WO2023105680A1 - 窒化珪素膜の形成方法 - Google Patents

窒化珪素膜の形成方法 Download PDF

Info

Publication number
WO2023105680A1
WO2023105680A1 PCT/JP2021/045119 JP2021045119W WO2023105680A1 WO 2023105680 A1 WO2023105680 A1 WO 2023105680A1 JP 2021045119 W JP2021045119 W JP 2021045119W WO 2023105680 A1 WO2023105680 A1 WO 2023105680A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply flow
bond
flow rate
ratio
silicon nitride
Prior art date
Application number
PCT/JP2021/045119
Other languages
English (en)
French (fr)
Inventor
司 毛利
悦司 大村
Original Assignee
株式会社京都セミコンダクター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京都セミコンダクター filed Critical 株式会社京都セミコンダクター
Priority to JP2022511042A priority Critical patent/JP7057041B1/ja
Priority to PCT/JP2021/045119 priority patent/WO2023105680A1/ja
Publication of WO2023105680A1 publication Critical patent/WO2023105680A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a method of forming a silicon nitride film formed on a semiconductor substrate, and more particularly to a method of forming a plasma silicon nitride film formed by plasma CVD.
  • plasma nitridation has been used as a selective diffusion thin film for forming a semiconductor element such as a light receiving element on a semiconductor substrate, and as a protective film for protecting a semiconductor element from oxygen and moisture contained in the air.
  • a silicon film (P--SiN film) is used. This P—SiN film is useful in the manufacture of semiconductor devices in that it can be formed at a low temperature of, for example, 400° C. or less. sometimes
  • a raw material gas containing SiH 4 , NH 3 and N 2 is supplied into a reaction chamber in which a semiconductor substrate is placed, and the raw material gas is brought into a plasma excited state by, for example, applying a high-frequency voltage to react the raw material gas.
  • - A SiN film is formed on the semiconductor substrate.
  • Si--H bonds and N--H bonds derived from the raw material gas remain. These Si--H bonds and N--H bonds tend to increase as the formation temperature of the P--SiN film is lowered.
  • Patent Document 1 discloses that the concentration (number) of Si—H bonds in the P—SiN film is set to 1 ⁇ 10 22 /cm 3 or more in order to stabilize the interface between the surface of the semiconductor element and the P—SiN film. , to bring to a state of high chemical activity. Dangling bonds that are not energetically stable, metastable hydrogen terminal groups, etc. on the surface of a semiconductor device transition to a more stable state in terms of energy by reacting with a P-SiN film in a state of high chemical activity. to suppress the generation of interface states.
  • the Si—H bond and N—H bond in the P—SiN film are cut and H (hydrogen) is desorbed, and the desorbed hydrogen is heat treated.
  • peeling of the P--SiN film later from the underlying layer may occur.
  • the concentration of Si—H bonds is high as in Patent Document 1, and thus a large amount of hydrogen is released, peeling is likely to occur. If this peeling occurs at the interface with the surface of the semiconductor element, which is the underlying layer of the P--SiN film, the interface state increases and the characteristics of the semiconductor element deteriorate.
  • the P--SiN film is used as an antireflection film, the antireflection function deteriorates due to peeling from the base.
  • Patent Document 2 In order to prevent such peeling at the interface between the base and the P-SiN film, a technique of forming a P-SiN film after forming a plasma silicon oxide film (P-SiO film) on the base as disclosed in Patent Document 2, for example. It has been known. Further, in order to prevent the peeling of the P--SiN film, the hydrogen content in the P--SiN film is controlled by measuring the decomposition amount of NH 3 in the reaction chamber as described in Patent Document 3. Techniques for reducing are known.
  • An object of the present invention is to provide a method for forming a silicon nitride film that can reduce the hydrogen content in the film and prevent the film from peeling off from the underlying layer.
  • a raw material gas containing SiH 4 , NH 3 and N 2 is supplied into a reaction chamber in which a semiconductor substrate is placed, and the semiconductor substrate is deposited by plasma-enhanced chemical vapor deposition.
  • the ratio of the bond energy of the Si—H bond to the bond energy of the N—H bond contained in the silicon nitride film is defined as the bond energy ratio, and the SiH 4
  • the sum of the concentration of the N— H bonds multiplied by the bond energy ratio in the silicon nitride film and the concentration of the Si—H bonds is the minimum and a supply flow rate ratio setting step of setting the supply flow rate ratio such that the silicon nitride film is formed by supplying the SiH 4 and the NH 3 at the supply flow rate ratio set in the supply flow ratio setting step. and a step of forming a silicon nitride film.
  • the silicon nitride film formed on the underlying semiconductor substrate contains Si—N bonds, Si—H bonds, and NH bonds.
  • concentration of Si—H bonds and the concentration of N—H bonds in this film vary depending on the supply flow rate ratio of SiH 4 and NH 3 during formation of the silicon nitride film. For example, when the supply flow rate of NH 3 is high relative to the supply flow rate of SiH 4 , the number of N—H bonds increases and the number of Si—H bonds decreases. On the contrary, when the supply flow rate of NH 3 is smaller than the supply flow rate of SiH 4 , the number of N—H bonds decreases and the number of Si—H bonds increases.
  • the NH bond in the silicon nitride film has a larger bond energy than the Si—H bond, and the ratio of the Si—H bond energy to the bond energy of the NH bond is defined as the bond energy ratio.
  • This bond energy ratio corresponds to the relative breaking probability of the N—H bond to the breaking probability of the Si—H bond in the silicon nitride film.
  • the supply flow rate ratio of SiH 4 and NH 3 is set so that the sum of the concentration of the NH bond multiplied by the bond energy ratio in the silicon nitride film and the concentration of the Si—H bond is minimized.
  • a silicon nitride film is formed at a ratio of As a result, the concentration of H (hydrogen) converted to Si—H bonds in the silicon nitride film can be minimized, so the amount of desorbed H (hydrogen) can be minimized. can be prevented from peeling off.
  • the supply flow rate ratio is the binding energy ratio calculated by Fourier transform infrared spectroscopy in the supply flow rate ratio setting step. It is characterized in that it is set based on the relationship between the Si--H bond concentration and the N--H bond concentration calculated by Fourier transform infrared spectroscopy and the supply flow rate ratio.
  • the bond energy ratio is calculated in the supply flow rate ratio setting step, and the supply flow rate ratio, the Si—H bond concentration, and the NH bond concentration in the silicon nitride film are calculated. Set the concentration relationship.
  • the concentration of H (hydrogen) converted to Si—H bonds in the silicon nitride film is minimized. is set to the supply flow rate ratio. Therefore, it is possible to set an appropriate supply flow rate ratio of SiH 4 and NH 3 according to the reaction chamber, and to prevent peeling of the formed silicon nitride film from the underlying layer.
  • the method for forming a silicon nitride film of the present invention it is possible to reduce the hydrogen content in the film and prevent the film from peeling off from the underlying layer.
  • FIG. 4 is a cross-sectional view showing an example in which a P—SiN film is used as a selective diffusion thin film;
  • FIG. 4 is an explanatory diagram of a forming condition setting process and a nitride film forming process; It is an example of absorption spectrum measurement by FTIR of a P—SiN film.
  • FIG. 4 is a cross-sectional view showing an example of peeling of a P—SiN film; It is explanatory drawing of a supply flow rate ratio setting process.
  • 5 is a graph showing the relationship between the supply flow rate ratio FR and the concentration C1 of Si—H bonds and the concentration C2 of N—H bonds.
  • a silicon nitride film (P—SiN film) formed by a plasma enhanced chemical vapor deposition method (plasma CVD method) will be described.
  • a P-SiN film can be formed to a thickness of, for example, about 1 ⁇ m at a low temperature of, for example, 400° C. or less.
  • the P--SiN film is excellent in step coverage, moisture resistance, and contamination resistance, like the LP--SiN film.
  • the P--SiN film is used as a mask layer 3 for selectively forming the impurity diffusion layer 2 in the semiconductor substrate 1 as shown in FIG. 1, for example.
  • the P—SiN film may also be used as a protective film covering the surface of the semiconductor element formed on the semiconductor substrate 1.
  • the semiconductor element is a light receiving element
  • the P—SiN film is used as an antireflection film for reducing reflection of incident light. It can also be used as a membrane.
  • the P--SiN film is formed according to the formation conditions in the reaction chamber, which are set in advance in the formation condition setting step, and in the silicon nitride film formation step.
  • the set formation conditions include a plurality of parameters that determine the film quality and film thickness of the P—SiN film, such as formation temperature, formation pressure, high frequency application conditions, source gas supply flow rate, and formation time.
  • a semiconductor substrate 1 serving as a base for a P--SiN film to be formed is placed in a reaction chamber. Then, in S2, for example, after air is exhausted from the reaction chamber according to the formation conditions, source gases containing SiH 4 (silane), NH 3 (ammonia), and N 2 (nitrogen) are supplied to the reaction chamber.
  • source gases containing SiH 4 (silane), NH 3 (ammonia), and N 2 (nitrogen) are supplied to the reaction chamber.
  • SiH4 is supplied at 5 sccm, NH3 at 10 sccm and N2 at 60 sccm.
  • a P—SiN film is formed on the semiconductor substrate 1 by reacting the raw material gas in a plasma excited state by applying a high-frequency voltage while the raw material gas flow is stable. For example, a high frequency of 75 W and 13.56 MHz is applied, but it is not limited to this.
  • the semiconductor substrate 1 with the P--SiN film formed thereon is transported out of the reaction chamber, which has been returned to atmospheric pressure, after the raw material gas is exhausted.
  • the formed P--SiN film contains not only Si--N bonds but also Si--H bonds and N--H bonds derived from the source gas.
  • the bond energy of the Si—H bond and the bond energy of the N—H bond in the P—SiN film are obtained by measuring the absorption spectrum of the P—SiN film by Fourier transform infrared spectroscopy (FTIR), for example, as shown in FIG. It is calculated based on the wavenumber corresponding to the Si—H bond and the wavenumber corresponding to the NH bond.
  • a small wavenumber corresponds to a long wavelength, that is, a small energy, so the bond energy of the Si—H bond in the P—SiN film is smaller than the bond energy of the NH bond.
  • the binding energy basically does not change depending on the formation conditions.
  • the concentration of the Si—H bond and the concentration of the N—H bond in the P—SiN film are the heights of the absorption peaks corresponding to the Si—H bond and the N—H bond in the absorption spectrum measurement of the P—SiN film by FTIR. calculated based on the The higher the formation temperature of the P—SiN film, the lower the concentration of Si—H bonds and the concentration of N—H bonds in this film. concentration increases.
  • the formation condition setting step formation conditions are set that can reduce the concentration of Si—H bonds and the concentration of N—H bonds in the P—SiN film.
  • the concentration of the N—H bonds can be reduced by decreasing the supply flow rate of NH 3 .
  • supply flow rate ratio FR NH 3 supply flow rate/SiH 4 supply flow rate
  • the supply flow rate ratio FR can also be reduced by changing the supply flow rate of SiH 4 or by changing the supply flow rates of SiH 4 and NH 3 .
  • the supply flow rates of SiH 4 and NH 3 are appropriately set according to the volume of the reaction chamber and the like, and are each set, for example, within a range of 30 sccm or less.
  • the calculated bond energy ratio k can be regarded as the relative probability of breaking the N—H bond to the breaking probability of the Si—H bond in the P—SiN film due to the heat treatment.
  • the P—SiN film formed on the semiconductor substrate on which the underlying semiconductor element is formed contains Si—N bonds, Si—H bonds, and NH bonds.
  • the concentration of Si—H bonds and the concentration of N—H bonds in the P—SiN film vary depending on the supply flow rate ratio FR of SiH 4 and NH 3 during formation of the P—SiN film. Since the bond energy of the N--H bond and the bond energy of the Si--H bond in the P--SiN film are different, the ratio of the Si--H bond energy to the bond energy of the N--H bond is defined as the bond energy ratio k.
  • This bond energy ratio k corresponds to the relative breaking probability of the N—H bond to the breaking probability of the Si—H bond in the P—SiN film.
  • the bond energy ratio is calculated based on the absorption spectrum measured by FTIR for the P—SiN film formed in advance, and the supply flow ratio FR of NH 3 to SiH 4 and Si—H Establish the relationship between the concentration of bonds and the concentration of NH bonds.
  • H (hydrogen ) is set to the minimum value. Therefore, it is possible to set an appropriate value of the supply flow rate ratio FR of SiH 4 and NH 3 in accordance with the reaction chamber based on the formed P—SiN film, and the peeling of the formed silicon nitride film from the underlying layer can be prevented. can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】膜中の水素含有量を低減して下地からの剥離を防止することができる窒化珪素膜の形成方法を提供すること。 【解決手段】半導体基板が設置された反応室内にSiHとNHとNを含む原料ガスを供給してプラズマ促進化学気相成長法によって半導体基板の表面に窒化珪素膜を形成する窒化珪素膜の形成方法において、窒化珪素膜に含まれるN-H結合の結合エネルギーに対するSi-H結合の結合エネルギーの比率を結合エネルギー比とし、SiHに対するNHの供給流量の比率を供給流量比としたときに、窒化珪素膜における結合エネルギー比を乗算したN-H結合の濃度とSi-H結合の濃度との和が最小となるように供給流量比を設定する供給流量比設定工程と、供給流量比設定工程で設定された供給流量比でSiHとNHを供給して窒化珪素膜を形成する窒化珪素膜形成工程とを有する。

Description

窒化珪素膜の形成方法
 本発明は、半導体基板に形成される窒化珪素膜の形成方法に関し、特にプラズマCVD法によって形成されるプラズマ窒化珪素膜の形成方法に関する。
 従来から、半導体基板に例えば受光素子のような半導体素子を形成するための選択拡散用薄膜として、また、例えば空気中に含まれる酸素、水分から半導体素子を保護するための保護膜として、プラズマ窒化珪素膜(P-SiN膜)が利用されている。このP-SiN膜は、例えば400℃以下の低温で形成可能な点で半導体素子の製造において有用であり、段差被覆性、耐汚染性にも優れており、受光素子の反射防止膜として利用される場合もある。
 一般的には、半導体基板が設置された反応室内にSiHとNHとNを含む原料ガスを供給し、例えば高周波の電圧印加によってプラズマ励起状態にして原料ガスを反応させることにより、P-SiN膜が半導体基板に形成される。この形成されたP-SiN膜には、Si-N結合の他に、原料ガス由来のSi-H結合、N-H結合が残存する。これらSi-H結合とN-H結合は、P-SiN膜の形成温度が低いほど増加する傾向がある。
 例えば特許文献1には、半導体素子表面とP-SiN膜との界面の安定化のために、P-SiN膜中のSi-H結合の濃度(個数)を1×1022/cm以上として、化学的活性度が高い状態にすることが記載されている。半導体素子表面におけるエネルギー的に安定でないダングリングボンド、準安定的な水素終端基等が、化学的活性度が高い状態のP-SiN膜との反応によりエネルギー的に一層安定な状態に遷移することを促して、界面準位の発生を抑制するものである。
 P-SiN膜形成後に例えば熱処理等によって熱エネルギーが加えられると、P-SiN膜中のSi-H結合、N-H結合が切断されてH(水素)が脱離し、脱離した水素が熱処理後のP-SiN膜の下地からの剥離を発生させる場合がある。特に特許文献1のようにSi-H結合の濃度が高いため脱離する水素が多い場合には、剥離が発生し易くなる。この剥離がP-SiN膜の下地である半導体素子表面との界面で発生した場合には、界面準位が増加して半導体素子の特性が劣化する。また、P-SiN膜が反射防止膜として利用される場合には、下地からの剥離によって反射防止機能が劣化する。
 このような下地とP-SiN膜との界面における剥離防ぐために、例えば特許文献2のように、下地にプラズマ酸化珪素膜(P-SiO膜)を形成した後でP-SiN膜を形成する技術が知られている。また、P-SiN膜の剥離を防ぐために、特許文献3のように、反応室内のNHの分解量を計測しながらこの分解量を制御することによって、P-SiN膜中の水素含有量を少なくする技術が知られている。
特許第5186776号公報 特開平4-184932号公報 特許第3045945号公報
 しかし、特許文献2のように下地とP-SiN膜の間にP-SiO膜を挟むことは、製造工程が複雑になり、製造コストが増加するので好ましくない。また、特許文献3のように、P-SiN膜の形成中にNHの分解量を制御するために、NHの流量等を変更することは、形成されるP-SiN膜の形成条件が常に変動することになるので膜質の安定性に欠け、半導体素子の特性のばらつき、反射防止機能の劣化の原因となる虞がある。
 そのため、下地からの剥離を防止可能なように膜中の水素含有量を低減することができる、即ち膜中のSi-H結合とN-H結合の濃度を低減することができるP-SiN膜の形成方法が求められていた。本発明の目的は、膜中の水素含有量を低減して下地からの剥離を防止することができる窒化珪素膜の形成方法を提供することである。
 請求項1の発明の窒化珪素膜の形成方法は、半導体基板が設置された反応室内にSiHとNHとNを含む原料ガスを供給してプラズマ促進化学気相成長法によって前記半導体基板の表面に窒化珪素膜を形成する窒化珪素膜の形成方法において、前記窒化珪素膜に含まれるN-H結合の結合エネルギーに対するSi-H結合の結合エネルギーの比率を結合エネルギー比とし、前記SiHに対する前記NHの供給流量の比率を供給流量比としたときに、前記窒化珪素膜における前記結合エネルギー比を乗算した前記N-H結合の濃度と前記Si-H結合の濃度との和が最小となるように前記供給流量比を設定する供給流量比設定工程と、前記供給流量比設定工程で設定された前記供給流量比で前記SiHと前記NHを供給して前記窒化珪素膜を形成する窒化珪素膜形成工程とを有することを特徴としている。
 上記構成によれば、下地である半導体基板に形成された窒化珪素膜の膜中には、Si-N結合とSi-H結合とN-H結合が含まれている。この膜中のSi-H結合の濃度とN-H結合の濃度は、窒化珪素膜の形成時のSiHとNHの供給流量比によって変動する。例えば、SiHの供給流量に対してNHの供給流量が多い場合には、N-H結合が多くなってSi-H結合が少なくなる。反対にSiHの供給流量に対してNHの供給流量が少ない場合には、N-H結合が少なくなってSi-H結合が多くなる。窒化珪素膜中のN-H結合はSi-H結合よりも結合エネルギーが大きく、N-H結合の結合エネルギーに対するSi-H結合エネルギーの比率を結合エネルギー比とする。この結合エネルギー比は、窒化珪素膜中でのSi-H結合の切断確率に対するN-H結合の相対的な切断確率に相当する。そして、窒化珪素膜における結合エネルギー比を乗算したN-H結合の濃度とSi-H結合の濃度との和が最小となるようにSiHとNHの供給流量比を設定し、この供給流量比で窒化珪素膜を形成する。これにより、窒化珪素膜のSi-H結合相当に換算されたH(水素)の濃度を最小にすることができるので、脱離するH(水素)の量を最少にすることができ、下地からの剥離を防止することができる。
 請求項2の発明の窒化珪素膜の形成方法は、請求項1の発明において、前記供給流量比は、前記供給流量比設定工程においてフーリエ変換赤外線分光法によって算出される前記結合エネルギー比と、このフーリエ変換赤外線分光法によって算出される前記Si-H結合の濃度及び前記N-H結合の濃度と前記供給流量比との関係に基づいて設定されることを特徴としている。
 上記構成によれば、予め形成された窒化珪素膜について、供給流量比設定工程において結合エネルギー比を算出する共に、供給流量比と窒化珪素膜中のSi-H結合の濃度及びN-H結合の濃度の関係を設定する。そして、この設定した供給流量比と窒化珪素膜中の結合濃度の関係と結合エネルギー比に基づいて、窒化珪素膜のSi-H結合相当に換算されたH(水素)の濃度が最小となるように供給流量比が設定される。従って、反応室に応じた適切なSiHとNHの供給流量比を設定することができ、形成された窒化珪素膜の下地からの剥離を防止することができる。
 本発明の窒化珪素膜の形成方法によれば、膜中の水素含有量を低減して下地からの剥離を防止することができる。
選択拡散用薄膜としてP-SiN膜が使用される例を示す断面図である。 形成条件設定工程と窒化膜形成工程の説明図である。 P-SiN膜のFTIRによる吸収スペクトル測定例である。 P-SiN膜の剥離の例を示す断面図である。 供給流量比設定工程の説明図である。 供給流量比FRとSi-H結合の濃度C1及びN-H結合の濃度C2の関係を示すグラフである。
 以下、本発明を実施するための形態について実施例に基づいて説明する。
 最初に、プラズマ促進化学気相成長法(プラズマCVD法)で形成される窒化珪素膜(P-SiN膜)について説明する。
 P-SiN膜は、従来の減圧CVD法で形成される窒化珪素膜(LP-SiN膜)と比べて、例えば400℃以下の低温で例えば1μm程度まで厚く形成可能であり、半導体素子の製造において有用である。また、P-SiN膜は、LP-SiN膜と同様に段差被覆性、耐湿性、耐汚染性に優れている。それ故、P-SiN膜は、例えば図1のように半導体基板1に不純物拡散層2を選択的に形成するためのマスク層3として利用される。また、P-SiN膜は、半導体基板1に形成された半導体素子の表面を覆う保護膜としても利用される場合があり、半導体素子が受光素子の場合には入射光の反射を低減する反射防止膜として利用される場合もある。
 次に、P-SiN膜の形成方法について説明する。
 P-SiN膜は、図2に示すように形成条件設定工程で予め反応室における形成条件を設定しておき、窒化珪素膜形成工程で形成条件に従って形成される。図中のSj(j=1,2,・・・)はステップを表す。設定される形成条件には、例えば形成温度、形成圧力、高周波の印加条件、原料ガスの供給流量、形成時間のように、P-SiN膜の膜質、膜厚等を決定する複数のパラメータが含まれている。
 窒化珪素膜形成工程では、S1において、形成されるP-SiN膜の下地となる半導体基板1が反応室内に設置される。そしてS2において、形成条件に従って例えば反応室から空気が排出された後、SiH(シラン)とNH(アンモニア)とN(窒素)を含む原料ガスが反応室に供給される。例えばSiHが5sccm、NHが10sccm、Nが60sccmで供給される。
 次にS3において、原料ガス流が安定した状態で高周波の電圧印加によりプラズマ励起状態にして原料ガスを反応させることによって、P-SiN膜が半導体基板1に形成される。例えば75W、13.56MHzの高周波を印加するが、これに限定されるものではない。最後にS4において、P-SiN膜が形成された半導体基板1は、原料ガス排気後、大気圧に戻された反応室から外へ搬送される。別の半導体基板に対しても同じ形成条件でP-SiN膜を形成することにより、半導体基板間の膜質、膜厚のばらつきが抑制される。
 形成されたP-SiN膜中には、Si-N結合だけでなく、原料ガスに由来するSi-H結合、N-H結合が含まれている。このP-SiN膜中のSi-H結合の結合エネルギーとN-H結合の結合エネルギーは、例えば図3に示すように、フーリエ変換赤外線分光法(FTIR)によるP-SiN膜の吸収スペクトル測定のSi-H結合に対応する波数(Wavenumber)と、N-H結合に対応する波数に基づいて算出される。波数が小さいことは、波長が長いこと、即ちエネルギーが小さいことに対応するので、P-SiN膜中のSi-H結合の結合エネルギーは、N-H結合の結合エネルギーよりも小さいことになる。尚、結合エネルギーは、基本的に形成条件により変動しない。
 また、P-SiN膜中のSi-H結合の濃度、N-H結合の濃度は、FTIRによるP-SiN膜の吸収スペクトル測定のSi-H結合、N-H結合に対応する吸収ピークの高さに基づいて夫々算出される。P-SiN膜の形成温度が高いほど、この膜中のSi-H結合の濃度、N-H結合の濃度が低下する傾向があるが、通常はSi-H結合の濃度よりもN-H結合の濃度が高くなる。
 このP-SiN膜形成後に熱処理が実施された場合、熱エネルギーを受けてSi-H結合の一部及びN-H結合の一部が切断され、H(水素)が脱離する。そして、例えば図4に示すように、脱離した水素が下地(半導体基板1)とP-SiN膜(マスク層3)との界面において水素分子となり、例えば領域P1,P2のようにP-SiN膜を下地から剥離させる場合がある。この剥離を防ぐためには、P-SiN膜中の水素含有量を減少させること、即ちSi-H結合の濃度とN-H結合の濃度を低下させることが有効である。
 Si-H結合の濃度とN-H結合の濃度を低下させるために形成温度を上昇させることは、半導体素子の特性に大きく影響する場合があるため困難である。また、Si-H結合の濃度とN-H結合の濃度は、P-SiN膜の形成温度以外の形成条件によっても変動する。そこで、形成条件設定工程において、P-SiN膜中のSi-H結合の濃度とN-H結合の濃度を減少させることができる形成条件を設定する。
 例えば、形成条件設定工程に含まれている原料ガスの供給流量の設定において、NHの供給流量を減少させることによりN-H結合の濃度を減少させることができる。この設定は、SiHの供給流量に対するNHの供給流量の比率を供給流量比FR(供給流量比FR=NH供給流量/SiH供給流量)とすると、供給流量比FRが小さくなるように設定する供給流量比設定工程に相当する。尚、SiHの供給流量を変更して、又はSiHとNHの供給流量を夫々変更して供給流量比FRを小さくすることもできる。SiHとNHの供給流量は、反応室の容積等に応じて適宜設定され、例えば30sccm以下の範囲内で夫々設定される。
 この供給流量比設定工程で適切な供給流量比FRを設定するために、例えば図5に示すように、S11において、異なる供給流量比FRで形成されたP-SiN膜についてFTIRによる吸収スペクトル測定を夫々行う。そしてS12において、異なる供給流量比FRで形成されたP-SiN膜毎に、この膜中のSi-H結合の濃度とN-H結合の濃度を夫々算出すると共に、Si-N結合の結合エネルギーに対するN-H結合の結合エネルギーの比率である結合エネルギー比kを算出する。
 次にS13において、供給流量比FRと算出されたSi-H結合の濃度とN-H結合の濃度の関係を図6のようにグラフ化し、供給流量比FRに対するSi-H結合の濃度C1を示す濃度曲線と、供給流量比FRに対するN-H結合の濃度C2を示す濃度曲線を求める。最後に図5のS14において、算出された結合エネルギー比kを乗算したN-H結合の濃度(k×C2)とSi-H結合の濃度C1の和を算出し、この和(k×C2+C1)が最小となる供給流量比FRを設定する。
 図6によれば、供給流量比FRを2から小さくしていくと、Si-H結合の濃度C1の上昇と比べてN-H結合の濃度C2の低下が大きいため、P-SiN膜中のH(水素)含有量を減少させることができる。一方、P-SiN膜中のSi-H結合の結合エネルギーはN-H結合の結合エネルギーよりも小さいので、Si-H結合はN-H結合よりも容易に切断され、供給流量比FRを小さくし過ぎた場合に却って脱離する水素が増加する虞がある。
 ここで、算出された結合エネルギー比kは、熱処理によるP-SiN膜中でのSi-H結合の切断確率に対するN-H結合の相対的な切断確率とみなすことができる。この結合エネルギー比kをN-H結合の濃度C2の係数として掛け算することにより、相対的に切断され難いN-H結合の濃度をSi-H結合に相当するように換算して、P-SiN膜中の脱離し易いH(水素)濃度を算出し、この濃度が最小となる供給流量比FRを設定している。
 FTIRによる吸収スペクトル測定から算出された結合エネルギー比kの値が、例えば0.645の場合には供給流量比FRは0.75になる。濃度C1と濃度C2の和(k=1)ではなく、結合エネルギーの違いにより脱離し易いH(水素)濃度が最小となるように供給流量比FRを設定するので、供給流量比FRを小さくし過ぎることが無く、この供給流量比FRで形成されたP-SiN膜の剥離が発生し難くなる。
 上記P-SiN膜の形成方法の作用、効果について説明する。
 下地である半導体素子が形成された半導体基板に形成されたP-SiN膜中には、Si-N結合とSi-H結合とN-H結合が含まれている。P-SiN膜中のSi-H結合の濃度とN-H結合の濃度は、P-SiN膜の形成時のSiHとNHの供給流量比FRによって変動する。P-SiN膜中のN-H結合の結合エネルギーとSi-H結合の結合エネルギーは異なるので、N-H結合の結合エネルギーに対するSi-H結合エネルギーの比率を結合エネルギー比kとする。この結合エネルギー比kは、P-SiN膜中でのSi-H結合の切断確率に対するN-H結合の相対的な切断確率に相当する。そして、供給流量比設定工程で、P-SiN膜中のSi-H結合の濃度C1と、結合エネルギー比kを乗算したN-H結合の濃度C2との和が最小となるように、SiHとNHの供給流量比FRを設定し、窒化珪素膜形成工程において、この供給流量比FRでP-SiN膜を形成する。これにより、P-SiN膜のSi-H結合相当に換算されたH(水素)の濃度を最小にすることができるので、脱離するH(水素)の量を最少にすることができ、P-SiN膜の下地からの剥離を防止することができる。
 供給流量比設定工程では、予め形成されたP-SiN膜についてFTIRによって測定した吸収スペクトルに基づいて、結合エネルギー比を算出しておくと共に、SiHに対するNHの供給流量比FRとSi-H結合の濃度及びN-H結合の濃度の関係を設定する。この設定した供給流量比FRとP-SiN膜中のH(水素)の結合濃度との関係、及び結合エネルギー比に基づいて、P-SiN膜のSi-H結合相当に換算されたH(水素)の濃度が最小となるように供給流量比FRの値が設定される。従って、形成されたP-SiN膜に基づいて反応室に応じた適切なSiHとNHの供給流量比FRの値を設定することができ、形成された窒化珪素膜の下地からの剥離を防止することができる。
1  :半導体基板
2  :不純物拡散層
3  :マスク層(P-SiN膜)
C1 :Si-H結合の濃度
C2 :N-H結合の濃度
FR :供給流量比
k  :結合エネルギー比

Claims (2)

  1.  半導体基板が設置された反応室内にSiHとNHとNを含む原料ガスを供給してプラズマ促進化学気相成長法によって前記半導体基板の表面に窒化珪素膜を形成する窒化珪素膜の形成方法において、
     前記窒化珪素膜に含まれるN-H結合の結合エネルギーに対するSi-H結合の結合エネルギーの比率を結合エネルギー比とし、前記SiHに対する前記NHの供給流量の比率を供給流量比としたときに、前記窒化珪素膜における前記結合エネルギー比を乗算した前記N-H結合の濃度と前記Si-H結合の濃度との和が最小となるように前記供給流量比を設定する供給流量比設定工程と、
     前記供給流量比設定工程で設定された前記供給流量比で前記SiHと前記NHを供給して前記窒化珪素膜を形成する窒化珪素膜形成工程とを有することを特徴とする窒化珪素膜の形成方法。
  2.  前記供給流量比は、前記供給流量比設定工程においてフーリエ変換赤外線分光法によって算出される前記結合エネルギー比と、このフーリエ変換赤外線分光法によって算出される前記Si-H結合の濃度及び前記N-H結合の濃度と前記供給流量比との関係に基づいて設定されることを特徴とする請求項1に記載の窒化珪素膜の形成方法。
PCT/JP2021/045119 2021-12-08 2021-12-08 窒化珪素膜の形成方法 WO2023105680A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022511042A JP7057041B1 (ja) 2021-12-08 2021-12-08 窒化珪素膜の形成方法
PCT/JP2021/045119 WO2023105680A1 (ja) 2021-12-08 2021-12-08 窒化珪素膜の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045119 WO2023105680A1 (ja) 2021-12-08 2021-12-08 窒化珪素膜の形成方法

Publications (1)

Publication Number Publication Date
WO2023105680A1 true WO2023105680A1 (ja) 2023-06-15

Family

ID=81291688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045119 WO2023105680A1 (ja) 2021-12-08 2021-12-08 窒化珪素膜の形成方法

Country Status (2)

Country Link
JP (1) JP7057041B1 (ja)
WO (1) WO2023105680A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047620A (ja) * 2006-08-11 2008-02-28 Mitsubishi Heavy Ind Ltd プラズマ処理方法、及び、プラズマ処理装置
JP2008214677A (ja) * 2007-03-01 2008-09-18 Toyota Central R&D Labs Inc バリア膜及びバリア膜の製造方法
JP2010225792A (ja) * 2009-03-23 2010-10-07 Fujifilm Corp 成膜装置及び成膜方法
WO2012029709A1 (ja) * 2010-08-31 2012-03-08 株式会社島津製作所 非晶質窒化珪素膜およびその製造方法
JP2015106572A (ja) * 2013-11-28 2015-06-08 大陽日酸株式会社 シリコン窒化膜の形成方法及びシリコン窒化膜
JP2016111203A (ja) * 2014-12-05 2016-06-20 株式会社Joled 薄膜トランジスタ基板及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047620A (ja) * 2006-08-11 2008-02-28 Mitsubishi Heavy Ind Ltd プラズマ処理方法、及び、プラズマ処理装置
JP2008214677A (ja) * 2007-03-01 2008-09-18 Toyota Central R&D Labs Inc バリア膜及びバリア膜の製造方法
JP2010225792A (ja) * 2009-03-23 2010-10-07 Fujifilm Corp 成膜装置及び成膜方法
WO2012029709A1 (ja) * 2010-08-31 2012-03-08 株式会社島津製作所 非晶質窒化珪素膜およびその製造方法
JP2015106572A (ja) * 2013-11-28 2015-06-08 大陽日酸株式会社 シリコン窒化膜の形成方法及びシリコン窒化膜
JP2016111203A (ja) * 2014-12-05 2016-06-20 株式会社Joled 薄膜トランジスタ基板及びその製造方法

Also Published As

Publication number Publication date
JP7057041B1 (ja) 2022-04-19
JPWO2023105680A1 (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
US9385013B2 (en) Method and apparatus of manufacturing a semiconductor device by forming a film on a substrate
JP3529989B2 (ja) 成膜方法及び半導体装置の製造方法
EP0661732B1 (en) A method of forming silicon oxy-nitride films by plasma-enhanced chemical vapor deposition
KR100660890B1 (ko) Ald를 이용한 이산화실리콘막 형성 방법
US6815350B2 (en) Method for forming a thin film using an atomic layer deposition (ALD) process
US20010050039A1 (en) Method of forming a thin film using atomic layer deposition method
EP0572704B1 (en) Method for manufacturing a semiconductor device including method of reforming an insulating film formed by low temperature CVD
US20140038429A1 (en) Method of manufacturing semiconductor device and method of processing substrate and substrate processing apparatus
JPH0677150A (ja) 表面感受性を低減したオゾン/teos酸化シリコン膜の堆積方法
US20060024959A1 (en) Thin tungsten silicide layer deposition and gate metal integration
KR20030082356A (ko) 반도체장치의 제조방법
JP4126165B2 (ja) マルチデポジションsacvdリアクタ
US7638443B2 (en) Method of forming ultra-thin SiN film by plasma CVD
US20050136693A1 (en) Thermal processing unit and thermal processing method
WO2023105680A1 (ja) 窒化珪素膜の形成方法
JP3230185B2 (ja) 均一誘電層の沈積法
US20220310387A1 (en) Semiconductor processing method
JPH06342786A (ja) 絶縁膜の形成方法および減圧cvd装置
US7223706B2 (en) Method for forming plasma enhanced deposited, fully oxidized PSG film
JPH05109695A (ja) 半導体装置の製造方法
JPH11340223A (ja) 半導体装置の製造方法
JPS63207135A (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022511042

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967179

Country of ref document: EP

Kind code of ref document: A1