WO2023105957A1 - アクチュエータ - Google Patents
アクチュエータ Download PDFInfo
- Publication number
- WO2023105957A1 WO2023105957A1 PCT/JP2022/039532 JP2022039532W WO2023105957A1 WO 2023105957 A1 WO2023105957 A1 WO 2023105957A1 JP 2022039532 W JP2022039532 W JP 2022039532W WO 2023105957 A1 WO2023105957 A1 WO 2023105957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- internal gear
- speed reducer
- control
- actuator
- sensor
- Prior art date
Links
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 70
- 238000012937 correction Methods 0.000 claims abstract description 29
- 238000001514 detection method Methods 0.000 claims description 22
- 230000032683 aging Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 8
- 238000009826 distribution Methods 0.000 description 55
- 230000035882 stress Effects 0.000 description 54
- 230000008859 change Effects 0.000 description 19
- 238000005259 measurement Methods 0.000 description 18
- 230000033001 locomotion Effects 0.000 description 13
- 238000003780 insertion Methods 0.000 description 10
- 230000037431 insertion Effects 0.000 description 10
- 230000013011 mating Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/01—Monitoring wear or stress of gearing elements, e.g. for triggering maintenance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/68—Inputs being a function of gearing status
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/102—Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction brakes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1208—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1256—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
- F16H2061/1288—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is an actuator
Definitions
- the present invention relates to actuators.
- An object of the present invention is to maintain high actuator control accuracy.
- An actuator comprising a reducer, a motor, and a control unit that controls the motor based on a predetermined control parameter, a sensor that is installed in the speed reducer and detects information that is affected by the wear state of the speed reducer; a correction unit that corrects the control parameter based on the detection information of the sensor; shall be configured to have
- FIG. 4 is a diagram showing the starting torque of the drive for control parameter (1);
- FIG. 10 is a diagram showing the angular transmission error of the driving device for control parameter (2);
- FIG. 10 is a diagram showing the torsion angle generated in the output member of the speed reducer of the driving device with control parameter (3).
- FIG. 10 is a diagram showing the hysteresis of the torsion angle that occurs in the output member of the speed reducer of the driving device of the control parameter (4).
- FIG. 4 is an explanatory diagram showing an image of backlash of control parameter (5).
- FIG. 1 is a cross-sectional view showing a driving device as an actuator according to an embodiment of the present invention.
- FIG. 2 is a perspective view of the driving device according to this embodiment.
- the driving device 1 of the present embodiment is a device that outputs rotational power, and its use is not particularly limited, but it can be used, for example, as a joint driving device for a collaborative robot that works in cooperation with humans.
- the direction along the central axis O1 is called the axial direction
- the radial direction of the central axis O1 is called the radial direction
- the rotational direction about the central axis O1 is called the circumferential direction.
- the central axis O ⁇ b>1 is the central axis of the shaft portion 16 c of the output member 16 and the rotor shaft 13 .
- the side where the output member 16 is located left side in FIG. 1) is called the output side
- the opposite side (right side in FIG. 1) is called the anti-output side or input side.
- the drive device 1 includes a casing 11 connected to a support member 201 outside the device, a motor (electric motor) 12 that generates rotational power, a rotor shaft 13 to which torque is input from the motor 12, and a rotor shaft 13 that is controlled.
- a brake 14 that can apply power, a reduction gear 15 that reduces the rotational motion of the rotor shaft 13, an output member 16 that outputs the rotational movement reduced by the reduction gear 15 to the outside of the device (mating member 202), an electric It comprises a circuit portion 17 in which a circuit is mounted, and a detection portion 18 for detecting the rotation of the rotor shaft 13 and the output member 16 .
- the circuit section 17 includes a motor driver board on which a drive circuit for the motor 12 is mounted, and an encoder board on which a detection circuit of the detection section 18 is mounted.
- the detector 18 includes an input-side rotation detector 18A that detects rotation of the rotor shaft 13 and an output-side rotation detector 18B that detects rotation of the output member 16 .
- the speed reducer 15, the motor 12, the brake 14, the detection section 18, and the circuit section 17 are arranged side by side in this order from the output side to the anti-output side.
- the casing 11 includes hollow cylindrical or annular members 11a to 11g connected to each other, and is connected to and supported by a support member 201 outside the apparatus. Specific structural examples of the members 11a to 11g will be described below, but the casing 11 is not limited to these specific examples.
- the member 11a covers the periphery of one end of the shaft portion 16c on the counter-output side.
- the member 11a has a through hole penetrating in the axial direction, and the through hole of the member 11a communicates with the through hole of the shaft portion 16c.
- the member 11a abuts the outer ring of the bearing 21 from the axial direction.
- the member 11a is connected to the member 11b via a bolt (connecting member).
- the member 11b covers the circuit portion 17 from the counter-output side in the radial and axial directions, fits the outer ring of the bearing 21, and is connected to the member 11c via bolts.
- the member 11c is positioned radially outward of the detection section 18 and covers the detection section 18 from the radial direction.
- the member 11c is connected to the members 11b and 11d via bolts.
- the member 11c has a wiring lead-out hole 11c1 for drawing out the wiring of the motor 12 and the brake 14 in a part of the circumferential direction.
- the member 11d is positioned radially outward of the brake 14, covers the brake 14 from the radial direction, and supports the member on the stationary side of the brake 14.
- the member 11d has an annular protrusion 11dt that protrudes toward the counter-output side.
- the annular projecting portion 11dt has a smaller diameter than the maximum outer diameter of the member 11d, and is fitted (spigoted) into the member 11c.
- the member 11d has flange portions 11d1 at a plurality of locations in the circumferential direction on the counter-output side, and the flange portions 11d1 are connected to the member 11c via bolts.
- the member 11d has flange portions 11d2 at a plurality of locations in the circumferential direction on the output side, and the flange portions 11d2 are connected to the member 11e via bolts.
- the member 11d has a fin portion 11d3 arranged on the outer peripheral portion other than the flange portions 11d1 and 11d2.
- the fin portion 11d3 includes a plurality of radiating fins extending in the radial direction and spreading in the circumferential direction.
- through holes 11d4 and 11d5 through which the ends of bolts and tools are passed are provided in locations corresponding to the bolt holes of the flange portions 11d1 and 11d2 (locations overlapping the bolt holes when the bolt holes are extended in the axial direction). is provided.
- the member 11e is positioned radially outward of the motor 12, covers the motor 12 from the radial direction, and supports the member on the fixed side of the motor 12.
- the member 11e has an annular projecting portion 11et1 projecting toward the counter-output side and an annular projecting portion 11et2 projecting toward the output side.
- the anti-output-side annular projecting portion 11et1 has a smaller diameter than the maximum outer diameter of the member 11e and is fitted (pivot-fitted) into the member 11d.
- the annular projecting portion 11et2 on the output side has a smaller diameter than the maximum outer diameter of the member 11e, and is fitted (pivoted) into the member 11f.
- the member 11e has flange portions 11e1 at a plurality of locations in the circumferential direction, and the flange portions 11e1 are connected to the members 11d and 11f via bolts.
- the member 11e includes a fin portion 11e2 arranged on the outer peripheral portion other than the flange portion 11e1.
- the fin portion 11e2 includes a plurality of radiating fins extending in the radial direction and spreading in the circumferential direction.
- the fin portion 11e2 is adjacent to the fin portion 11d3 of the member 11d described above.
- a through hole 11e3 is provided for passing a bolt and a tool.
- the member 11f covers the output side of the motor 12, and the outer ring of the bearing 23 arranged on the counter-output side of the speed reducer 15 is fitted therein.
- the member 11f rotatably supports the vibration generator 15a via the bearing 23.
- the member 11f has a flange portion 11f1 at a position corresponding to the flange portion 11e1 of the adjacent member 11e, and the adjacent flange portions 11f1 and 11e1 are connected via bolts.
- the bolt holes for connecting the members 11f and 11e and the bolt holes for connecting the members 11e and 11d on the counter-output side may be coaxially arranged.
- the member 11f is further connected to the internal gear member (first internal gear 15d) of the speed reducer 15 via bolts.
- the member 11f has an annular protrusion 11ft protruding toward the output side.
- the annular projecting portion 11ft has a smaller diameter than the maximum outer diameter of the member 11f, and is fitted (pivot-fitted) into the first internal gear 15d.
- the member 11g radially covers the output member 16 at the end on the output side, and the outer ring of the bearing 22 and the seal 25 are internally fitted.
- the member 11g rotatably supports the output member 16 via the bearing 22.
- the member 11g has a radially projecting flange portion 11g1.
- the flange portion 11g1 is connected to a component (first internal gear 15d) of the speed reducer 15 via a bolt. 15d are fastened together and connected to the support member 201 via bolts.
- the first internal gear 15d has a portion extending to the output side from the second internal gear 15e so as to cover the radially outer side of the second internal gear 15e.
- annular protruding portion 15dt protruding toward the output side is provided at a projecting portion of the first internal gear 15d to the output side.
- the annular projecting portion 15dt has a smaller diameter than the maximum outer diameter of the first internal gear 15d, and is fitted (spigoted) into the member 11g.
- a plurality of positions different in the circumferential direction are provided with bolt insertion holes 11g5 communicating with screw holes provided in components of the speed reducer 15, and bolts provided in the components of the speed reducer 15. and a screw hole 11g4 communicating with the insertion hole.
- the member 11g has a positioning projection (ring portion) 11g2 that protrudes radially inward and determines the axial position of the bearing 22 and the axial position of the seal 25. Further, the member 11g has a cylindrical extension 11g3 that extends axially and accommodates the seal 25. As shown in FIG. The tubular extension portion 11g3 is on the output side of the bearing 22 and extends from the flange portion 11g1 toward the output side.
- the output member 16 includes mutually connected members 16a and 16b and a shaft portion 16c, and is rotatably supported by the casing 11 via bearings 21 and 22.
- the output member 16 has a hollow structure (hollow cylindrical shape). A part of the output member 16 is exposed on the output side, and the exposed part is connected to the mating member 202 . More specifically, the shaft portion 16c penetrates the speed reducer 15 and extends to the counter-output side where the detection portion 18 and the circuit portion 17 are arranged. A rotary portion 18Ba of the output-side rotation detector 18B is fixed to the shaft portion 16c. The shaft portion 16c is tightly fitted to the member 16a on the output side.
- the member 16b is connected to the second internal gear 15e of the speed reducer 15 by bolts, and the outer ring of the bearing 24 on the output side of the speed reducer 15 is internally fitted.
- the member 16b introduces reduced rotational motion from the speed reducer 15 and rotatably supports the vibration generator 15a via the bearing 24. As shown in FIG.
- the member 16a is arranged on the output side of the member 16b, fits the shaft portion 16c inside, and fits the inner ring of the bearing 22 outside.
- the member 16a has a bolt insertion hole 16a1 through which the shank of the bolt passes and accommodates the head of the bolt, and a bolt insertion hole 16a2 through which the shank of the bolt passes.
- the bolt insertion holes 16a1 and 16a2 communicate with any one of the plurality of screw holes 16b1 of the adjacent member 16b.
- the member 16b is directly connected (temporarily fixed) to the member 16b via a bolt inserted through the bolt insertion hole 16a1.
- the member 16a is fastened together between the mating member 202 and the member 16b via a bolt inserted through the bolt insertion hole 16a2. That is, the mating member 202 is connected to the output member 16 via a bolt that is screwed into the screw hole of the member 16b via the bolt insertion hole 16a2.
- the member 16a is directly connected to the member 16b (connected by four bolts whose positions are different in the circumferential direction), and is sandwiched between the member 16b and the mating member 202 (8 bolts whose positions are different in the circumferential direction).
- a fixed connection strength to the member 16b is achieved by means of a three-bolt connection).
- the member 16a has a tubular portion 16a3 that faces the tubular extension portion 11g3 of the casing 11 in the radial direction.
- the cylindrical portion 16a3 is arranged on the output side of the bolt insertion hole 16a1.
- a sleeve 26 with which the lip portion of the seal 25 contacts is fitted around the tubular portion 16 a 3 , and the seal 25 is arranged between the sleeve 26 and the tubular extension portion 11 g 3 of the casing 11 .
- the structure of the output member 16 is not limited to the specific example described above.
- the motor 12 has a stator 12a and a hollow cylindrical rotor 12b.
- the rotor 12b is composed of permanent magnets
- the stator 12a is composed of electromagnets.
- the rotor shaft 13 has a hollow structure and is fitted onto the shaft portion 16c of the output member 16 with a gap therebetween.
- the rotor shaft 13 is connected with the rotor 12b of the motor 12 .
- the motor 12 and rotor shaft 13 are arranged on the counter-output side of the speed reducer 15 .
- a rotating portion 18Aa of an input side rotation detector 18A is fixed to the rotor shaft 13 via a hub member 18c on the counter-output side.
- the speed reducer 15 is a cylindrical flexure meshing gear mechanism, and includes a vibrating body 15a, a vibrating body bearing 15b, an external gear 15c that is flexibly deformed by the rotation of the vibrating body 15a, and an external gear 15c. It has a first internal gear 15d and a second internal gear 15e that mesh with each other.
- the speed reducer is not limited to a tubular flexure mesh type gear mechanism, and various speed reducers can be employed. A speed reducer or a simple planetary speed reducer may be used.
- the vibrating body 15a has a hollow structure and is arranged outside the shaft portion 16c of the output member 16 with a gap therebetween.
- the vibrating body 15 a is connected (for example, spline-connected) to the rotor shaft 13 and rotates together with the rotor shaft 13 .
- the vibration generator 15a is rotatably supported by the casing 11 and the output member 16 through bearings 23 and 24 at its shaft.
- the vibrating body 15a has a circular cross-sectional shape centered on the central axis O1 at the shaft portion thereof perpendicular to the axial direction, and an elliptical cross-sectional shape perpendicular to the axial direction at the portion in contact with the vibrating body bearing 15b.
- the external gear 15c has flexibility.
- the first internal gear 15d is connected to the casing 11 and meshes with a range on the opposite output side in the axial direction of the external gear 15c.
- the second internal gear 15e is connected to the output member 16 and meshes with the output side range in the axial direction of the external gear 15c.
- the speed reducer 15 rotational motion is input to the vibration generator 15a, and the reduced rotational motion is output to the second internal gear 15e.
- the torque input to the vibrating body 15a is amplified, the amplified torque is transmitted to the second internal gear 15e, and the reaction force of the amplified torque is applied to the first internal gear 15d. transmitted. That is, the amplified torque is transmitted to the first internal gear 15d and the second internal gear 15e.
- the detection unit 18 includes an input-side rotation detector 18A that detects rotation of the rotor shaft 13 and an output-side rotation detector 18B that detects rotation of the output member 16 .
- the input-side rotation detector 18A has a rotating portion 18Aa that rotates integrally with the rotor shaft 13, and a sensor 18Ab that is arranged near the rotating portion 18Aa and detects the amount of rotation of the rotating portion 18Aa.
- the output-side rotation detector 18B has a rotating portion 18Ba that rotates integrally with the output member 16, and a sensor 18Bb that is arranged near the rotating portion 18Ba and detects the amount of rotation of the rotating portion 18Ba.
- the input-side rotation detector 18A and the output-side rotation detector 18B are, for example, rotary encoders that output the rotational displacement of the rotating portion as digital signals, but may be resolvers that output as analog signals, or other types of encoders. It may be a rotation detector.
- the rotary encoder may be configured to have an optical detection section, or may be configured to have a magnetic detection section.
- the input-side rotation detector 18A and the output-side rotation detector 18B may be different types of detectors.
- the two sensors 18Ab and 18Bb are mounted on the encoder board of the circuit section 17, and the two rotation sections 18Aa and 18Ba are mounted on the output side of the circuit section 17. are placed facing each other. More specifically, the installation position of the rotating part 18Ba on the output member 16 and the installation position of the rotating part 18Aa on the rotor shaft 13 are substantially the same in the axial direction. 18Bb are arranged at substantially the same position in the axial direction. In other words, the rotating portion 18Aa and the rotating portion 18Ba are arranged at overlapping positions when viewed in the radial direction, and the rotating portion 18Aa is arranged radially outward. Further, the sensor 18Ab and the sensor 18Bb are arranged at overlapping positions when viewed in the radial direction, and the sensor 18Ab is arranged radially outward.
- the brake 14 includes a hub member 14a fixed to the rotor shaft 13 so as to restrict relative rotation, a disc-shaped rotor 14b spline-fitted to the hub member 14a, and an armature 14c displaceable toward the rotor 14b. , an electromagnetic coil 14d for driving the armature 14c, a spring member for returning the armature 14c to its original position, a plate 14e facing the rotor 14b on the opposite side of the armature 14c, and a lining fixed to the plate 14e and the armature 14c ( and a frame 14g that is supported by the casing 11 and holds the electromagnetic coil 14d and the plate 14e.
- braking force is applied to the rotor shaft 13 by sandwiching the rotor 14b between the armature 14c and the plate 14e via the lining 14f by the action of the electromagnetic coil 14d or the action of the spring material. Further, the force of the armature 14c and the plate 14e holding the rotor 14b between the armature 14c and the plate 14e is released by the action of the spring material or the action of the electromagnetic coil 14d, so that the braking force on the rotor shaft 13 is released.
- the external gear 15c is flexurally deformed so that the major axis position and the minor axis position move in the circumferential direction.
- the period of this deformation is proportional to the rotation period of the vibrating body 15a.
- the position of the long axis moves, so that the meshing position between the external gear 15c and the first internal gear 15d changes in the rotational direction.
- the external gear 15c has 100 teeth and the first internal gear 15d has 102 teeth.
- the meshing teeth of the external gear 15c and the first internal gear 15d shift each time the meshing position rotates, thereby causing the external gear 15c to rotate.
- the rotational motion of the vibration generator 15a is reduced at a reduction ratio of 100:2 and transmitted to the external gear 15c.
- the rotation of the vibrating body 15a since the external gear 15c also meshes with the second internal gear 15e, the rotation of the vibrating body 15a also changes the meshing position between the external gear 15c and the second internal gear 15e in the rotational direction.
- the number of teeth of the second internal gear 15e and the number of teeth of the external gear 15c are the same, the external gear 15c and the second internal gear 15e do not rotate relative to each other.
- Rotational motion of the gear 15c is transmitted to the second internal gear 15e at a reduction ratio of 1:1.
- the rotational motion of the vibrating body 15a is reduced at a reduction ratio of 100:2, transmitted to the second internal gear 15e, and output from the second internal gear 15e to the mating member 202 via the output member 16. be.
- the rotational position of the rotor shaft 13 is detected by the input-side rotation detector 18A, and the rotational position of the output member 16 is detected by the output-side rotation detector 18B.
- FIG. 3 is a front view of the first internal gear 15d.
- the first internal gear 15d includes an internal ring portion 151d having internal teeth formed on the inner circumference on the anti-output side, an external connection portion 152d connected to the support member 201 together with the member 11g, a diameter
- the first internal gear 15d is provided between the internal ring portion 151d and the external connection portion 152d in the direction, and is more easily deformed (deformation amount is larger) than the internal ring portion 151d when torque acts on the first internal gear 15d. and an easily deformable portion 153d.
- each of the easily deformable portions 153d has a narrow width in the circumferential direction due to the through holes 154d on both sides, so that the easily deformable portions 153d are easier to deform in the circumferential direction than the outer and inner portions in the radial direction with respect to the easily deformable portion 153d.
- the strain gauge 19 is attached to the easily deformable portion 153d in a direction for detecting radial expansion and contraction strain of the easily deformable portion 153d.
- the direction of strain detected by the strain gauge 19 is not limited to the radial direction, and may be a circumferential direction, an axial direction, or an oblique direction combining these directions.
- the radial strain generated in the easily deformable portion 153d also increases.
- the strain of the easily deformable portion 153d correlates with the state of wear of the internal teeth and the external teeth of the speed reducer 15, so by detecting the strain with the strain gauge 19, changes in the state of wear can be monitored.
- Each strain gauge 19 is connected to a measuring device 191 .
- FIG. 3 shows a state in which only one strain gauge 19 is connected, all the strain gauges 19 are actually connected to the measuring device 191 .
- the measuring device 191 receives a detection signal (for example, a voltage signal) indicating the resistance value of each strain gauge 19 to acquire the strain. can be done.
- the measuring device 191 can obtain the stress distribution of the first internal gear 15d shown in FIG. 4 from the strains detected by the eight strain gauges 19. FIG. Then, the measuring device 191 inputs the stress distribution of the first internal gear 15 d to the control device 30 of the driving device 1 connected to the measuring device 191 .
- the control device 30 of the driving device 1 includes, for example, an arithmetic processing device having a CPU, a ROM and a RAM as storage devices, and other peripheral circuits.
- the control device 30 is configured by the circuit section 17 of FIG. 1, but is not limited to this and may be provided separately from the circuit section 17.
- the control device 30 has a control section 31 that controls the operation of the driving device 1 and a correction section 32 that corrects control parameters of the control section 31, which will be described later.
- These are functional configurations realized by the central processing unit of control device 30 executing programs in the data storage device.
- One or both of the control unit 31 and the correction unit 32 may be configured by hardware.
- Control device control unit
- the control unit 31 has a disturbance observer using a basic control model of the drive device 1 and an inverse model of the control model, determines an output value based on a plurality of predetermined control parameters, and determines the operation of the motor 12. Execute control.
- the control parameters (1) to (5) included in the plurality of control parameters of the control section 31 will be explained.
- control parameters (1) to (5) shown below as the control parameters of the control unit 31 are examples, and are not limited to these, and more control parameters can be used for operation control. Conversely, the control unit 31 may not be configured to control the operation of the motor 12 using all of the control parameters (1) to (5) shown below as control parameters. may be used as a control parameter to control the operation of the motor 12 .
- the control parameter (1) is the starting torque of the driving device 1 shown in FIG.
- the value of the starting torque indicates the starting characteristics of the driving device 1 and serves as a control parameter for friction compensation.
- the starting torque indicates a torque value required to start the driving device 1 in a no-load state.
- FIG. 5 shows the shaft angle (dotted line), shaft speed (chain line), and torque value (solid line) of the output member 16 when measuring the starting torque.
- the torque output of the motor 12 was gradually increased from 0, and the shaft angle and shaft speed of the output member 16 were detected from the output of the output-side rotation detector 18B at that time. The torque value at this time is taken as the starting torque.
- the control parameter (2) is the angular transmission error of the driving device 1 shown in FIG.
- the angular transmission error indicates speed stability and vibration characteristics of the driving device 1, and serves as a control parameter for speed and speed deviation compensation.
- the angle transmission error is obtained from the difference between the theoretical output rotation angle and the measured output rotation angle when an arbitrary rotation angle is input in a no-load state.
- the horizontal axis represents the shaft angle of the output member 16, and the vertical axis represents the measured angle transmission error.
- the control parameter (3) is the torsion angle generated in the output member 16 of the speed reducer 15 of the driving device 1 shown in FIG.
- the torsional angle value indicates the positioning, vibration and response characteristics of the drive device 1 and is a control parameter for torsional compensation.
- FIG. 7 shows measured values of the load and the displacement (torsion angle) of the output member 16 until the rotor shaft 13 is fixed and the load is gradually increased to the rated torque from the output member 16 side until the load is removed.
- the control parameter (4) is the hysteresis of the torsion angle generated in the output member 16 of the speed reducer 15 of the driving device 1 shown in FIG.
- the hysteresis value of the torsion angle indicates the positioning characteristics of the driving device 1 and serves as a control parameter for error compensation.
- FIG. 8 shows the load and the displacement (torsion angle) of the output member 16 until the load is slowly applied to the rated torque and the load is removed from the output member 16 side with the rotor shaft 13 fixed. Measure and show the relationship. From the measurement values of the torsion angles when the torque is gradually increased to the rated torque for the forward rotation and the reverse rotation, a hysteresis curve of rigidity as shown in FIG. 8 is obtained.
- the lost motion described in FIG. 8 is defined as the twist angle at the rated torque ⁇ 3% point.
- the values of hysteresis loss and lost motion in this case are control parameters.
- the control parameter (5) is the magnitude of backlash generated between the external gear 15c of the speed reducer 15 of the driving device 1 and the first internal gear 15d and the second internal gear 15e shown in FIG.
- FIG. 9 is an explanatory diagram showing an image of backlash, and illustrates backlash in the meshing of external gears for easy understanding.
- the backlash referred to here is the backlash in the direction perpendicular to the tooth surface.
- the backlash is measured by inserting a clearance gauge into the gap between the meshing tooth flanks.
- the backlash value indicates the positioning characteristics of the driving device 1 and serves as a control parameter for error compensation.
- Control device: correction unit The above-described various control parameters used for controlling the operation of the control unit 31 are set at a stage (initial stage ) are obtained by performing measurements, etc. Various control parameters obtained are recorded in the storage device of the control device 30 and used for operation control during actual use. The various control parameters acquired at the initial stage do not deteriorate in numerical aptitude with respect to aging after the start of practical use of the driving device 1, for example, deterioration due to wear of the speed reducer 15. However, it is neither easy nor realistic to measure various control parameters again for the driving device 1 that has been incorporated into the master machine and has undergone secular change.
- the control device 30 stores, in a storage device (not shown), changes over time in the stress distribution of the first internal gear 15d based on the strain detected by each strain gauge 19, which is information that is influenced by the state of wear of the speed reducer.
- Data groups are held in advance, and the correction unit 32 can refer to these data groups.
- the “data group with secular change in the stress distribution of the first internal gear 15d” refers to a data group of stress distribution at different stages of progress of the secular change of the speed reducer 15 .
- the stress distribution of the first internal gear 15d is obtained by a well-known method from the 3D data of the first internal gear 15d, the arrangement of each strain gauge 19, the amount of strain detected by each strain gauge 19, the direction of the strain, and the like. Is possible. Then, the individual stress distribution data constituting the data group associated with the secular change of the stress distribution of the first internal gear 15d was obtained by using the driving device 1, which is a sample machine (exclusive test machine for data collection), for a long period of time. and every time a certain period of time elapses after the start of operation (for example, every 100 hours or 1000 hours, which is not particularly limited and can be set appropriately), detection of each strain gauge 19 is performed. can be obtained by measuring the stress distribution of the first internal gear 15d from each detected value.
- the driving device 1 which is a sample machine (exclusive test machine for data collection)
- the data group that accompanies changes in the stress distribution of the first internal gear 15d over time includes the stress distribution of the first internal gear 15d at the beginning of operation, and the stress distribution of the first internal gear 15d after 100 hours of operation. stress distribution, stress distribution of the first internal gear 15d after 200 hours of operation, stress distribution of the first internal gear 15d after 300 hours of operation, and so on.
- the operating conditions such as the operating speed and the load state at the time of data collection by the driving device 1 of the sample machine are set to predetermined conditions assuming actual use.
- the detection timing of each strain gauge 19 is the timing when one of the strain gauges 19 coincides with the longitudinal axis of the vibrating body 15a in the circumferential direction. These measurement conditions are also stored in the storage device of the control device 30 .
- control device 30 preliminarily stores the measured values of the control parameters (1) to (5) after changes due to aging in the storage device described above.
- the correction unit 32 can refer to these measured values.
- the control parameters (1) to (5) as in the case of the data group with changes in stress distribution over time, the driving device 1, which is a sample machine, was operated continuously for a long time. and every time a certain period (the same time interval as the measurement of the stress distribution) passes, the control parameters (1) to (5) are measured to obtain a data group of measured values.
- the control parameters (1) to (5) may be measured with the same sample machine as the stress distribution measurement, or with a different sample machine.
- the data group of the measured values obtained by the above measurements of the control parameters (1) to (5) are the control parameters (1) to (5) at the beginning of operation, the control parameters after 100 hours of operation ( 1) to (5), control parameters (1) to (5) after 200 hours of operation, control parameters (1) to (5) after 300 hours of operation, and so on.
- the correction unit 32 sends the measurement device 191 to detect the strain of the drive device 1, which is the device itself, by the strain gauges 19 and the first internal gear 15d. and derivation of the stress distribution of It is preferable that the measurement conditions of each strain gauge 19 at this time match the measurement conditions of the data group associated with the secular change of the stress distribution of the first internal gear 15d described above.
- the master machine e.g., robot
- the predetermined correction operation e.g., the target joint is moved from 0 degrees to 0 degrees with no load. It is preferable that the measurement is performed during the correction operation.
- the update execution condition may be any condition as long as it can ensure a certain degree of frequency, such as periodic execution or when the main power of the apparatus is turned on.
- the correcting unit 32 acquires the derivation result of the stress distribution of the first internal gear 15d for the driving device 1, which is the own machine
- the stress distribution of the first internal gear 15d based on the sample machine changes with time.
- the stress distribution of the first internal gear 15d in the most approximate operating period is identified.
- control parameters (1) to (5) are measured.
- the measured values of the control parameters (1) to (5) at the same time as the stress distribution of the first internal gear 15d during the most approximate operation period are specified, and the current control parameter (1 ) to (5) are replaced and updated.
- the correction unit 32 acquires the stress distribution of the first internal gear 15d from the strain detected by each strain gauge 19, and The stress distribution of the first internal gear 15d for any operating period that approximates the stress distribution is identified, from which the control parameters (1)-(5) for the same operating period can be identified.
- the strain detected by each strain gauge 19 and the stress distribution of the first internal gear 15d based on the detected strain are correlated with the state of wear of the internal and external teeth of the speed reducer 15, the first internal gear
- the stress distribution of the gear 15d it is possible to identify the stress distribution in which the wear condition of the driving device 1 of the sample machine is close (the operation period is close), and the sample is taken at the time when the wear condition is close (the operation period is close). Control parameters (1) to (5) measured from the machine can be obtained.
- the data group associated with changes in the stress distribution of the first internal gear 15d over time is not limited to that based on one sample machine, and the changes over time of the stress distribution of the first internal gear 15d are collected for each of a plurality of sample machines.
- An accompanying data group may be prepared.
- a plurality of measurements are performed at each timing when each strain gauge 19 becomes the long axis position of the vibrating body 15a, and a plurality of stress distributions are obtained. you may ask.
- a classifier is generated by a machine learning method using a plurality of stress distributions for each operating period as learning data, and the classifier for each operating period is used to classify the first internal gear of the drive device 1 currently in use. It may be determined which operating period the stress distribution of 15d is.
- control unit 31 uses the updated control parameters (1) to (5) to operate the motor 12 thereafter. Execute control.
- the strain gauge 19 for detecting the strain in the easily deformable portion 153d of the first internal gear 15d as information affected by the wear state of the speed reducer 15 and the information detected by the strain gauge 19 are used for control.
- the strain gauge 19 when used as a sensor that acquires information that is affected by the state of wear, the strain of the first internal gear 15d in the driving state of the driving device 1 correlates with the progress of the state of wear.
- the control parameters (1) to (5) can be acquired appropriately according to the progress of the situation, and the motor 12 can be controlled with higher accuracy.
- the correction unit 32 based on the information detected by the strain gauge 19, the correction unit 32 identifies changes over time with respect to control parameters such as angle transmission error of the speed reducer 15, backlash, hysteresis of the torsion angle with respect to the torque, and starting torque.
- the control parameters are corrected based on Therefore, a more appropriate control parameter can be set according to the secular change of the speed reducer 15, and the operation control of the motor 12 can be performed with higher accuracy.
- the driving device 1 of the sample machine in order to acquire the data group associated with the secular change of the stress distribution of the first internal gear 15d referred to by the correction unit 32, the driving device 1 of the sample machine is operated at a constant speed for a long period of time. Although 12 continuous operations are performed, the operation of the driving device 1 of the sample machine when acquiring the above data group is not limited to the above.
- the parent machine performs a predetermined correction operation (for example, the target joint is rotated from 0 degrees to 180 degrees with no load). , etc.), and acquires the stress distribution data of the first internal gear 15d based on the detection of each strain gauge 19 for each predetermined number of repetitions, which the correction unit 32 refers to.
- a data group that accompanies a secular change in the stress distribution of the first internal gear 15d may be obtained. In that case, it is preferable to acquire the data group of the measured values of the control parameters (1) to (5) after the change due to aging by measuring each predetermined number of repetitions of the operation during correction.
- any condition may be used as the execution condition for updating the correction unit 32 as long as it is a condition that ensures a certain degree of frequency.
- the correction unit 32 converts the stress distribution of the first internal gear 15d acquired for the driving device 1, which is the own device, into the stress distribution of the first internal gear 15d based on the sample device.
- the control parameters (1) to (5) with the same number of repetitions as the stress distribution of the number of repetitions of the operation during correction are identified, and the control parameters (1) to (5 ). Then, the control unit 31 uses the updated control parameters (1) to (5) to control the operation of the motor 12 thereafter.
- the data group associated with the aging of the stress distribution of the first internal gear 15d referenced by the correction unit 32 is composed of the operation when the drive device 1 is mounted on the parent machine. Since it is possible to obtain a group of data that accompanies changes over time in the stress distribution of the first internal gear 15d that reflects the state of wear of the speed reducer 15 caused by the operation in It becomes possible to update, and it becomes possible to control the motor 12 with higher accuracy.
- the strain gauge 19 as a sensor that detects information affected by the wear condition of the speed reducer 15 may also be used for other purposes.
- the controller 31 may be configured to perform predetermined motion control based on the information (detected strain) detected by the strain gauge 19 while the driving device 1 is mounted on a master machine (for example, a robot or the like). Specifically, when the strain detected by the strain gauge 19 exceeds a threshold value prepared in advance during normal operation of the robot (for example, operation when the robot is used for a predetermined purpose), the robot For example, it is determined that any portion has come into contact with an external object or the like, and the control unit 31 performs operation control so as to execute an avoidance operation as a default operation.
- a threshold value prepared in advance during normal operation of the robot (for example, operation when the robot is used for a predetermined purpose)
- the robot For example, it is determined that any portion has come into contact with an external object or the like, and the control unit 31 performs operation control so as to execute an avoidance operation as a default operation
- the embodiments of the present invention have been described above. However, the invention is not limited to the above embodiments.
- the stress distribution of the first internal gear 15d based on the strain detected by the plurality of strain gauges 19 is used as the information that is influenced by the wear condition of the speed reducer 15.
- the value itself of the detected strain of 19 or other numerical values derived from each detected value may be used as the information affected by the wear condition of the speed reducer 15 .
- one numerical value may be derived from the plurality of detected values by a statistical method.
- the control device 30 prepares in advance in the storage device a group of data associated with changes in the stress distribution of the first internal gear 15 d by actual measurement for the sample machine, and the actual drive device 1 that is used.
- comparison with the stress distribution of the first internal gear 15d based on the detection of is performed, it is not limited to this.
- a data group including the secular change in the stress distribution of the first internal gear 15d by actual measurement of the sample machine need not be prepared in advance.
- actual measurement data may be prepared in advance for each control parameter corresponding to each degree of progress of the aging change. If it is possible to calculate based on the degree of progress, a new control parameter may be obtained by the calculation process.
- the sensor that detects information that is affected by the state of wear of the speed reducer 15 is not limited to the strain gauge, and may be a sensor that performs other detections that are affected by the state of wear.
- a sensor that detects the amount of abrasion powder in the lubricant enclosed in the speed reducer 15 or a sensor that detects vibration may be used.
- the speed reducer according to the present invention is not particularly limited in the type of speed reducer mechanism, and any type of speed reducer can be used.
- the speed reducer according to the present invention may be a center crank type eccentric oscillating gear device, or a so-called distribution type eccentric oscillating gear device in which two or more shafts having eccentric bodies are arranged offset from the axis of the gear device. It may be a type gearing or a simple planetary gearing.
- a parallel shaft speed reducer or an orthogonal speed reducer may be used.
- the speed reducer is a so-called tubular flexural mesh gear device
- the speed reducer according to the present invention may be a so-called cup-type or silk hat-type flexible mesh gear. It may be a device.
- strain gauge 19 may be provided not only on the first internal gear 15d, but also on the second internal gear 15e as an internal gear member, or may be provided on other parts.
- the present invention has industrial applicability for actuators.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Retarders (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
そして、減速機の経年変化により、諸特性のパラメータが変化或いは劣化した場合、再度必要な諸特性を計測により取得し、パラメータ同定を行うキャリブレーションを行う必要があった。
減速機と、モータと、所定の制御パラメータに基づいて前記モータの制御を行う制御部と、を備えるアクチュエータであって、
前記減速機に設置され、当該減速機の摩耗状況に影響される情報を検出するセンサと、
前記センサの検出情報に基づいて、制御パラメータを補正する補正部と、
を有する構成とする。
モータ12が駆動してロータ軸13及び起振体15aが回転すると、起振体15aの運動が外歯歯車15cに伝わる。このとき、外歯歯車15cは、起振体15aの外周面に沿った形状に規制され、軸方向から見て、長軸部分と短軸部分とを有する楕円形状に撓んでいる。さらに、外歯歯車15cは、固定された第1内歯歯車15dと長軸部分で噛合っている。このため、外歯歯車15cは起振体15aと同じ回転速度で回転することはなく、外歯歯車15cの内側で起振体15aが相対的に回転する。そして、この相対的な回転に伴って、外歯歯車15cは長軸位置と短軸位置とが周方向に移動するように撓み変形する。この変形の周期は、起振体15aの回転周期に比例する。外歯歯車15cが撓み変形する際、その長軸位置が移動することで、外歯歯車15cと第1内歯歯車15dとの噛合う位置が回転方向に変化する。ここで、外歯歯車15cの歯数が100で、第1内歯歯車15dの歯数が102だとする。すると、噛合う位置が一周するごとに、外歯歯車15cと第1内歯歯車15dとの噛合う歯がずれていき、これにより外歯歯車15cが回転(自転)する。上記の歯数であれば、起振体15aの回転運動は減速比100:2で減速されて外歯歯車15cに伝達される。一方、外歯歯車15cは第2内歯歯車15eとも噛合っているため、起振体15aの回転によって外歯歯車15cと第2内歯歯車15eとの噛合う位置も回転方向に変化する。ここで、第2内歯歯車15eの歯数と外歯歯車15cの歯数とが同数であるとすると、外歯歯車15cと第2内歯歯車15eとは相対的に回転せず、外歯歯車15cの回転運動が減速比1:1で第2内歯歯車15eへ伝達される。これらによって、起振体15aの回転運動が減速比100:2で減速されて、第2内歯歯車15eへ伝達され、第2内歯歯車15eから出力部材16を介して相手部材202に出力される。
ところで、上記駆動装置1の減速機15の第1内歯歯車15dには、減速機の摩耗状況に影響される情報として、第1内歯歯車15dの所定箇所における歪を検出するセンサとしての歪みゲージ19(歪センサ)が装備されている。
また、変形容易部153dは、周方向について一定の間隔で八つ設けられている場合を例示する。
各変形容易部153dの周方向の間隔は、均一であることが好ましいが、必須ではない。また、変形容易部153dの個数も増減可能である。
なお、変形容易部153dは、径方向の外側部分及び内側部分と比べて軸方向の幅を小さくしても良いし、変形容易部153dは設けられなくてもよい。
なお、歪みゲージ19が検出する歪みの方向は、径方向に限定されるものではなく、周方向や軸方向或いはこれらを合成した斜め方向であってもよい。
変形容易部153dは、第1内歯歯車15dにトルクが作用したときに(具体的には、外部連結部152dが支持部材201に連結された状態で、内歯リング部151dが噛合い反力を受けることで、第1内歯歯車15dにトルクが作用したときに)、内歯リング部151dよりも大きく変形する。その結果、変形容易部153dに生じる径方向の伸縮歪みも大きくなる。この変形容易部153dの歪みは、減速機15の内歯と外歯の摩耗状況との相関があるため、歪みを歪みゲージ19で検出することにより、摩耗状況の変化を監視することができる。
各歪みゲージ19は、測定装置191に接続されている。なお、図3では一つの歪みゲージ19のみが接続されている状態を図示しているが実際は全ての歪みゲージ19が測定装置191に接続されている。
歪みゲージ19は、歪みに応じて抵抗値が変化する特性を有するので、測定装置191は、各歪みゲージ19の抵抗値を示す検出信号(例えば、電圧信号)を受信して歪みを取得することができる。
さらに、測定装置191は、八つの歪みゲージ19によって検出された歪みから図4に示す第1内歯歯車15dの応力分布を求めることができる。
そして、測定装置191は、当該測定装置191に接続された駆動装置1の制御装置30に対して第1内歯歯車15dの応力分布を入力する。
駆動装置1の制御装置30は、例えば、CPUや記憶装置であるROMおよびRAM、その他の周辺回路などを有する演算処理装置を含んで構成されている。本実施形態においては、制御装置30は、図1の回路部17により構成されるが、これに限定されるものではなく、回路部17とは別に設けられていてもよい。
制御装置30は、駆動装置1の動作制御を行う制御部31と、後述する制御部31の制御パラメータの補正を行う補正部32とを有する。これらは、制御装置30が備える中央処理装置がデータ記憶装置内のプログラムを実行することにより実現する機能的な構成である。なお、制御部31と補正部32とは、一方又は両方がハードウェアで構成されてもよい。
制御部31は、駆動装置1の基本的な制御モデルと制御モデルの逆モデルとを用いた外乱オブザーバとを有し、所定の複数の制御パラメータに基づいて出力値を決定し、モータ12に対する動作制御を実行する。
ここで、制御部31の複数の制御パラメータに含まれる制御パラメータ(1)~(5)について説明する。
始動トルクは、無負荷の状態で駆動装置1を起動させる際に必要とするトルクの値を示す。図5は、始動トルクの測定時の出力部材16の軸角度(点線)、軸速度(一点鎖線)、トルク値(実線)を示している。測定の際には、モータ12のトルク出力を0から漸増させて、その際の出力側回転検出器18Bの出力から出力部材16の軸角度、軸速度を検出し、これらが0状態から脱した時のトルク値を始動トルクとする。
角度伝達誤差は、無負荷の状態で任意の回転角を入力した時の理論出力回転角と測定された出力回転角の差から求められる。
図6において横軸を出力部材16の軸角度、縦軸を測定された角度伝達誤差の値とする。
図7は、ロータ軸13を固定して出力部材16側より定格トルクまで負荷を漸増させて除荷するまでの負荷及び出力部材16の変位(ねじれ角)を測定した値を示す。定格トルクをT3とした場合、当該定格トルクT3よりも小さい規定のトルクT1,T2(T1<T2<T3)と定格トルクT3におけるねじれ角θ1,θ2,θ3を測定し、それぞれのばね定数K1,K2,K3(K=T/θ)を算出し、各ねじれ角や各バネ定数の値を制御パラメータの特性値とする。
図8は、ロータ軸13を固定して出力部材16側より、上記正回転と逆回転について、定格トルクまでゆっくり負荷を掛けて除荷するまでの負荷及び出力部材16の変位(ねじれ角)を測定し、その関係を示している。上記正回転と逆回転についてそれぞれ定格トルクまで漸増させた時のねじれ角の測定値からは、図8に示すような剛性のヒステリシスカーブが得られる。ここで、図8に記載されたロストモーションとは、定格トルク±3%点におけるねじれ角と定義される。
この場合のヒステリシスロスとロストモーションの値が制御パラメータとなる。
ここでいうバックラッシは、歯面に垂直な方向のバックラッシである。当該バックラッシは、かみ合う歯面のすき間に、スキマゲージを差し込んで測定が行われる。
バックラッシの値は、駆動装置1の位置決め特性を示し、誤差補償の制御パラメータとなる。
制御部31の動作制御に使用される上記各種の制御パラメータは、駆動装置1が製造されてから、駆動装置1が親機械に搭載されて実際的な使用が開始される前の段階(当初段階とする)で測定等が実施されて取得される。そして、取得された各種の制御パラメータは、制御装置30の記憶装置に記録されて、実使用時の動作制御に使用される。
そして、当初段階で取得された各種の制御パラメータは、駆動装置1の実際的な使用開始以降の経年変化、例えば、減速機15の摩耗状況による経年変化に対して、数値的な適性が低下を生じるが、親機械に組み込まれ、経年変化を生じた駆動装置1に対して、改めて各種の制御パラメータの測定を実施することは、容易ではなく、現実的ではない。
まず、制御装置30は、図示しない記憶装置に、減速機の摩耗状況に影響される情報である各歪みゲージ19から検出される歪みに基づく第1内歯歯車15dの応力分布の経年変化を伴うデータ群を予め保有しており、補正部32は、これらのデータ群を参照することができる。
なお、「第1内歯歯車15dの応力分布の経年変化を伴うデータ群」とは、減速機15の経年変化の進行度合いが異なるそれぞれの段階での応力分布のデータ群を示す。
そして、第1内歯歯車15dの応力分布の経年変化を伴うデータ群を構成する個々の応力分布のデータは、サンプル機(データ収集のための試験専用機)である駆動装置1について、長時間の連続運転を行い、運転開始時と一定期間が経過するたびに(例えば、100時間ごと或いは1000時間ごとなど、特に限定されるものではなく、適宜設定される)、各歪みゲージ19の検出を行い、各検出値から第1内歯歯車15dの応力分布を測定することにより取得することができる。
これにより、例えば、第1内歯歯車15dの応力分布の経年変化を伴うデータ群は、運転開始当初の第1内歯歯車15dの応力分布、運転100時間経過後の第1内歯歯車15dの応力分布、運転200時間経過後の第1内歯歯車15dの応力分布、運転300時間経過後の第1内歯歯車15dの応力分布、…等のように構成される。
また、各歪みゲージ19の検出タイミングは、本実施形態においては、いずれかの歪みゲージ19が周方向について起振体15aの長軸と位置が一致するタイミングとする。これらの測定条件についても、制御装置30の記憶装置に保有されている。
各制御パラメータ(1)~(5)の場合も、応力分布の経年変化を伴うデータ群の場合と同様にして、サンプル機である駆動装置1について、長時間の連続運転を行い、運転開始時と一定期間(応力分布の測定と同じ時間間隔)が経過するたびに、制御パラメータ(1)~(5)の測定を行って測定値のデータ群を取得する。この制御パラメータ(1)~(5)の測定は、応力分布の測定と同じサンプル機で行われてもよいし、別のサンプル機で行われてもよい。
これにより、例えば、制御パラメータ(1)~(5)の上記測定によって得られる測定値のデータ群は、運転開始当初の制御パラメータ(1)~(5)、運転100時間経過後の制御パラメータ(1)~(5)、運転200時間経過後の制御パラメータ(1)~(5)、運転300時間経過後の制御パラメータ(1)~(5)、…等のように構成される。
なお、上記の更新の実行条件は、例えば、定期的な実施や、装置の主電源投入時等のように、ある程度の頻度が確保できる条件であればいずれの条件でもよい。
そして、最も近似する運転期間の第1内歯歯車15dの応力分布が、運転開始当初の第1内歯歯車15dの応力分布以外である場合には、制御パラメータ(1)~(5)の測定値のデータ群を参照して、最も近似する運転期間の第1内歯歯車15dの応力分布と同時期の制御パラメータ(1)~(5)の測定値を特定し、現在の制御パラメータ(1)~(5)の設定値と入れ替えて更新する。
各歪みゲージ19による検出される歪みや当該検出された歪みに基づく第1内歯歯車15dの応力分布は、減速機15の内歯や外歯の摩耗状況と相関があるので、第1内歯歯車15dの応力分布を比較することで、サンプル機の駆動装置1の摩耗状況が近い(運転期間が近い)応力分布を特定することができ、摩耗状況が近い(運転期間が近い)時期にサンプル機から測定された制御パラメータ(1)~(5)を取得することができる。
それらの場合、運転期間ごとの複数の応力分布をそれぞれ学習データとして機械学習の手法により分類器を生成し、運転期間ごとの分類器により、現在使用されている駆動装置1の第1内歯歯車15dの応力分布が、いずれの運転期間の応力分布であるかを判定してもよい。
上記駆動装置1では、減速機15の摩耗状況に影響される情報として第1内歯歯車15dの変形容易部153dにおける歪みを検出する歪みゲージ19と、歪みゲージ19の検出情報に基づいて、制御パラメータ(1)~(5)を新たな制御パラメータ(1)~(5)に補正する補正部32と、制御パラメータ(1)~(5)に基づいてモータ12の制御を行う制御部31とを備えている。
このため、減速機15の摩耗状況が進行した駆動装置1について、実際に各制御パラメータ(1)~(5)の測定を行うことなく、減速機15の摩耗状況に相関がある新たな制御パラメータ(1)~(5)を取得することができ、制御部31は、モータ12の制御において、ゲインを低く設定することなく、適切なゲインを維持することができ、モータ12の制御をより高精度で行うことが可能となる。
このため、減速機15の経年変化に応じてより適切な制御パラメータが設定され、より高精度なモータ12の動作制御が可能となる。
また、上記実施形態では、補正部32が参照する第1内歯歯車15dの応力分布の経年変化を伴うデータ群を取得するために、サンプル機の駆動装置1において、一定速度で長期間のモータ12の連続運転を行っているが、上記データ群を取得する際のサンプル機の駆動装置1の動作は、上記に限定されない。
その場合、経年変化に伴う変化後の各制御パラメータ(1)~(5)の測定値のデータ群も、上記の補正時動作の既定の繰り返し回数ごとに測定して、取得することが好ましい。
そして、補正部32は、更新の実行条件に該当すると、自機である駆動装置1について取得した、第1内歯歯車15dの応力分布を、サンプル機に基づく第1内歯歯車15dの応力分布の経年変化を伴うデータ群と比較し、最も近似する補正時動作の繰り返し回数の応力分布と同じ繰り返し回数の制御パラメータ(1)~(5)を特定し、当該制御パラメータ(1)~(5)に更新を行う。
そして、制御部31は、更新された制御パラメータ(1)~(5)を用いて、それ以降のモータ12に対する動作制御を実行する。
減速機15の摩耗状況に影響される情報を検出するセンサとしての歪みゲージ19は、他の用途にも利用してもよい。
例えば、駆動装置1が親機械(例えば、ロボット等)に搭載された状態で、歪みゲージ19の検出情報(検出歪み)に基づいて制御部31が既定の動作制御を実行する構成としてもよい。具体的には、ロボットの通常動作(例えば、ロボットが既定の用途に使用されている場合の動作)中に、歪みゲージ19の検出歪みが、予め用意された閾値を超えた場合に、ロボットのいずれかの部分が外部の物体等に接触したものと判断して、制御部31が、既定の動作として回避動作を実行するように動作制御を行う等である。
これにより、駆動装置1に搭載された各歪みゲージ19が、更新の実行条件の達成時のみの利用だけでなく、他の用途にも利用され、駆動装置1の構成資源を有効活用することが可能となる。
以上、本発明の実施形態について説明した。しかし、本発明は上記の実施形態に限られない。
例えば、上記駆動装置1では、減速機15の摩耗状況に影響される情報として複数の歪みゲージ19の検出歪みに基づく第1内歯歯車15dの応力分布を採用しているが、複数の歪みゲージ19の検出歪みの値そのものや各検出値から導出される他の数値を減速機15の摩耗状況に影響される情報としてもよい。複数の歪みゲージ19の検出歪みの値そのものを利用する場合には、複数の検出値から統計的手法により一つの数値を導出しても良い。
例えば、第1内歯歯車15dの応力分布の経年変化が所定の算出処理等により求めることが可能であれば、サンプル機に対する実測による第1内歯歯車15dの応力分布の経年変化を伴うデータ群を予め用意しなくともよい。第1内歯歯車15dの応力分布の経年変化を求める算出処理から実際に使用される駆動装置1の検出に基づく第1内歯歯車15dの応力分布の経年変化の進行度合いを特定することが可能となるので、当該経年変化の進行度合いに対応する各制御パラメータを特定すればよい。
12 モータ
15 減速機
15a 起振体
15b 起振体軸受
15c 外歯歯車
15d 第1内歯歯車(内歯歯車部材)
15e 第2内歯歯車(内歯歯車部材)
16 出力部材
16a 部材
18 検出部
18A 入力側回転検出器
18B 出力側回転検出器
19 歪みゲージ(歪みセンサ)
30 制御装置
31 制御部
32 補正部
151d 内歯リング部
152d 外部連結部
153d 変形容易部
154d 貫通孔
191 測定装置
201 支持部材
202 相手部材
O1 中心軸
Claims (6)
- 減速機と、
モータと、
所定の制御パラメータに基づいて前記モータの制御を行う制御部と、
を備えるアクチュエータであって、
前記減速機に設置され、当該減速機の摩耗状況に影響される情報を検出するセンサと、
前記センサの検出情報に基づいて、前記制御パラメータを補正する補正部と、
を有するアクチュエータ。 - 前記センサは、歪センサである
請求項1に記載のアクチュエータ。 - 前記センサは、前記減速機を構成する内歯歯車部材の周方向に複数設置される
請求項2に記載のアクチュエータ。 - 前記補正部は、前記センサの検出情報に基づき、前記減速機の角度伝達誤差、バックラッシ、トルクに対するねじれ角のヒステリシスおよび始動トルクのうちの少なくとも一つについて経年変化を特定し、特定した経年変化に基づいて前記制御パラメータを補正する
請求項1から請求項3のいずれか一項に記載のアクチュエータ。 - 前記補正部は、前記アクチュエータが搭載された親機械が予め定められた所定の補正時動作を行ったときの前記センサの検出情報に基づいて、前記制御パラメータを補正する
請求項1から4のいずれか一項に記載のアクチュエータ。 - 前記制御部は、前記アクチュエータが搭載された親機械が通常動作中に前記センサが検出した情報に基づいて、前記アクチュエータを制御する
請求項1から5のいずれか一項に記載のアクチュエータ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280069999.8A CN118160197A (zh) | 2021-12-06 | 2022-10-24 | 致动器 |
EP22903890.6A EP4447311A1 (en) | 2021-12-06 | 2022-10-24 | Actuator |
US18/635,086 US20240255054A1 (en) | 2021-12-06 | 2024-04-15 | Actuator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021197428A JP2023083631A (ja) | 2021-12-06 | 2021-12-06 | アクチュエータ |
JP2021-197428 | 2021-12-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/635,086 Continuation US20240255054A1 (en) | 2021-12-06 | 2024-04-15 | Actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023105957A1 true WO2023105957A1 (ja) | 2023-06-15 |
Family
ID=86730182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/039532 WO2023105957A1 (ja) | 2021-12-06 | 2022-10-24 | アクチュエータ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240255054A1 (ja) |
EP (1) | EP4447311A1 (ja) |
JP (1) | JP2023083631A (ja) |
CN (1) | CN118160197A (ja) |
WO (1) | WO2023105957A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003088178A (ja) * | 2001-09-12 | 2003-03-20 | Sumitomo Heavy Ind Ltd | インバータ付きギヤモータ |
WO2006033401A1 (ja) * | 2004-09-24 | 2006-03-30 | Komatsu Ltd. | ギア駆動制御装置、ギア駆動制御方法、旋回制御装置、および建設機械 |
JP2021081773A (ja) * | 2019-11-14 | 2021-05-27 | 株式会社日立製作所 | 診断装置、モータ駆動装置および診断方法 |
JP2021097430A (ja) | 2019-12-13 | 2021-06-24 | 住友重機械工業株式会社 | 駆動装置 |
-
2021
- 2021-12-06 JP JP2021197428A patent/JP2023083631A/ja active Pending
-
2022
- 2022-10-24 CN CN202280069999.8A patent/CN118160197A/zh active Pending
- 2022-10-24 WO PCT/JP2022/039532 patent/WO2023105957A1/ja active Application Filing
- 2022-10-24 EP EP22903890.6A patent/EP4447311A1/en active Pending
-
2024
- 2024-04-15 US US18/635,086 patent/US20240255054A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003088178A (ja) * | 2001-09-12 | 2003-03-20 | Sumitomo Heavy Ind Ltd | インバータ付きギヤモータ |
WO2006033401A1 (ja) * | 2004-09-24 | 2006-03-30 | Komatsu Ltd. | ギア駆動制御装置、ギア駆動制御方法、旋回制御装置、および建設機械 |
JP2021081773A (ja) * | 2019-11-14 | 2021-05-27 | 株式会社日立製作所 | 診断装置、モータ駆動装置および診断方法 |
JP2021097430A (ja) | 2019-12-13 | 2021-06-24 | 住友重機械工業株式会社 | 駆動装置 |
Also Published As
Publication number | Publication date |
---|---|
CN118160197A (zh) | 2024-06-07 |
EP4447311A1 (en) | 2024-10-16 |
US20240255054A1 (en) | 2024-08-01 |
JP2023083631A (ja) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2127812B1 (en) | Device for detecting load torque on electric motor | |
US7772836B2 (en) | Device for detecting absolute angle of multiple rotation and angle detection method | |
JP7401517B2 (ja) | ねじりシリーズ弾性アクチュエータ | |
EP3778155A1 (en) | Articulation unit, robot arm, and robot | |
EP1696216A1 (en) | Method and device for measuring torque in a robot | |
JP6808474B2 (ja) | ギヤ付きモータのアブソリュートエンコーダ | |
JP6717305B2 (ja) | エンコーダ装置、駆動装置、ステージ装置、ロボット装置、回転情報取得方法及び回転情報取得プログラム | |
EP3734117A1 (en) | Method of detecting the state of wear of an electric actuator | |
CN116685442A (zh) | 机器人、用于机器人的驱动单元以及定位方法 | |
KR20220115964A (ko) | 제1 회전축과 제2 회전축 사이의 회전 모멘트 및/또는 회전각을 결정하는 장치 | |
WO2023105957A1 (ja) | アクチュエータ | |
CN112140140A (zh) | 旋转轴结构以及机器人 | |
CN114641381A (zh) | 驱动装置 | |
JP5591180B2 (ja) | 駆動関節機構 | |
KR101618322B1 (ko) | 중공타입의 일체형 전기적 구동모듈 | |
CN115126845A (zh) | 带有编码器集成的应变波齿轮 | |
JP2898675B2 (ja) | 回転捩り試験機における捩り角度検出装置 | |
CN110549373B (zh) | 一种驱动机构 | |
KR20240045843A (ko) | 하모닉 감속기 시험장치 | |
CN110095283B (zh) | 一种考虑轴承时变激励的齿轮动力学测试装置 | |
KR101769307B1 (ko) | 고성능 비접촉식 엔코더를 갖춘 중공형 액츄에이터 | |
JP5857948B2 (ja) | ナットランナー | |
JP2023010614A (ja) | ナットランナのねじ接合シミュレーションのためのシミュレーション装置 | |
JP7144248B2 (ja) | 検出誤差を低減可能な磁気式変位検出器 | |
KR20220135729A (ko) | 플렉스플라인의 변형량 시험 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22903890 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280069999.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022903890 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022903890 Country of ref document: EP Effective date: 20240708 |