WO2023104407A1 - Planetengetriebe mit ungleich verteilten planetenrädern - Google Patents

Planetengetriebe mit ungleich verteilten planetenrädern Download PDF

Info

Publication number
WO2023104407A1
WO2023104407A1 PCT/EP2022/080950 EP2022080950W WO2023104407A1 WO 2023104407 A1 WO2023104407 A1 WO 2023104407A1 EP 2022080950 W EP2022080950 W EP 2022080950W WO 2023104407 A1 WO2023104407 A1 WO 2023104407A1
Authority
WO
WIPO (PCT)
Prior art keywords
gears
planetary gear
planetary
gear
planet
Prior art date
Application number
PCT/EP2022/080950
Other languages
English (en)
French (fr)
Inventor
Burkhard Lips
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Priority to CN202280063809.1A priority Critical patent/CN118019930A/zh
Publication of WO2023104407A1 publication Critical patent/WO2023104407A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion

Definitions

  • the invention relates to a planetary gear according to the preamble of claim 1 and a series according to the preamble of claim 2.
  • a high variety of variants leads to high costs.
  • One way to reduce the number of variants is to cover different load cases with the same gearbox.
  • the gearbox must be dimensioned in such a way that it can withstand the load case with the highest loads that occur. For the other load cases, this results in oversizing.
  • the variant costs decrease, the component costs increase due to the oversizing.
  • the object of the invention is to reduce the variant costs of planetary gears. This object is achieved by a planetary gear according to claim 1 and a series according to claim 2.
  • the planetary gear according to the invention has N planet gears P . . . P N , a sun gear and a ring gear.
  • the number N of planet gears is at least two. In particular, N can be greater than two. Any natural numbers can be used as values for N, for example 2, 3, 4, 5, 6, 7, 8, 9, 10 ...
  • the sun gear is externally toothed. The number z s of teeth in a toothing of the sun gear is therefore positive.
  • the ring gear on the other hand, has internal teeth. Their number of teeth z H is given as a negative value by definition.
  • a planetary gear In a planetary gear, the ring gear and the sun gear are arranged coaxially with one another, ie they have a common central axis or axis of rotation.
  • the planet gears are rotatably mounted in a planet carrier and each mesh with the ring gear and/or the sun gear.
  • each planetary gear meshes with the ring gear and the sun gear.
  • the axes of rotation of the planet gears are aligned parallel to one another.
  • Two of the three components ring gear, planet carrier and sun gear are rotatably mounted.
  • the corresponding axes of rotation preferably run parallel to one another.
  • the axes of rotation of the planet gears preferably also run parallel thereto.
  • the third component is fixed against rotation.
  • the planet carrier and the sun gear can be rotatably mounted, while the ring gear is fixed in a rotationally fixed manner, for example in a transmission housing.
  • the invention is based on the idea of abandoning the usual equal distribution of the planet gears in order to be able to cover more load cases with identical components.
  • the N planet gears P . . . P N are arranged one after the other at the same distance from their respective predecessors.
  • An angle by which an axis of rotation of the first planetary gear and an axis of rotation of the second planetary gear are offset relative to the center or axis of rotation of the sun gear is suitable as a measure of the distance between a first and a second planetary gear.
  • This angle is identical to a A torsion angle, also known as a dihedron angle, between a surface spanned by the axis of rotation of the first planetary gear and the central or axis of rotation of the sun gear and a surface spanned by the axis of rotation of the second planetary gear and the central or axis of rotation of the sun gear.
  • the torsion angle corresponds to an angle enclosed by two rays which, in a cross-section, proceed from the center axis or axis of rotation of the sun gear through a respective axis of rotation of one of the two planet gears.
  • a series defines a number of individual devices. These form the series.
  • the series is therefore identical to an arrangement consisting of the individual devices.
  • the devices of a series according to the invention are planetary gears.
  • the planetary gears of the series have structurally identical ring gears, structurally identical sun gears and structurally identical planetary gears.
  • the ring gears of two planetary gears of the series are therefore identical in construction.
  • the sun gears of two planetary gears of the series are identical in construction.
  • Two planet gears each of a planetary gear of the series are identical in construction.
  • the planetary gears of each planetary gear are preferably structurally identical to one another. This means that two planet wheels of different planetary gears of the series are identical in construction.
  • Two means or arrangements of means are structurally identical if their technical features and physical parameters - in particular with regard to their material and geometric properties - match within the scope of the manufacturing tolerances that occur.
  • the planetary gears of the series according to the invention are characterized in that the numbers of their planet gears are at least partially different. This means that at least two planetary gearboxes in the series have different numbers of planetary gears.
  • the invention provides that at least one planetary gear of the series is designed according to the invention as described above.
  • Another planetary gear of the series is preferably designed conventionally.
  • a conventional planetary gear is characterized in that applies
  • FIG. 1 A preferred embodiment of the invention is shown in FIG. 1 in detail shows:
  • the planetary gear 101 shown in FIG. 1 has a first planetary gear 103a, a second planetary gear 103b, a third planetary gear 103c, a fourth planetary gear 103d, a fifth planetary gear 103e, a sixth planetary gear 103f, a sun gear 105 and a ring gear 107.
  • the planet gears 103a, 103b, 103c, 103d, 103e, 103f each mesh with the sun gear 105 and the ring gear 107.
  • the second planetary gear 103b is opposite the first planetary gear 103a
  • the third planetary gear 103c is opposite the second planetary gear 103b
  • the fourth planetary gear 103d is opposite the third planetary gear 103c
  • the fifth planetary gear 103e is opposite the fourth planetary gear 103d
  • the sixth planetary gear 103f is opposite the fifth planetary gear 103e each arranged offset by an angle ⁇ p.
  • the first planet wheel 103a is arranged offset by an angle ⁇ ′ relative to the sixth planet wheel 103f.
  • the angle ⁇ p' differs from the angle ⁇ p.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

Die Erfindung betrifft ein Planetengetriebe (101 ) mit N Planetenrädern (103a, 103b, 103c, 103d, 103e, 103f), einem Sonnenrad (105) mit z S Zähnen und einem Hohlrad (107) mit z H Zähnen. Die Drehachsen zweier Planetenräder (103a, 103f) sind um einen Winkel von (I) bezüglich einer Mittelachse des Sonnenrads (105) zueinander versetzt angeordnet.

Description

Planetenqetriebe mit ungleich verteilten Planetenrädern
Die Erfindung betrifft ein Planetengetriebe nach dem Oberbegriff von Anspruch 1 und eine Baureihe nach dem Oberbegriff von Anspruch 2.
Eine hohe Vanantenvielfalt führt zu hohen Kosten. Ein Weg, die Vanantenvielfalt zu reduzieren, besteht in der Abdeckung verschiedene Lastfälle mit demselben Getriebe. Das Getriebe muss dabei so dimensioniert sein, dass es dem Lastfall mit den höchsten auftretenden Lasten standhält. Bei den anderen Lastfällen hat dies eine Überdimensionierung zur Folge. Obwohl die Variantenkosten sinken, steigen aufgrund der Überdimensionierung die Bauteilkosten.
Eine Lösung besteht darin, bei einem Planetengetriebe die Zahl der Planetenräder variabel zu gestalten und dem jeweiligen Lastfall anzupassen. Dies ist allerdings nur sehr begrenzt möglich, da die Anzahl der Planetenräder abhängig ist von der Zähnezahl des Sonnenrads und der Zähnezahl des Hohlrads.
Die DE 10 2015 009 070 A1 offenbart ein Planetengetriebe, dessen Planetenräder in Umfangsrichtung einer Drehachse des Sonnenrads ungleichmäßig voneinander be- abstandet sind. Dadurch wird erreicht, dass die Verzahnungen der Planetenräder zu verschiedenen Zeiten vom Einzeleingriffsgebiet zum Doppeleingriffsgebiet übergehen. Infolgedessen reduzieren sich die aus dem Übergang vom Einzeleingriffsgebiet zum Doppeleingriffsgebiet resultierenden Geräuschemissionen.
Der Erfindung liegt die Aufgabe zugrunde, die Variantenkosten von Planetengetrieben zu reduzieren. Diese Aufgabe wird gelöst durch ein Planetengetriebe nach Anspruch 1 und eine Baureihe nach Anspruch 2.
Das erfindungsgemäße Planetengetriebe weist N Planetenräder P ... PN, ein Sonnenrad und ein Hohlrad auf. Die Zahl N der Planetenräder beträgt mindestens zwei. Insbesondere kann N größer als zwei sein. Als Werte für N kommen beliebige natürliche Zahlen in Frage, beispielsweise 2, 3, 4, 5, 6, 7, 8, 9, 10 ... Das Sonnenrad ist außenverzahnt. Die Anzahl zs der Zähne einer Verzahnung des Sonnenrads ist daher positiv.
Das Hohlrad hingegen weist eine Innenverzahnung auf. Deren Zähnezahl zH wird definitionsgemäß mit einem negativen Wert angegeben.
Bei einem Planetengetriebe sind das Hohlrad und das Sonnenrad sind koaxial zueinander angeordnet, weisen also eine gemeinsame Mittel- bzw. Drehachse auf. Die Planetenräder sind drehbar in einem Planetenträger gelagert und kämmen jeweils mit dem Hohlrad und/oder dem Sonnenrad. Vorzugsweise kämmt jedes Planetenrad mit dem Hohlrad und dem Sonnenrad. Die Drehachsen der Planetenräder sind parallel zueinander ausgerichtet.
Zwei der drei Komponenten Hohlrad, Planetenträger und Sonnenrad sind drehbar gelagert. Die entsprechende Drehachsen verlaufen vorzugsweise parallel zueinander. Vorzugsweise verlaufen auch die Drehachsen der Planetenräder parallel dazu. Die dritte Komponente ist drehfest fixiert. Insbesondere können der Planetenträger und das Sonnenrad drehbar gelagert sein, während das Hohlrad drehfest fixiert ist, beispielsweise in einem Getriebegehäuse.
Der Erfindung liegt die Idee zugrunde, die übliche Gleichverteilung der Planetenräder aufzugeben, um mit baugleichen Komponenten mehr Lastfälle abdecken zu können. Dazu werden die N Planetenräder P ... PN der Reihe nach jeweils in gleichem Abstand ihrem jeweiligen Vorgänger angeordnet. Im Einzelnen werden die Planetenräder Pt, für i = 2 ...N, in jeweils gleichem Abstand cp zu dem jeweiligen Vorgänger angeordnet. Daraus ergibt sich ein abweichender Abstand cp' zwischen den Planetenrädern P und PN. Es gilt cp
Figure imgf000004_0001
cp' = cp - <5, mit einer von Null verschiedenen Abweichung <5 zwischen und <p'.
Als Maß für den Abstand zwischen einem ersten und einem zweiten Planetenrad eignet sich etwa ein Winkel, um den eine Drehachse des ersten Planetenrads und eine Drehachse des zweiten Planetenrads bezüglich der Mittel- bzw. Drehachse des Sonnenrads zueinander versetzt angeordnet sind. Dieser Winkel ist identisch mit ei- nem Torsionswinkel, auch Diederwinkel genannt, zwischen einer von der Drehachse des ersten Planetenrads und der Mittel- bzw. Drehachse des Sonnenrads aufgespannten Fläche und einer von der Drehachse des zweiten Planetenrads und der Mittel- bzw. Drehachse des Sonnenrads aufgespannten Fläche. Der Torsionswinkel entspricht einem Winkel, den zwei Strahlen einschließen, die in einem Querschnitt von der Mittel- bzw. Drehachse des Sonnenrads ausgehend durch jeweils eine Drehachse eines der beiden Planetenräder verlaufen.
Erfindungsgemäß gilt
360°
Figure imgf000005_0001
Dabei bezeichnet i0 die Standübersetzung des Planetengetriebes, d.h. i0 = — . ZS
Die Summe aller Torsionswinkel in dem Planetengetriebe beträgt 360°. Es gilt also
360° 360°
360°
Figure imgf000005_0002
Hieraus ergibt sich
360° p - -
/V
Figure imgf000005_0003
und
360°
(P' ~ — / iüV —
Figure imgf000005_0004
Eine Baureihe definiert eine Mehrzahl einzelner Vorrichtungen. Diese bilden die Baureihe. Die Baureihe ist also identisch mit einer aus den einzelnen Vorrichtungen bestehenden Anordnung. Bei den Vorrichtungen einer erfindungsgemäßen Baureihe handelt es sich um Planetengetriebe.
Die Planetengetriebe der erfindungsgemäßen Baureihe weisen baugleiche Hohlräder, baugleiche Sonnenräder und baugleiche Planetenräder auf. Die Hohlräder von jeweils zwei Planetengetrieben der Baureihe sind also baugleich. Ebenso sind die Sonnenräder von jeweils zwei Planetengetrieben der Baureihe baugleich. Baugleich sind auch jeweils zwei Planetenräder jeweils eines Planetengetriebes der Baureihe. Bevorzugt sind darüber hinaus die Planetenräder jedes Planetengetriebes untereinander baugleich. Dies bedeutet, dass jeweils zwei Planetenräder unterschiedlicher Planetengetriebes der Baureihe baugleich sind.
Zwei Mittel oder Anordnungen von Mitteln sind baugleich, wenn sie in ihren technischen Merkmalen und physikalischen Parametern - insbesondere hinsichtlich ihrer Material- und Geometrieeigenschaften - im Rahmen der auftretenden Fertigungstoleranzen übereinstimmen.
Die Planetengetriebe der erfindungsgemäßen Baureihe zeichnen sich dadurch aus, dass die Anzahlen ihrer Planetenräder mindestens teilweise unterschiedlich sind. Dies bedeutet, dass mindestens zwei Planetengetriebe der Baureihe unterschiedliche Anzahlen von Planetenrädern aufweisen.
Die Erfindung sieht vor, dass mindestens ein Planetengetriebe der Baureihe wie eingangs beschrieben erfindungsgemäß ausgebildet ist. Ein weiteres Planetengetriebe der Baureihe ist vorzugsweise konventionell ausgebildet. Ein konventionelles Planetengetriebe zeichnet sich dadurch aus, dass gilt
<5 = 0 und damit
Figure imgf000006_0001
Die erfindungsgemäße Baureihe erlaubt es, jedes in ihr enthaltene Planetengetriebe präzise an die zu erwartenden Belastungen anzupassen. Dies geschieht durch Variation der Anzahl der Planetenräder. Eine Überdimensionierung einzelner Planetengetriebe lässt sich dadurch vermeiden. Weiterhin lassen sich durch die getriebeübergreifende Verwendung baugleicher Komponenten Variantenkosten einsparen.
Ein bevorzugtes Ausführungsbeispiel der Erfindung ist in Fig. 1 dargestellt. Im Einzelnen zeigt:
Fig. 1 ein Planetengetriebe.
Das in Fig. 1 dargestellte Planetengetriebe 101 weist ein erstes Planetenrad 103a, ein zweites Planetenrad 103b, ein drittes Planetenrad 103c, ein viertes Planetenrad 103d, ein fünftes Planetenrad 103e, ein sechstes Planetenrad 103f , ein Sonnenrad 105 und ein Hohlrad 107 auf. Die Planetenräder 103a, 103b, 103c, 103d, 103e, 103f kämmen jeweils mit dem Sonnenrad 105 und dem Hohlrad 107.
Das zweite Planetenrad 103b ist gegenüber dem ersten Planetenrad 103a, das dritte Planetenrad 103c gegenüber dem zweiten Planetenrad 103b, das vierte Planetenrad 103d gegenüber dem dritten Planetenrad 103c, das fünfte Planetenrad 103e gegenüber dem vierten Planetenrad 103d und das sechste Planetenrad 103f gegenüber dem fünften Planetenrad 103e jeweils um einen Winkel <p versetzt angeordnet.
Das erste Planetenrad 103a ist gegenüber dem sechsten Planetenrad 103f um einen Winkel <p' versetzt angeordnet. Der Winkel <p' unterscheidet sich von dem Winkel <p.
Bezugszeichen Planetengetriebe a erstes Planetenrad b zweites Planetenrad c drittes Planetenrad d viertes Planetenrad e fünftes Planetenrad f sechstes Planetenrad Sonnenrad Hohlrad

Claims

Patentansprüche
1. Planetengetriebe (101 ) mit N Planetenrädern (103a, 103b, 103c, 103d, 103e,
103f), einem Sonnenrad (105) mit zs Zähnen und einem Hohlrad (107) mit zH Zähnen; dadurch gekennzeichnet, dass die Drehachsen zweier Planetenräder (103a, 103f) um einen Winkel von
Figure imgf000009_0001
bezüglich einer Mittelachse des Sonnenrads (105) zueinander versetzt angeordnet sind.
2. Baureihe von Planetengetrieben (101 ) mit baugleichen Planetenrädern (103a, 103b, 103c, 103d, 103e, 103f), deren Anzahl unterschiedlich ist, baugleichen Son- nenrädern (105) und baugleichen Hohlrädern (107); dadurch gekennzeichnet, dass die Anzahlen der Planetenräder (103a, 103b, 103c, 103d, 103e, 103f) mindestens teilweise unterschiedlich sind; wobei mindestens eins der Planetengetriebe (101 ) gemäß Anspruch 1 ausgebildet ist.
7
PCT/EP2022/080950 2021-12-07 2022-11-07 Planetengetriebe mit ungleich verteilten planetenrädern WO2023104407A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063809.1A CN118019930A (zh) 2021-12-07 2022-11-07 带有分布不均匀的行星齿轮的行星齿轮传动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021213858.6A DE102021213858A1 (de) 2021-12-07 2021-12-07 Planetengetriebe mit ungleich verteilten Planetenrädern
DE102021213858.6 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023104407A1 true WO2023104407A1 (de) 2023-06-15

Family

ID=84363757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/080950 WO2023104407A1 (de) 2021-12-07 2022-11-07 Planetengetriebe mit ungleich verteilten planetenrädern

Country Status (3)

Country Link
CN (1) CN118019930A (de)
DE (1) DE102021213858A1 (de)
WO (1) WO2023104407A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009070A1 (de) 2015-07-16 2017-01-19 Sew-Eurodrive Gmbh & Co Kg Getriebe, Baureihe von Getrieben und Verfahren zur Herstellung
DE102017203214A1 (de) * 2017-02-28 2018-08-30 Zf Friedrichshafen Ag Geräuschoptimierte Planetenstufe I
CN111022623A (zh) * 2019-10-12 2020-04-17 重庆大学 一种具有柔性浮动和均载作用的行星架结构
DE102019123326A1 (de) * 2019-08-30 2021-03-04 Oechsler Ag Planetengetriebe mit unterschiedlich beabstandeten Planetenrädern

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1644222A (en) 1923-01-08 1927-10-04 Baker Reduction Gear Company Planetary reduction gear
ITVI20020046A1 (it) 2002-03-18 2003-09-18 Fitem Srl Ruotismo epicicloidale e metodo grafico per la determinazione dei centri di rotazione dei planetari di detto ruotismo epicicloidale
US7828687B2 (en) 2006-10-25 2010-11-09 Remy Technologies, L.L.C. Modular planetary gear assembly and drive
DE102009002788A1 (de) 2009-05-04 2010-11-11 Zf Friedrichshafen Ag Planetengetriebe
CN101890637B (zh) 2009-05-20 2013-11-13 安徽聚隆传动科技股份有限公司 一种行星齿轮传动的装配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009070A1 (de) 2015-07-16 2017-01-19 Sew-Eurodrive Gmbh & Co Kg Getriebe, Baureihe von Getrieben und Verfahren zur Herstellung
DE102017203214A1 (de) * 2017-02-28 2018-08-30 Zf Friedrichshafen Ag Geräuschoptimierte Planetenstufe I
DE102019123326A1 (de) * 2019-08-30 2021-03-04 Oechsler Ag Planetengetriebe mit unterschiedlich beabstandeten Planetenrädern
CN111022623A (zh) * 2019-10-12 2020-04-17 重庆大学 一种具有柔性浮动和均载作用的行星架结构

Also Published As

Publication number Publication date
CN118019930A (zh) 2024-05-10
DE102021213858A1 (de) 2023-06-07

Similar Documents

Publication Publication Date Title
DE102009032286B4 (de) Stirnraddifferenzial mit positiver und negativer Profilverschiebung an den Sonnenrädern
EP2452099B1 (de) Stirnraddifferenzial
DE2843459A1 (de) Stirnrad-planetengetriebe mit lastausgleich
DE102017120336B3 (de) Doppeltgestuftes Planetengetriebe mit zweigeteiltem Hauptplanetenrad und stirnraddifferenzialgetriebeenthaltende Getriebekombination
DE102018128836B3 (de) Getriebevorrichtung für ein Kraftfahrzeug
DE4023332C2 (de)
DE102016208033A1 (de) Justierung der Winkellage der Stufenräder eines Stufenplaneten
EP3230627A1 (de) Stufenplanet
DE2940323C2 (de) Doppelschrägverzahntes, zweistufiges Stirnrädergetriebe
DE2935376C2 (de) Zahnradgetriebe für den Endantrieb schwerer Kraftfahrzeuge.
EP3810959A1 (de) Getriebebaureihe
WO2023104407A1 (de) Planetengetriebe mit ungleich verteilten planetenrädern
DE102018128837A1 (de) Getriebevorrichtung für ein Kraftfahrzeug
WO2011098182A1 (de) Planetengetriebe und verwendung desselben
DE102014222771A1 (de) Zahnrad sowie Zahnradpaarung mit dem Zahnrad
DE3508767C2 (de)
DE1530895B1 (de) Selbstsperrendes Ausgleichgetriebe fur Fahrzeuge, insbesondere für Kraftfahrzeuge
DE202006010877U1 (de) Zahnradgetriebe für Verstellantriebe in Kraftfahrzeugen
EP0694712B1 (de) Hohlrad für Planeten-Zahnradgetriebe
DE102014215700A1 (de) Elektromechanischen Aktuator für einen Wankstabilisator
DE102013222638A1 (de) Differenzialanordnung
DE102012215775A1 (de) Stellgetriebe
DE102018127721B4 (de) Getriebevorrichtung für ein Kraftfahrzeug
DE102017203214A1 (de) Geräuschoptimierte Planetenstufe I
DE102016216269A1 (de) Differenzialgetriebe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22813555

Country of ref document: EP

Kind code of ref document: A1