • the statistic calculation step S53 is a step of performing statistical processing on a plurality of intensity measurement values included in the scattered light intensity data of the scattered light L4 and calculating the statistic. Further, the statistic calculation step S53 may be a parameter extraction step S53, and the parameter extraction step S53 is a position parameter (for example, an average (arithmetic/geometric/harmonic), median value (quantile/order statistic), mode value, class value, etc.); Scale parameters of multiple intensity measurements included in the scattered light intensity data (e.g., variance, deviation value, standard deviation, mean deviation, median absolute deviation, range, half width, etc. Including one or more selected from) and a scale parameter extraction step S352 to be extracted.
  • a position parameter for example, an average (arithmetic/geometric/harmonic), median value (quantile/order statistic), mode value, class value, etc.
  • Scale parameters of multiple intensity measurements included in the scattered light intensity data e.g., variance, deviation value, standard deviation, mean deviation, median absolute deviation, range, half
  • the intensity of the scattered light L4 having the highest frequency in the work-affected layer 102 is selected from a plurality of intensity measurement values included in the scattered light intensity data of the scattered light L4 measured in the measurement step S20.
  • mode value the value with the highest count number in the histogram of FIG. 6 can be adopted. By extracting this mode value, it is possible to quantify the quality of the measured work-affected layer 102, and it is possible to grasp how much strain it has compared to other semiconductor substrates. .
  • the scale parameter extraction step S532 is, for example, a step of extracting the half-value width of the chevron-shaped function with the mode as the apex in the histogram of FIG. By extracting this half-value width, it is possible to quantify the variation in the measured process-affected layer 102 of the semiconductor substrate 100, and it is possible to determine how much the variation in the amount of strain is in comparison with other semiconductor substrates. can grasp.
  • the statistic calculated in the statistic calculating step S53 may be calculated in association with the measurement position information including the plane direction and the depth direction. This makes it possible to grasp the characteristics of a certain depth and a certain region (or the entire semiconductor substrate 100) in the semiconductor substrate 100 based on the statistics corresponding to the measurement position information.
  • the strain amount calculation step S54 is a step of further calculating the strain amount under the surface of the semiconductor substrate from the calculated statistical amount.
  • the amount of distortion may be calculated by performing some arithmetic processing on the statistic, or the statistic may be regarded as the amount of distortion as it is.
  • the amount of distortion is calculated by performing some arithmetic processing on the statistics calculated in association with the measurement position information including the plane direction and the depth direction, or a value in which the statistics are regarded as the amount of distortion as they are. , so it is associated with the measurement position information including the plane direction and the depth direction.
  • the mapping step S55 is a step of creating a distribution map of measured intensity values based on thresholds for dividing the plurality of measured intensity values from the lower limit to the upper limit included in the scattered light intensity data of the scattered light L4.
  • the mapping step S55 includes a threshold setting step S551.
  • threshold values can be set by equally dividing a plurality of intensity measurement values from the lower limit value to the upper limit value included in the scattered light intensity data of the scattered light L4 into 256.
  • a contour diagram (for example, FIGS. 7 and 8) that visualizes the strain amount and distribution of the work-affected layer 102 can be created.
  • the contour map assists in visually distinguishing a region in which the work-affected layer 102 suitable for device manufacture is distributed and a region in which work-affected layer 102 unsuitable for device manufacture is distributed.
  • the threshold value setting step S551 may not equally divide the calculated statistic from the lower limit value to the upper limit value.
  • the threshold setting step S551 may be a step of setting a threshold that divides the calculated lower limit value of the statistic to a predetermined upper limit value.
  • the threshold setting step S551 in the distribution map of the intensity measurement values that can be created in the mapping step S55, the subsurface strain of the semiconductor substrate 100 that is smaller than the predetermined upper limit value among the calculated statistical amounts is One can note the distribution of relatively small value intensity measurements that are considered relevant.
  • the intensity measurement value exceeding the predetermined upper limit value specified in the peak specifying step S52 is not subject to detection, but the scattered light derived from lattice defects, surface contamination, and scattering derived from surface unevenness. As an intensity measurement taken from the light, it helps to visually exclude it from evaluation.
  • the mapping step S55 applies visual markers to the numerically discontinuous intensity measurements with respect to the measurement locations that were labeled in the peak identification step S52 when creating a distribution plot of the intensity measurements. may be attached.
  • the analysis step S56 is a step of analyzing the quality of the work-affected layer 102 of the semiconductor substrate 100 based on the parameters extracted in the parameter extraction step S53. That is, the analysis step S56 extracts the position parameter (e.g., average (arithmetic/geometric/harmonic), central value (quantile/order statistic), mode, class value, etc.) and/or scale parameters (e.g., variance, deviation, standard deviation, mean deviation, median absolute deviation , range, half width, etc.).
  • position parameter e.g., average (arithmetic/geometric/harmonic), central value (quantile/order statistic), mode, class value, etc.
  • scale parameters e.g., variance, deviation, standard deviation, mean deviation, median absolute deviation , range, half width, etc.
  • FIG. 6 is an explanatory diagram for explaining an example of the analysis step S35 according to the embodiment, and is a histogram in which the horizontal axis is the intensity of the scattered light L4 and the vertical axis is the count number (frequency).
  • the intensity (mode value) of the scattered light L4 with the highest frequency in the work-affected layer 102 is extracted. do.
  • the value with the highest count number in the histogram of FIG. 6 can be adopted.
  • the measured dispersion of the work-affected layer 102 of the semiconductor substrate 100 can be quantified. That is, it is possible to grasp how much the semiconductor substrate 100 has variations in strain amount compared to other semiconductor substrates.
  • the semiconductor substrate 100 may be analyzed from the two viewpoints of the strain amount and its variation, for example, by combining the mode and the half width.
  • the classification step S57 is a step of classifying the work-affected layer 102 of the semiconductor substrate 100 based on the combination of parameters extracted in the position parameter extraction step S531 and/or the scale parameter extraction step S532.
  • the classification step S57 includes a classification criteria creation step S571 of creating in advance classification criteria for the features of the work-affected layer of the semiconductor substrate based on the combination of the extracted parameters.
  • the mode obtained by the measurement using the S-polarized laser beam L1, the half width obtained by the measurement using the S-polarized laser beam L1, and the P-polarized laser beam A classification standard is created by using an arbitrary combination of the mode value obtained by the measurement using the light L1 and the half-value width obtained by the measurement using the P-polarized laser light L1 as the axis of the graph. .
  • the classification step S57 for example, along the classification criteria (axis of the graph) created above, various parameters obtained from a plurality of semiconductor substrates to be evaluated are plotted to process the measured semiconductor substrate 100. A classification of the quality of the altered layer 102 can be made (see FIG. 9).
  • the mode and the half-value width are extracted from the intensity of the scattered light L4 obtained in the measurement step S21 using S-polarized light and the intensity of the scattered light L4 obtained in the measurement step S22 using P-polarized light (position Examples of the results of the parameter extraction step S531 and the scale parameter extraction step S532) and the classification of the quality of the work-affected layer 102 of the semiconductor substrate 100 (classification step S57) are shown.
  • FIG. 9A shows a 6-inch 4H-SiC wafer manufactured by Company A, a 6-inch 4H-SiC wafer manufactured by Company B, a 6-inch 4H-SiC wafer manufactured by Company C, and a 6-inch 4H-SiC wafer manufactured by Company D. , are subjected to the measurement step S20 and the evaluation step S50, and the horizontal axis is the mode of the S-polarized light, and the vertical axis is the mode of the P-polarized light.
  • the mode of the work-affected layer 102 near the surface 101 measured with S-polarized light and the mode of the work-affected layer 102 near the bulk layer 103 measured with P-polarized light are can be used to compare and contrast with a plurality of semiconductor substrates 100 to evaluate the quality of the work-affected layer 102 including the depth direction.
  • the plurality of semiconductor substrates 100 are subjected to process deterioration. Features in the depth direction of layers can be classified and evaluated.
  • FIG. 9B shows a 6-inch 4H-SiC wafer manufactured by Company A, a 6-inch 4H-SiC wafer manufactured by Company B, a 6-inch 4H-SiC wafer manufactured by Company C, and a 6-inch 4H-SiC wafer manufactured by Company D. , are subjected to the measurement step S20 and the evaluation step S30, and the horizontal axis is the mode of the S-polarized light, and the vertical axis is the half width of the P-polarized light.
  • the mode of the work-affected layer 102 near the surface 101 measured with S-polarized light and the half-value width of the work-affected layer 102 near the bulk layer 103 measured with P-polarized light are The quality of the work-affected layer 102 including uniformity can be evaluated by comparing/contrasting it with a plurality of semiconductor substrates 100 using the method.
  • a plurality of semiconductor substrates 100 are subjected to processing-affected layers. Homogeneity characteristics can be classified and evaluated.
  • the evaluation process S50 includes a data acquisition process S51, a peak identification process S52, a statistic calculation process S53, a distortion amount calculation process S54, a mapping process S55, an analysis process S56, and a classification process.
  • a configuration can be adopted in which S57 and , are executed by a processor of a computer.
  • the semiconductor substrate manufacturing method includes a step of evaluating the work-affected layer 102 that adversely affects the device. Specifically, it is characterized by including a step of making a laser beam L1 incident inside the semiconductor substrate 100 and evaluating the work-affected layer 102 of the semiconductor substrate 100 based on the intensity of the scattered scattered light L4.
  • a process-affected layer 102 is introduced into the semiconductor substrate 100 during the slicing, grinding, and polishing.
  • the present invention evaluates the work-affected layer 102 described above, and can be employed after the slicing process. Also, the present invention can be employed after the grinding process. Also, the present invention can be employed after a polishing step.
  • the method of manufacturing a semiconductor substrate according to the embodiment includes a measurement step S20 of measuring scattered light L4 scattered inside the semiconductor substrate 100 by causing a laser beam L1 to enter from the surface 101 of the semiconductor substrate 100, and an intensity of the scattered light L4. and an evaluation step S30 of evaluating the work-affected layer 102 of the semiconductor substrate 100 based on.
  • the semiconductor substrate manufacturing method according to the embodiment may include a work-affected layer removing step S40 of removing the work-affected layer 102 of the semiconductor substrate 100 subsequent to the evaluation step S30.
  • the work-affected layer removing step S40 is a step of removing the work-affected layer 102 determined to be unsuitable in the evaluation step S30 or S50. Examples of methods for removing the work-affected layer 102 include chemical mechanical polishing (CMP) and etching.
  • CMP chemical mechanical polishing
  • the evaluation step S50 the statistic of a plurality of intensity measurement values included in the scattered light intensity data of the scattered light L4 obtained in the statistic calculation step S53, the amount of distortion calculated from the statistic, and the distribution of the intensity measurement values. It is determined whether the work-affected layer 102 is unsuitable for device manufacturing based on a distribution map or the like that visualizes the . For example, when the strain amount is used to determine whether the work-affected layer 102 is suitable or unsuitable, the work-affected layer 102 corresponding to the measurement position information including the plane direction and the depth direction associated with the strain amount equal to or greater than a predetermined threshold is judged as unsuitable. You can judge.
  • Chemical-mechanical polishing is a method of polishing using both the mechanical action of a polishing pad and the chemical action of a slurry. Any etching technique may be used as long as it is used for etching the semiconductor substrate 100 .
  • a thermal etching method such as a SiVE method or a hydrogen etching method, a potassium hydroxide melt, a chemical solution containing hydrofluoric acid, a potassium permanganate-based chemical solution, a tetrahydroxide
  • a wet etching method using a chemical solution containing methylammonium can be exemplified. It should be noted that any chemical solution that is normally used in wet etching can be used.
  • the method for manufacturing a semiconductor substrate according to the present invention it is possible to provide the semiconductor substrate 100 suitable for manufacturing devices. In other words, it is possible to discriminate and provide the semiconductor substrate 100 that does not have the work-affected layer 102 that deteriorates the yield of the device. As a result, device yield can be improved.
  • the method of manufacturing a semiconductor substrate according to the present embodiment it is possible to reuse the semiconductor substrate 100 having the work-affected layer 102 that reduces the yield of the device. That is, since the work-affected layer 102 of the semiconductor substrate 100 can be evaluated non-destructively, a semiconductor substrate suitable for manufacturing a device can be obtained through the work-affected layer removing step S40 for removing the problem work-affected layer 102. 100 can be manufactured.
  • the same semiconductor substrate 100 is subjected to the measurement step S21 using the S-polarized laser beam L1 and the P-polarized laser beam L1.
  • the measurement step S22 used was performed.
  • ⁇ Evaluation step S30> As shown in FIG. 5, fan-shaped arbitrary areas AA were set radially from the center of the semiconductor substrate 100 (area setting step S31). Next, the intensity of the scattered light L4 in the range corresponding to the position of the set arbitrary area AA is integrated (integration step S321). Next, the integrated value is divided by the number of acquired data of the arbitrary area AA to calculate the average value for each arbitrary area AA (division step S322). Finally, the average value calculated in each arbitrary area AA is used as a population, and threshold values are set by equally dividing the range from the lower limit value to the upper limit value into 256 (threshold setting step S33), and the strain amount and distribution of the work-affected layer 102 are set. was created (mapping step S34).
  • FIGS. 7 and 8 are distribution maps of the work-affected layer 102 obtained in the evaluation step S30.
  • FIGS. 7(a) and 7(b) are distribution diagrams obtained by the measurement step S21 using S-polarized light in which the S-polarized laser beam L1 is incident.
  • FIGS. 8A and 8B are distribution diagrams obtained by the measurement step S22 using P-polarized laser light L1 incident thereon.
  • 7A and 8A are the same substrate, and FIGS. 7B and 8B are the same substrate.
  • the processing history of the semiconductor substrate 100 can be estimated based on the distribution map of the processing-affected layers at different depths. For example, from the distribution map of the work-affected layer 102 at different depths obtained based on the measurement step S21 using S-polarized light and the measurement step S22 using P-polarized light, the work-affected layer 102 is introduced into the semiconductor substrate 100. It is possible to estimate the machining history.
  • the pattern appearing in FIG. It can be understood that the strain amount and the distribution state of the altered layer 102 are reflected. Since the pattern in FIG. 7 closely resembles the traces of processing during grinding and polishing, it is considered that the processing-affected layer 102 introduced due to machining is reflected.
  • the semiconductor substrate 100 has the surface 101 that has been planarized with high precision by chemical mechanical polishing, the work-affected layer 102 introduced by the process involving machining under the surface 101 is can be confirmed to exist. Furthermore, by selecting the polarized light (S polarized light or P polarized light) of the laser light L1, it is possible to obtain the strain amount and distribution of the work-affected layer 102 at any depth.
  • S polarized light or P polarized light polarized light
  • the evaluation of the work-affected layer 102 in the example is non-destructive. Therefore, the evaluated 4H-SiC wafer can be sent to the device manufacturing process without being discarded.
  • the mode and the half-value width are extracted from the intensity of the scattered light L4 obtained in the measurement step S21 using S-polarized light and the intensity of the scattered light L4 obtained in the measurement step S22 using P-polarized light (position Parameters extraction step S351 and scale parameter extraction step S352), and an example of the results of classifying the quality of the work-affected layer 102 of the semiconductor substrate 100 (classification step S353) are shown.
  • FIG. 9A shows a 6-inch 4H-SiC wafer manufactured by Company A, a 6-inch 4H-SiC wafer manufactured by Company B, a 6-inch 4H-SiC wafer manufactured by Company C, and a 6-inch 4H-SiC wafer manufactured by Company D. , are subjected to the measurement step S20 and the evaluation step S30, and the horizontal axis is the mode of S-polarized light, and the vertical axis is the mode of P-polarized light.
  • the mode of the work-affected layer 102 near the surface 101 measured with S-polarized light and the mode of the work-affected layer 102 near the bulk layer 103 measured with P-polarized light are can be used to compare and contrast with a plurality of semiconductor substrates 100 to evaluate the quality of the work-affected layer 102 including the depth direction.
  • the depth of the work-affected layer for a plurality of semiconductor substrates 100 is Directional features can be classified and evaluated.
  • FIG. 9B shows a 6-inch 4H-SiC wafer manufactured by Company A, a 6-inch 4H-SiC wafer manufactured by Company B, a 6-inch 4H-SiC wafer manufactured by Company C, and a 6-inch 4H-SiC wafer manufactured by Company D. , are subjected to the measurement step S20 and the evaluation step S30, and the horizontal axis is the mode of the S-polarized light, and the vertical axis is the half width of the P-polarized light.
  • the mode of the work-affected layer 102 near the surface 101 measured with S-polarized light and the half-value width of the work-affected layer 102 near the bulk layer 103 measured with P-polarized light are The quality of the work-affected layer 102 including uniformity can be evaluated by comparing/contrasting it with a plurality of semiconductor substrates 100 using the method.
  • the uniformity of the work-affected layer can be determined for a plurality of semiconductor substrates 100.
  • Features can be classified and evaluated.
  • REFERENCE SIGNS LIST 100 Semiconductor substrate 101 Surface 102 Damaged layer 1021 Oxide layer 1022 Strain layer 103 Bulk layer 10 Projection system 11 Laser output unit 12 Wave plate (optical adjuster) 20 light receiving system 21 objective lens 22 imaging lens 23 beam splitter 24 light receiving sensor 25 slit (light selector) 30 stage 40 housing 50 signal processing unit 60 data processing unit 70 control unit L1 laser light L2 reflected light L3 incident light L4 scattered light PD penetration depth PL penetration length AA arbitrary area IA inspection area S10 cleaning process S20 measurement process S21 S polarization measurement step S22 measurement step using P-polarized light S30 evaluation step

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本発明の解決しようとする課題は、半導体基板を破壊することなく加工変質層を評価することができる新規の技術を提供することにあり、この課題を解決する手段として、本発明は、表面の下に加工変質層を有する半導体基板の表面から侵入特性を有するレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定する測定工程と、前記測定工程にて得られた散乱光の強度に基づいて、前記加工変質層の評価を行う評価工程と、を含む。

Description

加工変質層の評価方法及び評価システム
 本発明は、加工変質層の評価方法及び評価システムに関する。
 通常、半導体基板(いわゆるウエハ)は、半導体材料のインゴットをスライスし、表面を研削・研磨することにより形成される。この半導体基板の表面には、スライス時や研削・研磨時に導入された結晶の歪みや傷等を有する表面層(以下、加工変質層という。)が存在する。この加工変質層は、デバイスの製造工程においてデバイスの歩留まりを低下させる要因となるため、除去することが好ましい。
 従来、この加工変質層の有無や程度を評価する手法としては、破壊検査が一般的であった。例えば、極めて加工が難しい材料に分類される化合物半導体材料の炭化ケイ素(SiC)においては、半導体基板を劈開した断面を透過型電子顕微鏡(Transmission Electron Microscope:TEM)や走査電子顕微鏡(Scanning Electron Microscope:SEM)の電子線後方散乱回折(Electron Back Scattered Diffraction Pattern:EBSD)法を用いて観察することにより、加工変質層の評価が行われている(特許文献1参照)。
特開2020-017627号公報
 上述したように、従来における加工変質層の評価は、半導体基板を劈開する破壊検査が主流であった。そのため、加工変質層を評価した半導体基板は、デバイスの製造工程に戻すことができないという問題があった。また、破壊検査は、加工変質層の評価を局所的に行う検査であり、半導体基板面内の加工変質層の分布を広範囲にわたって評価することが難しいという問題があった。
 また、半導体基板の加工変質層の評価に、ラマン分光法を採用することが種々検討されている。一方で、ラマン分光法は、レイリー散乱等の弾性散乱に比して微弱なラマン散乱を測定する必要があるため、一枚の半導体基板の全面を評価するのには時間を要する。そのため、ラマン分光法を加工変質層の評価手法として製造工程に導入する際には、スループットが低下してしまうという問題があった。
 上述した問題に鑑み、本発明の解決しようとする課題は、半導体基板を破壊することなく加工変質層を評価することができる新規の技術を提供することにある。
 また、本発明の解決しようとする課題は、半導体基板を破壊することなく、加工変質層の分布、より具体的には、加工変質層に含まれる歪み量、その分布を高速に評価することができる新規の技術を提供することにある。
 上述した課題を解決する本発明は、表面の下に加工変質層を有する半導体基板の表面から侵入特性を有するレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定する測定工程と、前記測定工程にて得られた散乱光の強度に基づいて、前記加工変質層の評価を行う評価工程と、を含む、半導体基板の加工変質層の評価方法である。
 本発明の好ましい形態では、前記半導体基板は、炭化ケイ素基板である。
 本発明の好ましい形態では、前記加工変質層は、歪みを含み、前記評価工程は、前記散乱光の強度に基づいて、歪み量を算出することを含む。
 前記測定工程は、前記半導体基板の面方向にわたって、所定の深さの前記散乱光の強度を、前記面方向の位置情報と関連付けて取得し、前記評価工程は、前記歪み量を、前記位置情報に関連付けて算出することを含む。
 本発明の好ましい形態では、前記レーザー光は、前記半導体基板のバンドギャップよりも大きい光子エネルギーを有する。
 本発明の好ましい形態では、前記レーザー光は、前記半導体基板のバンドギャップの約101~122%の光子エネルギーを有する。
 本発明の好ましい形態では、加工変質層を有する半導体基板の表面からS偏光のレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定するS偏光を用いた測定工程を含む。
 本発明の好ましい形態では、加工変質層を有する半導体基板の表面からP偏光のレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定するP偏光を用いた測定工程を含む。
 本発明の好ましい形態では、加工変質層を有する半導体基板の表面からS偏光のレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定するS偏光を用いた測定工程と、前記表面からP偏光のレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定するP偏光を用いた測定工程を含む、加工変質層の評価方法である。
 本発明の好ましい形態では、前記半導体基板は、平坦化された表面を有する。
 本発明の好ましい形態では、前記レーザー光は、前記半導体基板の表面の法線に対して40°≦θ≦80°の入射角度θで前記半導体基板に入射する。
 本発明の好ましい形態では、前記半導体基板の表面からの深さ方向の検査エリアの情報を取得する検査エリア情報取得工程を含み、前記測定工程は、前記検査エリアに対して前記レーザー光が侵入するように、前記レーザー光の侵入特性を含む投光条件を取得する、投光条件取得工程と、前記検査エリアで発生した散乱光を選択的に測定する光選択工程を有する。
 本発明において、“選択的に測定する”とは、検査エリアで発生した散乱光のみを測定することに限定されない。当該用語は、前記検査エリアで発生した散乱光の強度を識別できる程度に、非検査エリアで発生した散乱光の一部を検出しないことを含む。
 本発明の好ましい形態では、前記光選択工程は、前記検査エリアから外れた非検査エリアで発生した散乱光を遮蔽することを含む。
 本発明の好ましい形態では、前記光選択工程は、半導体基板の裏面で発生した反射光及び/又は散乱光を遮蔽することを含む。
 本発明の好ましい形態では、前記測定工程は、前記半導体基板を回転させながら前記レーザー光を走査する走査工程を含む。
 本発明の好ましい形態では、前記測定工程は、弾性散乱を含む前記散乱光を測定する工程である。
 また、上述した課題を解決する本発明は、測定対象である半導体基板を保持可能なステージと、前記半導体基板に対して、侵入特性を有するレーザー光を照射可能な投光系と、前記半導体基板の表面の下で散乱した散乱光を受光可能な受光系と、前記レーザー光を用いて測定された前記散乱光の強度に基づいて、加工変質層の評価を行うデータ処理部と、を備える、加工変質層の評価システムである。
 本発明の好ましい形態では、前記加工変質層は、歪みを含み、前記データ処理部は、前記散乱光の強度に基づいて、歪み量を算出することを含む。
 本発明の好ましい形態では、前記投光系は、前記半導体基板の表面全体にわたって、前記レーザー光を照射し、前記受光系は、所定の深さで散乱した前記散乱光の強度を、前記半導体基板の面方向にわたって、前記面方向の位置情報と関連付けて取得し、前記データ処理部は、算出した前記歪み量を、前記位置情報と関連付けて記録することを含む。
 本発明の好ましい形態では、前記投光系は、前記半導体基板のバンドギャップよりも大きい光子エネルギーを有する前記レーザー光を照射する。
 本発明の好ましい形態では、前記投光系は、前記半導体基板のバンドギャップの約101~122%の光子エネルギーを有する前記レーザー光を照射する。
 本発明の好ましい形態では、測定対象である半導体基板を保持可能なステージと、S偏光及び/又はP偏光のレーザー光を照射可能な投光系と、前記半導体基板の表面の下で散乱した散乱光を受光可能な受光系と、S偏光及び/又はP偏光のレーザー光を用いて測定された前記散乱光の強度に基づいて加工変質層の評価を行うデータ処理部と、を備える。
 本発明の好ましい形態では、前記投光系は、前記レーザー光を、前記半導体基板の表面の法線に対して40°≦θ≦80°の入射角度θで前記半導体基板に対して照射する。
 本発明の好ましい形態では、前記半導体基板の表面からの深さ方向の検査エリアを設定する検査エリア設定部を含み、前記投光系は、前記検査エリアに対してレーザー光が侵入するように、少なくとも侵入特性を含む投光条件を決定し、前記受光系は、前記検査エリアで発生した散乱光を選択的に測定するように、受光条件を決定する。
 本発明において、“選択的に測定する”とは、検査エリアで発生した散乱光のみを測定することに限定されない。当該用語は、前記検査エリアで発生した散乱光の強度を識別できる程度に、非検査エリアで発生した散乱光の一部を検出しないことを含む。
 本発明の好ましい形態では、前記投光系は、前記レーザー光の前記侵入特性を調整する光調整器を有し、前記受光系は、検査エリアで発生した散乱光を選択的に測定する光選択器を有する。
 本発明の好ましい形態では、前記光選択器は、前記検査エリアから外れた非検査エリアで発生した散乱光を遮蔽するスリットを含む。
 本発明の好ましい形態では、前記光選択器は、半導体基板の裏面で発生した反射光及び/又は散乱光を遮蔽するスリットを含む。
 本発明の好ましい形態では、前記半導体基板は、炭化ケイ素基板である。
 本発明の好ましい形態では、前記データ処理部は、前記散乱光の強度に基づいて算出された統計量の位置母数及び/又は尺度母数の抽出を行う。
 また、上述した課題を解決する本発明は、半導体基板の表面からレーザー光を入射させて測定した、前記半導体基板の表面の下で散乱した散乱光の強度測定値を、測定位置情報に関連付けて散乱光強度データとして取得するデータ取得工程と、前記散乱光強度データに含まれる複数の強度測定値の統計量を算出する統計量算出工程と、前記統計量に基づいて、前記半導体基板の加工変質層の評価を行う評価工程と、を含む、半導体基板の評価方法である。
 本発明の好ましい形態では、前記半導体基板は、炭化ケイ素基板である。
 本発明の好ましい形態では、前記データ取得工程は、異なる侵入特性を有する複数のレーザー光を入射させて測定した、複数種類の前記強度測定値を、前記半導体基板の面方向および深さ方向を含む測定位置情報にそれぞれ関連付けて複数種類の散乱光強度データとして取得することを含み、前記統計量算出工程は、面方向および深さ方向を含む測定位置情報に関連付けて前記強度測定値の統計量を算出することを含む。
 本発明の好ましい形態では、前記レーザー光は、偏光特性を有する。
 本発明の好ましい形態では、前記レーザー光は、S偏光及び/又はP偏光である。
 本発明の好ましい形態では、前記評価工程は、前記統計量から、前記半導体基板の表面の下の歪み量を算出する、歪み量算出工程を含む。
 本発明の好ましい形態では、前記評価工程は、所定の上限値より大きい強度測定値を特定してラベル付けするピーク特定工程を更に含む。
 本発明の好ましい形態では、前記半導体基板は、平坦化された表面を有し、前記評価工程は、前記測定位置情報及び前記強度測定値に基づいて、測定位置情報に照らして数値が不連続的な前記強度測定値を特定してラベル付けするピーク特定工程を更に含む。
 本発明の好ましい形態では、前記強度測定値の下限から上限までを複数に分割する閾値に基づいて前記強度測定値の分布図を作成するマッピング工程を含む。
 本発明の好ましい形態では、前記マッピング工程は、前記歪み量が、段階的に識別できるように、複数の閾値に基づいて前記強度測定値の分布図を作成することを含む。
 本発明の好ましい形態では、前記評価工程は、複数の前記強度測定値の母数を抽出する母数抽出工程と、抽出した前記母数に基づいて前記半導体基板を分析する分析工程と、を含む。
 本発明の好ましい形態では、前記母数抽出工程は、複数の前記強度測定値の位置母数を抽出する位置母数抽出工程を含む。
 本発明の好ましい形態では、前記位置母数抽出工程は、複数の前記強度測定値の最頻値を抽出する工程である。
 本発明の好ましい形態では、前記母数抽出工程は、複数の前記強度測定値の尺度母数を抽出する尺度母数抽出工程を含む。
 本発明の好ましい形態では、前記尺度母数抽出工程は、複数の前記強度測定値の半値幅を抽出する工程である。
 本発明の好ましい形態では、前記母数抽出工程は、一の半導体基板について、複数の前記強度測定値から複数種類の前記母数を抽出する工程であり、前記分析工程は、複数種類の前記母数の組合せに基づいて前記半導体基板を分析する。
 本発明の好ましい形態では、前記分析工程は、前記位置母数及び尺度母数の組合せに基づいて前記半導体基板を分析する。
 本発明の好ましい形態では、前記位置母数及び尺度母数の組合せに基づいて複数の半導体基板を分類する、分類工程を含む。
 本発明の好ましい形態では、評価対象の複数の半導体基板の分析により得られた前記位置母数及び尺度母数の組合せに応じて、半導体基板の加工変質層の特徴の分類基準を作成しておく、分類基準作成工程を更に含み、前記分類工程は、前記位置母数及び尺度母数の組合せに基づいて、前記評価対象の複数の半導体基板を前記分類基準に照らして分類する、分類工程を含む。
 本発明の好ましい形態では、前記データ取得工程は、第1の侵入特性を有する第1のレーザー光を入射させて測定した散乱光の第1の強度測定値と、第2の侵入特性を有する第2のレーザー光を入射させて測定した散乱光の第2の強度測定値とを、前記半導体基板の面方向を含む測定位置情報にそれぞれ関連付けた第1の散乱光強度データ及び第2の散乱光強度データを取得することを含み、前記統計量算出工程は、前記測定位置情報に関連付けられた前記第1の強度測定値と前記第2の強度測定値とから、それぞれ第1統計量と第2統計量とを算出することを含み、前記母数抽出工程は、前記算出された第1統計量と第2統計量とから、それぞれ第1母数と第2母数とを抽出し、前記分析工程は、前記第1母数及び第2母数の組合せに基づいて前記半導体基板を分析する。
 本発明の好ましい形態では、前記第1のレーザー光はS偏光であり、前記第2のレーザー光はP偏光である。
 評価対象の複数の半導体基板の分析により得られた前記第1母数及び第2母数の組合せに応じて、半導体基板の加工変質層の特徴の分類基準を作成しておく、分類基準作成工程を更に含み、前記分析工程は、前記第1母数及び第2母数の組合せに基づいて、前記評価対象の複数の半導体基板を前記分類基準に照らして分類する、分類工程を含む。
 本発明の好ましい形態では、前記測定工程にて得られた散乱光の強度に基づいて、前記加工変質層の評価を行う評価工程を含む。
 本発明の好ましい形態では、前記評価工程は、前記散乱光の強度に基づいて算出された統計量の分布図を作製するマッピング工程を有する。
 本発明の好ましい形態では、前記評価工程は、前記散乱光の強度に基づいて算出された統計量の位置母数を抽出する位置母数抽出工程を有する。
 本発明の好ましい形態では、前記位置母数抽出工程は、最頻値を抽出する工程である。
 本発明の好ましい形態では、前記評価工程は、前記散乱光の強度に基づいて算出された統計量の尺度母数を抽出する尺度母数抽出工程を有する。
 本発明の好ましい形態では、前記尺度母数抽出工程は、半値幅を抽出する工程である。
 また、上述した課題を解決する本発明は、半導体基板の酸化層と歪み層の境界領域において発生した散乱光の強度に基づいて加工変質層を評価する、加工変質層の評価方法である。
 また、上述した課題を解決する本発明は、半導体基板の歪み層とバルク層の境界領域において発生した散乱光の強度に基づいて加工変質層を評価する、加工変質層の評価方法である。
 また、上述した課題を解決する本発明は、半導体基板の酸化層と歪み層の境界領域において発生した散乱光の強度と、前記半導体基板の歪み層とバルク層の境界領域において発生した散乱光の強度と、に基づいて加工変質層を評価する、加工変質層の評価方法である。
 また、本発明は、上述した何れかの半導体基板の評価方法又は評価システムにより、半導体基板の加工変質層を評価する工程と、前記評価の結果、所定の歪み量を含む層を特定する特定工程と、前記特定された層を除去する除去工程を含む、半導体基板の製造方法に関する。
 開示した技術によれば、半導体基板を破壊することなく加工変質層を評価することができる新規の技術を提供することができる。
 また、開示した技術によれば、半導体基板を破壊することなく、加工変質層の分布を高速に評価することができる新規の技術を提供することができる。
 他の課題、特徴および利点は、図面および特許請求の範囲と共に取り上げられる際に、以下に記載される発明を実施するための形態を読むことにより明らかになるであろう。
実施の形態にかかる評価方法を説明する説明図である。 実施の形態にかかる評価方法を説明する説明図である。 実施の形態にかかる評価方法で用いる検査装置のブロック図である。 実施の形態にかかる評価方法の測定工程の説明図である。 実施の形態にかかる評価方法の評価工程の説明図である。 実施の形態にかかる評価方法の評価工程の説明図である。 実施例にかかる測定結果を説明する説明図である。 実施例にかかる測定結果を説明する説明図である。 実施例にかかる分析の例を説明する説明図である。 実施の形態にかかる評価システムを説明する説明図である。 実施の形態にかかる評価システムを説明する説明図である。
 本発明の一態様は、半導体基板の加工変質層の評価方法である。加工変質層の評価方法は、好ましくは、歪みの評価方法である。加工変質層の評価方法は、より好ましくは、歪み量の評価方法である。
 本発明において、加工変質層とは、機械的加工により導入された変質を含む層をいう。
 本発明の加工変質層の評価方法における検出対象は、半導体基板の表面の下に位置する歪みである。この歪みは、通常、半導体基板の加工により導入される。この検出対象とされるべき歪みは、その程度によって半導体デバイス製造の後工程に悪影響を与えうるものであり、通常、半導体デバイス製造の後工程に悪影響を与えうる程度の歪みは、半導体基板の表面の下の深さ1μm~20μm、1μm~10μm、1μm~8μm、1μm~6μm、の深さ範囲に位置する。よって、言い換えれば、本発明の評価方法における加工変質層及び深さ方向の検査エリアは、半導体基板の表面の下の深さ~20μm、~10μm、~8μm、~6μm、の深さ範囲である。
 歪みとは、理想的な結晶格子を基準とした場合の、実際の結晶格子の基準からのずれを指すものである。また、歪み量とは、その程度を指す値である。
 本発明の加工変質層の評価方法は、半導体基板を対象として、対象の歪み量や、その分布、又はその均一性を評価することを含む。
 すなわち、本発明の半導体基板の加工変質層の評価方法は、対象基板の歪み量の測定、測定値の可視化、測定値を用いた分析を含む、歪み量の評価方法である。
 以下に添付図面を参照して、この発明にかかる加工変質層の評価方法及び評価システムの好適な実施の形態を詳細に説明する。本発明の技術的範囲は、添付図面に示した実施の形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、適宜変更が可能である。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
《加工変質層の評価方法》
 図1は、実施の形態にかかる加工変質層の評価方法について説明する説明図である。
 本発明にかかる加工変質層の評価方法は、表面101よりも下に存在する加工変質層102で散乱した散乱光L4の強度に基づいて、加工変質層102を評価することを特徴とする。具体的には、投光系10から照射したレーザー光L1を半導体基板100の表面101から内部に入射させる。半導体基板100の内部に入射された入射光L3が加工変質層102にて散乱することにより散乱光L4が生じる。この散乱光L4を受光系20で測定し、散乱光L4の強度に基づいて加工変質層102の評価を行う。
 散乱光L4には、表面散乱光、内部散乱光が含まれうる。表面散乱光には、表面付着物由来の散乱光、表面凹凸由来の散乱光、格子欠陥由来の散乱光が含まれうる。内部散乱光には、格子欠陥由来の散乱光、内部歪み由来の散乱光が含まれうる。
 本発明の加工変質層の評価方法における検出対象は、内部散乱光のうちの、内部歪み由来の散乱光である。
 このため、内部歪み由来の散乱光以外の、表面付着物由来の散乱光、表面凹凸由来の散乱光、格子欠陥由来の散乱光を含む、検出対象外の散乱光は、適切な方法でその発生及び/又はその検出が抑制されることが好ましい。
 ただし、散乱光L4は、内部歪み由来の散乱光の強度が判別可能な範囲で、検出対象外の散乱光を含んでもよい。
 半導体基板100は、スライス工程、研磨工程、研削工程の少なくとも一つが含まれる工程で製造された半導体材料である。これらの工程を経て製造される半導体基板100としては、シリコン(Si)基板を例示できる。上述したスライス工程、研磨工程、研削工程においては、デバイスの製造において悪影響を与える加工変質層102が導入され得る。特に、加工が難しい材料に分類される化合物半導体材料は、加工変質層102がデバイスに悪影響を与えることが近年の研究により明らかになってきた。
 本発明にかかる加工変質層の評価方法は、炭化ケイ素(SiC)基板、窒化ガリウム(GaN)基板、窒化アルミニウム(AlN)基板、酸化ガリウム(Ga)基板、サファイア基板等の化合物半導体材料基板の加工変質層102の評価に好適である。
 半導体基板100は、化学機械研磨等により平坦化された表面101と、スライス工程・研削工程・研磨工程等の機械加工を含む工程により導入された加工変質層102と、バルク層103と、を有している。なお、加工変質層102は、図1に示すように、半導体基板100の表面101の下に導入された層であり、酸化層1021と、歪み層1022と、を含む。
 また、別の観点では、半導体基板100の表面101の下は、明確に層と境界が分かれているわけではなく、内部に行くほど歪みの程度が小さくなる加工変質層102が、バルク層103との境界が曖昧な状態で、連続的に分布している(図11)。
 言い換えれば、加工変質層102は、比較的大きな歪み量を持つ層のことを指す概念であり、バルク層103は、比較的小さな、又は無視できる程度の歪み量を持つ層のことを指す概念であって、両者を明確に分ける境界は存在しない、という観点もある。
 表面101は、化学機械研磨等の平坦化処理により平坦化されている。定量的に、表面101は、算術平均粗さ(Ra)が0.5nm以下の面を含む。好ましくは、表面101は、算術平均粗さ(Ra)が0.4nm以下、0.3nm以下、0.2nm以下の面を含む。
 レーザー光L1は、半導体基板100の表面101から内部に入射する。即ち、表面101は、レーザー光L1が入射する境界面である。
 よって、半導体基板100が、平坦化処理によって平坦化された表面101を有することで、表面101の凹凸に起因する散乱光が発生しにくくなる、または、表面101で発生する散乱光の強度が低くなる。これにより、散乱光L4において、表面101の下の加工変質層102で発生した散乱光の割合が大きくなる。
 半導体基板100の表面101は、少なくとも、表面101で発生した散乱光が、加工変質層102で発生した散乱光の検出に障害とならない程度の平坦性とすることで、閾値やマッピングによる加工変質層102の歪み評価が可能となる。
 言い換えれば、平坦化された表面101は、表面凹凸由来の散乱光の発生を抑制する、又は、表面凹凸由来の散乱光の強度を低減させる効果を有する。これにより、散乱光L4において、検出対象ではない表面凹凸由来の散乱光の割合を減らすことができる。
 図2は、レーザー光L1の偏光と加工変質層102の関係について説明する説明図である。図2(a)は、S偏光のレーザー光L1を半導体基板100に照射した場合を説明する説明図である。図2(b)は、P偏光のレーザー光L1を半導体基板100に照射した場合を説明する説明図である。
 本発明にかかる加工変質層の評価方法は、加工変質層102を有する半導体基板100の表面101からS偏光のレーザー光L1を入射させ、表面101の下で散乱した散乱光L4の強度を測定するS偏光を用いた測定工程を含む(図2(a)参照)。なお、S偏光は、レーザー光L1の電場が入射面に対して垂直方向に振動しており、同条件で照射されたP偏光と比べて透過率が低い。このため、入射光L3の総量及び有するエネルギー等を考慮すると、S偏光はP偏光と比べて相対的に浅い部分で発生した散乱光が検出されやすく、S偏光は加工変質層102の浅い部分の歪みの測定に適している。
 具体的に、S偏光は、基板表面~10μm、~8μm、~6μm又は~4μmの深さ範囲に位置する歪みの測定に適している。
 S偏光のレーザー光L1を用いた場合には、より表面101に近い酸化層1021と歪み層1022の境界領域において散乱光L4が発生しているものと考えられる。
 すなわち、本発明にかかる加工変質層の評価方法は、酸化層1021と歪み層1022の境界領域において発生した散乱光L4の強度に基づいて加工変質層102を評価する方法であると考えられる。なお、ここで言う境界領域は、酸化層1021と歪み層1022の界面をふくむ。
 別の観点では、本発明にかかる加工変質層の評価方法は、加工変質層102を有する半導体基板100の表面101からS偏光のレーザー光L1を入射させた場合に、表面101の下、深さ~10μm程度の深さ範囲にて発生した散乱光L4の強度に基づいて加工変質層102を評価する方法である。
 また、本発明にかかる加工変質層の評価方法は、半導体基板100の表面101からP偏光のレーザー光L1を入射させ、表面101の下で散乱した散乱光L4の強度を測定するP偏光を用いた測定工程を含む(図2(b)参照)。なお、P偏光は、レーザー光L1の電場が入射面に対して平行方向に振動しており、同条件で照射されたS偏光と比べて透過率が高い。このため、入射光L3の総量及び有するエネルギー等を考慮すると、P偏光はS偏光と比べて相対的に深い部分で発生した散乱光が検出されやすく、P偏光は加工変質層102の深い部分の歪みの測定に適している。
 具体的に、P偏光は、基板表面~47μm、~30μm、~20μm又は~10μmの範囲に位置する歪みの測定に適している。
P偏光のレーザー光L1を用いた場合には、酸化層1021よりも下層に存在する歪み層1022とバルク層103の境界領域において散乱光L4が発生しているものと考えられる。
 すなわち、本発明にかかる加工変質層の評価方法は、歪み層1022とバルク層103の境界領域において発生した散乱光L4の強度に基づいて加工変質層102を評価する方法であると考えられる。なお、ここで言う境界領域は、歪み層1022とバルク層103の界面をふくむ。
 別の観点では、本発明にかかる加工変質層の評価方法は、加工変質層102を有する半導体基板100の表面101からP偏光のレーザー光L1を入射させた場合に、表面101の下、深さ~47μm程度の深さ範囲にて発生した散乱光L4の強度に基づいて加工変質層102を評価する方法である。
 S偏光のレーザー光L1を用いた場合の深さ方向の検査エリアIAは、基板表面~10μm、~8μm、~6μm又は~4μmの深さ範囲に含まれるように調整されうる。
 P偏光のレーザー光L1を用いた場合の深さ方向の検査エリアIAは、は、基板表面~47μm、~30μm、~20μm又は~10μmの深さ範囲に含まれるように調整されうる。
 レーザー光L1を用いた場合の深さ方向の検査エリアIAは、レーザー光L1の偏光特性や波長特性、半導体基板100への入射角度等を含む侵入特性に応じて変化する。
 即ち、レーザー光L1の侵入特性を調整することで、レーザー光L1を用いた場合の深さ方向の検査エリアIAを調整することができる。
 また、本発明にかかる加工変質層の評価方法は、上述した測定工程にて得られた散乱光L4の強度の結果に基づいて、加工変質層102の評価を行う評価工程を含む。この評価工程は、例えば、S偏光及び/又はP偏光を用いた測定において得られた散乱光L4の強度から統計量を算出し、可視化・数値化することで加工変質層102の評価を行う工程である。
 実施の形態にかかる加工変質層の評価方法は、半導体基板100の表面を洗浄する洗浄工程S10と、半導体基板100の加工変質層102にレーザー光L1を入射させて散乱した散乱光L4の強度を測定する測定工程S20と、この散乱光L4の強度に基づいて加工変質層102を評価する評価工程S30と、を含み得る。
 以下、本発明の実施の形態に沿って、各工程を詳細に説明する。
〈洗浄工程S10〉
 洗浄工程S10は、半導体基板100の表面に付着した有機物汚染やパーティクル汚染、酸化物層、イオン汚染等により、レーザー光L1が半導体基板100の表面101で散乱する要因を排除する工程である。特に、半導体基板100の表面にパーティクルが付着している場合は、加工変質層102で発生する散乱光L4よりも強い散乱が生じる。そのため、加工変質層102の測定を行う前には、パーティクル汚染等が除去されていることが望ましい。
 言い換えれば、洗浄工程S10は、表面付着物由来の散乱光の発生を抑制する、又は、表面付着物由来の散乱光の強度を低下させる効果を有する。これにより、散乱光L4において、検出対象ではない表面付着物由来の散乱光の割合を減らすことができる。
 洗浄工程S10の手法としては、半導体基板100の表面101に付着した有機物汚染やパーティクル汚染、酸化物層、イオン汚染の少なくとも何れか一つを除去可能な手法であれば採用することができる。例えば、一般的なRCA洗浄(NHOH,H,HO)、酸洗浄(HCl,HF)などの化学洗浄、バブルやブラシなどによる物理的洗浄を採用することができる。その他、半導体基板100の表面101を洗浄可能な手法であれば当然に採用することができる。
 以上、実施の形態にかかる洗浄工程S10について説明した。なお、本発明にかかる加工変質層の評価方法は、洗浄工程S10を含まない形態をも例示することができる。すなわち、半導体基板100の表面101が十分に清浄な場合には、洗浄工程S10を行わず、後述する測定工程S20及び評価工程S30を含むようにして加工変質層102の評価を行っても良い。
〈測定工程S20〉
 測定工程S20は、図1に示すように、評価システムの投光系10から照射され半導体基板100の表面101から入射した入射光L3を加工変質層102の内部で散乱させ、この散乱させた散乱光L4を受光系20で測定する工程である。そのため、半導体基板100の表面101は化学機械研磨等により十分に平坦化されていることが望ましい。言い換えれば、測定工程S20は、化学機械研磨後の表面101に対して行うことが望ましい。
本実施の形態にかかる測定工程S20は、半導体基板100の表面101の法線Nに対して傾斜した入射角度θでレーザー光L1を入射させる工程である。このように入射角度θを設けて投光系10から照射されたレーザー光L1は、一部が半導体基板100の表面101で正反射して反射光L2となり、一部が半導体基板100の内部に入射して入射光L3となる。さらに、この入射光L3が加工変質層102にて散乱することにより散乱光L4が生じる。
 反射光L2は、レーザー光L1の入射角度θと同角度で正反射し、散乱光L4に比して高強度となる。本発明は散乱光L4の強度に基づいて加工変質層102を評価する方法である。そのため、散乱光L4を精度良く測定するには、反射光L2が受光センサー24に入光することを抑制する必要がある。例えば、反射光L2を避けるように受光系20を配置する手法や、反射光L2の光路上に遮光テープを配置する等して、受光センサー24への入光を制限する手法を採用することができる。
 本発明で測定する散乱光L4は、弾性散乱を含む。すなわち、非弾性散乱に比して高強度な弾性散乱を含む散乱光L4を測定することにより、測定の感度を向上させることができ、高速な測定を実現することができる。
 測定工程S20は、S偏光を用いた測定工程S21と、P偏光を用いた測定工程S22と、を含み得る。S偏光とP偏光とでは、発生した散乱光の検出されやすさが散乱光の発生深さに応じて異なるため、レーザー光L1の偏光を選択することで、加工変質層102の測定領域を変更することができる。すなわち、S偏光を用いた測定工程S21においては、表面101寄りの加工変質層102の散乱光L4を測定することができると考えられる。一方で、P偏光を用いた測定工程S22においては、バルク層103寄りの加工変質層102の散乱光L4を測定することができると考えられる。
 なお、レーザー光L1の半導体基板100への侵入深さPDの制御に関しては、測定対象である半導体基板100の物性や加工変質層102の厚みに応じて、適切な入射角度θを当然に選択することができる。
 ここで、レーザー光L1の入射角度θは、その下限において40°≦θ、45°≦θ又は50°≦θ、その上限においてθ≦80°、θ≦75°又はθ≦70°、を満たすことが好ましい。
 入射角度θが半導体基板100のブリュースター角付近(ブリュースター角±約10°)の場合、P偏光が半導体基板100のより深くまで侵入し、表面の下の深い部分の歪みを検知できるため、より好ましい。
 実施の形態にかかる加工変質層の評価に用いる評価システムは、半導体基板100にレーザー光L1を入射させ加工変質層102で散乱した散乱光L4の強度を測定可能な装置構成であれば、当然に採用することができる。
 以下、図1ないし図4を参照して、実施の形態で用いる評価システムの一例について説明する。
(評価システムの実施形態1)
 図3は、実施の形態にかかる評価方法で用いる評価システムのブロック図である。
 実施の形態にかかる評価システムは、レーザー光L1を照射する投光系10と、散乱光L4を受光する受光系20と、測定対象である半導体基板100が設置されるステージ30と、投光系10及び受光系20が設置される筐体40と、受光系20で測定した信号の信号処理を行う信号処理部50と、データ処理を行うデータ処理部60と、各種制御を行う制御部70と、を備える。
 言い換えれば、実施の形態にかかる評価システムは、測定対象である半導体基板100を保持可能なステージ30と、S偏光及び/又はP偏光のレーザー光L1を照射可能な投光系10と、半導体基板100の表面101の下で散乱した散乱光L4を受光可能な受光系20と、S偏光及びP偏光を用いて測定された散乱光L4の強度に基づいて加工変質層102の評価を行うデータ処理部60と、を備える。
 投光系10は、レーザー出力部11と、波長板12と、を有する。この投光系10は、レーザー光L1が半導体基板100の表面の法線Nに対して傾斜した入射角度θで入射するよう筐体40に取付けられている。
 なお、投光系10は、入射角度θを調整できるように、筐体40に取り付けられてもよい。
 レーザー出力部11は、レーザー光L1の発生源であり、例えば、He-Neレーザー等のガスレーザー、半導体レーザー及びYAGレーザー等の固体レーザー等を採用することができる。
 波長板12は、レーザー出力部11で発生したレーザー光L1に対して、波長の分離、微調整、楕円率の調整、偏光の回転等の調整を行う。この波長板12では、レーザー光L1のS偏光とP偏光の切り替えを行うことができ、入射角度θや波長λ等の測定条件を変更することなく、レーザー光L1の侵入特性を制御することができる。この波長板12は、測定対象である半導体基板100の材料や条件に応じて適切な材料や構成が選択される。
 即ち、波長板12は、レーザー光L1に対して、波長の分離、微調整、楕円率の調整、偏光の回転等の調整を行い、レーザー光L1の侵入特性を制御する、光調整器の一態様である。
 光調整器によってレーザー光L1の侵入特性を制御することで、評価システムは、入射光L3の侵入深さPD及び/又は深さ方向の検査エリアIAを調整して、半導体基板100の任意の深さ範囲に位置する歪みを選択的に検出することが可能となる。
 光調整器として、波長板12に限らない様々な光学素子(フィルタ、レンズ、ミラー等)又はその組み合わせが用いられ得、レーザー光L1の侵入特性(偏光特性、波長、入射角度等)を調整してもよい。
 レーザー光L1の波長は、受光系20において散乱光L4が検出可能な強度であるために、半導体基板100のバンドギャップよりも大きい光子エネルギーを有していることが望ましい。すなわち、レーザー光L1の波長λは、「λ[nm]≦1239.8/バンドギャップ[eV]」の関係式を満たすことが望ましい。
 具体的には、測定対象が4H-SiCである場合には、380nm以下の波長に設定されることが望ましい(λ[nm]≦1239.8/3.26[eV])。測定対象がGaNである場合には、365nm以下の波長に設定されることが望ましい(λ[nm]≦1239.8/3.39[eV])。
 レーザー光L1が有する光子エネルギーの下限値としては、好ましくは半導体基板100のバンドギャップの101%、さらに好ましくはバンドギャップの103%、さらに好ましくはバンドギャップの105%、さらに好ましくはバンドギャップの107%である。
 レーザー光L1が有する光子エネルギーの上限値としては、好ましくは半導体基板100のバンドギャップの122%、さらに好ましくはバンドギャップの120%、さらに好ましくはバンドギャップの115%、さらに好ましくはバンドギャップの112%、さらに好ましくはバンドギャップの110%である。
 上記した下限値と上限値の範囲で定義される光子エネルギーを有するレーザー光L1は、加工変質層、特に評価対象となる歪みを含む範囲に、十分なエネルギーを保持した状態で侵入し、加工変質層、特に歪みに起因する散乱光を検出可能な強度で生じさせる。
 レーザー光L1の波長(レーザー光L1が有する光子エネルギー)と、歪みが検出可能な深さの関係は、例えば、“Penetration depths in the ultraviolet for 4H、 6H and 3C silicon carbide at seven common laser pumping wavelengths”(S.G Sridhara, T.J Eperjesi, R.P Devaty, W.J Choyke,Materials Science and Engineering: B Volumes 61・62, 30 July 1999, Pages 229-233)に記載の吸収係数を考慮することで、計算することが可能である。
 例えば、レーザー光L1が、4H-SiCのバンドギャップの122%の光子エネルギーを有する場合(レーザー光L1の波長が313nmの場合)、歪みが検出可能な深さは、4μm程度と見積もることができる。
 また例えば、レーザー光L1が、4H-SiCのバンドギャップの112%の光子エネルギーを有する場合(レーザー光L1の波長が340nmの場合)、歪みが検出可能な深さは、16μm程度と見積もることができる。
 また例えば、レーザー光L1が、4H-SiCのバンドギャップの107%の光子エネルギーを有する場合(レーザー光L1の波長が355nmの場合)、歪みが検出可能な深さは、50μm程度と見積もることができる。
 レーザー光L1の強度は、半導体基板100を透過しない強さに設定されていることが望ましい。すなわち、入射光L3の侵入深さPDが半導体基板100の厚み以下となるよう設定されていることが望ましい。
 受光系20は、対物レンズ21と、結像レンズ22と、ビームスプリッター23と、受光センサー24と、スリット25と、を有する。この受光系20は、反射光L2が入光しないよう、入射角度θとは異なる測定角度φで筐体40に取付けられていることが望ましい。
 受光系20の測定角度φは、その下限において20°≦φ、25°≦φ又は30°≦φ、その上限においてφ≦70°、φ≦65°又はφ≦60°、を満たすことが好ましい。
 このような測定角度φは、半導体基板100の表面101付近の浅い部分で発生した散乱光を受光系20に入光しにくくするため、表面101の下の歪みを精度よく検出できる。
 受光系20は、測定角度φを調整できるように、筐体40に取り付けられてもよい。
 ビームスプリッター23は、キューブ型のビームスプリッターを採用することが望ましい。受光センサー24は、散乱光L4の強度を電気信号に変換可能な構成であれば良い。例えば、光電子増倍管やフォトダイオード等を採用することができる。スリット25は、レーザー光L1の検査エリアを確定させるために配置されている。
 ここで、レーザー光L1の検査エリアは、入射光L3の侵入深さPDの範囲内で半導体基板100の表面101の下の任意の深さ範囲から確定される。
 即ち、スリット25は、半導体基板100の表面101の下で発生した散乱光のうち、検査エリアで発生した散乱光L4を、選択的に受光センサー24に入光させる、光選択器の一態様である。
 言い換えれば、スリット25は、半導体基板100の表面101の下で発生した散乱光のうち、検査エリアから外れた非検査エリア(半導体基板100における、検査エリアよりも浅い部分、深い部分、又は裏面等)で発生した散乱光を受光センサー24に入光させないように遮蔽する、光選択器の一態様である。
 半導体基板100の表面101の下のより深いところほど、入射光L3、散乱光L4は減衰する。このため、光選択器が、検査エリアから外れた非検査エリアで発生した散乱光を遮蔽することで、検査エリアで発生した散乱光L4を選択的に検出できる。
 このことは、表面凹凸由来の散乱光の検出強度を低下させる効果も有する。これにより、散乱光L4において、検出対象ではない表面凹凸由来の散乱光の割合を減らすことができる。
 光選択器として、スリット25に限らない様々な光学素子(フィルタ、レンズ、ミラー等)又はその組み合わせが用いられ得る。
(評価システムの実施形態2)
 ここで、受光系20の別の例と、光選択の詳細について、図10を用いて説明する。
 図11に示すように、受光系20は、対物レンズ21と、結像レンズ22と、ビームスプリッター23と、受光センサー24と、スリット25と、を有する。
 レーザー光L1は、半導体基板100の表面101で屈折し、散乱と減衰を繰り返しながら、侵入長PLの長さまで侵入する(入射光L3)。このとき、入射光L3が到達した最深部分の表面101からの距離が侵入深さPDとなる。
 レーザー光L1の入射により、表面101で散乱した表面散乱光L41と、加工変質層102の浅い部分で散乱した散乱光L42と、加工変質層102の深い部分で散乱した散乱光L43と、を含む散乱光が生じ得る。
 各散乱光L41、L42、L43は、対物レンズ21及び結像レンズ22を通過して、スリット25に到達する。
 スリット25は、光軸O上で散乱した散乱光を遮蔽するように、光軸Oに対してずれた(オフセットした)配置となっている。この例では、スリット25が、表面散乱光L41を遮蔽して、表面散乱光L41が受光センサー24に到達しないようにしている。
 また、スリット25は、散乱光L42よりも浅い部分で発生した散乱光を遮蔽するような位置及び/又は幅で配置されている。また、スリット25は、散乱光L43よりも深い部分で発生した散乱光を遮蔽するような位置及び/又は幅で配置されている。
 即ち、この例において、スリット25は、その位置及び/又は幅を調整することで、散乱光L42及びL43の発生箇所を含む深さ範囲を検査エリアIAに設定し、この範囲で発生した散乱光を選択的に受光センサー24へと到達させることができる。
 また、対物レンズ21及び結像レンズ22は、スリット25側における散乱光L42及び散乱光L43の到達点同士の間隔を、スリット25に対して垂直に広げている。
 言い換えれば、対物レンズ21及び結像レンズ22は、検査エリアIAをより狭めることができるため、精度の高い測定が可能となる。
 対物レンズ21及び結像レンズ22の倍率は、合わせて約1~100倍程度が好ましく、特に、約10倍程度が望ましい。
 上記のように、光選択器は、特定の深さ範囲で発生した散乱光L4を選択的に受光センサー24に入光させることができるものであればよい。
 スリット25の場合、その位置を調整することで、検査エリアIAの深さ方向の位置を調整することができる。このとき、スリット25の位置に合わせて受光センサー24の位置も調整してもよい。また、スリット25の場合、幅を調整することで、検査エリアIAの幅を調整することができる。
 即ち、光選択器の調整によって、入射光L3の侵入深さPDの範囲内で、半導体基板100の表面101の下の任意の深さ範囲に位置する歪みを選択的に検出することが可能となる。
 さらに、レーザー光L1の侵入特性(偏光特性、波長、入射角度θ等)を変化させることで入射光L3の侵入深さPDを変化させることができるため、レーザー光L1の侵入特性及び受光条件(検出角度、スリット25の位置や幅、対物レンズ21及び結像レンズ22の倍率等)をそれぞれ調整して任意に組み合わせることで、検査エリアIAの位置や幅を任意に調整することが可能となる。
(評価システムの実施形態3)
 ここで、受光系20の更に別の例について、図11を用いて説明する。
 この例は、入射光L3が、半導体基板100の裏面104に到達してしまう場合を考えている。
 この例で、スリット25は、散乱光L43よりも深いところで発生した散乱光(又は反射光)を遮蔽するような位置と幅で設けられている。
 特に、スリット25は、入射光L3が裏面104において反射又は散乱したことで生じた光L5を遮蔽し、受光センサー24に到達させないようにする。
 一方で、この例において、スリット25は、散乱光L42よりも浅いところで発生した散乱光については遮蔽しないような位置と幅で設けられている。
 即ち、図11で説明された表面散乱光L41等については、受光センサー24に到達するようになっている。
 ただし、基板表面の洗浄処理や平坦化処理によって、表面散乱光L41の発生要因を可能な限り排除することで、表面散乱光L41の検出強度を抑制することができるため、散乱光L42やL43等の内部散乱光の強度を判別可能に検出する事が可能となる。
 また、受光系20は、レーザー光L1の波長に対応したバンドパスフィルター26を有することが好ましい。
 バンドパスフィルター26により、受光系20は、主に弾性散乱によって生じた散乱光を選択的に検出することが可能となる。
 図4は、実施の形態にかかる評価方法の測定工程S20の説明図である。
 ステージ30は、図4に示すように、測定対象である半導体基板100が設置され、半導体基板100の中心を軸に水平回転可能に構成されている。また、ステージ30は、筐体40(投光系10及び受光系20)に対し、半導体基板100を平行移動可能に構成されている。このように、半導体基板100を回転させながら平行移動させることにより、レーザー光L1が半導体基板100の広範囲(若しくは全面)を走査可能なよう構成されている。
 なお、ステージ30を移動させる形態を示したが、投光系10及び受光系20を移動させることで、半導体基板100上をレーザー光L1が走査できるよう構成しても良い。
 データ処理部60は、深さ方向の検査エリアの情報(深さ方向の測定位置情報)を検査エリア設定部80から取得し(検査エリア情報取得工程)、これに基づいて、検査エリアにレーザー光L1が侵入するような投光条件(レーザー光L1の侵入特性等)及び/又は受光条件(検出角度、スリット25の位置や幅、対物レンズ21及び結像レンズ22の倍率等)を含むデータを取得する(投光条件取得工程)。
 あるいは、使用者が、検査エリア設定部80にて、深さ方向の検査エリアの情報(深さ方向の測定位置情報)を予め入力しておくことで、データ処理部60が、このデータに基づいて投光条件及び/又は受光条件を含むデータを取得してもよい。
 制御部70は、データ処理部60から投光条件及び/又は受光条件を含むデータを取得し、このデータに基づいて、検査エリアにレーザー光L1が侵入するように、且つ、検査エリアで発生した散乱光を選択的に測定する(光選択工程)ように、投光系10、受光系20、ステージ30を含む、評価システムの各構成を制御する。
 信号処理部50は、受光センサー24(光電子増倍管)により測定された電気信号(アナログ信号)を増幅した後にデジタル信号に変換する。また、信号処理部50は、ステージ30のエンコーダ情報により半導体基板100の面方向の位置情報を取得し、散乱光L4の強度情報(強度測定値)と位置情報を紐づける。
 データ処理部60は、信号処理部50から、半導体基板100上をレーザー光L1が走査して得られた信号の処理結果として、散乱光L4の複数の強度情報(強度測定値)及び複数の強度情報(強度測定値)の各々に紐づいた測定位置情報を含む散乱光強度データを取得する。
 強度情報(強度測定値)は、ある測定位置で測定された散乱光の強度測定値であり、一つの数値で示される。
 測定位置情報は、半導体基板100の面方向(XY平面方向)の位置情報と、深さ方向(Z方向)の位置情報と、を含む。
 測定位置情報のうち、深さ方向の位置情報は、投光条件と受光条件に基づいて定まる。
 データ処理部60は、信号処理部50から取得したデータに基づいて、散乱光L4の強度に応じて分類し、加工変質層102の分布図やヒストグラムを作製するためのデータ処理を行う。また、制御部70は、レーザー光の照射や走査の制御を行う。
 このデータ処理部60や制御部70は、例えば、プロセッサやストレージ等のハードウェア構成が採用され、投光系10、受光系20、ステージ30、信号処理部50、検査エリア設定部80を含め、ローカルエリアネットワーク等を介して相互通信可能なよう構成されていることが望ましい。
〈評価工程の実施形態1〉
 以下、評価工程の実施形態1について説明する。
 図5及び図6は、実施の形態にかかる評価方法の評価工程S30の説明図である。
 評価工程S30は、測定工程S20にて得られた散乱光L4の強度から、半導体基板100の加工変質層102の評価を行う工程である。具体的には、半導体基板100に任意エリアAAを設定し、この任意エリアAAごとに散乱光L4の強度に基づいて統計量を算出することで、半導体基板100に導入された加工変質層102の歪み量や分布状況を把握する工程である。
 評価工程S30は、半導体基板100を任意の面積で区画した任意エリアAAを設定するエリア設定工程S31と、この任意エリアAAごとに散乱光L4の強度に基づいて統計量を算出する統計量算出工程S32と、加工変質層102の良否を判別するための閾値を設定する閾値設定工程S33と、任意エリアAAにおける統計量をマッピングするマッピング工程S34と、統計量を用いて加工変質層102を分析する分析工程S35と、を含み得る。
 エリア設定工程S31は、測定工程S20にて測定した測定データを複数の区画に分割して、任意エリアAAを設定する工程である。図5においては、同心円上に扇状の任意エリアAAを設定したが、例えば格子状や渦巻状等、任意の形状・面積で設定することができる。
 統計量算出工程S32は、設定した任意エリアAAごとに、散乱光L4の強度の平均値や中央値、最頻値等の統計量を算出する工程である。例えば、統計量として平均値を採用する場合には、任意エリアAA内の散乱光L4の強度を積算する積算工程S321と、この積算工程S321で得られた積算値を任意エリアAAの任意エリア内の取得データ数で割る除算工程S322と、を有する。
 積算工程S321は、信号処理部50にて紐づけられた散乱光L4の強度情報(強度測定値)及び位置情報から、設定した任意エリアAA内の散乱光L4の積算値を算出する工程である。
 除算工程S322は、積算工程S321にて得られた積算値を任意エリアAAの任意エリア内の取得データ数で割ることにより、設定した任意エリアAA範囲の平均値を得る工程である。
 閾値設定工程S33は、デバイスの製造において悪影響を与える不適な加工変質層102を抽出するための閾値を設定する工程である。なお、この閾値は複数設定しても良く、例えば、統計量の下限値から上限値までを均等に256分割した閾値を設けるなどして、モノクロ若しくはカラーのグラデーションで統計量の高低を表現できるようにしても良い。
 マッピング工程S34は、加工変質層102の歪みの分布状況を視覚化した分布図を作成する工程である。例えば、統計量の下限値から上限値までを均等に256分割した閾値を設定した場合には、加工変質層102の歪み量や分布状況を可視化したコンタ図を作成することができ、デバイスの製造に好適な加工変質層102が分布する領域と、デバイスの製造に不適な加工変質層102が分布する領域と、を視覚的に判別することができる。
 分析工程S35は、測定工程S20にて得られた結果を用いて、加工変質層102の品質を分析する工程である。この分析工程S35は、閾値設定工程S33において設定した閾値における統計量の分布の位置母数(例えば、平均(算術・幾何・調和)、中央値(分位数・順序統計量)、最頻値、階級値、等から選ばれる1以上を含む)を抽出する位置母数抽出工程S351と、分布の統計的な尺度母数(例えば、分散、偏差値、標準偏差、平均偏差、中央絶対偏差、範囲、半値幅、等から選ばれる1以上を含む)を抽出する尺度母数抽出工程S352と、位置母数抽出工程S351及び/又は尺度母数抽出工程S352の結果に基づいて加工変質層102の品質を分類する分類工程S353と、を含み得る。
 図6は、実施の形態にかかる分析工程S35の一例を説明する説明図であり、横軸を散乱光L4の強度、縦軸をカウント数(頻度)とするヒストグラムである。
 位置母数抽出工程S351は、例えば、測定工程S20で測定した散乱光L4の強度の中から、加工変質層102において最も頻度の高い散乱光L4の強度(最頻値)を抽出する工程である。この最頻値は、図6のヒストグラムにおいて、カウント数が最も高い値を採用することができる。この最頻値を抽出することにより、測定した加工変質層102の品質を数値化することができ、他の半導体基板と比較してどの程度の歪み量を有しているかを把握することができる。
 尺度母数抽出工程S352は、例えば、図6のヒストグラムにおいて、最頻値を頂点とする山形の関数の半値幅を抽出する工程である。この半値幅を抽出することにより、測定した半導体基板100の加工変質層102のバラツキを数値化することができ、他の半導体基板と比較してどの程度の歪み量のバラツキを有しているかを把握することができる。
 分類工程S353は、位置母数抽出工程S351及び/又は尺度母数抽出工程S352の抽出結果に基いて加工変質層102の分類分けを行う工程である。例えば、S偏光のレーザー光L1を用いた測定にて得られた最頻値、S偏光のレーザー光L1を用いた測定にて得られた半値幅、P偏光のレーザー光L1を用いた測定にて得られた最頻値、P偏光のレーザー光L1を用いた測定にて得られた半値幅、を任意の組合せでグラフにプロットすることにより、測定した半導体基板100の加工変質層102の品質の分類を行うことができる(図9参照)。
 なお、実施の形態にかかる評価工程S30は、エリア設定工程S31と、統計量算出工程S32と、閾値設定工程S33と、マッピング工程S34と、分析工程S35と、をコンピュータのプロセッサに実行させる構成を採用することができる。
 本発明にかかる加工変質層の評価方法によれば、半導体基板100の表面101からレーザー光L1を入射させ、この入射した入射光L3が加工変質層102の内部で散乱することにより生じる散乱光L4を測定することにより、加工変質層102を非破壊で評価することができる。そのため、デバイスに悪影響を与える加工変質層102を有した半導体基板100を非破壊のまま判別して、加工変質層102を除去する等の適切な処理を経た上で、再度デバイスの製造工程に流すことができる。
 また、本発明にかかる加工変質層の評価方法によれば、加工変質層102を有する半導体基板100の表面101からS偏光のレーザー光L1を入射させ、表面101の下で散乱した散乱光L4の強度を測定するS偏光を用いた測定工程を含む。S偏光のレーザー光L1を入射させることにより、表面101近傍に存在する加工変質層102の歪み量や分布状況を測定することができる。
 また、本発明にかかる加工変質層の評価方法によれば、位置母数抽出工程S351及び/又は尺度母数抽出工程S352の抽出結果に基いて加工変質層102の分類分けを行う分類工程S353を含む。このように、加工変質層102の歪み量や分布状況を可視化・数値化することにより、デバイスの製造に適切な半導体基板100の分類を行うことができる。
 また、本発明にかかる加工変質層の評価方法によれば、レーザー光L1の偏光を選択することにより、加工変質層102の深さ方向の歪み量や分布状況を評価することができる。レーザー光L1のS偏光とP偏光との切り替えは波長板12にて行うことができる。そのため、入射角度θや波長λ等の測定条件を変更することなく、深さ方向の検査エリアIAを容易に調整して測定・評価することができる。
 また、本発明にかかる加工変質層の評価方法によれば、弾性散乱を含む散乱光L4を測定することにより、測定の感度を向上させることができる。すなわち、加工変質層102の内部で散乱することにより生じる散乱光L4は、そのほとんどが弾性散乱である。本発明は、この弾性散乱を含めるよう散乱光L4を測定することにより、高感度な測定を行うことができる。
 また、本発明にかかる加工変質層の評価方法によれば、半導体基板100を回転させながらレーザー光L1を走査することにより、加工変質層102を高速にマッピングすることができる。具体的には、6インチの半導体基板100であれば、一枚5分以内に全面をマッピングすることができる。
 また、本実施の形態にかかる加工変質層の評価方法によれば、任意エリアAAを設定し(エリア設定工程S31)その任意エリアAAの統計量を算出する(統計量算出工程S32)工程を含む。これにより、半導体基板100の広範囲に存在する加工変質層102の歪み量と分布状況を評価することができる。言い換えれば、測定データの一部を取捨選択するのではなく、全ての測定データを積算して活用することで、従来の手法では評価することが出来なかった加工変質層102を視覚化及び/又は数値化して評価することができる。
〈評価工程の実施形態2〉
 以下、評価工程の実施形態2について説明する。
 図6~9は、実施の形態にかかる評価方法の評価工程S50の説明図である。
 評価工程S50は、測定工程S20にて得られた散乱光L4の強度から、半導体基板100の加工変質層102の評価を行う工程である。具体的には、散乱光強度データに含まれる複数の強度測定値に基づいて統計量を算出することで、半導体基板100に導入された加工変質層102の歪み量や分布状況を把握する工程である。
 評価工程S50は、半導体基板100の表面101からレーザー光L1を入射させて測定した、半導体基板100の表面101の下で散乱した散乱光L4の強度測定値を、測定位置情報に関連付けて散乱光強度データとして取得するデータ取得工程S51と、所定の基準を満たす強度測定値を特定してラベル付けするピーク特定工程S52と、散乱光L4の散乱光強度データに含まれる複数の強度測定値に基づいて統計量を算出する統計量算出工程S53と、算出された統計量から半導体基板の表面の下の歪み量を更に算出する歪み量算出工程S54と、散乱光L4の散乱光強度データに含まれる複数の強度測定値の分布図を作成するマッピング工程S55と、散乱光L4の散乱光強度データに含まれる複数の強度測定値の母数を用いて半導体基板の加工変質層102を分析する分析工程S56と、分類基準に照らして評価対象の複数の半導体基板を分類する分類工程S57と、を含み得る。
 データ取得工程S51は、測定工程S20にて得られた散乱光L4の強度測定値を、これに紐づく測定位置情報と共に散乱光強度データとして取得する工程である。
 測定工程S20では、半導体基板100上をレーザー光L1が走査して得られた信号の処理結果として、散乱光L4の複数の強度情報(強度測定値)及び複数の強度情報(強度測定値)の各々に紐づいた測定位置情報が得られる。
 即ち、データ取得工程S51が取得する散乱光強度データは、散乱光L4の複数の強度情報(強度測定値)及び複数の強度情報(強度測定値)の各々に紐づいた測定位置情報を少なくとも含む。
 データ取得工程S51は、第1の侵入特性を有する第1のレーザー光(例えば、S偏光)を入射させて測定した散乱光の第1の強度測定値と、第2の侵入特性を有する第2のレーザー光(例えば、P偏光)を入射させて測定した散乱光の第2の強度測定値とを、前記半導体基板の面方向及び深さ方向を含む測定位置情報にそれぞれ関連付けた第1の散乱光強度データ及び第2の散乱光強度データを取得してもよい。
 このとき、第1の侵入特性を有する第1のレーザー光と、第2の侵入特性を有する第2のレーザー光の侵入特性の違いは、各レーザー光の侵入特性(偏光特性、波長、入射角度等)又はその任意の組合せに基づくものであってよい。
 ピーク特定工程S52は、所定の基準を満たす強度測定値を特定してラベル付けする工程である。
 例えば、ピーク特定工程S52は、散乱光L4の散乱光強度データに含まれる複数の強度測定値のうち、所定の上限値より大きい強度測定値を特定してラベル付けする工程である。
 また例えば、ピーク特定工程S52は、散乱光L4の散乱光強度データに含まれる複数の強度測定値のうち、測定位置情報及び強度測定値に基づいて、測定位置情報に照らして数値が不連続的な強度測定値を特定してラベル付けする工程である。このようなピーク特定工程S52は、平坦化された表面を有する半導体基板100の測定で得られた散乱光L4の散乱光強度データに含まれる複数の強度測定値に対して行われることが好ましい。
 このようなピーク特定工程S52は、加工変質層102に位置する歪みの、空間的連続性や、典型的な散乱光強度、にそぐわない強度測定値、即ち、歪み以外の要因に由来すると推測される散乱光の強度測定値を、ラベル付けしておくことができる。
 これにより、後の工程で、歪み以外の要因に由来すると推測される散乱光の強度測定値を使用しないようにする、又は、その比重を小さくする等の処理を行うことができる。
 統計量算出工程S53は、散乱光L4の散乱光強度データに含まれる複数の強度測定値に対して統計的処理を行い、統計量を算出する工程である。
 また、統計量算出工程S53は、母数抽出工程S53であってもよく、母数抽出工程S53は散乱光L4の散乱光強度データに含まれる複数の強度測定値の位置母数(例えば、平均(算術・幾何・調和)、中央値(分位数・順序統計量)、最頻値、階級値、等から選ばれる1以上を含む)を抽出する位置母数抽出工程S531と、散乱光L4の散乱光強度データに含まれる複数の強度測定値の尺度母数(例えば、分散、偏差値、標準偏差、平均偏差、中央絶対偏差、範囲、半値幅、等から選ばれる1以上を含む)を抽出する尺度母数抽出工程S352と、を含む。
 位置母数抽出工程S531は、例えば、測定工程S20で測定した散乱光L4の散乱光強度データに含まれる複数の強度測定値の中から、加工変質層102において最も頻度の高い散乱光L4の強度測定値(最頻値)を抽出する工程である。この最頻値は、図6のヒストグラムにおいて、カウント数が最も高い値を採用することができる。この最頻値を抽出することにより、測定した加工変質層102の品質を数値化することができ、他の半導体基板と比較してどの程度の歪み量を有しているかを把握することができる。
 尺度母数抽出工程S532は、例えば、図6のヒストグラムにおいて、最頻値を頂点とする山形の関数の半値幅を抽出する工程である。この半値幅を抽出することにより、測定した半導体基板100の加工変質層102のバラツキを数値化することができ、他の半導体基板と比較してどの程度の歪み量のバラツキを有しているかを把握することができる。
 なお、統計量算出工程S53で算出される統計量は、面方向および深さ方向を含む測定位置情報に関連付けて算出されてもよい。
 これにより、半導体基板100における、ある深さ、ある領域(半導体基板100の全体でもよい)の特徴を、その測定位置情報に対応する統計量に基づいて把握することができる。
 歪み量算出工程S54は、算出された統計量から半導体基板の表面の下の歪み量を更に算出する工程である。
 歪み量は、統計量に対して何らかの演算処理をすることで算出されてもよく、統計量をそのまま歪み量とみなしてもよい。
 歪み量は、面方向および深さ方向を含む測定位置情報に関連付けて算出された統計量に対して何らかの演算処理をすることで算出される、又は、統計量をそのまま歪み量とみなされた値であるため、面方向および深さ方向を含む測定位置情報に関連付けられている。
 マッピング工程S55は、散乱光L4の散乱光強度データに含まれる複数の強度測定値の下限から上限までを複数に分割する閾値に基づいて強度測定値の分布図を作成する工程である。マッピング工程S55は、閾値設定工程S551を含む。
 閾値設定工程S551は、例えば、散乱光L4の散乱光強度データに含まれる複数の強度測定値の下限値から上限値までを均等に256分割した閾値を設けることができる。
 このような場合には、マッピング工程S55において、加工変質層102の歪み量や分布状況を可視化したコンタ図(例えば、図7、図8)を作成することができる。
 コンタ図は、デバイスの製造に好適な加工変質層102が分布する領域と、デバイスの製造に不適な加工変質層102が分布する領域と、を視覚的に判別することを助ける。
 なお、閾値設定工程S551は、算出された統計量の下限値から上限値までを均等に分割するものでなくてもよい。
 例えば、閾値設定工程S551は、算出された統計量の下限値から所定の上限値までを分割する閾値を設定する工程であってもよい。このような閾値設定工程S551によれば、マッピング工程S55で作成されうる強度測定値の分布図において、算出された統計量のうち所定の上限値よりも小さい、半導体基板100の表面下の歪みに関係すると考えられる比較的小さい値の強度測定値の分布に注目することができる。
 言い換えれば、このような閾値設定工程S551は、ピーク特定工程S52によって特定された所定の上限値を超える強度測定値は検出対象ではない格子欠陥由来の散乱光や表面汚染、表面凹凸に由来する散乱光から得られた強度測定値として、評価の対象から視覚的に除外することを助ける。
 マッピング工程S55は、強度測定値の分布図を作成する際に、ピーク特定工程S52でラベル付けされた、測定位置に照らして数値が不連続的な強度測定値に対して、視覚的なマーカーを付してもよい。
 分析工程S56は、母数抽出工程S53にて抽出した母数に基づいて、半導体基板100の加工変質層102の品質を分析する工程である。
 即ち、分析工程S56は、母数抽出工程S53にて抽出した、散乱光L4の散乱光強度データに含まれる複数の強度測定値の位置母数(例えば、平均(算術・幾何・調和)、中央値(分位数・順序統計量)、最頻値、階級値、等から選ばれる1以上を含む)及び/又は尺度母数(例えば、分散、偏差値、標準偏差、平均偏差、中央絶対偏差、範囲、半値幅、等から選ばれる1以上を含む)に基づいて半導体基板100の加工変質層102の品質を分析する工程である。
 図6は、実施の形態にかかる分析工程S35の一例を説明する説明図であり、横軸を散乱光L4の強度、縦軸をカウント数(頻度)とするヒストグラムである。
 位置母数に基づいて半導体基板100の加工変質層102の品質を分析する場合を考える。
 例えば、測定工程S20で測定した、散乱光L4の散乱光強度データに含まれる複数の強度測定値の中から、加工変質層102において最も頻度の高い散乱光L4の強度(最頻値)を抽出する。この最頻値は、図6のヒストグラムにおいて、カウント数が最も高い値を採用することができる。
 この最頻値を抽出することにより、測定した半導体基板100の加工変質層102の品質を数値化することができ、他の半導体基板と比較してどの程度の歪み量を有しているかを把握することができる。
 また、尺度母数に基づいて半導体基板100の加工変質層102の品質を分析する場合を考える。
 例えば、図6のヒストグラムにおいて、最頻値を頂点とする山形の関数の半値幅を抽出することにより、測定した半導体基板100の加工変質層102のバラツキを数値化することができる。
 即ち、半導体基板100が、他の半導体基板と比較してどの程度の歪み量のバラツキを有しているかを把握することができる。
 上記した分析工程S56は、例えば、最頻値及び半値幅を組み合わせて、歪み量及びそのバラツキ、の2つの観点から半導体基板100を分析してもよい。
 分類工程S57は、位置母数抽出工程S531及び/又は尺度母数抽出工程S532で抽出された母数の組合せに基づいて半導体基板100の加工変質層102の分類分けを行う工程である。分類工程S57は、抽出された母数の組合せに基づいて半導体基板の加工変質層の特徴の分類基準を予め作成する分類基準作成工程S571を含む。
 分類基準作成工程S571は、例えば、S偏光のレーザー光L1を用いた測定にて得られた最頻値、S偏光のレーザー光L1を用いた測定にて得られた半値幅、P偏光のレーザー光L1を用いた測定にて得られた最頻値、P偏光のレーザー光L1を用いた測定にて得られた半値幅、を任意の組合せでグラフの軸とすることで分類基準を作成する。
 分類工程S57は、例えば、上記で作成された分類基準(グラフの軸)に沿って、評価対象の複数の半導体基板から得られた各種母数をプロットすることにより、測定した半導体基板100の加工変質層102の品質の分類を行うことができる(図9参照)。
 実際に、S偏光を用いた測定工程S21によって得られた散乱光L4の強度とP偏光を用いた測定工程S22によって得られた散乱光L4の強度から最頻値及び半値幅を抽出し(位置母数抽出工程S531及び尺度母数抽出工程S532)、半導体基板100の加工変質層102の品質の分類を行った(分類工程S57)の結果の例を示す。
 図9(a)は、A社製の6inchの4H-SiCウエハ、B社製の6inchの4H-SiCウエハ、C社製の6inchの4H-SiCウエハ、D社製の6inchの4H-SiCウエハに対し、測定工程S20及び評価工程S50を行い、横軸にS偏光の最頻値を、縦軸にP偏光の最頻値をプロットしたグラフである。
 この図9(a)に示したように、S偏光により測定した表面101近傍の加工変質層102の最頻値と、P偏光により測定したバルク層103近傍の加工変質層102の最頻値とを用いて、複数の半導体基板100と比較・対比することにより、深さ方向を含めた加工変質層102の品質を評価することができる。
 言い換えれば、図9(a)に示したように、S偏光の最頻値と、P偏光の最頻値とを、2軸の分類基準とすることで、複数の半導体基板100について、加工変質層の深さ方向の特徴を分類・評価することができる。
 図9(b)は、A社製の6inchの4H-SiCウエハ、B社製の6inchの4H-SiCウエハ、C社製の6inchの4H-SiCウエハ、D社製の6inchの4H-SiCウエハに対し、測定工程S20及び評価工程S30を行い、横軸にS偏光の最頻値を、縦軸にP偏光の半値幅をプロットしたグラフである。
 この図9(b)に示したように、S偏光により測定した表面101近傍の加工変質層102の最頻値と、P偏光により測定したバルク層103近傍の加工変質層102の半値幅とを用いて、複数の半導体基板100と比較・対比することにより、均一性を含めた加工変質層102の品質を評価することができる。
 言い換えれば、図9(b)に示したように、S偏光の最頻値と、P偏光の半値幅とを2軸の分類基準とすることで、複数の半導体基板100について、加工変質層の均一性の特徴を分類・評価することができる。
 なお、実施の形態にかかる評価工程S50は、データ取得工程S51と、ピーク特定工程S52と、統計量算出工程S53と、歪み量算出工程S54と、マッピング工程S55と、分析工程S56と、分類工程S57と、をコンピュータのプロセッサに実行させる構成を採用することができる。
《半導体基板の製造方法》
 次に、本発明にかかる半導体基板の製造方法について詳細に説明する。なお、以下の実施の形態において、先の《加工変質層の評価方法》の実施の形態と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本発明にかかる半導体基板の製造方法は、デバイスに悪影響な加工変質層102を評価する工程を含む。具体的には、半導体基板100の内部にレーザー光L1を入射させ、散乱した散乱光L4の強度に基づいて、半導体基板100の加工変質層102を評価する工程を含むことを特徴とする。
 通常、半導体基板を製造する場合、インゴットをスライスしてウエハを切り出すスライス工程や、その後ウエハを鏡面化するための研削工程及び研磨工程を有している。これらのスライス・研削・研磨に伴い、半導体基板100に加工変質層102が導入される。本発明は、上述した加工変質層102を評価するものであり、スライス工程の後に採用され得る。また、本発明は、研削工程の後に採用され得る。また、本発明は研磨工程の後に採用され得る。
 実施の形態にかかる半導体基板の製造方法は、半導体基板100の表面101からレーザー光L1を入射させ半導体基板100の内部で散乱した散乱光L4を測定する測定工程S20と、この散乱光L4の強度に基づいて半導体基板100の加工変質層102を評価する評価工程S30と、を含み得る。
 また、実施の形態にかかる半導体基板の製造方法は、評価工程S30に次いで半導体基板100の加工変質層102を除去する加工変質層除去工程S40を含み得る。
 以下、本発明の実施の形態に沿って、各工程を詳細に説明する。なお、測定工程S20及び評価工程S30については、先の《加工変質層の評価方法》と同様であるため、その説明を簡略化する。
〈加工変質層除去工程S40〉
 加工変質層除去工程S40は、評価工程S30又はS50で不適と判断された加工変質層102を除去する工程である。この加工変質層102を除去する手法としては、化学機械研磨(Chemical Mechanical Polishing:CMP)やエッチング手法を例示することができる。
 評価工程S30では、統計量算出工程S32で得られる任意エリアAAごとの散乱光L4の強度の統計量や、マッピング工程S34で得られる加工変質層102の歪みの分布状況を視覚化した分布図等に基づいて、加工変質層102がデバイス製造に不適かどうかが判断される。
 例えば、加工変質層102の適/不適の判断に統計量を用いる場合、所定閾値以上の統計量の存在を、所定閾値以上の歪み量の存在として、加工変質層102を不適と判断してよい。
 評価工程S50では、統計量算出工程S53で得られる散乱光L4の散乱光強度データに含まれる複数の強度測定値の統計量や、その統計量から算出される歪み量、強度測定値の分布状況を視覚化した分布図等に基づいて、加工変質層102がデバイス製造に不適かどうかが判断される。
 例えば、加工変質層102の適/不適の判断に歪み量を用いる場合、所定閾値以上の歪み量が関連付けられた面方向および深さ方向を含む測定位置情報に対応する加工変質層102を不適と判断してよい。
 化学機械研磨は、研磨パッドの機械的な作用とスラリーの化学的な作用を併用して研磨を行う手法である。
 エッチング手法は、半導体基板100のエッチングに用いられる手法であれば良い。例えば、半導体基板材料がSiCである場合には,SiVE法や水素エッチング法等の熱エッチング法、水酸化カリウム溶融液、フッ化水素酸を含む薬液、過マンガン酸カリウム系の薬液、水酸化テトラメチルアンモニウムを含む薬液等を用いたウェットエッチング法を例示できる。なお、通常、ウェットエッチングで用いられる薬液であれば採用することができる。
 本発明にかかる半導体基板の製造方法によれば、デバイスの製造に好適な半導体基板100を提供することができる。すなわち、デバイスの歩留まりを悪化させる加工変質層102を有しない半導体基板100を判別して提供することができる。その結果、デバイスの歩留まりを向上させることができる。
 また、本実施の形態にかかる半導体基板の製造方法によれば、デバイスの歩留まりを低下させる加工変質層102を有した半導体基板100を再利用することができる。すなわち、非破壊で半導体基板100の加工変質層102を評価することができるため、問題となる加工変質層102を除去する加工変質層除去工程S40を経ることで、デバイスの製造に好適な半導体基板100を製造することができる。
 以下、実施例を挙げて、本発明をより具体的に説明する。
 化学機械研磨を施した6インチサイズの4H-SiCウエハを2枚準備し、本発明の実施の形態に示した評価システムを用いて、加工変質層102の評価を行った。
〈洗浄工程S10〉
 2枚の4H-SiCウエハに対してRCA洗浄を行った。
〈測定工程S20〉
 洗浄工程S10を経た4H-SiCウエハに対し、図1ないし図4に示した評価システムを用いて測定を行った。図4に示すように、ステージ30に4H-SiCウエハを配置して、ステージを回転させつつ平行移動しながらレーザー光L1を4H-SiCウエハに入射させることで、半導体基板100全面にレーザー光L1を走査させ、弾性散乱を含む散乱光L4を測定した。なお、測定領域はφ144mm、レーザー光L1の波長は355nmの条件で測定を行った。また、6インチサイズの4H-SiCウエハ1枚にかかる測定時間は、3分であった。
 なお、この測定工程S20においては、同一の半導体基板100に対し、S偏光のレーザー光L1を入射させたS偏光を用いた測定工程S21と、P偏光のレーザー光L1を入射させたP偏光を用いた測定工程S22と、を行った。
〈評価工程S30〉
 図5に示すように、半導体基板100の中心から放射状に扇状の任意エリアAAを設定した(エリア設定工程S31)。次に、設定した任意エリアAAの位置に対応する範囲の散乱光L4の強度を積算した(積算工程S321)。次に、積算した値を任意エリアAAの取得データ数で割り、任意エリアAA毎に平均値を算出した(除算工程S322)。最後に、各任意エリアAAで算出された平均値を母集団として下限値から上限値までを均等に256分割した閾値を設定し(閾値設定工程S33)、加工変質層102の歪み量や分布状況を視覚化した分布図を作成した(マッピング工程S34)。
 図7及び図8は、評価工程S30において得られた加工変質層102の分布図である。図7(a)及び図7(b)は、S偏光のレーザー光L1を入射させたS偏光を用いた測定工程S21によって得られた分布図である。図8(a)及び図8(b)は、P偏光のレーザー光L1を入射させたP偏光を用いた測定工程S22によって得られた分布図である。なお、図7(a)と図8(a)は同一の基板であり、図7(b)と図8(b)は同一の基板である。
 この図7及び図8から把握できるように、化学機械研磨後の同一の半導体基板100を測定対象としているにも関わらず、S偏光のレーザー光L1を用いる場合とP偏光のレーザー光L1を用いる場合とで、異なる模様の分布図が得られていることがわかる。これは偏光の種類によって散乱光の発生深さに応じた散乱光の検出されやすさが異なることにより、異なる深さの加工変質層102を測定していると考えられる。
 ここで、異なる深さの加工変質層の分布図に基づいて、半導体基板100の加工履歴の推定を行うことができる。
 例えば、S偏光を用いた測定工程S21、P偏光を用いた測定工程S22に基づいて得られた、異なる深さの加工変質層102の分布図から、半導体基板100に加工変質層102が導入された加工履歴の推定を行うことができる。
 すなわち、P偏光と比べて相対的に浅い部分で発生した散乱光が検出されやすいS偏光のレーザー光L1を用いて測定された図7に現れた模様は、表面101付近に存在している加工変質層102の歪み量や分布状況を反映したものと把握できる。この図7の模様は、研削・研磨時の加工痕に酷似するため、機械加工起因で導入された加工変質層102を反映していると考えられる。
 また、S偏光と比べて相対的に深い部分で発生した散乱光が検出されやすいP偏光のレーザー光L1を用いて測定された図8に現れた模様は、バルク層103付近に存在している加工変質層102の歪み量や分布状況を反映したものと把握できる。この図8の模様は、研削・研磨時のチャッキングにおいて用いられる治具の形状に酷似するため、研削・研磨時の圧力及び/又は摩擦熱起因で導入された加工変質層102を反映していると考えられる。
 このように、化学機械研磨により極めて精密な平坦化が行われた表面101を有する半導体基板100であるにも関わらず、表面101の下層には機械加工を伴う工程により導入された加工変質層102が存在していることが確認できる。さらに、レーザー光L1の偏光(S偏光又はP偏光)を選択することにより、任意の深さの加工変質層102の歪み量や分布状況を得ることができる。
 なお、実施例の加工変質層102の評価は非破壊である。そのため、評価した4H-SiCウエハは、廃棄することなくデバイスの製造工程に流すことができる。
 最後に、S偏光を用いた測定工程S21によって得られた散乱光L4の強度とP偏光を用いた測定工程S22によって得られた散乱光L4の強度から最頻値及び半値幅を抽出し(位置母数抽出工程S351及び尺度母数抽出工程S352)、半導体基板100の加工変質層102の品質の分類を行った(分類工程S353)結果の例を示す。
 図9(a)は、A社製の6inchの4H-SiCウエハ、B社製の6inchの4H-SiCウエハ、C社製の6inchの4H-SiCウエハ、D社製の6inchの4H-SiCウエハに対し、測定工程S20及び評価工程S30を行い、横軸にS偏光の最頻値を、縦軸にP偏光の最頻値をプロットしたグラフである。
 この図9(a)に示したように、S偏光により測定した表面101近傍の加工変質層102の最頻値と、P偏光により測定したバルク層103近傍の加工変質層102の最頻値とを用いて、複数の半導体基板100と比較・対比することにより、深さ方向を含めた加工変質層102の品質を評価することができる。
 言い換えれば、図9(a)に示したように、S偏光の最頻値と、P偏光の最頻値とを分類基準とすることで、複数の半導体基板100について、加工変質層の深さ方向の特徴を分類・評価することができる。
 図9(b)は、A社製の6inchの4H-SiCウエハ、B社製の6inchの4H-SiCウエハ、C社製の6inchの4H-SiCウエハ、D社製の6inchの4H-SiCウエハに対し、測定工程S20及び評価工程S30を行い、横軸にS偏光の最頻値を、縦軸にP偏光の半値幅をプロットしたグラフである。
 この図9(b)に示したように、S偏光により測定した表面101近傍の加工変質層102の最頻値と、P偏光により測定したバルク層103近傍の加工変質層102の半値幅とを用いて、複数の半導体基板100と比較・対比することにより、均一性を含めた加工変質層102の品質を評価することができる。
 言い換えれば、図9(b)に示したように、S偏光の最頻値と、P偏光の半値幅とを分類基準とすることで、複数の半導体基板100について、加工変質層の均一性の特徴を分類・評価することができる。
 100 半導体基板
 101 表面
 102 加工変質層
 1021 酸化層
 1022 歪み層
 103 バルク層
 10 投光系
 11 レーザー出力部
 12 波長板(光調整器)
 20 受光系
 21 対物レンズ
 22 結像レンズ
 23 ビームスプリッター
 24 受光センサー
 25 スリット(光選択器)
 30 ステージ
 40 筐体
 50 信号処理部
 60 データ処理部
 70 制御部
 L1 レーザー光
 L2 反射光
 L3 入射光
 L4 散乱光
 PD 侵入深さ
 PL 侵入長
 AA 任意エリア
 IA 検査エリア
 S10 洗浄工程
 S20 測定工程
 S21 S偏光を用いた測定工程
 S22 P偏光を用いた測定工程
 S30 評価工程

Claims (52)

  1.  表面の下に加工変質層を有する半導体基板の表面から侵入特性を有するレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定する測定工程と、
     前記測定工程にて得られた散乱光の強度に基づいて、前記加工変質層の評価を行う評価工程と、を含む、半導体基板の加工変質層の評価方法。
  2.  前記半導体基板は、炭化ケイ素基板である、請求項1に記載の加工変質層の評価方法。
  3.  前記加工変質層は、歪みを含み、
     前記評価工程は、前記散乱光の強度に基づいて、歪み量を算出することを含む、請求項1又は2に記載の加工変質層の評価方法。
  4.  前記測定工程は、前記半導体基板の面方向にわたって、所定の深さの前記散乱光の強度を、前記面方向の位置情報と関連付けて取得し、
     前記評価工程は、前記歪み量を、前記位置情報に関連付けて算出することを含む、請求項3に記載の加工変質層の評価方法。
  5.  前記レーザー光は、前記半導体基板のバンドギャップよりも大きい光子エネルギーを有する、請求項1~4の何れか一項に記載の加工変質層の評価方法。
  6.  前記レーザー光は、前記半導体基板のバンドギャップの約101~122%の光子エネルギーを有する、請求項5に記載の加工変質層の評価方法。
  7.  前記半導体基板の表面からS偏光のレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定するS偏光を用いた測定工程を含む、請求項1~6の何れか一項に記載の加工変質層の評価方法。
  8.  前記半導体基板の表面からP偏光のレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定するP偏光を用いた測定工程を含む、請求項1~6の何れか一項に記載の加工変質層の評価方法。
  9.  前記半導体基板の表面からS偏光のレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定するS偏光を用いた測定工程と、
     前記表面からP偏光のレーザー光を入射させ、前記表面の下で散乱した散乱光の強度を測定するP偏光を用いた測定工程を含む、請求項1~6の何れか一項に記載の加工変質層の評価方法。
  10.  前記半導体基板は、平坦化された表面を有する、請求項1~9の何れか一項に記載の加工変質層の評価方法。
  11.  前記レーザー光は、前記半導体基板の表面の法線に対して40°≦θ≦80°の入射角度θで前記半導体基板に入射する、請求項1~10の何れか一項に記載の加工変質層の評価方法。
  12.  前記半導体基板の表面からの深さ方向の検査エリアの情報を取得する検査エリア情報取得工程を含み、
     前記測定工程は、前記検査エリアに対して前記レーザー光が侵入するように、前記レーザー光の侵入特性を含む投光条件を取得する、投光条件取得工程と、前記検査エリアで発生した散乱光を選択的に測定する光選択工程を有する、請求項1~11の何れか一項に記載の加工変質層の評価方法。
  13.  前記測定工程は、前記レーザー光の前記侵入特性を調整する光調整工程を含む、請求項12に記載の加工変質層の評価方法。
  14.  前記光選択工程は、前記検査エリアから外れた非検査エリアで発生した散乱光を遮蔽することを含む、請求項13に記載の加工変質層の評価方法。
  15.  前記光選択工程は、前記半導体基板の裏面で発生した反射光及び/又は散乱光を遮蔽することを含む、請求項14に記載の加工変質層の評価方法。
  16.  前記測定工程は、前記半導体基板を回転させながら前記レーザー光を走査する走査工程を含む、請求項1~15の何れか一項に記載の評価方法。
  17.  前記測定工程は、弾性散乱を含む前記散乱光を測定する工程である、請求項1~16の何れか一項に記載の評価方法。
  18.  測定対象である半導体基板を保持可能なステージと、
     前記半導体基板に対して、侵入特性を有するレーザー光を照射可能な投光系と、
     前記半導体基板の表面の下で散乱した散乱光を受光可能な受光系と、
     前記散乱光の強度に基づいて、前記半導体基板の表面の下の加工変質層の評価を行うデータ処理部と、を備える、評価システム。
  19.  前記加工変質層は、歪みを含み、
     前記データ処理部は、前記散乱光の強度に基づいて、歪み量を算出することを含む、請求項18に記載の評価システム。
  20.  前記投光系は、前記半導体基板の表面全体にわたって、前記レーザー光を照射し、
     前記受光系は、所定の深さで散乱した前記散乱光の強度を、前記半導体基板の面方向にわたって、前記面方向の位置情報と関連付けて取得し、
     前記データ処理部は、算出した前記歪み量を、前記位置情報と関連付けて記録することを含む、請求項19に記載の評価システム。
  21.  前記投光系は、前記半導体基板のバンドギャップよりも大きい光子エネルギーを有する前記レーザー光を照射する、請求項18~20の何れか一項に記載の評価システム。
  22.  前記投光系は、前記半導体基板のバンドギャップの約101~122%の光子エネルギーを有する前記レーザー光を照射する、請求項21に記載の評価システム。
  23.  測定対象である半導体基板を保持可能な前記ステージと、
     S偏光及び/又はP偏光のレーザー光を照射可能な前記投光系と、
     前記半導体基板の表面の下で散乱した散乱光を受光可能な前記受光系と、
     S偏光及び/又はP偏光のレーザー光を用いて測定された前記散乱光の強度に基づいて加工変質層の評価を行う前記データ処理部と、を備える、請求項18~22の何れか一項に記載の評価システム。
  24.  前記投光系は、前記レーザー光を、前記半導体基板の表面の法線に対して40°≦θ≦80°の入射角度θで前記半導体基板に対して照射する、請求項18~23の何れか一項に記載の評価システム。
  25.  前記半導体基板の表面からの深さ方向の検査エリアを設定する検査エリア設定部を含み、
     前記投光系は、前記検査エリアに対して前記レーザー光が侵入するように、少なくとも侵入特性を含む投光条件を決定し、
     前記受光系は、前記検査エリアで発生した散乱光を選択的に測定するように、受光条件を決定する、請求項18~24の何れか一項に記載の評価システム。
  26.  前記投光系は、前記レーザー光の前記侵入特性を調整する光調整器を有し、前記受光系は、前記検査エリアで発生した散乱光を選択的に測定する光選択器を有する、請求項25に記載の評価システム。
  27.  前記光選択器は、前記検査エリアから外れた非検査エリアで発生した散乱光を遮蔽するスリットを含む、請求項26に記載の評価システム。
  28.  前記光選択器は、前記半導体基板の裏面で発生した反射光及び/又は散乱光を遮蔽するスリットを含む、請求項27に記載の評価システム。
  29.  前記半導体基板は、炭化ケイ素基板である、請求項18~28の何れか一項に記載の評価システム。
  30.  半導体基板の表面からレーザー光を入射させて測定した、前記半導体基板の表面の下で散乱した散乱光の強度測定値を、測定位置情報に関連付けて散乱光強度データとして取得するデータ取得工程と、
     前記散乱光強度データに含まれる複数の強度測定値の統計量を算出する統計量算出工程と、
     前記統計量に基づいて、前記半導体基板の加工変質層の評価を行う評価工程と、を含む、半導体基板の評価方法。
  31.  前記半導体基板は、炭化ケイ素基板である、請求項30に記載の半導体基板の評価方法。
  32.  前記データ取得工程は、異なる侵入特性を有する複数のレーザー光を入射させて測定した、複数種類の前記強度測定値を、前記半導体基板の面方向および深さ方向を含む測定位置情報にそれぞれ関連付けて複数種類の前記散乱光強度データとして取得することを含み、
     前記統計量算出工程は、面方向および深さ方向を含む測定位置情報に関連付けて前記強度測定値の統計量を算出することを含む、請求項30又は31に記載の半導体基板の評価方法。
  33.  前記レーザー光は、偏光特性を有する、請求項30~32の何れか一項に記載の半導体基板の評価方法。
  34.  前記レーザー光は、S偏光及び/又はP偏光である、請求項33に記載の半導体基板の評価方法。
  35.  前記評価工程は、前記統計量から、前記半導体基板の表面の下の歪み量を算出する、歪み量算出工程を含む、請求項30~34の何れか一項に記載の半導体基板の評価方法。
  36.  前記評価工程は、所定の上限値より大きい前記強度測定値を特定してラベル付けするピーク特定工程を更に含む、請求項30~35の何れか一項に記載の半導体基板の評価方法。
  37.  前記半導体基板は、平坦化された表面を有し、
     前記評価工程は、前記測定位置情報及び前記強度測定値に基づいて、前記測定位置情報に照らして数値が不連続的な前記強度測定値を特定してラベル付けするピーク特定工程を更に含む、請求項30~36の何れか一項に記載の半導体基板の評価方法。
  38.  前記強度測定値の下限から上限までを複数に分割する閾値に基づいて前記強度測定値の分布図を作成するマッピング工程を含む、請求項30~37の何れか一項に記載の半導体基板の評価方法。
  39.  前記マッピング工程は、歪み量が段階的に識別できるように、複数の閾値に基づいて前記強度測定値の分布図を作成することを含む、請求項38に記載の半導体基板の評価方法。
  40.  前記評価工程は、複数の前記強度測定値の母数を抽出する母数抽出工程と、
     抽出した前記母数に基づいて前記半導体基板を分析する分析工程と、
     を含む、請求項30~39の何れか一項に記載の半導体基板の評価方法。
  41.  前記母数抽出工程は、複数の前記強度測定値の位置母数を抽出する位置母数抽出工程を含む、請求項40に記載の半導体基板の評価方法。
  42.  前記位置母数抽出工程は、複数の前記強度測定値の最頻値を抽出する工程である、請求項41に記載の半導体基板の評価方法。
  43.  前記母数抽出工程は、複数の前記強度測定値の尺度母数を抽出する尺度母数抽出工程を含む、請求項41又は42に記載の半導体基板の評価方法。
  44.  前記尺度母数抽出工程は、複数の前記強度測定値の半値幅を抽出する工程である、請求項43に記載の半導体基板の評価方法。
  45.  前記母数抽出工程は、一の半導体基板について、複数の前記強度測定値から複数種類の前記母数を抽出する工程であり、
     前記分析工程は、複数種類の前記母数の組合せに基づいて前記半導体基板を分析する、請求項40~44の何れか一項に記載の半導体基板の評価方法。
  46.  前記分析工程は、位置母数及び尺度母数の組合せに基づいて前記半導体基板を分析する、請求項45に記載の半導体基板の評価方法。
  47.  前記位置母数及び尺度母数の組合せに基づいて複数の半導体基板を分類する、分類工程を含む、請求項46に記載の半導体基板の評価方法。
  48.  評価対象の複数の半導体基板の分析により得られた前記位置母数及び尺度母数の組合せに応じて、半導体基板の加工変質層の特徴の分類基準を予め作成する、分類基準作成工程を更に含み、
     前記分析工程は、前記位置母数及び尺度母数の組合せに基づいて、前記評価対象の複数の半導体基板を前記分類基準に照らして分類する、分類工程を含む、請求項47に記載の半導体基板の評価方法。
  49.  前記データ取得工程は、第1の侵入特性を有する第1のレーザー光を入射させて測定した散乱光の第1の強度測定値と、第2の侵入特性を有する第2のレーザー光を入射させて測定した散乱光の第2の強度測定値とを、前記半導体基板の面方向を含む前記測定位置情報にそれぞれ関連付けた第1の散乱光強度データ及び第2の散乱光強度データを取得することを含み、
     前記統計量算出工程は、前記測定位置情報に関連付けられた前記第1の強度測定値と前記第2の強度測定値とから、それぞれ第1統計量と第2統計量とを算出することを含み、
     前記母数抽出工程は、前記算出された第1統計量と第2統計量とから、それぞれ第1母数と第2母数とを抽出し、
     前記分析工程は、前記第1母数及び第2母数の組合せに基づいて前記半導体基板を分析する、請求項40~44の何れか一項に記載の半導体基板の評価方法。
  50.  前記第1のレーザー光はS偏光であり、前記第2のレーザー光はP偏光である、請求項49に記載の半導体基板の評価方法。
  51.  評価対象の複数の半導体基板の分析により得られた前記第1母数及び第2母数の組合せに応じて、半導体基板の加工変質層の特徴の分類基準を予め作成する、分類基準作成工程を更に含み、
     前記分析工程は、前記第1母数及び第2母数の組合せに基づいて、前記評価対象の複数の半導体基板を前記分類基準に照らして分類する、分類工程を含む、請求項49又は50に記載の半導体基板の評価方法。
  52.  請求項1~51の何れか一項に記載の評価方法又は評価システムにより、半導体基板の加工変質層を評価する工程と、
     前記評価の結果、所定の歪み量を含む層を特定する特定工程と、
     前記特定された層を除去する除去工程を含む、半導体基板の製造方法。
     
PCT/JP2022/045532 2021-12-10 2022-12-09 加工変質層の評価方法及び評価システム WO2023106414A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023524734A JP7457896B2 (ja) 2021-12-10 2022-12-09 加工変質層の評価方法及び評価システム
CN202280063703.1A CN117981065A (zh) 2021-12-10 2022-12-09 加工变质层的评价方法和评价系统
EP22904341.9A EP4276884A1 (en) 2021-12-10 2022-12-09 Work-affected layer evaluation method and evaluation system
US18/261,101 US20240068958A1 (en) 2021-12-10 2022-12-09 Method and system for evaluating work-affected layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021200698 2021-12-10
JP2021-200698 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023106414A1 true WO2023106414A1 (ja) 2023-06-15

Family

ID=86730652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045532 WO2023106414A1 (ja) 2021-12-10 2022-12-09 加工変質層の評価方法及び評価システム

Country Status (6)

Country Link
US (1) US20240068958A1 (ja)
EP (1) EP4276884A1 (ja)
JP (1) JP7457896B2 (ja)
CN (1) CN117981065A (ja)
TW (1) TW202341266A (ja)
WO (1) WO2023106414A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424541A (ja) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd 内部欠陥測定方法および装置
JPH04113649A (ja) * 1990-09-03 1992-04-15 Fujitsu Ltd 半導体装置製造装置
JP2847458B2 (ja) * 1993-03-26 1999-01-20 三井金属鉱業株式会社 欠陥評価装置
JP2015119056A (ja) * 2013-12-18 2015-06-25 レーザーテック株式会社 欠陥分類方法及び検査装置
JP2020017627A (ja) 2018-07-25 2020-01-30 株式会社デンソー SiCウェハ及びSiCウェハの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424541A (ja) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd 内部欠陥測定方法および装置
JPH04113649A (ja) * 1990-09-03 1992-04-15 Fujitsu Ltd 半導体装置製造装置
JP2847458B2 (ja) * 1993-03-26 1999-01-20 三井金属鉱業株式会社 欠陥評価装置
JP2015119056A (ja) * 2013-12-18 2015-06-25 レーザーテック株式会社 欠陥分類方法及び検査装置
JP2020017627A (ja) 2018-07-25 2020-01-30 株式会社デンソー SiCウェハ及びSiCウェハの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. G SRIDHARAT. J EPERJESIR. P DEVATYW. J CHOYKE, MATERIALS SCIENCE AND ENGINEERING: B, vol. 61-62, 30 July 1999 (1999-07-30), pages 229 - 233

Also Published As

Publication number Publication date
JPWO2023106414A1 (ja) 2023-06-15
EP4276884A1 (en) 2023-11-15
CN117981065A (zh) 2024-05-03
US20240068958A1 (en) 2024-02-29
JP7457896B2 (ja) 2024-03-29
TW202341266A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
JP3996728B2 (ja) 表面検査装置およびその方法
US7528944B2 (en) Methods and systems for detecting pinholes in a film formed on a wafer or for monitoring a thermal process tool
US7038772B2 (en) System and methods for classifying anomalies of sample surfaces
JP4343911B2 (ja) 欠陥検査装置
US6515742B1 (en) Defect classification using scattered light intensities
US8269960B2 (en) Computer-implemented methods for inspecting and/or classifying a wafer
US10054554B2 (en) Method for evaluating semiconductor wafer
JP5506243B2 (ja) 欠陥検査装置
WO2023106414A1 (ja) 加工変質層の評価方法及び評価システム
JP5784796B2 (ja) 表面検査装置およびその方法
KR102550487B1 (ko) 제어된 치수를 갖는 반도체 웨이퍼 피처를 제조하기 위한 시스템 및 방법
JP2001015567A (ja) 半導体基板の評価装置および評価方法
JP7344491B2 (ja) 加工変質層の評価方法及び半導体単結晶基板の製造方法
WO2022059708A1 (ja) 研磨状態解析予測プログラム、記憶装置、カソードルミネセンス装置、および研磨状態解析予測方法
JP7259736B2 (ja) 結晶欠陥の検出方法、エピタキシャル成長装置の管理方法およびエピタキシャルウェーハの製造方法
TWI752683B (zh) 製備半導體晶圓的方法
JPWO2023106414A5 (ja)
CN114450581A (zh) 激光表面检查装置的坐标位置识别精度校准方法及半导体晶圆的评价方法
JP4648435B2 (ja) 検査装置
JP5576526B2 (ja) 表面検査装置およびその方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023524734

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18261101

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022904341

Country of ref document: EP

Effective date: 20230810

WWE Wipo information: entry into national phase

Ref document number: 202280063703.1

Country of ref document: CN