WO2023105883A1 - Method for molding cylindrical body having tapered part - Google Patents

Method for molding cylindrical body having tapered part Download PDF

Info

Publication number
WO2023105883A1
WO2023105883A1 PCT/JP2022/034792 JP2022034792W WO2023105883A1 WO 2023105883 A1 WO2023105883 A1 WO 2023105883A1 JP 2022034792 W JP2022034792 W JP 2022034792W WO 2023105883 A1 WO2023105883 A1 WO 2023105883A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical body
diameter
tapered portion
forming
inner diameter
Prior art date
Application number
PCT/JP2022/034792
Other languages
French (fr)
Japanese (ja)
Inventor
隆太 高井
大貴 川端
司 角田
Original Assignee
株式会社三五
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三五 filed Critical 株式会社三五
Priority to JP2023513864A priority Critical patent/JPWO2023105883A1/ja
Publication of WO2023105883A1 publication Critical patent/WO2023105883A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/02Enlarging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/04Reducing; Closing

Definitions

  • the present invention relates to a method for forming a cylindrical body having a tapered portion. More specifically, the present invention provides a cylindrical body having a tapered portion that can be processed by plastic working regardless of the wall thickness of the blank pipe, while reducing the number of mold sets and work processes. It relates to a molding method.
  • a cylindrical body having a tapered portion for example, as illustrated in FIG. 2, as an intermediate material for molding a funnel-shaped member such as a nozzle or tank liner.
  • a common method is to obtain a desired shape by reducing the diameter of the cylindrical portion while reducing the diameter.
  • Patent Document 1 Japanese Patent No. 4681143
  • a side wall of an intermediate material is passed between a mandrel and a die having a coaxial double structure, and the mandrel presses the bottom of the intermediate material, and the outer mandrel and the die
  • Patent Document 2 Japanese Patent No. 5741771 discloses a molding method in which, in the molding method described above, counter punches are arranged so as to face the mandrel with the bottom portion of the intermediate material interposed therebetween.
  • Patent Document 3 Japanese Patent No. 5244529
  • a flange portion of a hat-shaped intermediate material having a flange portion on the peripheral edge of the open end is sandwiched between the outer die and a wrinkle pressing plate and restrained, and the inner side of the outer die is held.
  • a molding method is disclosed in which an inner die provided in the inner die is pushed down to cover the intermediate material with a center punch provided inside the outer punch and the side wall of the intermediate material is pressed inward to form a small diameter portion.
  • Patent Literature 1 and Patent Literature 2 are rolling of thin plates, and when applied to thick plates having a thickness of 2 mm or more, for example, damage to the mold and / or the raw tube during forming There is a possibility that problems such as the occurrence of cracks in the
  • the method described in Patent Document 3 is an upsetting process into a simple shape, in order to obtain a member having the shape illustrated in FIG. It is necessary to reduce the diameter of the cylindrical portion while enlarging the diameter of the cylinder, which causes, for example, an increase in the number of mold sets and work processes, which is not economical.
  • the method described in Patent Document 3 also has a limit of about 2 mm for the thickness of the blank tube that can be applied, and a member having a shape as illustrated in FIG. It is difficult to obtain.
  • the present inventors have found a method of forming a cylindrical body having a tapered portion and a small diameter portion by pushing a cylindrical blank pipe into a die hole having a predetermined shape with a metal core having a predetermined shape.
  • the above problem can be solved by reducing the diameter of the blank tube while compressing it by pressing it in the axial direction to form the small-diameter portion.
  • the method for forming a cylindrical body having a tapered portion according to the present invention is a through hole having a predetermined shape formed in a die.
  • a taper is formed by pushing a base tube, which is a bottomed or bottomless cylindrical member, into a certain die hole in the axial direction of the base tube and the die hole using a first core bar having a predetermined shape.
  • a method for forming a cylindrical body having a part is a through hole having a predetermined shape formed in a die.
  • the cylindrical body has a tapered portion, which is a portion whose diameter increases as it approaches one open end, and a small-diameter portion, which is a cylindrical portion formed between the other end and the tapered portion.
  • the maximum outer diameter of the tapered portion is larger than the outer diameter of the blank tube, and the outer diameter of the small-diameter portion is smaller than the outer diameter of the blank tube.
  • the die hole has a large inner diameter portion, a small inner diameter portion, and a reduced inner diameter portion.
  • the large inner diameter portion is a portion having a first inner diameter corresponding to the maximum outer diameter of the tapered portion of the cylindrical body.
  • the small inner diameter portion is a portion having a second inner diameter that is smaller than the inner diameter corresponding to the outer diameter of the small diameter portion of the cylindrical body.
  • the reduced inner diameter portion is formed between the large inner diameter portion and the small inner diameter portion, and is a portion in which the inner diameter decreases from the first inner diameter to the second inner diameter as it approaches the small inner diameter portion from the large inner diameter portion.
  • the first cored bar has an increased outer diameter portion and a first stepped portion.
  • the increased outer diameter portion is a portion whose outer diameter increases from the outer diameter corresponding to the minimum inner diameter of the tapered portion of the cylindrical body to the outer diameter corresponding to the maximum inner diameter of the tapered portion of the cylindrical body as the distance from the tip increases.
  • the first stepped portion is an annular step formed so as to expand radially outward at a position adjacent to the base end side of the increased outer diameter portion, and has an outer diameter equal to the maximum outer diameter of the tapered portion of the cylindrical body. It is a portion having an inner diameter equal to the maximum inner diameter of the tapered portion of the cylinder.
  • the method of the present invention includes the following first and second steps.
  • 1st step inserting the blank pipe from the large inner diameter side of the die hole so that the first end, which is the open end of the blank pipe, faces the upstream side in the first direction, which is the direction in which the blank pipe is pushed into the die hole.
  • Second step inserting the first cored bar into the first end of the blank pipe and pressing the blank pipe in the first direction by the first cored bar, thereby forming a tapered portion in the region facing the reduced inner diameter portion of the die hole. is formed and a small diameter portion is formed in a region facing the small inner diameter portion of the die hole.
  • Diameter expansion process The inside of the first end of the blank pipe is pressed by the increased outer diameter portion of the first core bar to expand the diameter of the first end of the blank pipe.
  • Diameter reduction process After a first time point at which the first stepped portion of the first cored bar abuts on the first end portion of the blank tube at the latest, the blank tube is pressed in the first direction by the first cored bar to form the blank tube. is pushed toward the small inner diameter portion of the die hole to reduce the diameter of the second end side of the blank tube.
  • Completion process The first end side region of the blank tube is sandwiched between the reduced inner diameter portion of the die hole and the increased outer diameter portion of the first cored bar to complete the forming of the tapered portion and the small diameter portion.
  • the diameter reduction process is started after the diameter expansion process is started. Specific measures for this will be described later.
  • a blank pipe may be used in which the thickness of the region corresponding to the tapered portion of the cylindrical body is greater than the thickness of the region corresponding to the small-diameter portion of the cylindrical body.
  • the material forming the mother tube may be austenitic stainless steel.
  • the first core bar presses the blank pipe in the first direction after the first time point at the latest, and the second end of the blank pipe is is pushed toward the small inner diameter portion of the die hole to reduce the diameter of the second end side of the blank tube. That is, the diameter of the tube is reduced while compressing it by pressing it in the axial direction to form the small-diameter portion of the cylindrical body. Therefore, according to the method of the present invention, the tapered portion and the small diameter portion can be formed at the same time while reducing problems such as buckling and/or breakage even when using a thick blank pipe. can be smoothly molded.
  • the diameter reduction process is started after the diameter expansion process is started.
  • the tapered portion and the small diameter portion can be formed more smoothly with good balance.
  • the material in the diameter expansion process executed in the second step is The reduction in wall thickness (thickness) associated with the expansion of the first end of the tube can be at least partially offset to make the wall thickness of the cylinder more uniform.
  • austenitic stainless steel as the material for the blank pipe, the mechanical strength of the cylindrical body can be increased by work hardening that accompanies execution of the second step.
  • FIG. 2 is a schematic cross-sectional view illustrating the configuration of a cylindrical body having a tapered portion formed by a method (first method) for forming a cylindrical body having a tapered portion according to the first embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional view illustrating the configuration of a blank pipe used in the first method
  • FIG. 4A is a schematic cross-sectional view illustrating the configuration of a die used in the first method
  • FIG. 4 is a schematic cross-sectional view illustrating the configuration of a first cored bar used in the first method
  • It is a flowchart which shows the flow of each process and each process included in a 1st method.
  • FIG. 5 is a schematic cross-sectional view illustrating changes in the position of the first cored bar and the shape of the first mother pipe as the second step performed in the first method progresses;
  • FIG. 10 is a schematic cross-sectional view showing Modified Example 1-1 of the first method;
  • FIG. 4 is a schematic cross-sectional view showing an example of a method of forming a blank pipe used in Modification 1-1 of the first method.
  • the first core bar and the second core bar along with the progress of the second step executed in Modified Example 2-1 of the method for forming a cylindrical body having a tapered portion (second method) according to the second embodiment of the present invention
  • 5 is a schematic cross-sectional view illustrating changes in position and shape of the first mother pipe
  • 8 is a flow chart showing each process and the flow of each process included in a method for forming a cylindrical body having a tapered portion (third method) according to a third embodiment of the present invention
  • FIG. 11 is a schematic cross-sectional view showing an example of the configuration of a first cored bar used in the method of forming a cylindrical body having a tapered portion (fourth method) according to the fourth embodiment of the present invention; It is a flow chart which shows each process included in the 4th method, and the flow of each process.
  • FIG. 11 is a schematic cross-sectional view showing an example of the configuration of a first cored bar used in the method of forming a cylindrical body having a tapered portion (fourth method) according to the fourth embodiment of the present invention. It is a flow chart which shows each process included in the 4th method, and the flow of each process.
  • FIG. 11 is a schematic cross-sectional view illustrating changes in the positions of the central member and the peripheral member that constitute the first cored bar and the shape of the first blank pipe as the second step performed in the fourth method progresses;
  • a method for forming a cylindrical body having a tapered portion according to the fifth and sixth embodiments of the present invention, in which the punching process is performed after the treatment process performed in the third step included in the third method (the fifth method and the sixth method) is a flow chart showing each step and the flow of each process.
  • 10 is a flow chart showing each step and the flow of each step included in the fifth method and the sixth method, in which the removal process is performed after the treatment process is performed in the second process included in the fourth method.
  • FIG. 11 is a schematic cross-sectional view showing an example of the extraction process performed in the fifth method
  • FIG. 11 is a schematic cross-sectional view showing an example of the extraction process performed in the sixth method
  • FIG. 20 is a schematic cross-sectional view showing a state immediately before the second step is started in modification 7-1 of the method for forming a cylindrical body having a tapered portion (seventh method) according to the seventh embodiment of the present invention
  • FIG. 20 is a schematic cross-sectional view showing a state immediately before the second step is started in modification 7-2 of the seventh method
  • first method A method of forming a cylindrical body having a tapered portion according to the first embodiment of the present invention (hereinafter sometimes referred to as "first method") will be described below with reference to the drawings.
  • cored bar used in this specification is a general term for a male mold for pressurizing, deforming and/or drilling a member to be processed in plastic working, and is a technical field. It includes synonyms such as "mandrel”, “punch” and “punch” that are widely used in .
  • a bottomed or bottomless cylindrical member is formed by inserting a first cored bar having a predetermined shape into a die hole, which is a through hole having a predetermined shape formed in a die.
  • a cylindrical body having a tapered portion is formed by pushing a blank pipe in the axial direction of the blank pipe and the die hole. That is, the first method is a method of forming a cylindrical body having a tapered portion by cold forging.
  • the drive mechanism for pushing the first cored bar into the die hole can be any one of various drive mechanisms known in the art, depending on the properties of the material forming the blank tube (for example, mechanical strength and hardness). It can be appropriately selected from among them.
  • a press such as a hydraulic press, is employed as the drive mechanism.
  • a blank tube which is a material for forming a cylindrical body with a tapered portion, is a cylindrical member made of a material that can be formed by cold forging.
  • the base pipe may be, for example, a base pipe 101 made of a bottomed cylindrical member as illustrated in FIG.
  • the base pipe 102 may be a cylindrical member of .
  • Such a blank tube is not particularly limited as long as it can be formed into a cylindrical body having a tapered portion by the first method.
  • the blank pipe may be a plate-wrapped pipe or a seamless pipe, and may be manufactured by forging or cutting.
  • a base pipe with a bottom may be manufactured by drawing from a plate-like member.
  • the cylindrical body has a tapered portion, which is a portion whose diameter increases as it approaches one open end, and a small-diameter portion, which is a cylindrical portion formed between the other end and the tapered portion.
  • a tapered portion which is a portion whose diameter increases as it approaches one open end
  • a small-diameter portion which is a cylindrical portion formed between the other end and the tapered portion.
  • such cylinders can be used as intermediate blanks for forming funnel-shaped parts, such as nozzles or tank liners.
  • a specific example of such a cylindrical body is a cylindrical body having a tapered portion as illustrated in FIG.
  • the cylindrical bodies 201 and 202 illustrated in FIGS. 2(a) and 2(b) have a tapered portion 220 and a tapered portion 212, which are portions whose diameters increase as they approach one open end portion 211 and the other end portion 212. It has a small diameter portion 230 which is a cylindrical portion formed between the portion 220 and the portion 220 .
  • the cylindrical body 201 is a bottomed cylindrical body with a closed second end 212
  • the cylindrical body 202 is a bottomless cylindrical body with an open second end 212 .
  • a bottomed or bottomless cylinder can be used as an intermediate material.
  • a bottomless member such as a nozzle or a tank liner from a bottomed cylindrical body such as the cylindrical body 201 described above
  • the bottom is naturally cut off or cut, for example. You have to drill holes in the bottom.
  • molding a bottomless member such as a nozzle or tank liner from a bottomless cylinder such as the cylinder 202 described above
  • it is not necessary to cut off or drill a hole in the bottom for example. None.
  • forming a bottomed member from a bottomless cylindrical body it is, of course, necessary to form the bottom portion by, for example, further plastic working or bonding of members constituting the bottom portion.
  • the maximum outer diameter of the tapered portion is larger than the outer diameter of the blank pipe, and the outer diameter of the small diameter portion is smaller than the outer diameter of the blank pipe. This is because the tapered portion of the cylindrical body is formed by expanding the diameter of the blank tube, and the small-diameter portion of the cylindrical body is formed by reducing the diameter of the blank tube, as will be described later in detail.
  • the maximum outer diameter of the tapered portion refers to the outer diameter at the end of the tapered portion of the cylindrical body on the upstream side in the first direction in which the blank pipe is pushed into the die hole in the first method.
  • the die hole has, in order from the upstream side in the first direction, a large inner diameter portion, a reduced inner diameter portion, and a small inner diameter portion.
  • the large inner diameter portion is a portion having a first inner diameter corresponding to the maximum outer diameter of the tapered portion of the cylindrical body.
  • the small inner diameter portion is a portion having a second inner diameter that is smaller than the inner diameter corresponding to the outer diameter of the small diameter portion of the cylindrical body.
  • the reduced inner diameter portion is formed between the large inner diameter portion and the small inner diameter portion, and the inner diameter decreases from the first inner diameter to the second inner diameter as it approaches the small inner diameter portion from the large inner diameter portion.
  • FIG. 3 is a schematic cross-sectional view illustrating the configuration of the dice used in the first method.
  • a die hole 310 formed in a die 301 illustrated in FIG. 3 includes a large inner diameter portion 311, a reduced inner diameter portion 312, and a small inner diameter portion 313 in order from the upstream side in the first direction.
  • the large inner diameter portion 311 is a portion having a first inner diameter DI ⁇ b>1 that corresponds to the maximum outer diameter of the tapered portion 220 of the cylindrical body 201 .
  • the small inner diameter portion 313 is a portion having a second inner diameter DI ⁇ b>2 that is smaller than the inner diameter corresponding to the outer diameter of the small diameter portion 230 of the cylindrical body 201 .
  • the reduced inner diameter portion 312 is formed between the large inner diameter portion 311 and the small inner diameter portion 313, and the inner diameter decreases from the first inner diameter DI1 to the second inner diameter DI2 as it approaches the small inner diameter portion 313 from the large inner diameter portion 311. part.
  • the first cored bar includes, in order from the downstream side in the first direction, an outer diameter increasing portion and a first stepped portion.
  • the increased outer diameter portion is a portion whose outer diameter increases from the outer diameter corresponding to the minimum inner diameter of the tapered portion of the cylindrical body to the outer diameter corresponding to the maximum inner diameter of the tapered portion of the cylindrical body as the distance from the tip increases.
  • the first stepped portion is an annular step formed so as to expand radially outward at a position adjacent to the base end side of the increased outer diameter portion, and has an outer diameter equal to the maximum outer diameter of the tapered portion of the cylindrical body. It is a portion having an inner diameter equal to the maximum inner diameter of the tapered portion of the cylinder.
  • a small-diameter guide portion which is a substantially cylindrical portion having an outer diameter corresponding to the inner diameter of the small-diameter portion of the cylindrical body, may be provided adjacent to the distal end side of the increased outer diameter portion.
  • FIG. 4 is a schematic cross-sectional view illustrating the configuration of the first cored bar used in the first method.
  • the first cored bar 401 illustrated in FIG. 4 includes a small diameter guide portion 411, an outer diameter increasing portion 412, and a first stepped portion 413 in order from the downstream side in the first direction.
  • the small-diameter guide portion 411 is a substantially cylindrical portion having an outer diameter corresponding to the inner diameter of the small-diameter portion of the cylindrical body.
  • the increased outer diameter portion 412 is a portion whose outer diameter increases from the outer diameter corresponding to the minimum inner diameter of the tapered portion of the cylindrical body to the outer diameter corresponding to the maximum inner diameter of the tapered portion of the cylindrical body as the distance from the distal end increases.
  • the first stepped portion 413 is an annular stepped portion formed so as to expand radially outward at a position adjacent to the base end side of the increased outer diameter portion 412 and has an outer diameter equal to the maximum outer diameter of the tapered portion of the cylindrical body.
  • a dashed-dotted line AX drawn in FIG. 4 represents a common central axis of the first cored bar, the blank tube and the die hole. That is, in the first method, the first cored bar, the blank tube and the die hole are coaxially arranged with the axis AX as a common axis.
  • the first stepped portion 413 of the first cored bar 401 is the blank tube. It is desirable that the first stepped portion 413 and the end face of the blank tube 101 make surface contact when the base end side (first end portion side) of the tube 101 is brought into contact. Therefore, in the first stepped portion 413 of the first cored bar 401 illustrated in FIG. inclined to
  • FIG. 5 is a flow chart showing each process included in the first method and the flow of each process. As illustrated in FIG. 5, the first method includes the following first step (step S10) and second step (step S20).
  • Step S10 The raw pipe is pushed from the large inner diameter side of the die hole so that the first end, which is the open end of the raw pipe, faces the upstream side in the first direction, which is the direction in which the raw pipe is pushed into the die hole.
  • the pipe is placed at a predetermined position inside the die hole. Install.
  • the maximum outer diameter of the tapered portion is larger than the outer diameter of the blank tube, and the outer diameter of the small-diameter portion is smaller than the outer diameter of the blank tube.
  • the inner diameter of the large inner diameter portion is the inner diameter (first inner diameter) corresponding to the maximum outer diameter of the tapered portion of the cylindrical body, and the inner diameter of the small inner diameter portion corresponds to the outer diameter of the small diameter portion of the cylindrical body. It has an inner diameter (second inner diameter) smaller than the inner diameter, and the inner diameter of the reduced inner diameter portion decreases from the first inner diameter to the second inner diameter as it approaches the small inner diameter portion from the large inner diameter portion.
  • the tip (second end) of the blank pipe inserted into the die hole in the first step abuts the reduced inner diameter portion of the die hole, and the inner peripheral surface of the large inner diameter portion of the die hole and the outer circumference of the blank pipe It is held in a state in which a gap exists between it and the surface.
  • Step S20 A first mandrel is inserted into the first end of the blank pipe, and the blank pipe is pressed in the first direction by the first core bar, thereby facing the reduced inner diameter portion of the die hole.
  • a cylindrical body having a tapered portion formed in a region and a small diameter portion formed in a region facing the small inner diameter portion of the die hole is molded.
  • the tip of the first cored bar has an outer diameter that increases from the outer diameter corresponding to the minimum inner diameter of the tapered portion of the cylindrical body to the outer diameter corresponding to the maximum inner diameter of the tapered portion of the cylindrical body.
  • An increasing outer diameter is provided. Therefore, when the first cored bar is inserted into the first end of the base pipe, the first end of the base pipe abuts on the middle of the increased outer diameter portion of the first cored bar. After that, by pressing the first cored bar in the first direction by the drive mechanism described above, a tapered portion is formed in a region facing the reduced inner diameter portion of the die hole and a small diameter portion is formed in a region facing the small inner diameter portion of the die hole. A section is formed to form the desired "tapered cylinder".
  • Diameter expansion process (step S21): The diameter of the first end side of the mother pipe is expanded by pressing the inside of the first end of the mother pipe with the increased outer diameter portion of the first cored bar. That is, the first end side of the blank pipe is expanded by the increased outer diameter portion of the first cored bar to be expanded in diameter.
  • Diameter reduction process (step S22): After a first time point at which the first stepped portion of the first core bar contacts the first end of the blank tube at the latest, the blank tube is pressed in the first direction by the first core bar.
  • step S23 The region of the first end side of the blank pipe is sandwiched between the reduced inner diameter portion of the die hole and the increased outer diameter portion of the first cored bar to complete the forming of the tapered portion and the small diameter portion.
  • the first core bar presses the base pipe in the first direction at the latest after the first point of time. Then, the second end portion of the blank tube is pushed toward the small inner diameter portion of the die hole to reduce the diameter of the second end side of the blank tube. That is, the diameter of the tube is reduced while compressing it by pressing it in the axial direction to form the small-diameter portion of the cylindrical body. Therefore, according to the first method, the tapered portion and the small-diameter portion can be simultaneously formed while reducing problems such as buckling and/or breakage even when using a thick blank pipe. can be smoothly molded.
  • the order of starting the diameter-expanding process (step S21) and the diameter-reducing process (step S22) in the second step (step S20) is not particularly limited as long as problems such as buckling of the blank tube do not occur.
  • the diameter increasing process (step S21) starts simultaneously with the start of the second step (step S20)
  • the diameter decreasing process (step S22) may start simultaneously with the starting of the diameter increasing process (step S21).
  • the diameter reduction process (step S22) may be started after the diameter expansion process (step S21) is started.
  • a first stepped portion is provided which is a portion having an outer diameter equal to the maximum outer diameter and an inner diameter equal to the maximum inner diameter of the tapered portion of the cylinder. Therefore, even if the diameter-reducing process (step S22) is started after the diameter-expanding process (step S21) is started, the first stepped portion of the first cored bar is positioned at the first end of the tube.
  • the diameter reduction process may be started simultaneously with the start of the second step (step S20).
  • the diameter expansion process may be started at the same time as the diameter reduction process (step S22) is started, or the diameter expansion process (step S21) may be started after the diameter reduction process (step S22) is started. may be started.
  • the diameter reduction process is started after the diameter expansion process is started. More preferably, the diameter reduction process is started after the first stepped portion of the first core bar contacts the first end portion of the blank tube (first time point). As a result, the tapered portion and the small diameter portion can be formed more smoothly with good balance.
  • the timing at which the diameter-expanding process is started and the timing at which the diameter-reducing process is started in the second step are determined, for example, by the shape (diameter, length, thickness, etc.) and material of the blank tube, and the portion to be the tapered portion of the cylindrical body. and the diameter reduction ratio of the portion to be the small diameter portion of the cylindrical body, and the change rate (taper angle) of the inner diameter of the die hole at the inner diameter reduction portion.
  • the difference between the outer diameter of the second end of the blank tube and the outer diameter of the small diameter portion of the cylindrical body is greater than the diameter expansion ratio, which is the ratio to the outer diameter of the first end of the blank tube.
  • the base tube, the die hole, and the first cored bar are configured so that the diameter reduction rate, which is the ratio of the portion to the outer diameter, becomes greater.
  • the tapered portion and the small diameter portion can be formed more smoothly with good balance.
  • measures for starting the diameter-reducing process after the diameter-expanding process is started are not limited to the above.
  • FIG. 6 is a schematic cross-sectional view illustrating changes in the position of the first mandrel and the shape of the first mother pipe as the second step progresses.
  • FIG. 6 only the right side of the common axis AX (see FIG. 4) of the first mandrel, tube and die hole is shown, but the left side of the axis AX is shown.
  • FIGS. 1 to 4 only some of the reference numerals attached to the parts shown in FIGS. 1 to 4 are shown.
  • the reference numerals shown in FIGS. 1-4 are used for the sake of accuracy, and reference should be made to FIGS. 1-4 as necessary.
  • the tip of the first cored bar 401 (specifically, Specifically, it shows a state in which the small-diameter core portion 411 and a portion of the increased outer diameter portion 412) are inserted.
  • the tip (second end 112) of the blank tube 101 is in contact with the reduced inner diameter portion 312 of the die hole 310, and the inner peripheral surface of the large inner diameter portion 311 of the die hole 310 is in contact with the inner peripheral surface of the die hole 310.
  • a gap exists between the outer peripheral surface of the blank tube 101 .
  • the first cored bar 401 begins to press the blank tube 101 in the first direction, and the side surface of the outer diameter increased portion 412 of the first cored bar 401 shows a state in which the first end portion 111 side of the base tube 101 is pushed out and a flare is formed. That is, at this time point, the diameter expansion process (step S21) is started and the diameter expansion of the first end portion 111 side of the raw pipe 101 has started, but the diameter reduction of the second end portion 112 side of the raw pipe 101 is It hasn't started yet.
  • the first cored bar 401 moves further in the first direction, and the expansion of the diameter of the base tube 101 on the first end portion 111 side progresses further, and the first cored bar 401 413 is in contact with the first end 111 of the blank pipe 101 and the second end 112 of the blank pipe 101 has begun to be pushed toward the small inner diameter portion 313 of the die hole 310.
  • the first cored bar 401 moves further in the first direction, and the expansion of the diameter of the first end portion 111 side of the base pipe 101 further progresses.
  • the second end portion 112 is shown to have begun to enter the small inner diameter portion 313 of the die hole 310 . That is, at this time point, the small-diameter portion 230 of the cylindrical body 201 begins to be formed by the diameter-reducing process (step S22).
  • the first cored bar 401 moves further in the first direction, and the expansion of the diameter of the first end side of the base pipe 101 further progresses, and the base pipe 101 moves toward the second end.
  • the end portion 112 further enters the small inner diameter portion of the die hole 310, and the formation of the small diameter portion 230 of the cylindrical body 201 is further advanced by the diameter reduction process (step S22).
  • the first core bar presses the blank pipe in the first direction at the latest after the first time point in the diameter reduction process executed in the second step, thereby reducing the blank pipe.
  • the diameter of the second end of the blank tube can be reduced. That is, the small-diameter portion of the cylindrical body can be formed by pressing and compressing the blank pipe in the axial direction to reduce the diameter. Therefore, according to the first method, the tapered portion and the small-diameter portion can be simultaneously formed while reducing problems such as buckling and/or breakage even when using a thick blank pipe. can be smoothly molded.
  • the diameter of the first end side of the blank pipe is expanded to form the tapered portion of the cylindrical body. thinning).
  • the wall thickness of the region of the blank pipe that will be the tapered portion of the cylindrical body may be increased in advance. That is, in the first method, a blank tube may be used in which the thickness of the region corresponding to the tapered portion of the cylindrical body is greater than the thickness of the region corresponding to the small diameter portion of the cylindrical body.
  • FIG. 7 schematically shows a modification 1-1 of the first method in which the thickness of the region corresponding to the tapered portion of the cylindrical body is greater than the thickness of the region corresponding to the small diameter portion of the cylindrical body. It is a cross-sectional view.
  • the thickness of the region corresponding to the tapered portion of the cylindrical body corresponds to the small diameter portion of the cylindrical body. It has the same configuration as the base pipe 101 illustrated in FIG. In this way, by increasing the thickness of the region of the blank pipe that will be the tapered portion of the cylindrical body in advance, as illustrated in FIG. It is possible to at least partially offset the reduction in thickness (thickness reduction) accompanying the expansion of the diameter of the cylindrical body 201a, thereby making the thickness of the cylindrical body 201a more uniform.
  • the method for manufacturing a blank pipe as described above makes it possible to obtain a blank pipe in which the thickness of the region corresponding to the tapered portion of the cylindrical body is greater than the thickness of the region corresponding to the small-diameter portion of the cylindrical body.
  • the base tube as described above may be manufactured by forging or cutting.
  • the blank tube as described above may be manufactured by drawing from a plate-like member.
  • FIG. 8 is a schematic cross-sectional view showing an example of a method of forming the blank tube 101a used in Modification 1-1 of the first method.
  • (a) on the left side of the axis AX in the drawing shows the situation during machining of the tube 101a
  • (b) on the right side of the axis AX in the drawing shows the situation after machining the tube 101a.
  • the die hole formed in the die for forming the blank tube 101a by drawing is tapered so as to become wider as it approaches the opening on the side where the core metal is inserted. part is provided (see thick solid line).
  • FIG. 8B the thickness of the region corresponding to the tapered portion of the cylinder in the blank tube 101a after processing can be made larger than the thickness of other regions (thick see the part enclosed by the dashed line).
  • the thickness of the region corresponding to the tapered portion of the cylindrical body increases linearly as it approaches the first end.
  • the blank tube 101a shown in FIGS. 7 and 8 is merely an example, and the shape of the region of the blank tube used in Modification 1-1 of the first method is different from that of the blank tube in the diameter expansion process. There is no particular limitation as long as it is possible to at least partially offset the decrease in thickness (thickness) associated with the diameter expansion on the one end side.
  • ⁇ Modification 1-2> By the way, when cold forging a material made of a material that easily causes work hardening, such as austenitic stainless steel, there may be problems such as an increase in the working load or cracking of the material during working. . Therefore, such materials tend to be avoided in cold forging.
  • the first metal core presses the blank pipe in the first direction at the latest after the first point in the diameter reduction process executed in the second step, and the blank pipe is pushed in the second direction. The end portion is pushed toward the small inner diameter portion of the die hole to reduce the diameter of the second end side of the blank tube.
  • the tube is pressed in the axial direction (first direction) to reduce its diameter while compressing it to form the small-diameter portion of the cylindrical body, cracking, etc. less likely to cause problems.
  • a thick blank pipe can be used, so that a large load can be applied to the first end of the blank pipe in the diameter reduction process executed in the second step.
  • the material forming the mother tube may be austenitic stainless steel.
  • the cylindrical body formed by the first method from the tube made of austenitic stainless steel is suitable for applications that require high mechanical strength, such as applications that receive high pressure from the fluid that exists inside the cylindrical body. is suitable for
  • products formed by the first method of pressing and compressing the blank tube in the axial direction (first direction) is a compressive residual stress.
  • Cylinders formed by the first method are suitable for applications subject to high tensile stress, such as applications subject to high pressure due to the fluid present inside the cylinder.
  • the second method is any of the first methods described above,
  • the blank tube is a bottomed cylindrical member closed at the second end,
  • a method for forming a cylindrical body having a tapered portion characterized by:
  • the base pipe 101 illustrated in FIG. 1(a) and the base pipe 101a illustrated in FIG. can be mentioned.
  • the diameter-reducing process is started after the diameter-expanding process is started. More preferably, the diameter reduction process is started after the first stepped portion of the first core bar contacts the first end portion of the blank tube (first time point). As a result, the tapered portion and the small diameter portion can be formed more smoothly with good balance.
  • the diameter reduction rate is larger than the diameter expansion rate. Constructing a tube, a die hole and a first mandrel can be mentioned.
  • a so-called "counter punch” is inserted from the small inner diameter side of the die hole to punch the base pipe. The counterpunch is kept in contact with the two ends (bottom), and the counterpunch is also moved in the first direction in accordance with the movement of the second end of the blank tube in the first direction after the time when the diameter reduction process should be started. Thereby, the diameter reduction process can be started at the desired timing after the diameter expansion process is started.
  • a second metal core which is a metal core having a predetermined shape, is inserted from the small inner diameter side of the die hole and fixed at a position where it abuts on the second end of the blank tube. cage, The second core bar starts moving in the first direction at a predetermined speed at a predetermined point in time during which the second step is performed;
  • the specific means for fixing the second cored bar at the position where it contacts the second end of the blank tube is not particularly limited, and may be, for example, a releasable mechanical means, or the first cored bar.
  • the second core bar may be urged in the direction opposite to the first direction by a force that resists the force that pushes the blank tube in the first direction.
  • the time at which the movement of the second cored bar in the first direction is started depends on, for example, the progress of the diameter expansion process at that time, the buckling strength of the blank tube, and the magnitude of the compressive residual stress to be generated in the blank tube. It can be determined as appropriate according to various requirements.
  • the period from the first point in time when the first step portion of the first cored bar abuts against the first end of the blank tube to the point in time when the second cored bar starts to move in the first direction is excessive. Care must be taken because if the length is increased, problems such as an increase in processing load and/or unintended deformation of the mother pipe may occur.
  • the speed at which the second core bar is moved in the first direction also includes, for example, the progress of the diameter expansion process at that time, the buckling strength of the blank pipe, and the magnitude of the compressive residual stress to be generated in the blank pipe. etc., can be determined as appropriate according to various requirements.
  • the speed of movement of the second mandrel in the first direction is excessively slow relative to the speed of movement of the first mandrel in the first direction, for example, an increase in processing load and/or unintended deformation of the blank tube may occur. It is necessary to be careful because there is a possibility that it will lead to problems.
  • FIG. 9 is the same as FIG. 6 except that the second core bar 501 is inserted from the small inner diameter portion 313 side of the die hole 310 and is in contact with the second end portion 112 (bottom portion) of the blank tube 101. .
  • FIG. 9 as well, only the portion on the right side of the axis AX as viewed in the drawing is drawn, but the same applies to the portion on the left side of the axis AX.
  • FIGS. 1 to 4 only some of the reference numerals attached to the parts shown in FIGS. 1 to 4 are shown. However, in the following description of FIG. 9, the reference numbers shown in FIGS. 1-4 are used for the sake of accuracy, and reference should be made to FIGS. 1-4 as necessary.
  • the second cored bar 501 is fixed at a position where it abuts against the second end portion 112 (bottom portion) of the base pipe 101 until the first time point (FIGS. 9A and 9B). b)), and starts moving in the first direction at a predetermined speed at a predetermined timing after the first time point (see (c) and the white arrows in FIG. 9). ing.
  • modification 2-1 of the second method for example, the shape (diameter, length, wall thickness, etc.) and material of the blank pipe, the diameter expansion ratio of the tapered portion of the cylindrical body, and the small diameter portion of the cylindrical body
  • the diameter reduction process can be started at a suitable timing that does not cause problems such as deformation.
  • the moving speed of the second cored bar in the first direction can also be appropriately set according to various factors.
  • the moving speed of the second cored bar in the first direction is set lower than the moving speed of the tip of the small-diameter portion that accompanies the pressing by the first cored bar, the compressive residual stress in the axial direction of the cylindrical body increases. It is possible to promote the thickening of the small diameter portion. Conversely, when the moving speed of the second cored bar in the first direction is set higher than the moving speed of the tip of the small-diameter portion accompanying the pushing by the first cored bar, the compressive residual stress in the axial direction of the cylindrical body is reduced. It is possible to suppress the increase in thickness of the small diameter portion. As described above, according to Modified Example 2-1 of the second method, the tapered portion and the small diameter portion of the cylindrical body can be formed in a better balance and more smoothly.
  • the first core bar presses the blank tube in the first direction to push the second end of the blank tube toward the small inner diameter portion of the die hole, thereby reducing the diameter of the second end side of the blank tube. . That is, the diameter of the tube is reduced while compressing it by pressing it in the axial direction to form the small-diameter portion of the cylindrical body.
  • the thickness of the small-diameter portion of the cylindrical body becomes larger (increases) than the thickness of the region of the blank corresponding to the small-diameter portion of the cylindrical body.
  • variations in the thickness of the small-diameter portion tend to increase.
  • the third method is a method for forming a cylindrical body having a tapered portion, which is any of the second methods described above, and further includes a third step described below.
  • Third step After the second step, the first cored bar is extracted from the cylindrical body, and the third cored bar, which is a cylindrical cored bar having an outer diameter corresponding to the inner diameter of the small diameter portion of the cylindrical body, is inserted into the cylindrical body. By inserting from the tapered portion side of the body and moving in the first direction, a squeezing process of shaving the inner surface of the small diameter portion of the cylindrical body is performed.
  • FIG. 10 is a flowchart showing each process included in the third method and the flow of each process.
  • the flowchart illustrated in FIG. 10 is similar to the flowchart for the first method illustrated in FIG. 5 except that the third step (step S30) is included after the second step (step S20).
  • the details of the treatment process (treatment process) for treating the inner surface of the cylindrical member are well known to those skilled in the art, and therefore the description thereof is omitted here.
  • the shaving process of shaving the inner surface of the small-diameter portion of the cylindrical body is performed. be. Therefore, according to the third method, it is possible to provide a cylindrical body with high dimensional accuracy that can be used in applications requiring high dimensional accuracy for the inner diameter and/or wall thickness of the small-diameter portion.
  • the first core bar is a central member which is a cylindrical portion having an outer diameter corresponding to the inner diameter of the small diameter portion of the cylindrical body, and is provided around the central member coaxially with the central member. and a peripheral member, which is the portion that is cut. Furthermore, the central member is configured to be slidable in the first direction with respect to the peripheral member.
  • FIG. 11 is a schematic cross-sectional view showing an example of the configuration of the first cored bar used in the fourth method.
  • the first cored bar 402 illustrated in FIG. 11 includes a central member 402a, which is a cylindrical portion having an outer diameter corresponding to the inner diameter of the small-diameter portion of the cylindrical body, and a central member 402a provided coaxially around the central member. It is divided into a peripheral edge member 402b which is a flat portion. Furthermore, the central member 402a is configured to be slidable in the first direction with respect to the peripheral member 402b (see the white double-headed arrow).
  • the fourth method is any one of the second methods described above, wherein in the second step, the central member is moved in the first direction at a higher speed than the peripheral member to move the inner surface of the bottom of the mother tube.
  • a method for forming a cylindrical body having a tapered portion characterized in that, by pressing, the inner surface of the small-diameter portion of the cylindrical body is treated in parallel with at least part of the diameter-reducing process.
  • FIG. 12 is a flow chart showing each process included in the fourth method and the flow of each process.
  • the third step step S30
  • the handling process step S24
  • the flowchart for the fourth method illustrated in FIG. 12 is the same as the flowchart for the first method illustrated in FIG.
  • a handling process is also performed.
  • the drawing diameter reduction process
  • the rolling process rolling process for adjusting the inner shape and thickness of the small-diameter portion are performed in parallel in one process. Therefore, it is possible to reduce the decrease in the production efficiency of the cylindrical body and the increase in the manufacturing cost due to the execution of the rolling process.
  • FIG. 13 schematically illustrates changes in the positions of the central member 402a and the peripheral member 402b, which constitute the first cored bar 402, and the shape of the first blank tube 101 as the second step executed in the fourth method progresses. It is a cross-sectional view.
  • FIG. 13 as well, only the portion on the right side of the axis AX as viewed in the drawing is drawn, but the same applies to the portion on the left side of the axis AX.
  • FIGS. 1 to 4 and 11 only some of the reference numerals assigned to the parts shown in FIGS. 1 to 4 and 11 are shown. However, in the following description of FIG. 13, the reference numerals shown in FIGS. 1-4 and 11 are used for the sake of accuracy, and reference should be made to FIGS. 1-4 and 11 as necessary.
  • the second step progresses from the state shown in (a) of FIG. 13 to the state shown in (b) of FIG. (see arrow).
  • the diameter of the first end portion 111 side of the base pipe 101 is increased, and the tapered portion 220 of the cylindrical body 201 is formed.
  • the first end portion 111 of the blank pipe 101 is pressed in the first direction by the first stepped portion 413 of the first cored bar 402 , and the second end portion 112 of the blank pipe 101 is pushed into the small inner diameter portion 313 of the die hole 310 .
  • the diameter of the second end portion 112 side of the blank tube 101 is reduced, and the small diameter portion 230 of the cylindrical body 201 is formed.
  • the central member 402a of the first cored bar 402 moves faster (larger) than the peripheral member 402b in the first direction (see the white arrow).
  • the inner peripheral surface of the small-diameter portion 230 of the cylindrical body 201 formed by reducing the diameter of the second end portion 112 side of the blank pipe 101 is handled by the central member 402a, and the inner diameter and/or wall thickness of the small-diameter portion 230 are increased. Accuracy is achieved.
  • the central member 402a presses the inner surface of the bottom of the tip of the small diameter portion 230 in the first direction.
  • a drive mechanism capable of individually controlling the movement of the central member 402a and the peripheral member 402b is required. is necessary.
  • a specific example of such a driving mechanism is a driving device such as a double-acting press.
  • a bottomless member such as a nozzle or a tank liner from a bottomed cylindrical body such as the cylindrical body 201 illustrated in FIG.
  • Performing secondary processing in such a separate process may lead to problems such as a decrease in production efficiency and an increase in manufacturing costs for products molded using a cylindrical body as an intermediate material. From the viewpoint of reducing such problems, it is desirable to open the bottom portion of the cylindrical body while the cylindrical body is set in the die provided in the apparatus for carrying out the method of the present invention.
  • the fifth method is the above-described third method or fourth method,
  • a protrusion for punching is formed at the tip of the third core bar or the central member, After performing the squeezing process, the third core bar or the central member is further moved in the first direction to perform the punching process of punching the bottom portion at the tip of the small diameter portion of the cylindrical body with the projection.
  • a method for forming a cylindrical body having a tapered portion characterized by:
  • a fourth mandrel which is a mandrel for punching, is configured to move in a second direction opposite to the first direction from the end of the die hole on the side of the small inner diameter portion, After performing the squeezing process, the cylindrical body is fixed so as not to move in the second direction by a predetermined member or peripheral member, and after moving the third core bar or the central member in the second direction, the fourth core bar is moved to the second direction. By moving in two directions, a punching process is performed in which the bottom portion at the tip of the small diameter portion of the cylindrical body is punched out by the fourth core bar.
  • a method for forming a cylindrical body having a tapered portion characterized by:
  • the treatment process executed in the third step included in the third method or the second step included in the fourth method is executed. Afterwards, a punching process is performed to open the bottom portion of the cylinder while the cylinder is set in the die.
  • the fifth method and the sixth method have the same configuration except that the mechanism for executing the extraction process is different.
  • FIG. 14 is a flow chart showing each process and the flow of each process included in the fifth and sixth methods in which the removal process is performed after the treatment process performed in the third process included in the third method.
  • the third step (step S30) of replacing the first cored bar with the third cored bar and performing the handling process is performed.
  • the removal step (step S32) is continuously performed after the treatment step (step S31). Except for this point, the flowcharts for the fifth and sixth methods illustrated in FIG. 14 are similar to the flowchart for the third method illustrated in FIG.
  • FIG. 15 is a flow chart showing each process and the flow of each process included in the fifth method and the sixth method, in which the removal process is performed after the handling process is performed in the second process included in the fourth method. be.
  • the second step (step S20) is executed to execute the diameter expansion process (step S21), the diameter reduction process (step S22), the completion process (step S23), and the handling process (step S24). be done.
  • the execution of the second step (step S20) includes the diameter expansion process (step S21), the diameter reduction process (step S22), the completion process (step After S23) and the handling step (step S24), the extraction step (step S25) is performed continuously. Except for this point, the flowcharts for the fifth and sixth methods illustrated in FIG. 15 are the same as the flowcharts for the fourth method illustrated in FIG.
  • FIG. 16 is a schematic cross-sectional view showing an example of the extraction process (step S32 or step S25) performed in the fifth method.
  • step S32 or step S25 the situation at the time of completion of the handling process
  • step S31 or step S24 the situation at the time of completion of the handling process
  • step S25 the situation at the time of completion of the drawing process
  • the punching projection 601a formed at the tip of the third cored bar 601 or the central member 402a is cylindrical. Although it abuts against the inner surface of the bottom of body 201, the bottom is not yet open.
  • the third cored bar 601 or the central member 402a is further moved in the first direction (see the white arrow). As a result, the bottom of the cylindrical body 201 is punched out by the protrusion 601a, as illustrated in FIG. 16(b).
  • FIG. 17 is a schematic cross-sectional view showing an example of the extraction process (step S32 or step S25) performed in the sixth method.
  • (a) on the left side of the axis AX as viewed in the drawing shows the situation at the time of completion of the handling process (step S31 or step S24), and
  • (b) on the right side of the axis AX as viewed in the drawing shows the situation at the time of completion of the drawing process (step The situation at the time of execution of S32 or step S25) is depicted respectively.
  • step S31 or step S24 the tip of the third cored bar 601 or the central member 402a is in contact with the inner surface of the bottom of the cylindrical body 201. Although there is, the bottom has not yet opened.
  • the cylindrical body 201 is fixed so as not to move in the second direction by the predetermined fixing member 701 or the peripheral member 402b, and the third cored bar 601 or the central member 402a is moved in the direction opposite to the first direction (the second direction). ).
  • the fourth cored bar 801 which is a cored bar for punching, in the second direction (see the black arrow)
  • the bottom portion of the cylindrical body 201 is moved as illustrated in FIG. 17(b). is punched out by the fourth mandrel 801 .
  • the bottom portion of the cylindrical body that has been subjected to the rolling process performed in the third step or the second step is set in the die. can be opened. That is, in the fifth method and the sixth method, the bottom portion of the cylindrical body can be opened while the cylindrical body is set in the die without performing secondary processing in a separate step. Therefore, according to the fifth method and the sixth method, even in the case of forming a bottomless member such as a nozzle or a tank liner from a bottomed cylindrical body, problems such as a decrease in production efficiency and an increase in manufacturing cost can be avoided. can be reduced.
  • a seventh method is any of the first methods described above,
  • the blank tube is a bottomless cylindrical member with an open second end,
  • a method for forming a cylindrical body having a tapered portion characterized by:
  • the modification 7-1 of the seventh method is Before the second step is started, the fifth core is a cylindrical core bar having a first outer diameter equal to or smaller than the inner diameter of the small-diameter portion of the cylindrical body. Gold is inserted from the small inner diameter side of the die hole, In the diameter reduction process performed in the second step, the opening on the second end side of the diameter-reduced mother pipe is fitted onto the fifth core bar.
  • a method for forming a cylindrical body having a tapered portion characterized by:
  • FIG. 18 is a schematic cross-sectional view showing a state immediately before the second step is started in modification 7-1 of the seventh method. It should be noted that the drawings attached to this specification, not limited to FIG. 18, are merely schematic drawings for the purpose of illustration. is not necessarily accurate.
  • the outer diameter is equal to or less than the outer diameter corresponding to the inner diameter of the small diameter portion 230 of the cylindrical body 202.
  • a fifth metal core 901 which is a cylindrical metal core having a first outer diameter DO1 is inserted into the die hole 310 from the small inner diameter portion 313 side.
  • the opening portion of the diameter-reduced tube 102 on the side of the second end portion 112 is aligned with the inner peripheral surface of the small inner diameter portion 313 and the outer peripheral surface of the fifth cored bar 901 . It enters the gap between the surface and the fifth cored bar 901 and fits over it.
  • the shape of the opening of the tube 102 on the side of the second end 112 is regulated by the gap between the inner peripheral surface of the small inner diameter portion 313 and the outer peripheral surface of the fifth cored bar 901 during the diameter reduction process. .
  • the diameter-reducing process is started after the diameter-expanding process is started. More preferably, the diameter reduction process is started after the first stepped portion of the first core bar contacts the first end portion of the blank tube (first time point). As a result, the tapered portion and the small diameter portion can be formed more smoothly with good balance.
  • the diameter reduction rate is larger than the diameter expansion rate. Constructing a tube, a die hole and a first mandrel can be mentioned.
  • a so-called "counter punch” is inserted from the small inner diameter side of the die hole to punch the base pipe. The counterpunch is kept in contact with the two ends (bottom), and the counterpunch is also moved in the first direction in accordance with the movement of the second end of the blank tube in the first direction after the time when the diameter reduction process should be started. Thereby, the diameter reduction process can be started at the desired timing after the diameter expansion process is started.
  • the second end can be closed by devising the structure of the above-described fifth cored bar.
  • the diameter reduction process can be started at a desired timing after the diameter expansion process is started.
  • the modification 7-2 of the seventh method is Modification 7-1 of the seventh method described above, At a predetermined position on the outer peripheral surface of the fifth cored bar, there is an annular step extending outward in the radial direction, the step being larger than the first outer diameter and less than or equal to the outer diameter of the small diameter portion of the cylindrical body.
  • a second stepped portion which is a portion having an outer diameter, is formed,
  • the second stepped portion of the fifth core bar is formed at a position facing the upstream end in the first direction of the small inner diameter portion of the die hole or at a predetermined position downstream of the end,
  • the fifth core bar moves at a predetermined speed in the first direction at a predetermined time point after the second time point at which the second end portion of the base pipe comes into contact with the second stepped portion of the fifth core bar.
  • FIG. 19 is a schematic cross-sectional view showing a state immediately before the second step is started in modification 7-2 of the seventh method.
  • an annular step is formed so as to spread outward in the radial direction.
  • a second stepped portion 901a is formed as a portion having an outer diameter larger than the first outer diameter DO1 and equal to or smaller than the outer diameter of the small-diameter portion 230 of the cylindrical body 202 .
  • the second stepped portion 901a of the fifth cored bar 901 is formed at a position facing the upstream end in the first direction of the small inner diameter portion 313 of the die hole 310 or a predetermined position downstream of the end. It is
  • the fifth core is moved at a predetermined speed.
  • the gold 901 is started to move in the first direction.
  • the time at which the fifth cored bar 901 starts to move in the first direction is, for example, the progress of the diameter reduction process at that time, the buckling strength of the blank tube, and the magnitude of the compressive residual stress to be generated in the blank tube. etc., can be determined as appropriate according to various requirements.
  • the speed at which the fifth cored bar 901 is moved in the first direction is also determined, for example, by the progress of the diameter reduction process at that time, the buckling strength of the blank pipe, and the magnitude of the compressive residual stress to be generated in the blank pipe. It can be determined as appropriate according to various requirements. However, if the moving speed of the fifth cored bar 901 in the first direction becomes excessively slow with respect to the moving speed of the second end portion 112 of the reduced-diameter tube 102 in the first direction, for example, the processing load increases. And/or there is an increased risk of problems such as unintended deformation of the blank pipe, so caution is required.
  • the modification 7-2 of the seventh method for example, the shape (diameter, length, wall thickness, etc.) and material of the blank pipe, the diameter expansion ratio of the tapered portion of the cylindrical body, and the small diameter portion of the cylindrical body
  • the diameter reduction process can be advanced at a suitable timing that does not cause problems such as deformation.
  • the moving speed of the fifth cored bar 901 in the first direction can also be appropriately set according to various factors.
  • the tube is axially pressed and compressed while being reduced in diameter to form a cylindrical body. Therefore, the thickness of the small-diameter portion of the cylindrical body becomes larger (increases) than the thickness of the region of the blank corresponding to the small-diameter portion of the cylindrical body. In addition, as the thickness of the small-diameter portion increases, variations in the thickness of the small-diameter portion tend to increase. This point also applies to the seventh method using a bottomless blank pipe with an open second end.
  • the eighth method is a method for forming a cylindrical body having a tapered portion, which is any of the seventh methods described above and further includes a third step described below.
  • Third step After the second step, the first cored bar is extracted from the cylindrical body, and the third cored bar, which is a cylindrical cored bar having an outer diameter corresponding to the inner diameter of the small diameter portion of the cylindrical body, is inserted into the cylindrical body. By inserting from the tapered portion side of the body and moving in the first direction, a squeezing process of shaving the inner surface of the small diameter portion of the cylindrical body is performed.
  • the shaving step of shaving the inner surface of the small-diameter portion of the cylindrical body is performed. be. Therefore, according to the eighth method, it is possible to provide a cylindrical body with high dimensional accuracy that can be used in applications requiring high dimensional accuracy for the inner diameter and/or wall thickness of the small diameter portion, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

In this method for molding a cylindrical body having a tapered part by pushing a cylindrical element tube into a die hole formed in a die by a metal core, an outer diameter increasing part formed on a distal end of the metal core presses the inner side of an end of the element tube to expand the diameter on the proximal end side of the element tube, and also presses an end of the element tube with a step part formed on the proximal end side of the outer diameter increasing part of the core metal to push the end into a small inner diameter part through an inner diameter decreasing part of the die hole, thereby shrinking the distal end side of the tube. By forming a small diameter part by decreasing the diameter of the element tube while compressing the element tube by pressing in the axial direction, it is possible to solve the aforementioned problem. The foregoing provides a method for molding a cylindrical body having a tapered part, which can be carried out via plastic processing, regardless of the size of the wall thickness of the element tube, while mitigating an increase in the set number of dies and an increase in work steps.

Description

テーパ部を有する円筒体の成形方法Forming method for cylindrical body with tapered portion
 本発明は、テーパ部を有する円筒体の成形方法に関する。より詳しくは、本発明は、金型のセット数及び作業工程の増大を低減しつつ、素管の肉厚の大小に拘わらず塑性加工によって実施することが可能な、テーパ部を有する円筒体の成形方法に関する。 The present invention relates to a method for forming a cylindrical body having a tapered portion. More specifically, the present invention provides a cylindrical body having a tapered portion that can be processed by plastic working regardless of the wall thickness of the blank pipe, while reducing the number of mold sets and work processes. It relates to a molding method.
 当該技術分野においては、例えばノズル又はタンクライナー等の漏斗状の部材を成形するための中間素材として、例えば図2に例示するようなテーパ部を有する円筒体を使用することが知られている。 It is known in the art to use a cylindrical body having a tapered portion, for example, as illustrated in FIG. 2, as an intermediate material for molding a funnel-shaped member such as a nozzle or tank liner.
 例えば、図2の(a)に例示したようなテーパ部を有する有底の円筒体の成形方法としては、有底円筒状の中間素材に扱き加工又は据込み加工を施してテーパ部を付与しつつ円筒部を縮径させて所望の形状を得る方法が一般的である。 For example, as a method of forming a bottomed cylindrical body having a tapered portion as illustrated in FIG. A common method is to obtain a desired shape by reducing the diameter of the cylindrical portion while reducing the diameter.
 特許文献1(特許第4681143号公報)には、同軸2重構造を有するマンドレルとダイとの間に中間素材の側壁を通し、当該マンドレルによって中間素材の底部を押圧すると共に、外側のマンドレルとダイとの間において中間素材の側壁を扱いて、縮径部を延長してゆく成形方法が開示されている。また、特許文献2(特許第5741771号公報)には、上記成形方法において、中間素材の底部を挟んで上記マンドレルに対向するように配置されたカウンターパンチを併用する成形方法が開示されている。 In Patent Document 1 (Japanese Patent No. 4681143), a side wall of an intermediate material is passed between a mandrel and a die having a coaxial double structure, and the mandrel presses the bottom of the intermediate material, and the outer mandrel and the die A forming method is disclosed in which the side wall of the intermediate material is handled between and the reduced diameter portion is extended. Further, Patent Document 2 (Japanese Patent No. 5741771) discloses a molding method in which, in the molding method described above, counter punches are arranged so as to face the mandrel with the bottom portion of the intermediate material interposed therebetween.
 更に、特許文献3(特許第5244529号公報)には、開口端の周縁にフランジ部を有するハット状の中間素材のフランジ部をアウタダイとしわ押え板との間に挟んで拘束したままアウタダイの内側に設けたインナダイを押し下げて当該中間素材をアウタポンチの内側に設けたセンタポンチに被せながら中間素材の側壁を内側に向けて押し付けることにより小径部を形成する成形方法が開示されている。 Further, in Patent Document 3 (Japanese Patent No. 5244529), a flange portion of a hat-shaped intermediate material having a flange portion on the peripheral edge of the open end is sandwiched between the outer die and a wrinkle pressing plate and restrained, and the inner side of the outer die is held. A molding method is disclosed in which an inner die provided in the inner die is pushed down to cover the intermediate material with a center punch provided inside the outer punch and the side wall of the intermediate material is pressed inward to form a small diameter portion.
 特許文献1及び特許文献2に記載された方法は、薄板を引き延ばす扱き加工であって、例えば2mm以上の厚さを有する厚板に適用すると、例えば金型の破損及び/又は成形中の素管における亀裂の発生等の問題が生ずる虞がある。また、特許文献3に記載された方法は、単純な形状への据込み加工であるため、図1に例示したような形状を有する部材を得るためには、複数の工程を経て少しずつテーパ部を拡げつつ筒部を縮径させなければならず、例えば金型のセット数及び作業工程の増大を招き、経済的ではない。また、特許文献3に記載された方法も、適用可能な素管の肉厚は2mm程度が限界であり、それ以上の厚さを有する厚板から図1に例示したような形状を有する部材を得ることは困難である。 The methods described in Patent Literature 1 and Patent Literature 2 are rolling of thin plates, and when applied to thick plates having a thickness of 2 mm or more, for example, damage to the mold and / or the raw tube during forming There is a possibility that problems such as the occurrence of cracks in the In addition, since the method described in Patent Document 3 is an upsetting process into a simple shape, in order to obtain a member having the shape illustrated in FIG. It is necessary to reduce the diameter of the cylindrical portion while enlarging the diameter of the cylinder, which causes, for example, an increase in the number of mold sets and work processes, which is not economical. In addition, the method described in Patent Document 3 also has a limit of about 2 mm for the thickness of the blank tube that can be applied, and a member having a shape as illustrated in FIG. It is difficult to obtain.
 以上のように、当該技術分野においては、図1に例示したような形状を有する肉厚の部材を得るためには、金属塊に熱間鍛造を施すか或いは切削加工(削り出し)を施すのが通例であるが、これらの成形方法も経済的ではない。 As described above, in the technical field, in order to obtain a thick member having the shape illustrated in FIG. are common, but these molding methods are also not economical.
特許第4681143号公報Japanese Patent No. 4681143 特許第5741711号公報Japanese Patent No. 5741711 特許第5244529号公報Japanese Patent No. 5244529
 上述したように、当該技術分野においては、金型のセット数及び作業工程の増大を低減しつつ、素管の肉厚の大小に拘わらず塑性加工によって実施することが可能な、テーパ部を有する円筒体の成形方法が必要とされている。 As described above, in the technical field, it is possible to reduce the number of mold sets and increase the number of work processes, and to have a tapered portion that can be performed by plastic working regardless of the thickness of the blank pipe. A method of forming a cylinder is needed.
 そこで、本発明者は、鋭意研究の結果、所定の形状を有するダイス孔に所定の形状を有する芯金によって円筒状の素管を押し込むことによってテーパ部及び小径部を有する円筒体を成形する方法において、素管を軸方向に押圧して圧縮しながら縮径させて小径部を形成することにより、上記課題を解決することができることを見出した。 Therefore, as a result of extensive research, the present inventors have found a method of forming a cylindrical body having a tapered portion and a small diameter portion by pushing a cylindrical blank pipe into a die hole having a predetermined shape with a metal core having a predetermined shape. In the above, it was found that the above problem can be solved by reducing the diameter of the blank tube while compressing it by pressing it in the axial direction to form the small-diameter portion.
 具体的には、本発明に係るテーパ部を有する円筒体の成形方法(以降、「本発明方法」と称呼される場合がある。)は、ダイスに形成された所定の形状を有する貫通孔であるダイス孔に、所定の形状を有する芯金である第1芯金によって、有底又は無底の円筒状の部材である素管を、素管及びダイス孔の軸方向に押し込むことによって、テーパ部を有する円筒体を成形する方法である。 Specifically, the method for forming a cylindrical body having a tapered portion according to the present invention (hereinafter sometimes referred to as the "method of the present invention") is a through hole having a predetermined shape formed in a die. A taper is formed by pushing a base tube, which is a bottomed or bottomless cylindrical member, into a certain die hole in the axial direction of the base tube and the die hole using a first core bar having a predetermined shape. A method for forming a cylindrical body having a part.
 円筒体は開口している一方の端部に近付くほど径が増大する部分であるテーパ部及び他方の端部とテーパ部との間に形成された円筒状の部分である小径部を備える。テーパ部の最大外径は素管の外径よりも大きく、小径部の外径は素管の外径よりも小さい。 The cylindrical body has a tapered portion, which is a portion whose diameter increases as it approaches one open end, and a small-diameter portion, which is a cylindrical portion formed between the other end and the tapered portion. The maximum outer diameter of the tapered portion is larger than the outer diameter of the blank tube, and the outer diameter of the small-diameter portion is smaller than the outer diameter of the blank tube.
 ダイス孔は、大内径部と、小内径部と、内径減少部と、を備える。大内径部は、円筒体のテーパ部の最大外径に対応する内径である第1内径を有する部分である。小内径部は、円筒体の小径部の外径に対応する内径よりも小さい内径である第2内径を有する部分である。内径減少部は、大内径部と小内径部との間に形成され且つ大内径部から小内径部へと近付くほど第1内径から第2内径へと内径が減少する部分である。 The die hole has a large inner diameter portion, a small inner diameter portion, and a reduced inner diameter portion. The large inner diameter portion is a portion having a first inner diameter corresponding to the maximum outer diameter of the tapered portion of the cylindrical body. The small inner diameter portion is a portion having a second inner diameter that is smaller than the inner diameter corresponding to the outer diameter of the small diameter portion of the cylindrical body. The reduced inner diameter portion is formed between the large inner diameter portion and the small inner diameter portion, and is a portion in which the inner diameter decreases from the first inner diameter to the second inner diameter as it approaches the small inner diameter portion from the large inner diameter portion.
 第1芯金は、外径増大部と、第1段差部と、を備える。外径増大部は、先端から遠ざかるにつれて円筒体のテーパ部の最小内径に対応する外径から円筒体のテーパ部の最大内径に対応する外径へと外径が増大する部分である。第1段差部は、外径増大部の基端側に隣接する位置において径方向における外側に広がるように形成された環状の段差であって円筒体のテーパ部の最大外径に等しい外径及び円筒体のテーパ部の最大内径に等しい内径を有する部分である。 The first cored bar has an increased outer diameter portion and a first stepped portion. The increased outer diameter portion is a portion whose outer diameter increases from the outer diameter corresponding to the minimum inner diameter of the tapered portion of the cylindrical body to the outer diameter corresponding to the maximum inner diameter of the tapered portion of the cylindrical body as the distance from the tip increases. The first stepped portion is an annular step formed so as to expand radially outward at a position adjacent to the base end side of the increased outer diameter portion, and has an outer diameter equal to the maximum outer diameter of the tapered portion of the cylindrical body. It is a portion having an inner diameter equal to the maximum inner diameter of the tapered portion of the cylinder.
 本発明方法は、以下に示す第1工程及び第2工程を含む。
 第1工程:ダイス孔に素管を押し込む向きである第1方向の上流側に素管の開口端である第1端部が向くようにしてダイス孔の大内径部側から素管を挿入し素管の第1端部とは反対側の端部である第2端部をダイス孔の内径減少部に当接させることにより、ダイス孔の内部における所定の位置に素管を設置する。
 第2工程:素管の第1端部に第1芯金を挿入して第1芯金によって素管を第1方向に押圧することにより、ダイス孔の内径減少部に対向する領域にテーパ部が形成され且つダイス孔の小内径部に対向する領域に小径部が形成された円筒体を成形する。
The method of the present invention includes the following first and second steps.
1st step: inserting the blank pipe from the large inner diameter side of the die hole so that the first end, which is the open end of the blank pipe, faces the upstream side in the first direction, which is the direction in which the blank pipe is pushed into the die hole. By bringing the second end opposite to the first end of the blank pipe into contact with the reduced inner diameter portion of the die hole, the blank pipe is placed at a predetermined position inside the die hole.
Second step: inserting the first cored bar into the first end of the blank pipe and pressing the blank pipe in the first direction by the first cored bar, thereby forming a tapered portion in the region facing the reduced inner diameter portion of the die hole. is formed and a small diameter portion is formed in a region facing the small inner diameter portion of the die hole.
 第2工程においては、以下に示す拡径過程、縮径過程及び完了過程を実行する。
 拡径過程:第1芯金の外径増大部によって素管の第1端部の内側を押圧して素管の第1端部側を拡径させる。
 縮径過程:遅くとも第1芯金の第1段差部が素管の第1端部に当接する時点である第1時点以降において第1芯金によって素管を第1方向に押圧して素管の第2端部をダイス孔の小内径部に向かって押し込んで素管の第2端部側を縮径させる。
 完了過程:ダイス孔の内径減少部と第1芯金の外径増大部との間に素管の第1端部側の領域を挟み込んでテーパ部及び小径部の成形を完了する。
In the second step, the diameter expansion process, the diameter reduction process and the completion process shown below are executed.
Diameter expansion process: The inside of the first end of the blank pipe is pressed by the increased outer diameter portion of the first core bar to expand the diameter of the first end of the blank pipe.
Diameter reduction process: After a first time point at which the first stepped portion of the first cored bar abuts on the first end portion of the blank tube at the latest, the blank tube is pressed in the first direction by the first cored bar to form the blank tube. is pushed toward the small inner diameter portion of the die hole to reduce the diameter of the second end side of the blank tube.
Completion process: The first end side region of the blank tube is sandwiched between the reduced inner diameter portion of the die hole and the increased outer diameter portion of the first cored bar to complete the forming of the tapered portion and the small diameter portion.
 好ましくは、拡径過程の開始以降に縮径過程が開始される。このための具体的な方策については後述する。また、円筒体のテーパ部に対応する領域の肉厚が円筒体の小径部に対応する領域の肉厚よりも大きい素管を使用してもよい。更に、素管を構成する材料がオーステナイト系ステンレス鋼であってもよい。 Preferably, the diameter reduction process is started after the diameter expansion process is started. Specific measures for this will be described later. Alternatively, a blank pipe may be used in which the thickness of the region corresponding to the tapered portion of the cylindrical body is greater than the thickness of the region corresponding to the small-diameter portion of the cylindrical body. Furthermore, the material forming the mother tube may be austenitic stainless steel.
 上記のように、本発明方法においては、第2工程において実行される縮径過程において、遅くとも第1時点以降において第1芯金によって素管を第1方向に押圧して素管の第2端部をダイス孔の小内径部に向かって押し込んで素管の第2端部側を縮径させる。即ち、素管を軸方向に押圧して圧縮しながら縮径させて円筒体の小径部を形成する。従って、本発明方法によれば、肉厚の大きい素管を使用する場合においても、例えば座屈及び/又は破断等の問題を低減しつつテーパ部と小径部とを同時に形成して、テーパ部を有する円筒体を円滑に成形することができる。 As described above, in the method of the present invention, in the diameter reduction process executed in the second step, the first core bar presses the blank pipe in the first direction after the first time point at the latest, and the second end of the blank pipe is is pushed toward the small inner diameter portion of the die hole to reduce the diameter of the second end side of the blank tube. That is, the diameter of the tube is reduced while compressing it by pressing it in the axial direction to form the small-diameter portion of the cylindrical body. Therefore, according to the method of the present invention, the tapered portion and the small diameter portion can be formed at the same time while reducing problems such as buckling and/or breakage even when using a thick blank pipe. can be smoothly molded.
 好ましくは、拡径過程の開始以降に縮径過程が開始される。これにより、テーパ部と小径部とをバランス良く、より円滑に形成することができる。また、円筒体のテーパ部に対応する領域の肉厚が円筒体の小径部に対応する領域の肉厚よりも大きい素管を使用することにより、第2工程において実行される拡径過程における素管の第1端部側の拡径に伴う肉厚の減少(減肉)を少なくとも部分的には相殺して、円筒体の肉厚をより均一にすることができる。更に、素管を構成する材料としてオーステナイト系ステンレス鋼を選択することにより、第2工程の実行に伴う加工硬化により、円筒体の機械的強度を高めることができる。 Preferably, the diameter reduction process is started after the diameter expansion process is started. As a result, the tapered portion and the small diameter portion can be formed more smoothly with good balance. In addition, by using a blank pipe in which the thickness of the region corresponding to the tapered portion of the cylindrical body is greater than the thickness of the region corresponding to the small diameter portion of the cylindrical body, the material in the diameter expansion process executed in the second step is The reduction in wall thickness (thickness) associated with the expansion of the first end of the tube can be at least partially offset to make the wall thickness of the cylinder more uniform. Furthermore, by selecting austenitic stainless steel as the material for the blank pipe, the mechanical strength of the cylindrical body can be increased by work hardening that accompanies execution of the second step.
 本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。 Other objects, features and attendant advantages of the present invention will be easily understood from the description of each embodiment of the present invention described with reference to the following drawings.
本発明の第1実施態様に係るテーパ部を有する円筒体の成形方法(第1方法)によって成形されるテーパ部を有する円筒体の構成を例示する模式的な断面図である。FIG. 2 is a schematic cross-sectional view illustrating the configuration of a cylindrical body having a tapered portion formed by a method (first method) for forming a cylindrical body having a tapered portion according to the first embodiment of the present invention; 第1方法において使用される素管の構成を例示する模式的な断面図である。FIG. 4 is a schematic cross-sectional view illustrating the configuration of a blank pipe used in the first method; 第1方法において使用されるダイスの構成を例示する模式的な断面図である。FIG. 4A is a schematic cross-sectional view illustrating the configuration of a die used in the first method; 第1方法において使用される第1芯金の構成を例示する模式的な断面図である。FIG. 4 is a schematic cross-sectional view illustrating the configuration of a first cored bar used in the first method; 第1方法に含まれる各工程及び各過程の流れを示すフローチャートである。It is a flowchart which shows the flow of each process and each process included in a 1st method. 第1方法において実行される第2工程の進行に伴う第1芯金の位置及び第1素管の形状の変化を例示する模式的な断面図である。FIG. 5 is a schematic cross-sectional view illustrating changes in the position of the first cored bar and the shape of the first mother pipe as the second step performed in the first method progresses; 第1方法の変形例1-1を示す模式的な断面図である。FIG. 10 is a schematic cross-sectional view showing Modified Example 1-1 of the first method; 第1方法の変形例1-1において使用される素管の成形方法の一例を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing an example of a method of forming a blank pipe used in Modification 1-1 of the first method. 本発明の第2実施態様に係るテーパ部を有する円筒体の成形方法(第2方法)の変形例2-1において実行される第2工程の進行に伴う第1芯金及び第2芯金の位置並びに第1素管の形状の変化を例示する模式的な断面図である。The first core bar and the second core bar along with the progress of the second step executed in Modified Example 2-1 of the method for forming a cylindrical body having a tapered portion (second method) according to the second embodiment of the present invention FIG. 5 is a schematic cross-sectional view illustrating changes in position and shape of the first mother pipe; 本発明の第3実施態様に係るテーパ部を有する円筒体の成形方法(第3方法)に含まれる各工程及び各過程の流れを示すフローチャートである。8 is a flow chart showing each process and the flow of each process included in a method for forming a cylindrical body having a tapered portion (third method) according to a third embodiment of the present invention;
本発明の第4実施態様に係るテーパ部を有する円筒体の成形方法(第4方法)において使用される第1芯金の構成の一例を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing an example of the configuration of a first cored bar used in the method of forming a cylindrical body having a tapered portion (fourth method) according to the fourth embodiment of the present invention; 第4方法に含まれる各工程及び各過程の流れを示すフローチャートである。It is a flow chart which shows each process included in the 4th method, and the flow of each process. 第4方法において実行される第2工程の進行に伴う第1芯金を構成する中心部材及び周縁部材の位置及び第1素管の形状の変化を例示する模式的な断面図である。FIG. 11 is a schematic cross-sectional view illustrating changes in the positions of the central member and the peripheral member that constitute the first cored bar and the shape of the first blank pipe as the second step performed in the fourth method progresses; 第3方法に含まれる第3工程において実行される扱き過程の実行後に抜き過程を実行する本発明の第5実施態様及び第6実施態様に係るテーパ部を有する円筒体の成形方法(第5方法及び第6方法)に含まれる各工程及び各過程の流れを示すフローチャートである。A method for forming a cylindrical body having a tapered portion according to the fifth and sixth embodiments of the present invention, in which the punching process is performed after the treatment process performed in the third step included in the third method (the fifth method and the sixth method) is a flow chart showing each step and the flow of each process. 第4方法に含まれる第2工程において実行される扱き過程の実行後に抜き過程を実行する第5方法及び第6方法に含まれる各工程及び各過程の流れを示すフローチャートである。10 is a flow chart showing each step and the flow of each step included in the fifth method and the sixth method, in which the removal process is performed after the treatment process is performed in the second process included in the fourth method. 第5方法において実行される抜き過程の一例を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing an example of the extraction process performed in the fifth method; 第6方法において実行される抜き過程の一例を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing an example of the extraction process performed in the sixth method; 本発明の第7実施態様に係るテーパ部を有する円筒体の成形方法(第7方法)の変形例7-1において第2工程が開始される直前の状態を示す模式的な断面図である。FIG. 20 is a schematic cross-sectional view showing a state immediately before the second step is started in modification 7-1 of the method for forming a cylindrical body having a tapered portion (seventh method) according to the seventh embodiment of the present invention; 第7方法の変形例7-2において第2工程が開始される直前の状態を示す模式的な断面図である。FIG. 20 is a schematic cross-sectional view showing a state immediately before the second step is started in modification 7-2 of the seventh method;
《第1実施形態》
 以下、図面を参照しながら本発明の第1実施形態に係るテーパ部を有する円筒体を成形する方法(以降、「第1方法」と称呼される場合がある。)について説明する。尚、本明細書において使用される「芯金」なる用語は、塑性加工において加工対象となる部材に対して加圧、変形及び/又は穿孔を行うための雄型の総称であり、当該技術分野において広く使用されている「マンドレル」、「パンチ」及び「ポンチ」等の類義語を包含する。
<<1st Embodiment>>
A method of forming a cylindrical body having a tapered portion according to the first embodiment of the present invention (hereinafter sometimes referred to as "first method") will be described below with reference to the drawings. The term "cored bar" used in this specification is a general term for a male mold for pressurizing, deforming and/or drilling a member to be processed in plastic working, and is a technical field. It includes synonyms such as "mandrel", "punch" and "punch" that are widely used in .
 第1方法は、ダイスに形成された所定の形状を有する貫通孔であるダイス孔に、所定の形状を有する芯金である第1芯金によって、有底又は無底の円筒状の部材である素管を、素管及びダイス孔の軸方向に押し込むことによって、テーパ部を有する円筒体を成形する方法である。即ち、第1方法は、冷間鍛造によって、テーパ部を有する円筒体を成形する方法である。 In the first method, a bottomed or bottomless cylindrical member is formed by inserting a first cored bar having a predetermined shape into a die hole, which is a through hole having a predetermined shape formed in a die. In this method, a cylindrical body having a tapered portion is formed by pushing a blank pipe in the axial direction of the blank pipe and the die hole. That is, the first method is a method of forming a cylindrical body having a tapered portion by cold forging.
 第1方法を実行するための装置の基本的な構成については当業者に周知であるので詳細な説明は省略するが、ダイス及び第1芯金を始めとする構成要素は、例えば後述する第2工程において構成要素に作用する荷重等の加工条件に耐え得る性質(例えば、機械的強度及び耐久性等)を有する材料によって構成される。また、ダイス孔に第1芯金を押し込むための駆動機構は、素管を構成する材料の性質(例えば、機械的強度及び硬度等)に応じて、当該技術分野において周知の種々の駆動機構の中から適宜選択することができる。典型的には、例えば油圧式プレス機等のプレス機が駆動機構として採用される。 Since the basic configuration of the apparatus for executing the first method is well known to those skilled in the art, detailed description is omitted. It is composed of a material having properties (eg, mechanical strength, durability, etc.) that can withstand processing conditions such as loads acting on components in the process. In addition, the drive mechanism for pushing the first cored bar into the die hole can be any one of various drive mechanisms known in the art, depending on the properties of the material forming the blank tube (for example, mechanical strength and hardness). It can be appropriately selected from among them. Typically, a press, such as a hydraulic press, is employed as the drive mechanism.
 テーパ部を有する円筒体を成形するための素材となる素管は、冷間鍛造による成形が可能な材料によって構成された筒状の部材である。素管は、例えば図1の(a)に例示するように有底の円筒状の部材からなる素管101であってもよく、或いは、例えば図1の(b)に例示するように無底の円筒状の部材からなる素管102であってもよい。このような素管は、第1方法によってテーパ部を有する円筒体に成形することが可能である限り、特に限定されない。例えば、素管は、板巻きパイプ又はシームレス管であってもよく、鍛造又は切削によって製造されたものであってもよい。また、板状の部材からの絞り成形によって有底の素管を製造してもよい。 A blank tube, which is a material for forming a cylindrical body with a tapered portion, is a cylindrical member made of a material that can be formed by cold forging. The base pipe may be, for example, a base pipe 101 made of a bottomed cylindrical member as illustrated in FIG. , the base pipe 102 may be a cylindrical member of . Such a blank tube is not particularly limited as long as it can be formed into a cylindrical body having a tapered portion by the first method. For example, the blank pipe may be a plate-wrapped pipe or a seamless pipe, and may be manufactured by forging or cutting. Alternatively, a base pipe with a bottom may be manufactured by drawing from a plate-like member.
 円筒体は開口している一方の端部に近付くほど径が増大する部分であるテーパ部及び他方の端部とテーパ部との間に形成された円筒状の部分である小径部を備える。本明細書の冒頭において説明したように、斯かる円筒体は例えばノズル又はタンクライナー等の漏斗状の部材を成形するための中間素材として使用することができる。このような円筒体の具体例としては、例えば図2に例示したようなテーパ部を有する円筒体を挙げることができる。 The cylindrical body has a tapered portion, which is a portion whose diameter increases as it approaches one open end, and a small-diameter portion, which is a cylindrical portion formed between the other end and the tapered portion. As explained at the beginning of the description, such cylinders can be used as intermediate blanks for forming funnel-shaped parts, such as nozzles or tank liners. A specific example of such a cylindrical body is a cylindrical body having a tapered portion as illustrated in FIG.
 図2の(a)及び(b)に例示した円筒体201及び202は、開口している一方の端部211に近付くほど径が増大する部分であるテーパ部220及び他方の端部212とテーパ部220との間に形成された円筒状の部分である小径部230を備える。但し、円筒体201は第2端部212が閉じている有底の円筒体であるのに対し、円筒体202は第2端部212が開口している無底の円筒体である。このように、成形しようとする製品に応じて、有底又は無底の円筒体を中間素材として使用することができる。 The cylindrical bodies 201 and 202 illustrated in FIGS. 2(a) and 2(b) have a tapered portion 220 and a tapered portion 212, which are portions whose diameters increase as they approach one open end portion 211 and the other end portion 212. It has a small diameter portion 230 which is a cylindrical portion formed between the portion 220 and the portion 220 . However, the cylindrical body 201 is a bottomed cylindrical body with a closed second end 212 , whereas the cylindrical body 202 is a bottomless cylindrical body with an open second end 212 . Thus, depending on the product to be molded, a bottomed or bottomless cylinder can be used as an intermediate material.
 具体的には、例えばノズル又はタンクライナー等の無底の部材を上述した円筒体201のような有底の円筒体から成形する場合においては、当然のことながら、例えば底部を切除したり切削により底部に孔を穿ったりする必要がある。一方、有底の円筒体から有底の部材を成形する場合においては、必ずしも例えば底部を切除したり底部に穴を穿ったりする必要は無い。逆に、例えばノズル又はタンクライナー等の無底の部材を上述した円筒体202のような無底の円筒体から成形する場合においては、例えば底部を切除したり底部に穴を穿ったりする必要は無い。一方、無底の円筒体から有底の部材を成形する場合においては、当然のことながら、例えば底部を更なる塑性加工又は底部を構成する部材の接合等により底部を形成する必要がある。 Specifically, when forming a bottomless member such as a nozzle or a tank liner from a bottomed cylindrical body such as the cylindrical body 201 described above, the bottom is naturally cut off or cut, for example. You have to drill holes in the bottom. On the other hand, when forming a bottomed member from a bottomed cylindrical body, it is not always necessary to cut off the bottom or drill a hole in the bottom. Conversely, when molding a bottomless member such as a nozzle or tank liner from a bottomless cylinder such as the cylinder 202 described above, it is not necessary to cut off or drill a hole in the bottom, for example. None. On the other hand, when forming a bottomed member from a bottomless cylindrical body, it is, of course, necessary to form the bottom portion by, for example, further plastic working or bonding of members constituting the bottom portion.
 円筒体において、テーパ部の最大外径は素管の外径よりも大きく、小径部の外径は素管の外径よりも小さい。これは、詳しくは後述するように、円筒体のテーパ部は素管の拡径により、円筒体の小径部は素管の縮径により、それぞれ形成されるためである。尚、テーパ部の最大外径とは、第1方法においてダイス孔に素管が押し込まれる向きである第1方向における上流側の円筒体のテーパ部の端部における外径を指す。 In the cylindrical body, the maximum outer diameter of the tapered portion is larger than the outer diameter of the blank pipe, and the outer diameter of the small diameter portion is smaller than the outer diameter of the blank pipe. This is because the tapered portion of the cylindrical body is formed by expanding the diameter of the blank tube, and the small-diameter portion of the cylindrical body is formed by reducing the diameter of the blank tube, as will be described later in detail. The maximum outer diameter of the tapered portion refers to the outer diameter at the end of the tapered portion of the cylindrical body on the upstream side in the first direction in which the blank pipe is pushed into the die hole in the first method.
 ダイス孔は、第1方向における上流側から順に、大内径部と、内径減少部と、小内径部と、を備える。大内径部は、円筒体のテーパ部の最大外径に対応する内径である第1内径を有する部分である。小内径部は、円筒体の小径部の外径に対応する内径よりも小さい内径である第2内径を有する部分である。内径減少部は、大内径部と小内径部との間に形成され且つ大内径部から小内径部へと近付くにつれて第1内径から第2内径へと内径が減少する部分である。 The die hole has, in order from the upstream side in the first direction, a large inner diameter portion, a reduced inner diameter portion, and a small inner diameter portion. The large inner diameter portion is a portion having a first inner diameter corresponding to the maximum outer diameter of the tapered portion of the cylindrical body. The small inner diameter portion is a portion having a second inner diameter that is smaller than the inner diameter corresponding to the outer diameter of the small diameter portion of the cylindrical body. The reduced inner diameter portion is formed between the large inner diameter portion and the small inner diameter portion, and the inner diameter decreases from the first inner diameter to the second inner diameter as it approaches the small inner diameter portion from the large inner diameter portion.
 図3は、第1方法において使用されるダイスの構成を例示する模式的な断面図である。図3に例示するダイス301に形成されたダイス孔310は、第1方向における上流側から順に、大内径部311と、内径減少部312と、小内径部313と、を備える。大内径部311は、円筒体201のテーパ部220の最大外径に対応する内径である第1内径DI1を有する部分である。小内径部313は、円筒体201の小径部230の外径に対応する内径よりも小さい内径である第2内径DI2を有する部分である。内径減少部312は、大内径部311と小内径部313との間に形成され且つ大内径部311から小内径部313へと近付くにつれて第1内径DI1から第2内径DI2へと内径が減少する部分である。 FIG. 3 is a schematic cross-sectional view illustrating the configuration of the dice used in the first method. A die hole 310 formed in a die 301 illustrated in FIG. 3 includes a large inner diameter portion 311, a reduced inner diameter portion 312, and a small inner diameter portion 313 in order from the upstream side in the first direction. The large inner diameter portion 311 is a portion having a first inner diameter DI<b>1 that corresponds to the maximum outer diameter of the tapered portion 220 of the cylindrical body 201 . The small inner diameter portion 313 is a portion having a second inner diameter DI<b>2 that is smaller than the inner diameter corresponding to the outer diameter of the small diameter portion 230 of the cylindrical body 201 . The reduced inner diameter portion 312 is formed between the large inner diameter portion 311 and the small inner diameter portion 313, and the inner diameter decreases from the first inner diameter DI1 to the second inner diameter DI2 as it approaches the small inner diameter portion 313 from the large inner diameter portion 311. part.
 第1芯金は、第1方向における下流側から順に、外径増大部と、第1段差部と、を備える。外径増大部は、先端から遠ざかるにつれて円筒体のテーパ部の最小内径に対応する外径から円筒体のテーパ部の最大内径に対応する外径へと外径が増大する部分である。第1段差部は、外径増大部の基端側に隣接する位置において径方向における外側に広がるように形成された環状の段差であって円筒体のテーパ部の最大外径に等しい外径及び円筒体のテーパ部の最大内径に等しい内径を有する部分である。尚、円筒体の小径部の内径に対応する外径を有する略円柱状の部分である小径ガイド部が外径増大部の先端側に隣接して設けられていてもよい。 The first cored bar includes, in order from the downstream side in the first direction, an outer diameter increasing portion and a first stepped portion. The increased outer diameter portion is a portion whose outer diameter increases from the outer diameter corresponding to the minimum inner diameter of the tapered portion of the cylindrical body to the outer diameter corresponding to the maximum inner diameter of the tapered portion of the cylindrical body as the distance from the tip increases. The first stepped portion is an annular step formed so as to expand radially outward at a position adjacent to the base end side of the increased outer diameter portion, and has an outer diameter equal to the maximum outer diameter of the tapered portion of the cylindrical body. It is a portion having an inner diameter equal to the maximum inner diameter of the tapered portion of the cylinder. A small-diameter guide portion, which is a substantially cylindrical portion having an outer diameter corresponding to the inner diameter of the small-diameter portion of the cylindrical body, may be provided adjacent to the distal end side of the increased outer diameter portion.
 図4は、第1方法において使用される第1芯金の構成を例示する模式的な断面図である。図4に例示する第1芯金401は、第1方向における下流側から順に、小径ガイド部411と、外径増大部412と、第1段差部413と、を備える。小径ガイド部411は、円筒体の小径部の内径に対応する外径を有する略円柱状の部分である。外径増大部412は、先端から遠ざかるにつれて円筒体のテーパ部の最小内径に対応する外径から円筒体のテーパ部の最大内径に対応する外径へと外径が増大する部分である。第1段差部413は、外径増大部412の基端側に隣接する位置において径方向における外側に広がるように形成された環状の段差であって円筒体のテーパ部の最大外径に等しい外径及び円筒体のテーパ部の最大内径に等しい内径を有する部分である。尚、図4に描かれている一点鎖線AXは、第1芯金、素管及びダイス孔の共通の中心軸を表している。即ち、第1方法において、第1芯金、素管及びダイス孔は軸AXを共通の軸とする同軸状に配置される。 FIG. 4 is a schematic cross-sectional view illustrating the configuration of the first cored bar used in the first method. The first cored bar 401 illustrated in FIG. 4 includes a small diameter guide portion 411, an outer diameter increasing portion 412, and a first stepped portion 413 in order from the downstream side in the first direction. The small-diameter guide portion 411 is a substantially cylindrical portion having an outer diameter corresponding to the inner diameter of the small-diameter portion of the cylindrical body. The increased outer diameter portion 412 is a portion whose outer diameter increases from the outer diameter corresponding to the minimum inner diameter of the tapered portion of the cylindrical body to the outer diameter corresponding to the maximum inner diameter of the tapered portion of the cylindrical body as the distance from the distal end increases. The first stepped portion 413 is an annular stepped portion formed so as to expand radially outward at a position adjacent to the base end side of the increased outer diameter portion 412 and has an outer diameter equal to the maximum outer diameter of the tapered portion of the cylindrical body. A portion having an inner diameter equal to the diameter and the maximum inner diameter of the tapered portion of the cylinder. A dashed-dotted line AX drawn in FIG. 4 represents a common central axis of the first cored bar, the blank tube and the die hole. That is, in the first method, the first cored bar, the blank tube and the die hole are coaxially arranged with the axis AX as a common axis.
 尚、ダイス孔310に素管101を押し込んで素管101の先端側(第2端部側)を効果的に縮径させる観点からは、第1芯金401の第1段差部413が素管101の基端側(第1端部側)に当接する際に第1段差部413と素管101の端面とが面接触することが望ましい。そこで、図4に例示する第1芯金401の第1段差部413においては、径方向における外側に広がるように形成された環状の平面が外径増大部412の側面に対して垂直となるように傾斜している。 From the viewpoint of effectively reducing the diameter of the tip side (second end portion side) of the blank tube 101 by pushing the blank tube 101 into the die hole 310, the first stepped portion 413 of the first cored bar 401 is the blank tube. It is desirable that the first stepped portion 413 and the end face of the blank tube 101 make surface contact when the base end side (first end portion side) of the tube 101 is brought into contact. Therefore, in the first stepped portion 413 of the first cored bar 401 illustrated in FIG. inclined to
 図5は、第1方法に含まれる各工程及び各過程の流れを示すフローチャートである。図5に例示するように、第1方法は、以下に示す第1工程(ステップS10)及び第2工程(ステップS20)を含む。 FIG. 5 is a flow chart showing each process included in the first method and the flow of each process. As illustrated in FIG. 5, the first method includes the following first step (step S10) and second step (step S20).
 第1工程(ステップS10):ダイス孔に素管を押し込む向きである第1方向の上流側に素管の開口端である第1端部が向くようにしてダイス孔の大内径部側から素管を挿入し素管の第1端部とは反対側の端部である第2端部をダイス孔の内径減少部に当接させることにより、ダイス孔の内部における所定の位置に素管を設置する。 First step (Step S10): The raw pipe is pushed from the large inner diameter side of the die hole so that the first end, which is the open end of the raw pipe, faces the upstream side in the first direction, which is the direction in which the raw pipe is pushed into the die hole. By inserting the pipe and bringing the second end opposite to the first end of the pipe into contact with the reduced inner diameter portion of the die hole, the pipe is placed at a predetermined position inside the die hole. Install.
 上述したように、円筒体において、テーパ部の最大外径は素管の外径よりも大きく、小径部の外径は素管の外径よりも小さい。また、ダイス孔において、大内径部の内径は円筒体のテーパ部の最大外径に対応する内径(第1内径)であり、小内径部の内径は円筒体の小径部の外径に対応する内径よりも小さい内径(第2内径)であり、内径減少部の内径は大内径部から小内径部へと近付くほど第1内径から第2内径へと減少する。従って、第1工程においてダイス孔に挿入された素管は、その先端(第2端部)がダイス孔の内径減少部に当接し且つダイス孔の大内径部の内周面と素管の外周面との間には空隙が存在する状態にて保持される。 As described above, in the cylindrical body, the maximum outer diameter of the tapered portion is larger than the outer diameter of the blank tube, and the outer diameter of the small-diameter portion is smaller than the outer diameter of the blank tube. In the die hole, the inner diameter of the large inner diameter portion is the inner diameter (first inner diameter) corresponding to the maximum outer diameter of the tapered portion of the cylindrical body, and the inner diameter of the small inner diameter portion corresponds to the outer diameter of the small diameter portion of the cylindrical body. It has an inner diameter (second inner diameter) smaller than the inner diameter, and the inner diameter of the reduced inner diameter portion decreases from the first inner diameter to the second inner diameter as it approaches the small inner diameter portion from the large inner diameter portion. Therefore, the tip (second end) of the blank pipe inserted into the die hole in the first step abuts the reduced inner diameter portion of the die hole, and the inner peripheral surface of the large inner diameter portion of the die hole and the outer circumference of the blank pipe It is held in a state in which a gap exists between it and the surface.
 第2工程(ステップS20):素管の第1端部に第1芯金を挿入して第1芯金によって素管を第1方向に押圧することにより、ダイス孔の内径減少部に対向する領域にテーパ部が形成され且つダイス孔の小内径部に対向する領域に小径部が形成された円筒体を成形する。 Second step (Step S20): A first mandrel is inserted into the first end of the blank pipe, and the blank pipe is pressed in the first direction by the first core bar, thereby facing the reduced inner diameter portion of the die hole. A cylindrical body having a tapered portion formed in a region and a small diameter portion formed in a region facing the small inner diameter portion of the die hole is molded.
 上述したように、第1芯金の先端には、先端から遠ざかるにつれて円筒体のテーパ部の最小内径に対応する外径から円筒体のテーパ部の最大内径に対応する外径へと外径が増大する外径増大部が設けられている。従って、素管の第1端部に第1芯金を挿入した時点においては、第1芯金の外径増大部の途中に素管の第1端部が当接することになる。その後、上述した駆動機構により第1芯金を第1方向に押圧することにより、ダイス孔の内径減少部に対向する領域にテーパ部が形成され且つダイス孔の小内径部に対向する領域に小径部が形成されて、所期の「テーパ部を有する円筒体」が成形される。 As described above, the tip of the first cored bar has an outer diameter that increases from the outer diameter corresponding to the minimum inner diameter of the tapered portion of the cylindrical body to the outer diameter corresponding to the maximum inner diameter of the tapered portion of the cylindrical body. An increasing outer diameter is provided. Therefore, when the first cored bar is inserted into the first end of the base pipe, the first end of the base pipe abuts on the middle of the increased outer diameter portion of the first cored bar. After that, by pressing the first cored bar in the first direction by the drive mechanism described above, a tapered portion is formed in a region facing the reduced inner diameter portion of the die hole and a small diameter portion is formed in a region facing the small inner diameter portion of the die hole. A section is formed to form the desired "tapered cylinder".
 図5に例示するように、第2工程(ステップS20)においては、以下に示す拡径過程(ステップS21)、縮径過程(ステップS22)及び完了過程(ステップS23)を実行する。
 拡径過程(ステップS21):第1芯金の外径増大部によって素管の第1端部の内側を押圧して素管の第1端部側を拡径させる。即ち、素管の第1端部側が第1芯金の外径増大部によって押し広げられて拡径される。
 縮径過程(ステップS22):遅くとも第1芯金の第1段差部が素管の第1端部に当接する時点である第1時点以降において第1芯金によって素管を第1方向に押圧して素管の第2端部をダイス孔の小内径部に向かって押し込んで素管の第2端部側を縮径させる。即ち、素管の第2端部側がダイス孔の小内径部へと押し込まれて縮径される。
 完了過程(ステップS23):ダイス孔の内径減少部と第1芯金の外径増大部との間に素管の第1端部側の領域を挟み込んでテーパ部及び小径部の成形を完了する。
As illustrated in FIG. 5, in the second step (step S20), the diameter expansion process (step S21), the diameter reduction process (step S22), and the completion process (step S23) shown below are executed.
Diameter expansion process (step S21): The diameter of the first end side of the mother pipe is expanded by pressing the inside of the first end of the mother pipe with the increased outer diameter portion of the first cored bar. That is, the first end side of the blank pipe is expanded by the increased outer diameter portion of the first cored bar to be expanded in diameter.
Diameter reduction process (step S22): After a first time point at which the first stepped portion of the first core bar contacts the first end of the blank tube at the latest, the blank tube is pressed in the first direction by the first core bar. Then, the second end portion of the blank tube is pushed toward the small inner diameter portion of the die hole to reduce the diameter of the second end side of the blank tube. That is, the second end side of the blank pipe is pushed into the small inner diameter portion of the die hole to reduce the diameter.
Completion process (step S23): The region of the first end side of the blank pipe is sandwiched between the reduced inner diameter portion of the die hole and the increased outer diameter portion of the first cored bar to complete the forming of the tapered portion and the small diameter portion. .
 上記のように、第1方法においては、第2工程(ステップS20)において実行される縮径過程(ステップS21)において、遅くとも第1時点以降において第1芯金によって素管を第1方向に押圧して素管の第2端部をダイス孔の小内径部に向かって押し込んで素管の第2端部側を縮径させる。即ち、素管を軸方向に押圧して圧縮しながら縮径させて円筒体の小径部を形成する。従って、第1方法によれば、肉厚の大きい素管を使用する場合においても、例えば座屈及び/又は破断等の問題を低減しつつテーパ部と小径部とを同時に形成して、テーパ部を有する円筒体を円滑に成形することができる。 As described above, in the first method, in the diameter reduction process (step S21) executed in the second step (step S20), the first core bar presses the base pipe in the first direction at the latest after the first point of time. Then, the second end portion of the blank tube is pushed toward the small inner diameter portion of the die hole to reduce the diameter of the second end side of the blank tube. That is, the diameter of the tube is reduced while compressing it by pressing it in the axial direction to form the small-diameter portion of the cylindrical body. Therefore, according to the first method, the tapered portion and the small-diameter portion can be simultaneously formed while reducing problems such as buckling and/or breakage even when using a thick blank pipe. can be smoothly molded.
 尚、第2工程(ステップS20)における拡径過程(ステップS21)及び縮径過程(ステップS22)を開始する順序は、例えば素管の座屈等の問題が生じない限りにおいて、特に限定されない。例えば、第2工程(ステップS20)の開始と同時に拡径過程(ステップS21)が開始される場合、拡径過程(ステップS21)の開始と同時に縮径過程(ステップS22)が開始されてもよく、或いは、拡径過程(ステップS21)の開始時点よりも後に縮径過程(ステップS22)が開始されてもよい。但し、上述したように、第1芯金の外径増大部の基端側に隣接する位置には、径方向における外側に広がるように形成された環状の段差であって円筒体のテーパ部の最大外径に等しい外径及び円筒体のテーパ部の最大内径に等しい内径を有する部分である第1段差部が設けられている。従って、拡径過程(ステップS21)の開始時点よりも後に縮径過程(ステップS22)が開始される場合であっても、第1芯金の第1段差部が素管の第1端部に当接する時点(第1時点)以降は、第1芯金によって素管が第1方向に押圧され、素管の第2端部がダイス孔の小内径部に向かって押し込まれ、素管の第2端部側が縮径されることとなる。逆に、第2工程(ステップS20)の開始と同時に縮径過程(ステップS22)が開始される場合もあり得る。この場合、縮径過程(ステップS22)の開始と同時に拡径過程(ステップS21)が開始されてもよく、或いは、縮径過程(ステップS22)の開始時点よりも後に拡径過程(ステップS21)が開始されてもよい。 The order of starting the diameter-expanding process (step S21) and the diameter-reducing process (step S22) in the second step (step S20) is not particularly limited as long as problems such as buckling of the blank tube do not occur. For example, when the diameter increasing process (step S21) starts simultaneously with the start of the second step (step S20), the diameter decreasing process (step S22) may start simultaneously with the starting of the diameter increasing process (step S21). Alternatively, the diameter reduction process (step S22) may be started after the diameter expansion process (step S21) is started. However, as described above, at a position adjacent to the base end side of the increased outer diameter portion of the first cored bar, there is an annular step formed so as to spread outward in the radial direction, which is the tapered portion of the cylindrical body. A first stepped portion is provided which is a portion having an outer diameter equal to the maximum outer diameter and an inner diameter equal to the maximum inner diameter of the tapered portion of the cylinder. Therefore, even if the diameter-reducing process (step S22) is started after the diameter-expanding process (step S21) is started, the first stepped portion of the first cored bar is positioned at the first end of the tube. After the point of contact (first time point), the first cored bar presses the blank tube in the first direction, the second end of the blank tube is pushed toward the small inner diameter portion of the die hole, and the second end of the blank tube is pushed toward the small inner diameter portion of the die hole. The diameter of the two end portions is reduced. Conversely, the diameter reduction process (step S22) may be started simultaneously with the start of the second step (step S20). In this case, the diameter expansion process (step S21) may be started at the same time as the diameter reduction process (step S22) is started, or the diameter expansion process (step S21) may be started after the diameter reduction process (step S22) is started. may be started.
 好ましくは、拡径過程の開始以降に縮径過程が開始される。より好ましくは、第1芯金の第1段差部が素管の第1端部に当接する時点(第1時点)以降に縮径過程が開始される。これにより、テーパ部と小径部とをバランス良く、より円滑に形成することができる。 Preferably, the diameter reduction process is started after the diameter expansion process is started. More preferably, the diameter reduction process is started after the first stepped portion of the first core bar contacts the first end portion of the blank tube (first time point). As a result, the tapered portion and the small diameter portion can be formed more smoothly with good balance.
 第2工程において拡径過程が開始されるタイミング及び縮径過程が開始されるタイミングは、例えば、素管の形状(径、長さ及び肉厚等)及び材料、円筒体のテーパ部となる部分の拡径率と円筒体の小径部となる部分の縮径率との大小関係、並びにダイス孔の内径減少部における内径の変化率(テーパ角)等、様々な要因によって変化する。 The timing at which the diameter-expanding process is started and the timing at which the diameter-reducing process is started in the second step are determined, for example, by the shape (diameter, length, thickness, etc.) and material of the blank tube, and the portion to be the tapered portion of the cylindrical body. and the diameter reduction ratio of the portion to be the small diameter portion of the cylindrical body, and the change rate (taper angle) of the inner diameter of the die hole at the inner diameter reduction portion.
 拡径過程の開始以降に縮径過程が開始されるようにするための具体的な方策としては、例えば、円筒体のテーパ部の最大外径と素管の第1端部の外径との差の素管の第1端部の外径に対する比率である拡径率よりも素管の第2端部の外径と円筒体の小径部の外径との差の素管の第2端部の外径に対する比率である縮径率の方が大きくなるように、素管、ダイス孔及び第1芯金を構成することを挙げることができる。これにより、テーパ部と小径部とをバランス良く、より円滑に形成することができる。但し、後述するように、拡径過程の開始以降に縮径過程が開始されるようにするための方策は上記に限定されない。 As a specific measure for starting the diameter-reducing process after the diameter-expanding process has started, for example, The difference between the outer diameter of the second end of the blank tube and the outer diameter of the small diameter portion of the cylindrical body is greater than the diameter expansion ratio, which is the ratio to the outer diameter of the first end of the blank tube. For example, the base tube, the die hole, and the first cored bar are configured so that the diameter reduction rate, which is the ratio of the portion to the outer diameter, becomes greater. As a result, the tapered portion and the small diameter portion can be formed more smoothly with good balance. However, as will be described later, measures for starting the diameter-reducing process after the diameter-expanding process is started are not limited to the above.
〈第2工程の詳細〉
 ここで、第1方法において実行される第2工程における素管の形状の変化につき、更なる図面を参照しながら、より詳細に説明する。図6は、第2工程の進行に伴う第1芯金の位置及び第1素管の形状の変化を例示する模式的な断面図である。尚、図6においては、第1芯金、素管及びダイス孔の共通の軸AX(図4を参照)の図面に向かって右側の部分のみが描かれているが、軸AXの左側の部分についても同様である。また、図面を簡潔なものとするため、図1乃至図4において示した各部位に付された符号の一部のみが表示されている。しかしながら、図6に関する以下の説明においては、正確を期すため、図1乃至図4において示した符号を使用するので、必要に応じて図1乃至図4を参照されたい。
<Details of the second step>
The change in shape of the blank tube in the second step performed in the first method will now be described in more detail with reference to further drawings. FIG. 6 is a schematic cross-sectional view illustrating changes in the position of the first mandrel and the shape of the first mother pipe as the second step progresses. In FIG. 6, only the right side of the common axis AX (see FIG. 4) of the first mandrel, tube and die hole is shown, but the left side of the axis AX is shown. The same is true for Also, in order to simplify the drawings, only some of the reference numerals attached to the parts shown in FIGS. 1 to 4 are shown. However, in the following description of FIG. 6, the reference numerals shown in FIGS. 1-4 are used for the sake of accuracy, and reference should be made to FIGS. 1-4 as necessary.
 先ず、図6の(a)は、第1工程(ステップS10)においてダイス孔310の内部における所定の位置に設置された素管101の第1端部に第1芯金401の先端部(具体的には、小径コア部411及び外径増大部412の一部)が挿入された状態を示す。この状態においては、上述したように、素管101の先端(第2端部112)がダイス孔310の内径減少部312に当接しており、ダイス孔310の大内径部311の内周面と素管101の外周面との間には空隙が存在する。 First, in (a) of FIG. 6, the tip of the first cored bar 401 (specifically, Specifically, it shows a state in which the small-diameter core portion 411 and a portion of the increased outer diameter portion 412) are inserted. In this state, as described above, the tip (second end 112) of the blank tube 101 is in contact with the reduced inner diameter portion 312 of the die hole 310, and the inner peripheral surface of the large inner diameter portion 311 of the die hole 310 is in contact with the inner peripheral surface of the die hole 310. A gap exists between the outer peripheral surface of the blank tube 101 .
 次に、図6の(b)は、第2工程(ステップS20)において第1芯金401が素管101を第1方向に押圧し始め、第1芯金401の外径増大部412の側面により素管101の第1端部111側が押し広げられてフレアが形成されている状態を示す。即ち、この時点において、拡径過程(ステップS21)が開始されて素管101の第1端部111側の拡径が始まっているが、素管101の第2端部112側の縮径は未だ始まっていない。 Next, in FIG. 6B, in the second step (step S20), the first cored bar 401 begins to press the blank tube 101 in the first direction, and the side surface of the outer diameter increased portion 412 of the first cored bar 401 shows a state in which the first end portion 111 side of the base tube 101 is pushed out and a flare is formed. That is, at this time point, the diameter expansion process (step S21) is started and the diameter expansion of the first end portion 111 side of the raw pipe 101 has started, but the diameter reduction of the second end portion 112 side of the raw pipe 101 is It hasn't started yet.
 次に、図6の(c)は、第1芯金401が第1方向に更に移動して、素管101の第1端部111側の拡径が更に進行すると共に、第1芯金401の第1段差部413が素管101の第1端部111に当接して素管101の第2端部112をダイス孔310の小内径部313に向かって押し込み始めた状態を示す。即ち、この時点において、縮径過程(ステップS22)が開始されて素管101の第2端部側の縮径が始まっている。 Next, in (c) of FIG. 6, the first cored bar 401 moves further in the first direction, and the expansion of the diameter of the base tube 101 on the first end portion 111 side progresses further, and the first cored bar 401 413 is in contact with the first end 111 of the blank pipe 101 and the second end 112 of the blank pipe 101 has begun to be pushed toward the small inner diameter portion 313 of the die hole 310. FIG. That is, at this time point, the diameter reduction process (step S22) is started, and the diameter reduction of the second end side of the blank tube 101 has started.
 次に、図6の(d)は、第1芯金401が第1方向に更に移動して、素管101の第1端部111側の拡径が更に進行すると共に、素管101の第2端部112がダイス孔310の小内径部313に進入し始めた状態を示す。即ち、この時点において、縮径過程(ステップS22)により円筒体201の小径部230が形成され始めている。 Next, in (d) of FIG. 6, the first cored bar 401 moves further in the first direction, and the expansion of the diameter of the first end portion 111 side of the base pipe 101 further progresses. The second end portion 112 is shown to have begun to enter the small inner diameter portion 313 of the die hole 310 . That is, at this time point, the small-diameter portion 230 of the cylindrical body 201 begins to be formed by the diameter-reducing process (step S22).
 次に、図6の(e)は、第1芯金401が第1方向に更に移動して、素管101の第1端部側の拡径が更に進行すると共に、素管101の第2端部112がダイス孔310の小内径部に更に進入して、縮径過程(ステップS22)により円筒体201の小径部230の形成が更に進行している状態を示す。 Next, in (e) of FIG. 6, the first cored bar 401 moves further in the first direction, and the expansion of the diameter of the first end side of the base pipe 101 further progresses, and the base pipe 101 moves toward the second end. The end portion 112 further enters the small inner diameter portion of the die hole 310, and the formation of the small diameter portion 230 of the cylindrical body 201 is further advanced by the diameter reduction process (step S22).
 最後に、図6の(f)は、第1芯金401が第1方向に更に移動して、ダイス孔310の内径減少部312と第1芯金401の外径増大部412との間に素管101の第1端部111側の領域が挟み込まれて、円筒体201のテーパ部220及び小径部230の成形が完了した状態を示す。 Finally, in (f) of FIG. 6 , the first cored bar 401 moves further in the first direction, and the gap between the reduced inner diameter portion 312 of the die hole 310 and the increased outer diameter portion 412 of the first cored bar 401 is shown. A state is shown in which the region on the first end portion 111 side of the blank pipe 101 is sandwiched and the forming of the tapered portion 220 and the small diameter portion 230 of the cylindrical body 201 is completed.
 以上のように、図6に示した例においては、第1芯金401の第1段差部413が素管101の第1端部111に当接した時点(第1時点)から縮径過程が開始されている。しかしながら、前述したように、第2工程において拡径過程が開始されるタイミング及び縮径過程が開始されるタイミングは、例えば、素管の形状(径、長さ及び肉厚等)及び材料、円筒体のテーパ部となる部分の拡径率と円筒体の小径部となる部分の縮径率との大小関係、並びにダイス孔の内径減少部における内径の変化率(テーパ角)等、様々な要因によって変化する。 As described above, in the example shown in FIG. 6, the diameter reduction process starts from the point in time when the first stepped portion 413 of the first cored bar 401 contacts the first end portion 111 of the blank tube 101 (first point in time). has started. However, as described above, the timing at which the diameter-expanding process is started and the timing at which the diameter-reducing process is started in the second step depend, for example, on the shape (diameter, length, thickness, etc.) and material of the blank pipe, the cylinder Various factors such as the size relationship between the diameter expansion rate of the tapered part of the body and the diameter reduction rate of the small diameter part of the cylindrical body, and the change rate (taper angle) of the inner diameter at the inner diameter reduction part of the die hole change depending on
 しかしながら、第1方法においては、以上説明してきたように、第2工程において実行される縮径過程における遅くとも第1時点以降において第1芯金によって素管を第1方向に押圧して素管の第2端部をダイス孔の小内径部に向かって押し込んで素管の第2端部側を縮径させることができる。即ち、素管を軸方向に押圧して圧縮しながら縮径させて円筒体の小径部を形成することができる。従って、第1方法によれば、肉厚の大きい素管を使用する場合においても、例えば座屈及び/又は破断等の問題を低減しつつテーパ部と小径部とを同時に形成して、テーパ部を有する円筒体を円滑に成形することができる。 However, in the first method, as described above, the first core bar presses the blank pipe in the first direction at the latest after the first time point in the diameter reduction process executed in the second step, thereby reducing the blank pipe. By pushing the second end toward the small inner diameter portion of the die hole, the diameter of the second end of the blank tube can be reduced. That is, the small-diameter portion of the cylindrical body can be formed by pressing and compressing the blank pipe in the axial direction to reduce the diameter. Therefore, according to the first method, the tapered portion and the small-diameter portion can be simultaneously formed while reducing problems such as buckling and/or breakage even when using a thick blank pipe. can be smoothly molded.
〈変形例1-1〉
 ところで、第2工程において実行される拡径過程において素管の第1端部側が拡径されて円筒体のテーパ部が形成されるのに伴って、当該部分の肉厚が減少する(当該部分が減肉する)場合がある。一方、第1方法によって成型されるテーパ部を有する円筒体の用途によっては、円筒体の全体に亘って肉厚を均一化することが望ましい場合がある。このような場合は、円筒体のテーパ部となる素管の領域の肉厚を予め厚くしておいてもよい。即ち、第1方法において、円筒体のテーパ部に対応する領域の肉厚が円筒体の小径部に対応する領域の肉厚よりも大きい素管を使用してもよい。
<Modification 1-1>
By the way, in the diameter expansion process executed in the second step, the diameter of the first end side of the blank pipe is expanded to form the tapered portion of the cylindrical body. thinning). On the other hand, depending on the application of the tapered cylindrical body molded by the first method, it may be desirable to make the thickness uniform throughout the cylindrical body. In such a case, the wall thickness of the region of the blank pipe that will be the tapered portion of the cylindrical body may be increased in advance. That is, in the first method, a blank tube may be used in which the thickness of the region corresponding to the tapered portion of the cylindrical body is greater than the thickness of the region corresponding to the small diameter portion of the cylindrical body.
 図7は、円筒体のテーパ部に対応する領域の肉厚が円筒体の小径部に対応する領域の肉厚よりも大きい素管を使用する第1方法の変形例1-1を示す模式的な断面図である。図7の(a)に例示する素管101aは、円筒体のテーパ部に対応する領域(太い破線によって囲まれた部分を参照)の肉厚が円筒体の小径部に対応する領域の肉厚よりも大きい点を除き、図1の(a)に例示した素管101と同様の構成を有する。このように円筒体のテーパ部となる素管の領域の肉厚を予め厚くしておくことにより、図7の(b)に例示するように、拡径過程における素管の第1端部側の拡径に伴う肉厚の減少(減肉)を少なくとも部分的には相殺して、円筒体201aの肉厚をより均一にすることができる。 FIG. 7 schematically shows a modification 1-1 of the first method in which the thickness of the region corresponding to the tapered portion of the cylindrical body is greater than the thickness of the region corresponding to the small diameter portion of the cylindrical body. It is a cross-sectional view. In the blank tube 101a illustrated in FIG. 7A, the thickness of the region corresponding to the tapered portion of the cylindrical body (see the portion surrounded by the thick dashed line) corresponds to the small diameter portion of the cylindrical body. It has the same configuration as the base pipe 101 illustrated in FIG. In this way, by increasing the thickness of the region of the blank pipe that will be the tapered portion of the cylindrical body in advance, as illustrated in FIG. It is possible to at least partially offset the reduction in thickness (thickness reduction) accompanying the expansion of the diameter of the cylindrical body 201a, thereby making the thickness of the cylindrical body 201a more uniform.
 尚、上記のような素管の製造方法は、円筒体のテーパ部に対応する領域の肉厚が円筒体の小径部に対応する領域の肉厚よりも大きい素管を得ることが可能である限り、特に限定されない。例えば、上記のような素管は、鍛造又は切削によって製造されたものであってもよい。また、上記のような素管は、板状の部材からの絞り成形によって製造されたものであってもよい。 In addition, the method for manufacturing a blank pipe as described above makes it possible to obtain a blank pipe in which the thickness of the region corresponding to the tapered portion of the cylindrical body is greater than the thickness of the region corresponding to the small-diameter portion of the cylindrical body. As long as it is not particularly limited. For example, the base tube as described above may be manufactured by forging or cutting. Further, the blank tube as described above may be manufactured by drawing from a plate-like member.
 図8は、第1方法の変形例1-1において使用される素管101aの成形方法の一例を示す模式的な断面図である。図面に向かって軸AXよりも左側の(a)には素管101aの加工中の状況が、図面に向かって軸AXよりも右側の(b)には素管101aの加工後の状況が、それぞれ描かれている。図8の(a)に例示するように、絞り加工によって素管101aを成形するためのダイスに形成されたダイス孔は、芯金が挿入される側の開口部に近付くにつれて広くなるようにテーパ部が設けられている(太い実線を参照)。これにより、図8の(b)に例示するように、加工後の素管101aにおける円筒体のテーパ部に対応する領域の肉厚を他の領域の肉厚よりも大きくすることができる(太い破線によって囲まれた部分を参照)。 FIG. 8 is a schematic cross-sectional view showing an example of a method of forming the blank tube 101a used in Modification 1-1 of the first method. (a) on the left side of the axis AX in the drawing shows the situation during machining of the tube 101a, and (b) on the right side of the axis AX in the drawing shows the situation after machining the tube 101a. each depicted. As exemplified in FIG. 8A, the die hole formed in the die for forming the blank tube 101a by drawing is tapered so as to become wider as it approaches the opening on the side where the core metal is inserted. part is provided (see thick solid line). As a result, as illustrated in FIG. 8B, the thickness of the region corresponding to the tapered portion of the cylinder in the blank tube 101a after processing can be made larger than the thickness of other regions (thick see the part enclosed by the dashed line).
 尚、図7及び図8に例示した素管101aにおいては、円筒体のテーパ部に対応する領域の肉厚が第1端部に近付くにつれて直線的に増大している。しかしながら、図7及び図8に示した素管101aはあくまでも例示に過ぎず、第1方法の変形例1-1において使用される素管の当該領域の形状は、拡径過程における素管の第1端部側の拡径に伴う肉厚の減少(減肉)を少なくとも部分的に相殺することが可能である限り特に限定されない。 In addition, in the blank tube 101a illustrated in FIGS. 7 and 8, the thickness of the region corresponding to the tapered portion of the cylindrical body increases linearly as it approaches the first end. However, the blank tube 101a shown in FIGS. 7 and 8 is merely an example, and the shape of the region of the blank tube used in Modification 1-1 of the first method is different from that of the blank tube in the diameter expansion process. There is no particular limitation as long as it is possible to at least partially offset the decrease in thickness (thickness) associated with the diameter expansion on the one end side.
〈変形例1-2〉
 ところで、例えばオーステナイト系ステンレス鋼等、加工硬化を生じ易い材料によって形成された素材を冷間鍛造によって加工する場合、例えば加工荷重が増大したり加工中に素材が割れたりする問題が生ずる場合がある。従って、このような材料は冷間鍛造において敬遠されがちであった。しかしながら、第1方法においては、上述したように、第2工程において実行される縮径過程における遅くとも第1時点以降において第1芯金によって素管を第1方向に押圧して素管の第2端部をダイス孔の小内径部に向かって押し込んで素管の第2端部側を縮径させる。即ち、素管を軸方向(第1方向)に押圧して圧縮しながら縮径させて円筒体の小径部を形成するので、素材を引き伸ばす加工方法に比べて、加工中における素管の割れ等の問題が生ずる可能性が低い。また、第1方法によれば肉厚の大きい素管を使用することができるので、第2工程において実行される縮径過程において素管の第1端部に大きい荷重をかけることができる。
<Modification 1-2>
By the way, when cold forging a material made of a material that easily causes work hardening, such as austenitic stainless steel, there may be problems such as an increase in the working load or cracking of the material during working. . Therefore, such materials tend to be avoided in cold forging. However, in the first method, as described above, the first metal core presses the blank pipe in the first direction at the latest after the first point in the diameter reduction process executed in the second step, and the blank pipe is pushed in the second direction. The end portion is pushed toward the small inner diameter portion of the die hole to reduce the diameter of the second end side of the blank tube. That is, since the tube is pressed in the axial direction (first direction) to reduce its diameter while compressing it to form the small-diameter portion of the cylindrical body, cracking, etc. less likely to cause problems. Further, according to the first method, a thick blank pipe can be used, so that a large load can be applied to the first end of the blank pipe in the diameter reduction process executed in the second step.
 従って、第1方法においては、素管を構成する材料がオーステナイト系ステンレス鋼であってもよい。この場合、上記のように加工硬化が生ずるので、第1方法によって成形されるテーパ部を有する円筒体の硬度が高まり、機械的強度も増大する。従って、オーステナイト系ステンレス鋼によって構成された素管から第1方法によって成形される円筒体は、例えば円筒体の内部に存在する流体による高い圧力を受ける用途等、高い機械的強度が要求される用途に好適である。 Therefore, in the first method, the material forming the mother tube may be austenitic stainless steel. In this case, since work hardening occurs as described above, the hardness of the cylindrical body having the tapered portion formed by the first method increases, and the mechanical strength also increases. Therefore, the cylindrical body formed by the first method from the tube made of austenitic stainless steel is suitable for applications that require high mechanical strength, such as applications that receive high pressure from the fluid that exists inside the cylindrical body. is suitable for
 また、素材を引き伸ばす加工方法によって成形された製品には引張の残留応力が生ずるのに対して、素管を軸方向(第1方向)に押圧して圧縮する第1方法によって成形された製品には圧縮の残留応力が生ずる。第1方法によって成形される円筒体は、例えば円筒体の内部に存在する流体による高い圧力を受ける用途等、高い引張応力を受ける用途に好適である。 In addition, while tensile residual stress is generated in products formed by the processing method of stretching the raw material, products formed by the first method of pressing and compressing the blank tube in the axial direction (first direction) is a compressive residual stress. Cylinders formed by the first method are suitable for applications subject to high tensile stress, such as applications subject to high pressure due to the fluid present inside the cylinder.
《第2実施形態》
 以下、図面を参照しながら本発明の第2実施形態に係るテーパ部を有する円筒体を成形する方法(以降、「第2方法」と称呼される場合がある。)について説明する。
<<Second embodiment>>
Hereinafter, a method of forming a cylindrical body having a tapered portion according to a second embodiment of the present invention (hereinafter sometimes referred to as "second method") will be described with reference to the drawings.
 第2方法は、上述した第1方法の何れかであって、
 素管が、第2端部が閉じている有底の円筒状の部材である、
ことを特徴とする、テーパ部を有する円筒体の成形方法である。
The second method is any of the first methods described above,
The blank tube is a bottomed cylindrical member closed at the second end,
A method for forming a cylindrical body having a tapered portion, characterized by:
 上記のように第2端部が閉じている有底の素管の具体例としては、例えば図1の(a)に例示した素管101及び図7の(a)に例示した素管101aを挙げることができる。このような有底の素管を使用することにより、縮径過程において素管の第2端部側が意図しない変形を生じたりする問題を低減することができる。 As specific examples of the bottomed base pipe whose second end is closed as described above, for example, the base pipe 101 illustrated in FIG. 1(a) and the base pipe 101a illustrated in FIG. can be mentioned. By using such a bottomed base pipe, it is possible to reduce the problem of unintended deformation of the second end side of the base pipe during the diameter reduction process.
〈変形例2-1〉
 ところで、前述したように、好ましくは、拡径過程の開始以降に縮径過程が開始される。より好ましくは、第1芯金の第1段差部が素管の第1端部に当接する時点(第1時点)以降に縮径過程が開始される。これにより、テーパ部と小径部とをバランス良く、より円滑に形成することができる。
<Modification 2-1>
By the way, as described above, preferably, the diameter-reducing process is started after the diameter-expanding process is started. More preferably, the diameter reduction process is started after the first stepped portion of the first core bar contacts the first end portion of the blank tube (first time point). As a result, the tapered portion and the small diameter portion can be formed more smoothly with good balance.
 拡径過程の開始以降に縮径過程が開始されるようにするための具体的な方策の一例としては、前述したように、拡径率よりも縮径率の方が大きくなるように、素管、ダイス孔及び第1芯金を構成することを挙げることができる。しかしながら、第2端部が閉じている有底の円筒状の部材を素管として使用する第2方法においては、所謂「カウンターパンチ」をダイス孔の小内径部側から挿入して素管の第2端部(底部)に当接させておき、縮径過程を開始させるべき時点以降は素管の第2端部の第1方向への移動に応じてカウンターパンチもまた第1方向へ移動させることにより、拡径過程の開始以降の所期のタイミングにて縮径過程を開始させることができる。 As an example of a specific measure for starting the diameter reduction process after the diameter expansion process is started, as described above, the diameter reduction rate is larger than the diameter expansion rate. Constructing a tube, a die hole and a first mandrel can be mentioned. However, in the second method, in which a bottomed cylindrical member with a closed second end is used as the base pipe, a so-called "counter punch" is inserted from the small inner diameter side of the die hole to punch the base pipe. The counterpunch is kept in contact with the two ends (bottom), and the counterpunch is also moved in the first direction in accordance with the movement of the second end of the blank tube in the first direction after the time when the diameter reduction process should be started. Thereby, the diameter reduction process can be started at the desired timing after the diameter expansion process is started.
 そこで、第2方法の変形例2-1は、
 第2工程が開始される前に、ダイス孔の小内径部側から所定の形状を有する芯金である第2芯金が挿入されて素管の第2端部に当接する位置において固定されており、
 第2工程が実行される期間における所定の時点において第2芯金が所定の速度にて第1方向への移動を開始する、
ことを特徴とする、テーパ部を有する円筒体の成形方法である。
Therefore, the modification 2-1 of the second method is
Before the second step is started, a second metal core, which is a metal core having a predetermined shape, is inserted from the small inner diameter side of the die hole and fixed at a position where it abuts on the second end of the blank tube. cage,
The second core bar starts moving in the first direction at a predetermined speed at a predetermined point in time during which the second step is performed;
A method for forming a cylindrical body having a tapered portion, characterized by:
 素管の第2端部に当接する位置において第2芯金を固定するための具体的な手段は特に限定されず、例えば、解除可能な機械的手段であってもよく、或いは第1芯金が素管を第1方向に押し込む力に抗する力にて第1方向とは反対向きに第2芯金を付勢してもよい。また、第2芯金の第1方向への移動を開始させる時点は、例えば、その時点における拡径過程の進行状況、素管の座屈強度及び素管に生じさせるべき圧縮の残留応力の大きさ等、種々の要件に応じて適宜定めることができる。但し、第1芯金の第1段差部が素管の第1端部に当接する時点である第1時点から第2芯金の第1方向への移動を開始させる時点までの期間が過度に長くなると、例えば加工荷重の増大及び/又は素管の意図しない変形等の問題に繋がる虞が高まるので注意が必要である。 The specific means for fixing the second cored bar at the position where it contacts the second end of the blank tube is not particularly limited, and may be, for example, a releasable mechanical means, or the first cored bar. The second core bar may be urged in the direction opposite to the first direction by a force that resists the force that pushes the blank tube in the first direction. In addition, the time at which the movement of the second cored bar in the first direction is started depends on, for example, the progress of the diameter expansion process at that time, the buckling strength of the blank tube, and the magnitude of the compressive residual stress to be generated in the blank tube. It can be determined as appropriate according to various requirements. However, the period from the first point in time when the first step portion of the first cored bar abuts against the first end of the blank tube to the point in time when the second cored bar starts to move in the first direction is excessive. Care must be taken because if the length is increased, problems such as an increase in processing load and/or unintended deformation of the mother pipe may occur.
 また、第2芯金を第1方向へと移動させる速度についても、例えば、その時点における拡径過程の進行状況、素管の座屈強度及び素管に生じさせるべき圧縮の残留応力の大きさ等、種々の要件に応じて適宜定めることができる。但し、第1芯金の第1方向への移動速度に対して第2芯金の第1方向への移動速度が過度に遅くなると、例えば加工荷重の増大及び/又は素管の意図しない変形等の問題に繋がる虞が高まるので注意が必要である。 In addition, the speed at which the second core bar is moved in the first direction also includes, for example, the progress of the diameter expansion process at that time, the buckling strength of the blank pipe, and the magnitude of the compressive residual stress to be generated in the blank pipe. etc., can be determined as appropriate according to various requirements. However, if the speed of movement of the second mandrel in the first direction is excessively slow relative to the speed of movement of the first mandrel in the first direction, for example, an increase in processing load and/or unintended deformation of the blank tube may occur. It is necessary to be careful because there is a possibility that it will lead to problems.
 図9は、第2芯金501がダイス孔310の小内径部313側から挿入されて素管101の第2端部112(底部)に当接している点を除き、図6と同様である。図9においても、軸AXの図面に向かって右側の部分のみが描かれているが、軸AXの左側の部分についても同様である。また、図面を簡潔なものとするため、図1乃至図4において示した各部位に付された符号の一部のみが表示されている。しかしながら、図9に関する以下の説明においては、正確を期すため、図1乃至図4において示した符号を使用するので、必要に応じて図1乃至図4を参照されたい。 9 is the same as FIG. 6 except that the second core bar 501 is inserted from the small inner diameter portion 313 side of the die hole 310 and is in contact with the second end portion 112 (bottom portion) of the blank tube 101. . In FIG. 9 as well, only the portion on the right side of the axis AX as viewed in the drawing is drawn, but the same applies to the portion on the left side of the axis AX. Also, in order to simplify the drawings, only some of the reference numerals attached to the parts shown in FIGS. 1 to 4 are shown. However, in the following description of FIG. 9, the reference numbers shown in FIGS. 1-4 are used for the sake of accuracy, and reference should be made to FIGS. 1-4 as necessary.
 図9に示した例においては、第2芯金501は第1時点までは素管101の第2端部112(底部)に当接する位置において固定されており(図9の(a)及び(b)を参照)、第1時点以降の所定のタイミングにて所定の速度にて第1方向への移動を開始する(図9の(c)以降及び白塗りの矢印を参照)ように構成されている。 In the example shown in FIG. 9, the second cored bar 501 is fixed at a position where it abuts against the second end portion 112 (bottom portion) of the base pipe 101 until the first time point (FIGS. 9A and 9B). b)), and starts moving in the first direction at a predetermined speed at a predetermined timing after the first time point (see (c) and the white arrows in FIG. 9). ing.
 第2方法の変形例2-1によれば、例えば、素管の形状(径、長さ及び肉厚等)及び材料、円筒体のテーパ部となる部分の拡径率と円筒体の小径部となる部分の縮径率との大小関係、並びにダイス孔の内径減少部における内径の変化率(テーパ角)等、様々な要因に応じて、例えば加工荷重の増大及び/又は素管の意図しない変形等の問題を招かない好適なタイミングにて縮径過程を開始させることができる。また、第2芯金の第1方向への移動速度もまた、様々な要因に応じて適宜設定することができる。例えば、第2芯金の第1方向への移動速度を第1芯金による押し込みに伴う小径部の先端の移動速度よりも低く設定した場合、円筒体の軸方向における圧縮の残留応力を増大させたり小径部の増肉を促進したりすることができる。逆に、第2芯金の第1方向への移動速度を第1芯金による押し込みに伴う小径部の先端の移動速度よりも高く設定した場合、円筒体の軸方向における圧縮の残留応力を減少させたり小径部の増肉を抑制したりすることができる。このように、第2方法の変形例2-1によれば、円筒体のテーパ部と小径部とを更にバランス良く、より一層円滑に形成することができる。 According to modification 2-1 of the second method, for example, the shape (diameter, length, wall thickness, etc.) and material of the blank pipe, the diameter expansion ratio of the tapered portion of the cylindrical body, and the small diameter portion of the cylindrical body Depending on various factors such as the size relationship with the diameter reduction rate of the portion where the diameter is reduced, and the rate of change (taper angle) of the inner diameter at the inner diameter reduction portion of the die hole, for example, an increase in the processing load and / or an unintended The diameter reduction process can be started at a suitable timing that does not cause problems such as deformation. Also, the moving speed of the second cored bar in the first direction can also be appropriately set according to various factors. For example, if the moving speed of the second cored bar in the first direction is set lower than the moving speed of the tip of the small-diameter portion that accompanies the pressing by the first cored bar, the compressive residual stress in the axial direction of the cylindrical body increases. It is possible to promote the thickening of the small diameter portion. Conversely, when the moving speed of the second cored bar in the first direction is set higher than the moving speed of the tip of the small-diameter portion accompanying the pushing by the first cored bar, the compressive residual stress in the axial direction of the cylindrical body is reduced. It is possible to suppress the increase in thickness of the small diameter portion. As described above, according to Modified Example 2-1 of the second method, the tapered portion and the small diameter portion of the cylindrical body can be formed in a better balance and more smoothly.
《第3実施形態》
 以下、図面を参照しながら本発明の第3実施形態に係るテーパ部を有する円筒体を成形する方法(以降、「第3方法」と称呼される場合がある。)について説明する。
<<Third Embodiment>>
Hereinafter, a method for forming a cylindrical body having a tapered portion according to a third embodiment of the present invention (hereinafter sometimes referred to as "third method") will be described with reference to the drawings.
 前述したように、第1方法及び第2方法を始めとする本発明に係るテーパ部を有する円筒体の成形方法(本発明方法)においては、第2工程において実行される縮径過程における遅くとも第1時点以降において第1芯金によって素管を第1方向に押圧して素管の第2端部をダイス孔の小内径部に向かって押し込んで素管の第2端部側を縮径させる。即ち、素管を軸方向に押圧して圧縮しながら縮径させて円筒体の小径部を形成する。 As described above, in the method of forming a cylindrical body having a tapered portion according to the present invention (method of the present invention) including the first method and the second method, in the diameter reduction process performed in the second step, at the latest After time point 1, the first core bar presses the blank tube in the first direction to push the second end of the blank tube toward the small inner diameter portion of the die hole, thereby reducing the diameter of the second end side of the blank tube. . That is, the diameter of the tube is reduced while compressing it by pressing it in the axial direction to form the small-diameter portion of the cylindrical body.
 従って、円筒体の小径部の肉厚は円筒体の小径部に対応する素管の領域の肉厚よりも大きくなる(増肉する)。また、このような小径部の増肉に伴って、小径部の肉厚のバラツキも大きくなりがちである。 Therefore, the thickness of the small-diameter portion of the cylindrical body becomes larger (increases) than the thickness of the region of the blank corresponding to the small-diameter portion of the cylindrical body. In addition, as the thickness of the small-diameter portion increases, variations in the thickness of the small-diameter portion tend to increase.
 そこで、第3方法は、上述した第2方法の何れかであって、以下に示す第3工程を更に含むことを特徴とする、テーパ部を有する円筒体の成形方法である。
 第3工程:第2工程の後に、第1芯金を円筒体から抜き取り、円筒体の小径部の内径に対応する外径を有する円柱状の形状を有する芯金である第3芯金を円筒体のテーパ部側から挿入して第1方向に移動させることにより、円筒体の小径部の内面を扱く扱き過程を実行する。
Therefore, the third method is a method for forming a cylindrical body having a tapered portion, which is any of the second methods described above, and further includes a third step described below.
Third step: After the second step, the first cored bar is extracted from the cylindrical body, and the third cored bar, which is a cylindrical cored bar having an outer diameter corresponding to the inner diameter of the small diameter portion of the cylindrical body, is inserted into the cylindrical body. By inserting from the tapered portion side of the body and moving in the first direction, a squeezing process of shaving the inner surface of the small diameter portion of the cylindrical body is performed.
 図10は、第3方法に含まれる各工程及び各過程の流れを示すフローチャートである。図10に例示するフローチャートは、第2工程(ステップS20)の後に第3工程(ステップS30)を含む点を除き、図5に例示した第1方法についてのフローチャートと同様である。尚、筒状部材の内面を扱く扱き過程(扱き加工)の詳細については当業者に周知であるので、ここでの説明は省略する。 FIG. 10 is a flowchart showing each process included in the third method and the flow of each process. The flowchart illustrated in FIG. 10 is similar to the flowchart for the first method illustrated in FIG. 5 except that the third step (step S30) is included after the second step (step S20). The details of the treatment process (treatment process) for treating the inner surface of the cylindrical member are well known to those skilled in the art, and therefore the description thereof is omitted here.
 上記のように、第3方法においては、上述した第2方法の実施後(即ち、第2工程の実行後)に、円筒体の小径部の内面に対して扱き加工を行う扱き過程が実行される。従って、第3方法によれば、例えば小径部の内径及び/又は肉厚について高い寸法精度が要求される用途において使用することができる高い寸法精度を有する円筒体を提供することができる。 As described above, in the third method, after performing the above-described second method (i.e., after performing the second step), the shaving process of shaving the inner surface of the small-diameter portion of the cylindrical body is performed. be. Therefore, according to the third method, it is possible to provide a cylindrical body with high dimensional accuracy that can be used in applications requiring high dimensional accuracy for the inner diameter and/or wall thickness of the small-diameter portion.
《第4実施形態》
 以下、図面を参照しながら本発明の第4実施形態に係るテーパ部を有する円筒体を成形する方法(以降、「第4方法」と称呼される場合がある。)について説明する。
<<Fourth Embodiment>>
Hereinafter, a method for forming a cylindrical body having a tapered portion according to a fourth embodiment of the present invention (hereinafter sometimes referred to as "fourth method") will be described with reference to the drawings.
 上述した第3方法においては、上述した第2方法の実施後(即ち、第2工程の実行後)に、円筒体の小径部の内面に対して扱き加工を行う扱き過程が実行される。これにより、例えば小径部の内径及び/又は肉厚について高い寸法精度が要求される用途において使用することができる高い寸法精度を有する円筒体を提供することができる。 In the above-described third method, after performing the above-described second method (that is, after performing the second step), a rubbing process is performed for the inner surface of the small-diameter portion of the cylindrical body. As a result, it is possible to provide a cylindrical body with high dimensional accuracy that can be used in applications requiring high dimensional accuracy, for example, for the inner diameter and/or thickness of the small-diameter portion.
 しかしながら、第2工程の後に第1芯金を円筒体から抜き取り第3芯金を円筒体に挿入して円筒体の小径部の内面を扱く第3工程を実行することは、円筒体の生産効率の低下及び製造コストの増大に繋がる虞がある。また、第1芯金の先端に扱き過程を実行するための部分を設けたとしても、小径部の径がテーパ部の径よりも小さい。このため、当該部分の進行速度よりも小径部を構成する材料の流れの方が速くなるため、小径部を構成する材料の方が当該部分よりも先行して小径部の肉厚が増大すること(増肉)が懸念される。 However, performing the third step of extracting the first cored bar from the cylindrical body and inserting the third cored bar into the cylindrical body to treat the inner surface of the small diameter portion of the cylindrical body after the second step is difficult to produce the cylindrical body. This can lead to decreased efficiency and increased manufacturing costs. Further, even if a portion for performing the scraping process is provided at the tip of the first cored bar, the diameter of the small diameter portion is smaller than the diameter of the tapered portion. Therefore, the flow of the material forming the small diameter portion is faster than the speed of movement of the portion, so the material forming the small diameter portion increases the thickness of the small diameter portion ahead of the portion. (Increase in thickness) is a concern.
 そこで、第4方法においては、第1芯金が、円筒体の小径部の内径に対応する外径を有する円柱状の部分である中心部材と、中心部材の周囲に中心部材と同軸状に設けられた部分である周縁部材と、に分割されている。更に、中心部材は、周縁部材に対して、第1方向に摺動可能に構成されている。 Therefore, in the fourth method, the first core bar is a central member which is a cylindrical portion having an outer diameter corresponding to the inner diameter of the small diameter portion of the cylindrical body, and is provided around the central member coaxially with the central member. and a peripheral member, which is the portion that is cut. Furthermore, the central member is configured to be slidable in the first direction with respect to the peripheral member.
 図11は、第4方法において使用される第1芯金の構成の一例を示す模式的な断面図である。図11に例示する第1芯金402は、円筒体の小径部の内径に対応する外径を有する円柱状の部分である中心部材402aと、中心部材の周囲に中心部材と同軸状に設けられた部分である周縁部材402bと、に分割されている。更に、中心部材402aは、周縁部材402bに対して、第1方向に摺動可能に構成されている(白抜きの両矢印を参照)。 FIG. 11 is a schematic cross-sectional view showing an example of the configuration of the first cored bar used in the fourth method. The first cored bar 402 illustrated in FIG. 11 includes a central member 402a, which is a cylindrical portion having an outer diameter corresponding to the inner diameter of the small-diameter portion of the cylindrical body, and a central member 402a provided coaxially around the central member. It is divided into a peripheral edge member 402b which is a flat portion. Furthermore, the central member 402a is configured to be slidable in the first direction with respect to the peripheral member 402b (see the white double-headed arrow).
 加えて、第4方法は、上述した第2方法の何れかであって、第2工程において、中心部材を周縁部材よりも高い速度にて第1方向に移動させて素管の底部の内面を押圧することにより、少なくとも縮径過程の一部と並行して、円筒体の小径部の内面を扱く扱き過程を実行することを特徴とする、テーパ部を有する円筒体の成形方法である。 In addition, the fourth method is any one of the second methods described above, wherein in the second step, the central member is moved in the first direction at a higher speed than the peripheral member to move the inner surface of the bottom of the mother tube. A method for forming a cylindrical body having a tapered portion, characterized in that, by pressing, the inner surface of the small-diameter portion of the cylindrical body is treated in parallel with at least part of the diameter-reducing process.
 図12は、第4方法に含まれる各工程及び各過程の流れを示すフローチャートである。上述した第3方法においては第2工程(ステップS20)の後に第1芯金を第3芯金に換装して扱き過程を実行する別個の工程として第3工程(ステップS30)が実行される。これに対し、第4方法においては第2工程(ステップS20)において扱き過程(ステップS24)が実行される。この点を除き、図12に例示する第4方法についてのフローチャートは、図5に例示した第1方法についてのフローチャートと同様である。 FIG. 12 is a flow chart showing each process included in the fourth method and the flow of each process. In the third method described above, after the second step (step S20), the third step (step S30) is performed as a separate step of replacing the first cored bar with the third cored bar and performing the handling process. On the other hand, in the fourth method, the handling process (step S24) is executed in the second process (step S20). Except for this point, the flowchart for the fourth method illustrated in FIG. 12 is the same as the flowchart for the first method illustrated in FIG.
 図12に例示するように、第4方法において実行される第2工程(ステップS20)においては、拡径過程(ステップS21)、縮径過程(ステップS22)及び完了過程(ステップS23)に加えて、扱き過程(ステップS24)もまた実行される。このように、第4方法においては押し込みによる絞り加工(縮径過程)と小径部の内側の形状及び肉厚を整える扱き加工(扱き過程)とを1つの工程の中で並行して実行することができるので、扱き加工の実行に伴う円筒体の生産効率の低下及び製造コストの増大を低減することができる。 As illustrated in FIG. 12, in the second step (step S20) executed in the fourth method, in addition to the diameter expansion process (step S21), the diameter reduction process (step S22) and the completion process (step S23) , a handling process (step S24) is also performed. In this way, in the fourth method, the drawing (diameter reduction process) by pressing and the rolling process (rolling process) for adjusting the inner shape and thickness of the small-diameter portion are performed in parallel in one process. Therefore, it is possible to reduce the decrease in the production efficiency of the cylindrical body and the increase in the manufacturing cost due to the execution of the rolling process.
 図13は、第4方法において実行される第2工程の進行に伴う第1芯金402を構成する中心部材402a及び周縁部材402bの位置及び第1素管101の形状の変化を例示する模式的な断面図である。図13においても、軸AXの図面に向かって右側の部分のみが描かれているが、軸AXの左側の部分についても同様である。また、図面を簡潔なものとするため、図1乃至図4及び図11において示した各部位に付された符号の一部のみが表示されている。しかしながら、図13に関する以下の説明においては、正確を期すため、図1乃至図4及び図11において示した符号を使用するので、必要に応じて図1乃至図4及び図11を参照されたい。 FIG. 13 schematically illustrates changes in the positions of the central member 402a and the peripheral member 402b, which constitute the first cored bar 402, and the shape of the first blank tube 101 as the second step executed in the fourth method progresses. It is a cross-sectional view. In FIG. 13 as well, only the portion on the right side of the axis AX as viewed in the drawing is drawn, but the same applies to the portion on the left side of the axis AX. Also, in order to simplify the drawings, only some of the reference numerals assigned to the parts shown in FIGS. 1 to 4 and 11 are shown. However, in the following description of FIG. 13, the reference numerals shown in FIGS. 1-4 and 11 are used for the sake of accuracy, and reference should be made to FIGS. 1-4 and 11 as necessary.
 図13の(a)に示す状態から図13の(b)に示す状態へと第2工程が進行するにつれて、第1芯金402の周縁部材402bが第1方向へと移動する(黒塗りの矢印を参照)。その結果、素管101の第1端部111側が拡径されて円筒体201のテーパ部220が成形される。同時に、第1芯金402の第1段差部413により素管101の第1端部111が第1方向に押圧され、素管101の第2端部112がダイス孔310の小内径部313へと押し込まれ、素管101の第2端部112側が縮径されて円筒体201の小径部230が成形される。これに並行して、第1芯金402の中心部材402aは周縁部材402bよりも速く(大きく)第1方向へと移動する(白抜きの矢印を参照)。その結果、素管101の第2端部112側が縮径されてなる円筒体201の小径部230の内周面が中心部材402aによって扱かれ、小径部230の内径及び/又は肉厚について高い寸法精度が達成される。同時に、小径部230の先端の底部の内面を中心部材402aが第1方向に押圧する。その結果、軸方向における引っ張り応力が小径部230に作用するので、第1段差部413による第1端部111の押圧に起因する圧縮応力が低減される。従って、例えば、肉厚が小さい素管であっても小径部の座屈を低減したり、小径部における増肉及び圧縮の残留応力を低減したりすることができる。 As the second step progresses from the state shown in (a) of FIG. 13 to the state shown in (b) of FIG. (see arrow). As a result, the diameter of the first end portion 111 side of the base pipe 101 is increased, and the tapered portion 220 of the cylindrical body 201 is formed. At the same time, the first end portion 111 of the blank pipe 101 is pressed in the first direction by the first stepped portion 413 of the first cored bar 402 , and the second end portion 112 of the blank pipe 101 is pushed into the small inner diameter portion 313 of the die hole 310 . , the diameter of the second end portion 112 side of the blank tube 101 is reduced, and the small diameter portion 230 of the cylindrical body 201 is formed. In parallel with this, the central member 402a of the first cored bar 402 moves faster (larger) than the peripheral member 402b in the first direction (see the white arrow). As a result, the inner peripheral surface of the small-diameter portion 230 of the cylindrical body 201 formed by reducing the diameter of the second end portion 112 side of the blank pipe 101 is handled by the central member 402a, and the inner diameter and/or wall thickness of the small-diameter portion 230 are increased. Accuracy is achieved. At the same time, the central member 402a presses the inner surface of the bottom of the tip of the small diameter portion 230 in the first direction. As a result, the tensile stress in the axial direction acts on the small diameter portion 230, so the compressive stress caused by the pressing of the first end portion 111 by the first stepped portion 413 is reduced. Therefore, for example, it is possible to reduce the buckling of the small-diameter portion even in a blank tube having a small wall thickness, and to reduce the residual stress due to thickening and compression in the small-diameter portion.
 尚、上記のように中心部材402aと周縁部材402bとを異なる速度にて第1方向に移動させるためには、中心部材402a及び周縁部材402bの移動を個別に制御することが可能な駆動機構が必要である。このような駆動機構の具体例としては、例えば複動プレス等の駆動装置を挙げることができる。 In order to move the central member 402a and the peripheral member 402b in the first direction at different speeds as described above, a drive mechanism capable of individually controlling the movement of the central member 402a and the peripheral member 402b is required. is necessary. A specific example of such a driving mechanism is a driving device such as a double-acting press.
《第5実施形態及び第6実施形態》
 以下、図面を参照しながら本発明の第5実施形態及び第6実施形態に係るテーパ部を有する円筒体を成形する方法(以降、それぞれ「第5方法」及び「第6方法」と称呼される場合がある。)について説明する。
<<Fifth Embodiment and Sixth Embodiment>>
Hereinafter, methods for forming a cylindrical body having a tapered portion according to the fifth embodiment and the sixth embodiment of the present invention (hereinafter referred to as "fifth method" and "sixth method", respectively) There are cases.) will be explained.
 前述したように、例えばノズル又はタンクライナー等の無底の部材を図2に例示した円筒体201のような有底の円筒体から成形する場合においては、例えば底部を切除したり切削により底部に孔を穿ったりする必要がある。このような別個の工程により二次加工を行うことは、円筒体を中間素材として成形される製品の生産効率の低下及び製造コストの増大等の問題に繋がる虞がある。斯かる問題を低減する観点からは、本発明方法を実施する装置が備えるダイスに円筒体がセットされた状態のままで円筒体の底部を開口させることが望ましい。 As described above, when forming a bottomless member such as a nozzle or a tank liner from a bottomed cylindrical body such as the cylindrical body 201 illustrated in FIG. You have to drill holes. Performing secondary processing in such a separate process may lead to problems such as a decrease in production efficiency and an increase in manufacturing costs for products molded using a cylindrical body as an intermediate material. From the viewpoint of reducing such problems, it is desirable to open the bottom portion of the cylindrical body while the cylindrical body is set in the die provided in the apparatus for carrying out the method of the present invention.
 そこで、第5方法は、上述した第3方法又は第4方法であって、
 第3芯金又は中心部材の先端には、抜き加工用の突起が形成されており、
 扱き過程の実行後に、第3芯金又は中心部材を第1方向に更に移動させることにより、円筒体の小径部の先端にある底部を突起によって打ち抜く抜き過程を実行する、
ことを特徴とする、テーパ部を有する円筒体の成形方法である。
Therefore, the fifth method is the above-described third method or fourth method,
A protrusion for punching is formed at the tip of the third core bar or the central member,
After performing the squeezing process, the third core bar or the central member is further moved in the first direction to perform the punching process of punching the bottom portion at the tip of the small diameter portion of the cylindrical body with the projection.
A method for forming a cylindrical body having a tapered portion, characterized by:
 また、第6方法は、上述した第3方法又は第4方法であって、
 ダイス孔の小内径部側の端部から第1方向とは反対の向きである第2方向に移動するように構成された抜き加工用の芯金である第4芯金が設けられており、
 扱き過程の実行後に、所定の部材又は周縁部材によって第2方向に円筒体が移動しないように固定し且つ第3芯金又は中心部材を第2方向に移動させてから、第4芯金を第2方向に移動させることにより、円筒体の小径部の先端にある底部を第4芯金によって打ち抜く抜き過程を実行する、
ことを特徴とする、テーパ部を有する円筒体の成形方法である。
Further, the sixth method is the above-described third method or fourth method,
A fourth mandrel, which is a mandrel for punching, is configured to move in a second direction opposite to the first direction from the end of the die hole on the side of the small inner diameter portion,
After performing the squeezing process, the cylindrical body is fixed so as not to move in the second direction by a predetermined member or peripheral member, and after moving the third core bar or the central member in the second direction, the fourth core bar is moved to the second direction. By moving in two directions, a punching process is performed in which the bottom portion at the tip of the small diameter portion of the cylindrical body is punched out by the fourth core bar.
A method for forming a cylindrical body having a tapered portion, characterized by:
 以上のように、第5方法及び第6方法の何れにおいても、第3方法に含まれる第3工程において実行される扱き過程又は第4方法に含まれる第2工程において実行される扱き過程の実行後に、円筒体がダイスにセットされた状態のまま当該円筒体の底部を開口させる抜き過程が実行される。第5方法と第6方法とは、抜き過程を実行するための機構が異なる点を除き、同様の構成を有する。 As described above, in both the fifth method and the sixth method, the treatment process executed in the third step included in the third method or the second step included in the fourth method is executed. Afterwards, a punching process is performed to open the bottom portion of the cylinder while the cylinder is set in the die. The fifth method and the sixth method have the same configuration except that the mechanism for executing the extraction process is different.
 図14は、第3方法に含まれる第3工程において実行される扱き過程の実行後に抜き過程を実行する第5方法及び第6方法に含まれる各工程及び各過程の流れを示すフローチャートである。上述した第3方法においては第2工程(ステップS20)の後に第1芯金を第3芯金に換装して扱き過程を実行する第3工程(ステップS30)が実行される。これに対し、図14に例示する第5方法及び第6方法においては、第3工程(ステップS30)において扱き過程(ステップS31)の後に連続的に抜き過程(ステップS32)が実行される。この点を除き、図14に例示する第5方法及び第6方法についてのフローチャートは、図10に例示した第3方法についてのフローチャートと同様である。 FIG. 14 is a flow chart showing each process and the flow of each process included in the fifth and sixth methods in which the removal process is performed after the treatment process performed in the third process included in the third method. In the third method described above, after the second step (step S20), the third step (step S30) of replacing the first cored bar with the third cored bar and performing the handling process is performed. On the other hand, in the fifth method and sixth method illustrated in FIG. 14, in the third step (step S30), the removal step (step S32) is continuously performed after the treatment step (step S31). Except for this point, the flowcharts for the fifth and sixth methods illustrated in FIG. 14 are similar to the flowchart for the third method illustrated in FIG.
 一方、図15は、第4方法に含まれる第2工程において実行される扱き過程の実行後に抜き過程を実行する第5方法及び第6方法に含まれる各工程及び各過程の流れを示すフローチャートである。上述した第4方法においては、第2工程(ステップS20)の実行により、拡径過程(ステップS21)、縮径過程(ステップS22)、完了過程(ステップS23)及び扱き工程(ステップS24)が実行される。これに対し、図15に例示する第5方法及び第6方法においては、第2工程(ステップS20)の実行により、拡径過程(ステップS21)、縮径過程(ステップS22)、完了過程(ステップS23)及び扱き工程(ステップS24)の後に連続的に抜き過程(ステップS25)が実行される。この点を除き、図15に例示する第5方法及び第6方法についてのフローチャートは、図12に例示した第4方法についてのフローチャートと同様である。 On the other hand, FIG. 15 is a flow chart showing each process and the flow of each process included in the fifth method and the sixth method, in which the removal process is performed after the handling process is performed in the second process included in the fourth method. be. In the fourth method described above, the second step (step S20) is executed to execute the diameter expansion process (step S21), the diameter reduction process (step S22), the completion process (step S23), and the handling process (step S24). be done. On the other hand, in the fifth method and the sixth method illustrated in FIG. 15, the execution of the second step (step S20) includes the diameter expansion process (step S21), the diameter reduction process (step S22), the completion process (step After S23) and the handling step (step S24), the extraction step (step S25) is performed continuously. Except for this point, the flowcharts for the fifth and sixth methods illustrated in FIG. 15 are the same as the flowcharts for the fourth method illustrated in FIG.
 上述したように、第5方法と第6方法とは、抜き過程を実行するための機構が異なる。図16は、第5方法において実行される抜き過程(ステップS32又はステップS25)の一例を示す模式的な断面図である。図面に向かって軸AXよりも左側の(a)には扱き過程(ステップS31又はステップS24)の完了時点における状況が、図面に向かって軸AXよりも右側の(b)には抜き過程(ステップS32又はステップS25)の実行時の状況が、それぞれ描かれている。 As described above, the fifth method and the sixth method differ in the mechanism for executing the extraction process. FIG. 16 is a schematic cross-sectional view showing an example of the extraction process (step S32 or step S25) performed in the fifth method. (a) on the left side of the axis AX as viewed in the drawing shows the situation at the time of completion of the handling process (step S31 or step S24), and (b) on the right side of the axis AX as viewed in the drawing shows the situation at the time of completion of the drawing process (step The situation at the time of execution of S32 or step S25) is depicted respectively.
 図16の(a)に例示するように、扱き過程(ステップS31又はステップS24)の完了時点においては、第3芯金601又は中心部材402aの先端に形成された抜き加工用の突起601aが円筒体201の底部の内面に当接しているものの、底部は未だ開口していない。次に、第3芯金601又は中心部材402aを第1方向に更に移動させる(白抜きの矢印を参照)。これにより、図16の(b)に例示するように、円筒体201の底部が突起601aによって打ち抜かれる。 As illustrated in (a) of FIG. 16, at the time of completion of the handling process (step S31 or step S24), the punching projection 601a formed at the tip of the third cored bar 601 or the central member 402a is cylindrical. Although it abuts against the inner surface of the bottom of body 201, the bottom is not yet open. Next, the third cored bar 601 or the central member 402a is further moved in the first direction (see the white arrow). As a result, the bottom of the cylindrical body 201 is punched out by the protrusion 601a, as illustrated in FIG. 16(b).
 一方、図17は、第6方法において実行される抜き過程(ステップS32又はステップS25)の一例を示す模式的な断面図である。図面に向かって軸AXよりも左側の(a)には扱き過程(ステップS31又はステップS24)の完了時点における状況が、図面に向かって軸AXよりも右側の(b)には抜き過程(ステップS32又はステップS25)の実行時の状況が、それぞれ描かれている。 On the other hand, FIG. 17 is a schematic cross-sectional view showing an example of the extraction process (step S32 or step S25) performed in the sixth method. (a) on the left side of the axis AX as viewed in the drawing shows the situation at the time of completion of the handling process (step S31 or step S24), and (b) on the right side of the axis AX as viewed in the drawing shows the situation at the time of completion of the drawing process (step The situation at the time of execution of S32 or step S25) is depicted respectively.
 図17の(a)に例示するように、扱き過程(ステップS31又はステップS24)の完了時点においては、第3芯金601又は中心部材402aの先端が円筒体201の底部の内面に当接しているものの、底部は未だ開口していない。次に、所定の固定部材701又は周縁部材402bによって第2方向に円筒体201が移動しないように固定し且つ第3芯金601又は中心部材402aを第1方向とは反対の向き(第2方向)に移動(退避)させる。そして、抜き加工用の芯金である第4芯金801を第2方向に移動させる(黒塗りの矢印を参照)ことにより、図17の(b)に例示するように、円筒体201の底部が第4芯金801によって打ち抜かれる。 As illustrated in (a) of FIG. 17, at the completion of the handling process (step S31 or step S24), the tip of the third cored bar 601 or the central member 402a is in contact with the inner surface of the bottom of the cylindrical body 201. Although there is, the bottom has not yet opened. Next, the cylindrical body 201 is fixed so as not to move in the second direction by the predetermined fixing member 701 or the peripheral member 402b, and the third cored bar 601 or the central member 402a is moved in the direction opposite to the first direction (the second direction). ). Then, by moving the fourth cored bar 801, which is a cored bar for punching, in the second direction (see the black arrow), the bottom portion of the cylindrical body 201 is moved as illustrated in FIG. 17(b). is punched out by the fourth mandrel 801 .
 以上のように、第5方法及び第6方法においては、第3工程又は第2工程において実行される扱き過程に付された円筒体がダイスにセットされた状態のままで当該円筒体の底部を開口させることができる。即ち、第5方法及び第6方法においては、別個の工程により二次加工を行うこと無く、円筒体がダイスにセットされた状態のままで円筒体の底部を開口させることができる。従って、第5方法及び第6方法によれば、例えばノズル又はタンクライナー等の無底の部材を有底の円筒体から成形する場合においても、生産効率の低下及び製造コストの増大等の問題を低減することができる。 As described above, in the fifth method and the sixth method, the bottom portion of the cylindrical body that has been subjected to the rolling process performed in the third step or the second step is set in the die. can be opened. That is, in the fifth method and the sixth method, the bottom portion of the cylindrical body can be opened while the cylindrical body is set in the die without performing secondary processing in a separate step. Therefore, according to the fifth method and the sixth method, even in the case of forming a bottomless member such as a nozzle or a tank liner from a bottomed cylindrical body, problems such as a decrease in production efficiency and an increase in manufacturing cost can be avoided. can be reduced.
《第7実施形態》
 以下、図面を参照しながら本発明の第7実施形態に係るテーパ部を有する円筒体を成形する方法(以降、「第7方法」と称呼される場合がある。)について説明する。
<<Seventh embodiment>>
Hereinafter, a method for forming a cylindrical body having a tapered portion according to a seventh embodiment of the present invention (hereinafter sometimes referred to as "seventh method") will be described with reference to the drawings.
 第7方法は、上述した第1方法の何れかであって、
 素管が、第2端部が開口している無底の円筒状の部材である、
ことを特徴とする、テーパ部を有する円筒体の成形方法である。
A seventh method is any of the first methods described above,
The blank tube is a bottomless cylindrical member with an open second end,
A method for forming a cylindrical body having a tapered portion, characterized by:
 上記のように第2端部が開口している無底の素管の具体例としては、例えば図1の(b)に例示した素管102を挙げることができる。このような無底の素管を使用することにより、例えばノズル又はタンクライナー等の無底の部材を容易に成形することができる。 As a specific example of the bottomless base pipe with the second end open as described above, for example, the base pipe 102 illustrated in FIG. 1(b) can be cited. By using such a bottomless blank tube, a bottomless member such as a nozzle or a tank liner can be easily formed.
〈変形例7-1〉
 ところで、上記のように第2端部が開口している無底の素管を使用して本発明に係るテーパ部を有する円筒体の成形方法(本発明方法)を実施する場合、素管の第2端部が閉じている有底の素管を使用する場合と比べると、縮径過程において素管の第2端部側において意図しない変形が生ずる場合がある。
<Modification 7-1>
By the way, when the method of forming a cylindrical body having a tapered portion according to the present invention (method of the present invention) is carried out using a bottomless blank pipe having an open second end as described above, the blank pipe Compared to the case of using a bottomed base pipe with the second end closed, unintended deformation may occur on the second end side of the base pipe during the diameter reduction process.
 そこで、第7方法の変形例7-1は、
 第2工程が開始される前に、円筒体の小径部の内径に対応する外径以下の大きさの外径である第1外径を有する円柱状の形状を有する芯金である第5芯金がダイス孔の小内径部側から挿入されており、
 第2工程において実行される縮径過程において、縮径された素管の第2端部側の開口部が第5芯金に外嵌する、
ことを特徴とする、テーパ部を有する円筒体の成形方法である。
Therefore, the modification 7-1 of the seventh method is
Before the second step is started, the fifth core is a cylindrical core bar having a first outer diameter equal to or smaller than the inner diameter of the small-diameter portion of the cylindrical body. Gold is inserted from the small inner diameter side of the die hole,
In the diameter reduction process performed in the second step, the opening on the second end side of the diameter-reduced mother pipe is fitted onto the fifth core bar.
A method for forming a cylindrical body having a tapered portion, characterized by:
 図18は、第7方法の変形例7-1において第2工程が開始される直前の状態を示す模式的な断面図である。尚、図18に限らず、本明細書に添付される図面はあくまでも例示を目的とする模式的な図面であり、これらの図面に描かれた部材その他の寸法及び縦横比並びに相互の位置関係については必ずしも正確ではない。 FIG. 18 is a schematic cross-sectional view showing a state immediately before the second step is started in modification 7-1 of the seventh method. It should be noted that the drawings attached to this specification, not limited to FIG. 18, are merely schematic drawings for the purpose of illustration. is not necessarily accurate.
 図18に例示するように、第7方法の変形例7-1においては、第2工程が開始される前に、円筒体202の小径部230の内径に対応する外径以下の大きさの外径である第1外径DO1を有する円柱状の形状を有する芯金である第5芯金901がダイス孔310の小内径部313側から挿入される。斯くして、第2工程において実行される縮径過程において、縮径された素管102の第2端部112側の開口部が小内径部313の内周面と第5芯金901の外周面との間の空隙に進入して第5芯金901に外嵌する。 As exemplified in FIG. 18, in the modification 7-1 of the seventh method, before the second step is started, the outer diameter is equal to or less than the outer diameter corresponding to the inner diameter of the small diameter portion 230 of the cylindrical body 202. A fifth metal core 901, which is a cylindrical metal core having a first outer diameter DO1, is inserted into the die hole 310 from the small inner diameter portion 313 side. Thus, in the diameter reduction process executed in the second step, the opening portion of the diameter-reduced tube 102 on the side of the second end portion 112 is aligned with the inner peripheral surface of the small inner diameter portion 313 and the outer peripheral surface of the fifth cored bar 901 . It enters the gap between the surface and the fifth cored bar 901 and fits over it.
 上記により、縮径過程において素管102の第2端部112側の開口部の形状が、小内径部313の内周面と第5芯金901の外周面との間の空隙によって規制される。その結果、上述したように縮径過程において素管102の第2端部112側において意図しない変形が生ずる可能性を低減することができる。 As described above, the shape of the opening of the tube 102 on the side of the second end 112 is regulated by the gap between the inner peripheral surface of the small inner diameter portion 313 and the outer peripheral surface of the fifth cored bar 901 during the diameter reduction process. . As a result, as described above, it is possible to reduce the possibility of unintended deformation occurring on the second end portion 112 side of the blank pipe 102 during the diameter reduction process.
〈変形例7-2〉
 ところで、前述したように、好ましくは、拡径過程の開始以降に縮径過程が開始される。より好ましくは、第1芯金の第1段差部が素管の第1端部に当接する時点(第1時点)以降に縮径過程が開始される。これにより、テーパ部と小径部とをバランス良く、より円滑に形成することができる。
<Modification 7-2>
By the way, as described above, preferably, the diameter-reducing process is started after the diameter-expanding process is started. More preferably, the diameter reduction process is started after the first stepped portion of the first core bar contacts the first end portion of the blank tube (first time point). As a result, the tapered portion and the small diameter portion can be formed more smoothly with good balance.
 拡径過程の開始以降に縮径過程が開始されるようにするための具体的な方策の一例としては、前述したように、拡径率よりも縮径率の方が大きくなるように、素管、ダイス孔及び第1芯金を構成することを挙げることができる。また、第2端部が閉じている有底の円筒状の部材を素管として使用する第2方法においては、所謂「カウンターパンチ」をダイス孔の小内径部側から挿入して素管の第2端部(底部)に当接させておき、縮径過程を開始させるべき時点以降は素管の第2端部の第1方向への移動に応じてカウンターパンチもまた第1方向へ移動させることにより、拡径過程の開始以降の所期のタイミングにて縮径過程を開始させることができる。 As an example of a specific measure for starting the diameter reduction process after the diameter expansion process is started, as described above, the diameter reduction rate is larger than the diameter expansion rate. Constructing a tube, a die hole and a first mandrel can be mentioned. In the second method of using a bottomed cylindrical member with a closed second end as the base pipe, a so-called "counter punch" is inserted from the small inner diameter side of the die hole to punch the base pipe. The counterpunch is kept in contact with the two ends (bottom), and the counterpunch is also moved in the first direction in accordance with the movement of the second end of the blank tube in the first direction after the time when the diameter reduction process should be started. Thereby, the diameter reduction process can be started at the desired timing after the diameter expansion process is started.
 一方、第7方法のように第2端部が開口している無底の素管を使用する場合においても、上述した第5芯金の構成を工夫することにより、第2端部が閉じている有底の円筒状の部材を素管として使用する第2方法のように、拡径過程の開始以降の所期のタイミングにて縮径過程を開始させることができる。 On the other hand, even in the case of using a bottomless tube having an open second end as in the seventh method, the second end can be closed by devising the structure of the above-described fifth cored bar. As in the second method in which a bottomed cylindrical member is used as a blank pipe, the diameter reduction process can be started at a desired timing after the diameter expansion process is started.
 即ち、第7方法の変形例7-2は、
 上述した第7方法の変形例7-1であって、
 第5芯金の外周面の所定の位置には、径方向における外側に広がるように形成された環状の段差であって第1外径よりも大きく且つ円筒体の小径部の外径以下である外径を有する部分である第2段差部が形成されており、
 第5芯金の第2段差部は、ダイス孔の小内径部の第1方向における上流側の端部又は当該端部よりも下流側にある所定の位置に対向する位置に形成されており、
 第2工程において、素管の第2端部が第5芯金の第2段差部に当接する時点である第2時点以降における所定の時点において第5芯金が所定の速度にて第1方向への移動を開始する、
ことを特徴とする、テーパ部を有する円筒体の成形方法である。
That is, the modification 7-2 of the seventh method is
Modification 7-1 of the seventh method described above,
At a predetermined position on the outer peripheral surface of the fifth cored bar, there is an annular step extending outward in the radial direction, the step being larger than the first outer diameter and less than or equal to the outer diameter of the small diameter portion of the cylindrical body. A second stepped portion, which is a portion having an outer diameter, is formed,
The second stepped portion of the fifth core bar is formed at a position facing the upstream end in the first direction of the small inner diameter portion of the die hole or at a predetermined position downstream of the end,
In the second step, the fifth core bar moves at a predetermined speed in the first direction at a predetermined time point after the second time point at which the second end portion of the base pipe comes into contact with the second stepped portion of the fifth core bar. start moving to
A method for forming a cylindrical body having a tapered portion, characterized by:
 図19は、第7方法の変形例7-2において第2工程が開始される直前の状態を示す模式的な断面図である。図19に例示するように、第7方法の変形例7-2においては、第5芯金901の外周面の所定の位置には、径方向における外側に広がるように形成された環状の段差であって第1外径DO1よりも大きく且つ円筒体202の小径部230の外径以下である外径を有する部分である第2段差部901aが形成されている。第5芯金901の第2段差部901aは、ダイス孔310の小内径部313の第1方向における上流側の端部又は当該端部よりも下流側にある所定の位置に対向する位置に形成されている。 FIG. 19 is a schematic cross-sectional view showing a state immediately before the second step is started in modification 7-2 of the seventh method. As illustrated in FIG. 19, in the modification 7-2 of the seventh method, at a predetermined position on the outer peripheral surface of the fifth cored bar 901, an annular step is formed so as to spread outward in the radial direction. A second stepped portion 901a is formed as a portion having an outer diameter larger than the first outer diameter DO1 and equal to or smaller than the outer diameter of the small-diameter portion 230 of the cylindrical body 202 . The second stepped portion 901a of the fifth cored bar 901 is formed at a position facing the upstream end in the first direction of the small inner diameter portion 313 of the die hole 310 or a predetermined position downstream of the end. It is
 第2工程において、素管102の第2端部112が第5芯金901の第2段差部901aに当接する時点(第2時点)以降における所定の時点において、所定の速度にて第5芯金901の第1方向への移動を開始させる。第5芯金901の第1方向への移動を開始させる時点は、例えば、その時点における縮径過程の進行状況、素管の座屈強度及び素管に生じさせるべき圧縮の残留応力の大きさ等、種々の要件に応じて適宜定めることができる。但し、第2時点から第5芯金901の第1方向への移動を開始させる時点までの期間が過度に長くなると、例えば加工荷重の増大及び/又は素管の意図しない変形等の問題に繋がる虞が高まるので注意が必要である。 In the second step, at a predetermined time point after the second end portion 112 of the tube 102 contacts the second step portion 901a of the fifth core bar 901 (second time point), the fifth core is moved at a predetermined speed. The gold 901 is started to move in the first direction. The time at which the fifth cored bar 901 starts to move in the first direction is, for example, the progress of the diameter reduction process at that time, the buckling strength of the blank tube, and the magnitude of the compressive residual stress to be generated in the blank tube. etc., can be determined as appropriate according to various requirements. However, if the period from the second time point to the time point of starting the movement of the fifth cored bar 901 in the first direction is excessively long, problems such as an increase in processing load and/or unintended deformation of the mother tube may occur. Caution is required as the risk increases.
 また、第5芯金901を第1方向へと移動させる速度についても、例えば、その時点における縮径過程の進行状況、素管の座屈強度及び素管に生じさせるべき圧縮の残留応力の大きさ等、種々の要件に応じて適宜定めることができる。但し、縮径された素管102の第2端部112の第1方向への移動速度に対して第5芯金901の第1方向への移動速度が過度に遅くなると、例えば加工荷重の増大及び/又は素管の意図しない変形等の問題に繋がる虞が高まるので注意が必要である。 Further, the speed at which the fifth cored bar 901 is moved in the first direction is also determined, for example, by the progress of the diameter reduction process at that time, the buckling strength of the blank pipe, and the magnitude of the compressive residual stress to be generated in the blank pipe. It can be determined as appropriate according to various requirements. However, if the moving speed of the fifth cored bar 901 in the first direction becomes excessively slow with respect to the moving speed of the second end portion 112 of the reduced-diameter tube 102 in the first direction, for example, the processing load increases. And/or there is an increased risk of problems such as unintended deformation of the blank pipe, so caution is required.
 第7方法の変形例7-2によれば、例えば、素管の形状(径、長さ及び肉厚等)及び材料、円筒体のテーパ部となる部分の拡径率と円筒体の小径部となる部分の縮径率との大小関係、並びにダイス孔の内径減少部における内径の変化率(テーパ角)等、様々な要因に応じて、例えば加工荷重の増大及び/又は素管の意図しない変形等の問題を招かない好適なタイミングにて縮径過程を進行させることができる。また、第5芯金901の第1方向への移動速度もまた、様々な要因に応じて適宜設定することができる。例えば、第5芯金901の第1方向への移動速度を第1芯金401による押し込みに伴う円筒体202の小径部230の先端の移動速度よりも低く設定した場合、円筒体202の軸方向における圧縮の残留応力を増大させたり小径部230の増肉を促進したりすることができる。逆に、第5芯金901の第1方向への移動速度を第1芯金による押し込みに伴う小径部230の先端の移動速度よりも高く設定した場合、円筒体202の軸方向における圧縮の残留応力を減少させたり小径部230の増肉を抑制したりすることができる。このように、第7方法の変形例7-2によれば、円筒体202のテーパ部220と小径部230とを更にバランス良く、より一層円滑に形成することができる。 According to the modification 7-2 of the seventh method, for example, the shape (diameter, length, wall thickness, etc.) and material of the blank pipe, the diameter expansion ratio of the tapered portion of the cylindrical body, and the small diameter portion of the cylindrical body Depending on various factors such as the size relationship with the diameter reduction rate of the portion where the diameter is reduced, and the rate of change (taper angle) of the inner diameter at the inner diameter reduction portion of the die hole, for example, an increase in the processing load and / or an unintended The diameter reduction process can be advanced at a suitable timing that does not cause problems such as deformation. In addition, the moving speed of the fifth cored bar 901 in the first direction can also be appropriately set according to various factors. For example, when the moving speed of the fifth cored bar 901 in the first direction is set lower than the moving speed of the tip of the small-diameter portion 230 of the cylindrical body 202 accompanying the pushing by the first cored bar 401, the axial direction of the cylindrical body 202 It is possible to increase the compressive residual stress in and promote the thickening of the small-diameter portion 230 . Conversely, when the moving speed of the fifth cored bar 901 in the first direction is set higher than the moving speed of the tip of the small-diameter portion 230 accompanying the pushing by the first cored bar, residual compression in the axial direction of the cylindrical body 202 It is possible to reduce the stress and suppress the thickening of the small diameter portion 230 . Thus, according to the modification 7-2 of the seventh method, the tapered portion 220 and the small-diameter portion 230 of the cylindrical body 202 can be formed more smoothly with good balance.
《第8実施形態》
 以下、図面を参照しながら本発明の第8実施形態に係るテーパ部を有する円筒体を成形する方法(以降、「第8方法」と称呼される場合がある。)について説明する。
<<Eighth Embodiment>>
Hereinafter, a method of forming a cylindrical body having a tapered portion according to the eighth embodiment of the present invention (hereinafter sometimes referred to as "eighth method") will be described with reference to the drawings.
 第2端部が閉じている有底の素管を使用する第3方法に関する説明において述べたように、本発明方法においては素管を軸方向に押圧して圧縮しながら縮径させて円筒体の小径部を形成するので、円筒体の小径部の肉厚は円筒体の小径部に対応する素管の領域の肉厚よりも大きくなる(増肉する)。また、このような小径部の増肉に伴って、小径部の肉厚のバラツキも大きくなりがちである。この点については、第2端部が開口している無底の素管を使用する第7方法においても同様である。 As described in the explanation of the third method using the bottomed tube with the second end closed, in the method of the present invention, the tube is axially pressed and compressed while being reduced in diameter to form a cylindrical body. Therefore, the thickness of the small-diameter portion of the cylindrical body becomes larger (increases) than the thickness of the region of the blank corresponding to the small-diameter portion of the cylindrical body. In addition, as the thickness of the small-diameter portion increases, variations in the thickness of the small-diameter portion tend to increase. This point also applies to the seventh method using a bottomless blank pipe with an open second end.
 そこで、第8方法は、上述した第7方法の何れかであって、以下に示す第3工程を更に含むことを特徴とする、テーパ部を有する円筒体の成形方法である。
 第3工程:第2工程の後に、第1芯金を円筒体から抜き取り、円筒体の小径部の内径に対応する外径を有する円柱状の形状を有する芯金である第3芯金を円筒体のテーパ部側から挿入して第1方向に移動させることにより、円筒体の小径部の内面を扱く扱き過程を実行する。
Therefore, the eighth method is a method for forming a cylindrical body having a tapered portion, which is any of the seventh methods described above and further includes a third step described below.
Third step: After the second step, the first cored bar is extracted from the cylindrical body, and the third cored bar, which is a cylindrical cored bar having an outer diameter corresponding to the inner diameter of the small diameter portion of the cylindrical body, is inserted into the cylindrical body. By inserting from the tapered portion side of the body and moving in the first direction, a squeezing process of shaving the inner surface of the small diameter portion of the cylindrical body is performed.
 第8方法に含まれる各工程及び各過程の流れについては、図10を参照しながら説明した第3方法と同様であるので、ここでも説明は省略する。また、筒状部材の内面を扱く扱き過程(扱き加工)の詳細については当業者に周知であるので、ここでの説明は省略する。 The steps and the flow of each process included in the eighth method are the same as those of the third method described with reference to FIG. 10, so description thereof will be omitted here as well. Further, the details of the treatment process (treatment process) for treating the inner surface of the tubular member are well known to those skilled in the art, so the description thereof will be omitted here.
 上記のように、第8方法においては、上述した第7方法の実施後(即ち、第2工程の実行後)に、円筒体の小径部の内面に対して扱き加工を行う扱き過程が実行される。従って、第8方法によれば、例えば小径部の内径及び/又は肉厚について高い寸法精度が要求される用途において使用することができる高い寸法精度を有する円筒体を提供することができる。 As described above, in the eighth method, after performing the above-described seventh method (i.e., after performing the second step), the shaving step of shaving the inner surface of the small-diameter portion of the cylindrical body is performed. be. Therefore, according to the eighth method, it is possible to provide a cylindrical body with high dimensional accuracy that can be used in applications requiring high dimensional accuracy for the inner diameter and/or wall thickness of the small diameter portion, for example.
 以上、本発明を説明することを目的として、特定の構成を有する幾つかの実施形態及び変形例につき、時に添付図面を参照しながら説明してきたが、本発明の範囲は、これらの例示的な実施形態及び変形例に限定されると解釈されるべきではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることが可能であることは言うまでも無い。 Although several embodiments and variations having specific configurations have been described above for the purpose of illustrating the present invention, sometimes with reference to the accompanying drawings, the scope of the present invention is not limited to these exemplary embodiments. It should not be construed as being limited to the embodiments and modifications, and it goes without saying that modifications can be made as appropriate within the scope of the claims and the matters described in the specification.
 101,101a,102…素管
  111…第1端部
  112…第2端部
 201,201a,202…テーパ部を有する円筒体
  211…開口している一方の端部
  212…他方の端部
  220…テーパ部
  230…小径部
 301…ダイス
  310…ダイス孔
  311…大内径部
  312…内径減少部
  313…小内径部
 401,402…第1芯金
  402a…中心部材
  402b…周縁部材
  411…小径コア部
  412…外径増大部
  413…第1段差部
 501…第2芯金
 601…第3芯金
  601a…抜き加工用の突起
 701…固定部材
 801…第4芯金
 901…第5芯金
  901a…第2段差部
DESCRIPTION OF SYMBOLS 101, 101a, 102... Base tube 111... First end 112... Second end 201, 201a, 202... Cylindrical body having a tapered portion 211... One open end 212... The other end 220... Tapered portion 230 Small diameter portion 301 Die 310 Die hole 311 Large inner diameter portion 312 Reduced inner diameter portion 313 Small inner diameter portion 401, 402 First core metal 402a Central member 402b Peripheral member 411 Small diameter core portion 412 ... Outside diameter increasing part 413... First stepped part 501... Second core metal 601... Third core metal 601a... Projection for punching 701... Fixing member 801... Fourth core metal 901... Fifth core metal 901a... Second core metal step

Claims (16)

  1.  ダイスに形成された所定の形状を有する貫通孔であるダイス孔に、所定の形状を有する芯金である第1芯金によって、有底又は無底の円筒状の部材である素管を、前記素管及び前記ダイス孔の軸方向に押し込むことによって、テーパ部を有する円筒体を成形する方法であって、
     前記円筒体は開口している一方の端部に近付くほど径が増大する部分であるテーパ部及び他方の端部と前記テーパ部との間に形成された円筒状の部分である小径部を備え、前記テーパ部の最大外径は前記素管の外径よりも大きく、前記小径部の外径は前記素管の外径よりも小さく、
     前記ダイス孔は、前記円筒体の前記テーパ部の最大外径に対応する内径である第1内径を有する部分である大内径部と、前記円筒体の前記小径部の外径に対応する内径よりも小さい内径である第2内径を有する部分である小内径部と、前記大内径部と前記小内径部との間に形成され且つ前記大内径部から前記小内径部へと近付くほど前記第1内径から前記第2内径へと内径が減少する部分である内径減少部と、を備え、
     前記第1芯金は、先端から遠ざかるにつれて円筒体のテーパ部の最小内径に対応する外径から円筒体のテーパ部の最大内径に対応する外径へと外径が増大する部分である外径増大部と、前記外径増大部の基端側に隣接する位置において径方向における外側に広がるように形成された環状の段差であって前記円筒体の前記テーパ部の最大外径に等しい外径及び前記円筒体の前記テーパ部の最大内径に等しい内径を有する部分である第1段差部と、を備え、
     前記ダイス孔に前記素管を押し込む向きである第1方向の上流側に前記素管の開口端である第1端部が向くようにして前記ダイス孔の前記大内径部側から前記素管を挿入し前記素管の前記第1端部とは反対側の端部である第2端部を前記ダイス孔の前記内径減少部に当接させることにより、前記ダイス孔の内部における所定の位置に前記素管を設置する第1工程、及び
     前記素管の前記第1端部に前記第1芯金を挿入して前記第1芯金によって前記素管を前記第1方向に押圧することにより、前記ダイス孔の前記内径減少部に対向する領域に前記テーパ部が形成され且つ前記ダイス孔の前記小内径部に対向する領域に前記小径部が形成された前記円筒体を成形する第2工程、
    を含み、
     前記第2工程において、
      前記第1芯金の前記外径増大部によって前記素管の前記第1端部の内側を押圧して前記素管の前記第1端部側を拡径させる拡径過程、
      遅くとも前記第1芯金の前記第1段差部が前記素管の前記第1端部に当接する時点である第1時点以降において前記第1芯金によって前記素管を前記第1方向に押圧して前記素管の前記第2端部を前記ダイス孔の前記小内径部に向かって押し込んで前記素管の前記第2端部側を縮径させる縮径過程、及び
      前記ダイス孔の前記内径減少部と前記第1芯金の前記外径増大部との間に前記素管の前記第1端部側の領域を挟み込んで前記テーパ部及び小径部の成形を完了する完了過程、
    を実行する、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A base tube, which is a bottomed or bottomless cylindrical member, is inserted into a die hole, which is a through hole having a predetermined shape and formed in a die, by a first metal core, which is a metal core having a predetermined shape. A method of forming a cylindrical body having a tapered portion by pushing in the axial direction of the blank tube and the die hole,
    The cylindrical body has a tapered portion, which is a portion whose diameter increases as it approaches one open end, and a small-diameter portion, which is a cylindrical portion formed between the other end and the tapered portion. , the maximum outer diameter of the tapered portion is larger than the outer diameter of the blank tube, the outer diameter of the small diameter portion is smaller than the outer diameter of the blank tube,
    The die hole has a large inner diameter portion which is a portion having a first inner diameter corresponding to the maximum outer diameter of the tapered portion of the cylindrical body, and an inner diameter corresponding to the outer diameter of the small diameter portion of the cylindrical body. a small inner diameter portion, which is a portion having a second inner diameter that is smaller than the inner diameter; an inner diameter decreasing portion, which is a portion where the inner diameter decreases from the inner diameter to the second inner diameter,
    The outer diameter of the first cored bar is a portion whose outer diameter increases from the outer diameter corresponding to the minimum inner diameter of the tapered portion of the cylindrical body to the outer diameter corresponding to the maximum inner diameter of the tapered portion of the cylindrical body as it moves away from the tip. an enlarged portion and an annular step formed so as to widen outward in a radial direction at a position adjacent to the base end side of the increased outer diameter portion and having an outer diameter equal to the maximum outer diameter of the tapered portion of the cylindrical body. and a first stepped portion that is a portion having an inner diameter equal to the maximum inner diameter of the tapered portion of the cylindrical body,
    The raw pipe is pushed from the large inner diameter side of the die hole so that the first end, which is the opening end of the raw pipe, faces the upstream side in the first direction, which is the direction in which the raw pipe is pushed into the die hole. By inserting and bringing the second end opposite to the first end of the blank pipe into contact with the reduced inner diameter portion of the die hole, the die hole is held at a predetermined position inside the die hole. a first step of installing the base pipe; a second step of forming the cylindrical body in which the tapered portion is formed in a region facing the reduced inner diameter portion of the die hole and the small diameter portion is formed in a region facing the small inner diameter portion of the die hole;
    including
    In the second step,
    A diameter-enlarging process in which the inner diameter of the first end portion of the raw pipe is pressed by the increased outer diameter portion of the first core bar to expand the diameter of the first end side of the raw pipe;
    After a first time point at which the first stepped portion of the first cored bar comes into contact with the first end of the raw pipe at the latest, the raw pipe is pressed in the first direction by the first cored bar. a diameter reducing process in which the second end portion of the blank pipe is pushed toward the small inner diameter portion of the die hole to reduce the diameter of the second end portion side of the blank pipe, and the inner diameter reduction of the die hole a completion process of completing molding of the tapered portion and the small diameter portion by sandwiching the region on the first end side of the base pipe between the portion and the increased outer diameter portion of the first cored bar;
    run the
    A method for forming a cylindrical body having a tapered portion, characterized by:
  2.  請求項1に記載されたテーパ部を有する円筒体の成形方法であって、
     前記拡径過程の開始以降に前記縮径過程が開始される、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to claim 1,
    The diameter reduction process is started after the diameter expansion process is started,
    A method for forming a cylindrical body having a tapered portion, characterized by:
  3.  請求項2に記載されたテーパ部を有する円筒体の成形方法であって、
     前記第1時点以降に前記縮径過程が開始される、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to claim 2,
    the diameter reduction process is started after the first time point;
    A method for forming a cylindrical body having a tapered portion, characterized by:
  4.  請求項1乃至請求項3の何れか1項に記載されたテーパ部を有する円筒体の成形方法であって、
     前記円筒体の前記テーパ部の最大外径と前記素管の前記第1端部の外径との差の前記素管の前記第1端部の外径に対する比率である拡径率よりも、前記素管の前記第2端部の外径と前記円筒体の前記小径部の外径との差の前記素管の前記第2端部の外径に対する比率である縮径率の方が大きい、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to any one of claims 1 to 3,
    Than the diameter expansion rate, which is the ratio of the difference between the maximum outer diameter of the tapered portion of the cylindrical body and the outer diameter of the first end of the base pipe to the outer diameter of the first end of the base pipe, A diameter reduction ratio, which is a ratio of the difference between the outer diameter of the second end of the blank pipe and the outer diameter of the small diameter portion of the cylindrical body to the outer diameter of the second end of the blank pipe, is larger. ,
    A method for forming a cylindrical body having a tapered portion, characterized by:
  5.  請求項1乃至請求項4の何れか1項に記載されたテーパ部を有する円筒体の成形方法であって、
     前記素管の前記第1端部側の前記円筒体の前記テーパ部に対応する領域の肉厚が、前記素管の前記第2端部側の前記円筒体の前記小径部に対応する領域の肉厚よりも大きい、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to any one of claims 1 to 4,
    The thickness of the region corresponding to the tapered portion of the cylindrical body on the first end side of the blank tube is the thickness of the region corresponding to the small diameter portion of the cylindrical body on the second end side of the blank tube. greater than the wall thickness,
    A method for forming a cylindrical body having a tapered portion, characterized by:
  6.  請求項1乃至請求項5の何れか1項に記載されたテーパ部を有する円筒体の成形方法であって、
     前記素管を構成する材料がオーステナイト系ステンレス鋼である、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to any one of claims 1 to 5,
    A material constituting the base pipe is austenitic stainless steel,
    A method for forming a cylindrical body having a tapered portion, characterized by:
  7.  請求項1乃至請求項6の何れか1項に記載されたテーパ部を有する円筒体の成形方法であって、
     前記素管が、前記第2端部が閉じている有底の円筒状の部材である、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to any one of claims 1 to 6,
    The base pipe is a bottomed cylindrical member closed at the second end,
    A method for forming a cylindrical body having a tapered portion, characterized by:
  8.  請求項7に記載されたテーパ部を有する円筒体の成形方法であって、
     前記第2工程が開始される前に、前記ダイス孔の前記小内径部側から所定の形状を有する芯金である第2芯金が挿入されて前記素管の前記第2端部に当接する位置において固定されており、
     前記第2工程が実行される期間における所定の時点において前記第2芯金が所定の速度にて前記第1方向への移動を開始する、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to claim 7,
    Before the second step is started, a second metal core, which is a metal core having a predetermined shape, is inserted from the small inner diameter portion side of the die hole and comes into contact with the second end of the blank tube. fixed in position,
    the second core bar starts moving in the first direction at a predetermined speed at a predetermined point in time during which the second step is performed;
    A method for forming a cylindrical body having a tapered portion, characterized by:
  9.  請求項7又は請求項8に記載されたテーパ部を有する円筒体の成形方法であって、
     前記第2工程の後に、前記第1芯金を前記円筒体から抜き取り、前記円筒体の前記小径部の内径に対応する外径を有する円柱状の形状を有する芯金である第3芯金を前記円筒体の前記テーパ部側から挿入して前記第1方向に移動させることにより、前記円筒体の前記小径部の内面を扱く扱き過程を実行する第3工程、
    を更に含む、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to claim 7 or claim 8,
    After the second step, the first cored bar is extracted from the cylindrical body, and a third cored bar having a cylindrical shape with an outer diameter corresponding to the inner diameter of the small diameter portion of the cylindrical body is obtained. a third step of performing a shaving step of shaving the inner surface of the small diameter portion of the cylindrical body by inserting the cylindrical body from the tapered portion side and moving it in the first direction;
    further comprising
    A method for forming a cylindrical body having a tapered portion, characterized by:
  10.  請求項7又は請求項8に記載されたテーパ部を有する円筒体の成形方法であって、
     前記第1芯金が、前記円筒体の前記小径部の内径に対応する外径を有する円柱状の部分である中心部材と、前記中心部材の周囲に前記中心部材と同軸状に設けられた部分である周縁部材と、に分割されており、
     前記中心部材は、前記周縁部材に対して、前記第1方向に摺動可能に構成されており、
     前記第2工程において、前記中心部材を前記周縁部材よりも高い速度にて前記第1方向に移動させて前記素管の底部の内面を押圧することにより、少なくとも前記縮径過程の一部と並行して、前記円筒体の前記小径部の内面を扱く扱き過程を実行する、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to claim 7 or claim 8,
    The first core bar is a central member that is a cylindrical portion having an outer diameter corresponding to the inner diameter of the small diameter portion of the cylindrical body, and a portion that is provided around the central member and coaxially with the central member. is divided into a peripheral member that is
    The central member is configured to be slidable in the first direction with respect to the peripheral member,
    In the second step, the central member is moved in the first direction at a speed higher than that of the peripheral member to press the inner surface of the bottom portion of the blank tube, thereby at least partly paralleling the diameter-reducing process. to perform a treatment process for treating the inner surface of the small diameter portion of the cylindrical body;
    A method for forming a cylindrical body having a tapered portion, characterized by:
  11.  請求項9又は請求項10に記載されたテーパ部を有する円筒体の成形方法であって、
     前記第3芯金又は前記中心部材の先端には、抜き加工用の突起が形成されており、
     前記扱き過程の実行後に、前記第3芯金又は前記中心部材を前記第1方向に更に移動させることにより、前記円筒体の前記小径部の先端にある底部を前記突起によって打ち抜く抜き過程を実行する、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to claim 9 or 10,
    A projection for punching is formed at the tip of the third core bar or the central member,
    After the rolling step is performed, the third core bar or the central member is further moved in the first direction to perform a punching step of punching the bottom portion at the tip of the small-diameter portion of the cylindrical body by the projection. ,
    A method for forming a cylindrical body having a tapered portion, characterized by:
  12.  請求項9又は請求項10に記載されたテーパ部を有する円筒体の成形方法であって、
     前記ダイス孔の前記小内径部側の端部から前記第1方向とは反対の向きである第2方向に移動するように構成された抜き加工用の芯金である第4芯金が設けられており、
     前記扱き過程の実行後に、所定の部材又は前記周縁部材によって前記第2方向に前記円筒体が移動しないように固定し且つ前記第3芯金又は前記中心部材を前記第2方向に移動させてから、前記第4芯金を前記第2方向に移動させることにより、前記円筒体の前記小径部の先端にある底部を前記第4芯金によって打ち抜く抜き過程を実行する、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to claim 9 or 10,
    A fourth mandrel, which is a mandrel for punching, is provided so as to move from the end of the die hole on the side of the small inner diameter portion in a second direction opposite to the first direction. and
    After the handling process is performed, the cylindrical body is fixed so as not to move in the second direction by a predetermined member or the peripheral member, and the third core bar or the central member is moved in the second direction. , by moving the fourth cored bar in the second direction, performing a punching process of punching the bottom portion at the tip of the small diameter portion of the cylindrical body with the fourth cored bar;
    A method for forming a cylindrical body having a tapered portion, characterized by:
  13.  請求項1乃至請求項6の何れか1項に記載されたテーパ部を有する円筒体の成形方法であって、
     前記素管が、前記第2端部が開口している無底の円筒状の部材である、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to any one of claims 1 to 6,
    The base pipe is a bottomless cylindrical member with the second end open,
    A method for forming a cylindrical body having a tapered portion, characterized by:
  14.  請求項13に記載されたテーパ部を有する円筒体の成形方法であって、
     前記第2工程が開始される前に、前記円筒体の前記小径部の内径に対応する外径以下の大きさの外径である第1外径を有する円柱状の形状を有する芯金である第5芯金が前記ダイス孔の前記小内径部側から挿入されており、
     前記第2工程において実行される前記縮径過程において、縮径された前記素管の前記第2端部側の開口部が前記第5芯金に外嵌する、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to claim 13,
    Before the second step is started, a core bar having a cylindrical shape with a first outer diameter equal to or smaller than the outer diameter corresponding to the inner diameter of the small-diameter portion of the cylindrical body. A fifth core bar is inserted from the small inner diameter portion side of the die hole,
    In the diameter-reducing process performed in the second step, the diameter-reduced opening on the second end side of the base pipe is fitted onto the fifth core bar.
    A method for forming a cylindrical body having a tapered portion, characterized by:
  15.  請求項14に記載されたテーパ部を有する円筒体の成形方法であって、
     前記第5芯金の外周面の所定の位置には、径方向における外側に広がるように形成された環状の段差であって前記第1外径よりも大きく且つ前記円筒体の前記小径部の外径以下である外径を有する部分である第2段差部が形成されており、
     前記第5芯金の前記第2段差部は、前記ダイス孔の前記小内径部の前記第1方向における上流側の端部又は当該端部よりも下流側にある所定の位置に対向する位置に形成されており、
     前記第2工程において、前記素管の前記第2端部が前記第5芯金の前記第2段差部に当接する時点である第2時点以降における所定の時点において前記第5芯金が所定の速度にて前記第1方向への移動を開始する、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to claim 14,
    At a predetermined position on the outer peripheral surface of the fifth cored bar, an annular step formed so as to spread outward in the radial direction is larger than the first outer diameter and outside the small diameter portion of the cylindrical body. A second stepped portion, which is a portion having an outer diameter equal to or smaller than the diameter, is formed,
    The second stepped portion of the fifth core bar is located at a position facing an upstream end portion in the first direction of the small inner diameter portion of the die hole or a predetermined position downstream of the end portion. is formed and
    In the second step, at a predetermined time point after a second time point at which the second end portion of the base pipe comes into contact with the second stepped portion of the fifth core bar, the fifth core bar reaches a predetermined level. initiate movement in the first direction at a velocity;
    A method for forming a cylindrical body having a tapered portion, characterized by:
  16.  請求項13乃至請求項15の何れか1項に記載されたテーパ部を有する円筒体の成形方法であって、
     前記第2工程の後に、前記第1芯金を前記円筒体から抜き取り、前記円筒体の前記小径部の内径に対応する外径を有する円柱状の形状を有する芯金である第3芯金を前記円筒体の前記テーパ部側から挿入して前記第1方向に移動させることにより、前記円筒体の前記小径部の内面を扱く扱き過程を実行する第3工程、
    を更に含む、
    ことを特徴とする、テーパ部を有する円筒体の成形方法。
    A method for forming a cylindrical body having a tapered portion according to any one of claims 13 to 15,
    After the second step, the first cored bar is extracted from the cylindrical body, and a third cored bar having a cylindrical shape with an outer diameter corresponding to the inner diameter of the small diameter portion of the cylindrical body is obtained. a third step of performing a shaving step of shaving the inner surface of the small diameter portion of the cylindrical body by inserting the cylindrical body from the tapered portion side and moving it in the first direction;
    further comprising
    A method for forming a cylindrical body having a tapered portion, characterized by:
PCT/JP2022/034792 2021-12-06 2022-09-16 Method for molding cylindrical body having tapered part WO2023105883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023513864A JPWO2023105883A1 (en) 2021-12-06 2022-09-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-197643 2021-12-06
JP2021197643 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023105883A1 true WO2023105883A1 (en) 2023-06-15

Family

ID=86730156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034792 WO2023105883A1 (en) 2021-12-06 2022-09-16 Method for molding cylindrical body having tapered part

Country Status (2)

Country Link
JP (1) JPWO2023105883A1 (en)
WO (1) WO2023105883A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086468A (en) * 1973-12-04 1975-07-11
JPS63119938A (en) * 1986-11-07 1988-05-24 Honda Motor Co Ltd Method and device for drawing pipe
JP2006205232A (en) * 2005-01-28 2006-08-10 Toyota Motor Corp Burring method and burring device
JP2014018801A (en) * 2012-07-12 2014-02-03 Honda Motor Co Ltd Hole piercing method, method for manufacturing structure with hole, and structure with hole
JP2014133260A (en) * 2013-01-11 2014-07-24 F C C:Kk Press component molding method, press component manufacturing method, and press component molding die
CN104889274A (en) * 2015-05-14 2015-09-09 南通福乐达汽车配件有限公司 Universal round tube necking and flaring forming tool
CN112427559A (en) * 2020-10-22 2021-03-02 浙江美联智能科技有限公司 Method for forming ingot cover of covered spindle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086468A (en) * 1973-12-04 1975-07-11
JPS63119938A (en) * 1986-11-07 1988-05-24 Honda Motor Co Ltd Method and device for drawing pipe
JP2006205232A (en) * 2005-01-28 2006-08-10 Toyota Motor Corp Burring method and burring device
JP2014018801A (en) * 2012-07-12 2014-02-03 Honda Motor Co Ltd Hole piercing method, method for manufacturing structure with hole, and structure with hole
JP2014133260A (en) * 2013-01-11 2014-07-24 F C C:Kk Press component molding method, press component manufacturing method, and press component molding die
CN104889274A (en) * 2015-05-14 2015-09-09 南通福乐达汽车配件有限公司 Universal round tube necking and flaring forming tool
CN112427559A (en) * 2020-10-22 2021-03-02 浙江美联智能科技有限公司 Method for forming ingot cover of covered spindle

Also Published As

Publication number Publication date
JPWO2023105883A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
KR101512919B1 (en) Method for manufacturing hollow engine valve
RU2468884C2 (en) Method of making rings
KR101910395B1 (en) Method and device for reshaping a workpice
KR100851651B1 (en) Annular component fabricating method, die for use in such fabricating method and annular component fabricated thereby
US7131311B1 (en) Method of and apparatus for forming forging blank
JP3419195B2 (en) Bulge processing method and apparatus
WO2023105883A1 (en) Method for molding cylindrical body having tapered part
US7284403B2 (en) Apparatus and method for performing a hydroforming process
KR100817044B1 (en) Method and apparatus for manufacturing input shaft
US4722211A (en) Method of forming hollow parts
JP2017185531A (en) Manufacturing method and manufacturing apparatus of diameter enlarged pipe component
RU2686503C1 (en) Method for combined pipe ends upsetting
JP5157716B2 (en) Method for manufacturing universal joint yoke
JP2010227988A (en) Method and apparatus for expansion forming of steel pipe
WO2024111215A1 (en) Method and device for performing extrusion molding of different-thickness pipe having solid portion
RU2502574C2 (en) Method of forging bellows form tube billets
JP4077749B2 (en) Hydroforming method for parts having both expansion and branching elements
KR102272735B1 (en) processing method using elastic body
RU80370U1 (en) DEVICE FOR EXTRACTION OF PARTS WITH VARIABLE THICKNESS
RU2417852C2 (en) Device for hydraulic forging of t-joints
JP2640638B2 (en) Ring gear manufacturing method by precision die forging
RU2430804C1 (en) Method of producing heat exchange tubes with shaped heavy ends
RU2304032C2 (en) Method for drawing equal-passage branch pipe in thin-wall tube blank
RU2540287C2 (en) Device for forming thin-wall axially symmetric parts shaped to truncated cone
SU880562A1 (en) Method of producing flat flange on tube

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023513864

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903817

Country of ref document: EP

Kind code of ref document: A1