WO2023103422A1 - 用于调节培养箱内气体浓度的方法及装置、培养箱 - Google Patents

用于调节培养箱内气体浓度的方法及装置、培养箱 Download PDF

Info

Publication number
WO2023103422A1
WO2023103422A1 PCT/CN2022/109744 CN2022109744W WO2023103422A1 WO 2023103422 A1 WO2023103422 A1 WO 2023103422A1 CN 2022109744 W CN2022109744 W CN 2022109744W WO 2023103422 A1 WO2023103422 A1 WO 2023103422A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
incubator
solenoid valve
gas leakage
carbon dioxide
Prior art date
Application number
PCT/CN2022/109744
Other languages
English (en)
French (fr)
Inventor
陈欢
徐志宏
胡伟
段泽鹏
王潘飞
鞠焕文
陈海涛
Original Assignee
青岛海尔生物医疗科技有限公司
青岛海尔生物医疗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔生物医疗科技有限公司, 青岛海尔生物医疗股份有限公司 filed Critical 青岛海尔生物医疗科技有限公司
Publication of WO2023103422A1 publication Critical patent/WO2023103422A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Definitions

  • the present application relates to the field of biomedical technology, for example, to a method and device for adjusting gas concentration in an incubator, and an incubator.
  • the carbon dioxide incubator is a device for culturing cells/tissues in vitro by simulating the growth environment of cells/tissues in the body of the incubator. Instruments are the key equipment necessary for the development of immunology, oncology, genetics and bioengineering. The carbon dioxide incubator needs to precisely adjust the concentration of carbon dioxide in the box for cultivating human tissues and cells.
  • the carbon dioxide incubator is controlled by a PID (Proportion, Integration, Differentiation) algorithm to adjust the carbon dioxide concentration in the chamber.
  • PID Proportion, Integration, Differentiation
  • Embodiments of the present disclosure provide a method and device for adjusting the gas concentration in the incubator, and the incubator, so as to reduce the influence of the sealing of the box on the adjustment of the carbon dioxide concentration and improve the accuracy of the adjustment of the carbon dioxide concentration.
  • the incubator includes a pipeline for delivering carbon dioxide into the incubator and a gas solenoid valve that controls the on-off of the pipeline, and delivers carbon dioxide to the incubator when the gas solenoid valve is turned on;
  • the method includes: using a PID control algorithm to calculate the conduction time of the gas solenoid valve; using the set gas leakage compensation value to compensate the conduction time; controlling the conduction of the gas solenoid valve according to the compensated conduction time, so as to maintain The carbon dioxide leaked in the tank is compensated.
  • the device includes: a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned method for adjusting the gas concentration in the incubator when executing the above-mentioned program instructions.
  • the carbon dioxide incubator includes: a pipeline for delivering carbon dioxide into the incubator and a gas solenoid valve for controlling the on-off of the pipeline, and when the gas solenoid valve is turned on, carbon dioxide is delivered to the incubator ; and the above-mentioned device for adjusting the gas concentration in the incubator.
  • the incubator adopts the PID control algorithm to obtain the conduction time of the gas solenoid valve, and compensates the conduction time through the set gas leakage compensation value to control the conduction of the gas solenoid valve, so as to realize the leakage of carbon dioxide in the incubator. Make compensation.
  • the influence of the airtightness of the box on the adjustment of the carbon dioxide concentration by the PID control algorithm is fully considered.
  • the incubator controls the conduction of the gas solenoid valve according to the compensated conduction time, which can reduce the influence of the sealing of the box on the adjustment of the carbon dioxide concentration and improve the accuracy of the adjustment of the carbon dioxide concentration.
  • FIG. 1 is a schematic diagram of a method for adjusting gas concentration in an incubator provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of another method for adjusting the gas concentration in the incubator provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of another method for adjusting the gas concentration in the incubator provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of another method for adjusting the gas concentration in the incubator provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of another method for adjusting the gas concentration in the incubator provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of a device for adjusting gas concentration in an incubator provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • correspondence may refer to an association relationship or a binding relationship, and the correspondence between A and B means that there is an association relationship or a binding relationship between A and B.
  • the embodiment of the present disclosure discloses an incubator, which includes a pipeline for delivering carbon dioxide into the incubator and a gas solenoid valve for controlling the on-off of the pipeline, and delivers carbon dioxide into the incubator when the gas solenoid valve is turned on.
  • an embodiment of the present disclosure provides a method for adjusting the gas concentration in the incubator, including:
  • the incubator uses the PID control algorithm to calculate the conduction time of the gas solenoid valve.
  • the incubator uses the set gas leakage compensation value to compensate the conduction time.
  • the incubator controls the conduction of the gas solenoid valve according to the compensated conduction time, so as to compensate the carbon dioxide leaked in the incubator.
  • the airtightness of the incubator cannot be 100% sealed, and carbon dioxide gas in the box usually occurs slowly. Leakage, resulting in a decrease in the concentration of carbon dioxide in the tank.
  • the PID control algorithm when the carbon dioxide concentration in the chamber is adjusted through the PID control algorithm, due to the leakage of carbon dioxide, the PID control algorithm generates an error in calculation, so that the output result does not match the actual situation of the incubator. Therefore, the incubator adopts the PID control algorithm to obtain the conduction time, and through the compensation of the conduction time, to control the on-off of the gas solenoid valve, so as to realize the compensation for the carbon dioxide leakage in the incubator.
  • the incubator controls the start and stop of the gas solenoid valve according to the compensated conduction time, which can reduce the influence of the sealing of the box on the adjustment of the carbon dioxide concentration and improve the accuracy of the adjustment of the carbon dioxide concentration.
  • the gas leakage compensation value can be obtained in the following manner: the incubator acquires the calculation period of the PID control algorithm and the duty cycle of the gas solenoid valve; the incubator calculates the ratio of the duty cycle to the calculation period; the incubator calculates the ratio Multiplied by the minimum accuracy of the PID output; determine the product as the gas leak compensation value.
  • the minimum precision of the PID output is the minimum value of the open time of the gas solenoid valve output by the PID control algorithm within the working cycle.
  • the calculation period and the work period are used to determine the compensation time, fully considering the influence of the airtightness of the box on the adjustment of the carbon dioxide concentration by the PID control algorithm.
  • the incubator controls the start and stop of the gas solenoid valve according to the compensated conduction time, which can reduce the influence of the sealing of the box on the adjustment of the carbon dioxide concentration and improve the accuracy of the adjustment of the carbon dioxide concentration.
  • an embodiment of the present disclosure provides a method for adjusting the gas concentration in the incubator, including:
  • the incubator uses the PID control algorithm to calculate the conduction time of the gas solenoid valve.
  • the incubator obtains the gas leakage rate of the box, and sets a gas leakage compensation value according to the gas leakage rate.
  • the incubator uses the set gas leakage compensation value to compensate the conduction time.
  • the incubator controls the conduction of the gas solenoid valve according to the compensated conduction time, so as to compensate the carbon dioxide leaked in the incubator.
  • the incubator can determine the gas leakage compensation value according to the gas leakage rate, and then use the gas leakage compensation value to compensate the conduction time calculated by the PID control algorithm.
  • the influence of the sealing of the box on the adjustment of the carbon dioxide concentration by the PID control algorithm is fully considered, and the accuracy of the adjustment of the PID control algorithm to the carbon dioxide concentration is improved.
  • an embodiment of the present disclosure provides a method for adjusting the gas concentration in the incubator, including:
  • the incubator uses the PID control algorithm to calculate the conduction time of the gas solenoid valve.
  • the incubator uses the compensation value set by the user as the gas leakage compensation value.
  • the incubator uses the set gas leakage compensation value to compensate the conduction time.
  • the incubator controls the conduction of the gas solenoid valve according to the compensated conduction time, so as to compensate the carbon dioxide leaked in the incubator.
  • the incubator can compensate the conduction time calculated by the PID control algorithm through any set compensation value, and according to the compensated carbon dioxide concentration
  • the curve determines a gas leakage compensation value adapted to the actual situation, for example, the set compensation value can be the calculation cycle of the PID control algorithm.
  • the incubator then compensates the conduction time calculated by the PID control algorithm through the gas leakage compensation value, which fully considers the influence of the sealing of the box on the adjustment of the carbon dioxide concentration by the PID control algorithm, and improves the accuracy of the PID control algorithm for the adjustment of the carbon dioxide concentration. sex.
  • an embodiment of the present disclosure provides a method for adjusting the gas concentration in the incubator, including:
  • the incubator uses the PID control algorithm to calculate the conduction time of the gas solenoid valve.
  • the incubator sets a gas leakage compensation value according to the gas leakage rate.
  • the incubator uses the set gas leakage compensation value to compensate the conduction time.
  • the incubator controls the conduction of the gas solenoid valve according to the compensated conduction time, so as to compensate the carbon dioxide leaked in the incubator.
  • v is the gas leakage rate
  • ⁇ c is the concentration percentage of gas leakage within Tg time
  • V1 is the volume of the box
  • Tg is the gas leakage time.
  • the incubator can calculate the gas leakage rate according to the gas concentration difference within the leakage time. For example, a gas with a set concentration, such as 15% carbon dioxide, is introduced into the chamber of the incubator. Then close the intake valve, after the set time, detect the remaining concentration of the gas, so that the difference between the set concentration and the remaining concentration is the concentration percentage of the gas leakage within the set time, multiply the above concentration percentage by The gas leakage rate is obtained by dividing the volume V1 of the box by the above-mentioned set time, wherein the leak time is the above-mentioned set time. Further, the gas leakage compensation value is determined according to the gas leakage rate. The influence of the sealing of the box on the adjustment of the carbon dioxide concentration by the PID control algorithm is fully considered, and the accuracy of the adjustment of the PID control algorithm to the carbon dioxide concentration is improved.
  • a gas with a set concentration such as 15% carbon dioxide
  • the incubator sets the gas leakage compensation value according to the gas leakage rate, including: the incubator obtains the working cycle set by the gas solenoid valve, and determines the leaked gas volume in the working cycle according to the gas leakage rate and the working cycle; The box sets the gas leakage compensation value according to the gas volume leaked in the working cycle.
  • the incubator can obtain the gas volume leaked in the box within the working cycle. Therefore, the gas leakage compensation value in the basic working cycle is calculated according to the gas volume.
  • the incubator obtains the volume of gas leaked in the working cycle according to the gas leakage rate, it can be divided by the flow rate of the gas solenoid valve to obtain an opening time of the gas solenoid valve, and the result is the gas leakage compensation value.
  • the PID control algorithm is compensated by the above-mentioned gas leakage compensation value, fully considering the influence of the sealing of the box on the adjustment of the carbon dioxide concentration by the PID control algorithm, and improving the accuracy of the PID control algorithm for adjusting the carbon dioxide concentration.
  • an embodiment of the present disclosure provides a method for adjusting the gas concentration in the incubator, including:
  • the incubator uses the PID control algorithm to calculate the conduction time of the gas solenoid valve.
  • the incubator calculates the sum of the gas leakage compensation value and the conduction time, and determines the sum as the compensated conduction time.
  • the incubator controls the conduction of the gas solenoid valve according to the compensated conduction time, so as to compensate the carbon dioxide leaked in the incubator.
  • the incubator can determine the gas leakage rate of the box according to the gas leakage rate, and then determine the gas leakage compensation value according to the gas leakage rate and the flow rate of the gas solenoid valve.
  • the influence of the sealing of the box on the adjustment of the carbon dioxide concentration by the PID control algorithm is fully considered, and the accuracy of the adjustment of the PID control algorithm to the carbon dioxide concentration is improved.
  • the current concentration value is the concentration of carbon dioxide in the tank at the time point when the PID control algorithm calculates in the current calculation period.
  • the error value of the current calculation cycle is: the set concentration value minus the current concentration value.
  • the error value of the last calculation period is: the set concentration value minus the concentration value of carbon dioxide in the tank at the time point when the PID control algorithm of the last calculation period performs calculation.
  • the PID control algorithm removes the integral term in the above steps, because the function of the integral term of the PID control algorithm is to eliminate the steady-state error of the system, and because the gas diffuses faster, the response of the system is also faster, so in a short time, the PID
  • the integral term of the control algorithm has no effect and can be ignored. Therefore, when adjusting the carbon dioxide concentration through the PID control algorithm, the integral term is removed to reduce the calculation pressure of the system.
  • the incubator determines the proportional term and differential term of the PID control algorithm according to the current concentration value and the set concentration value of carbon dioxide in the chamber. The integral term of the traditional PID control algorithm is ignored, which reduces the system pressure.
  • the incubator calculates the sum of the proportional term, the differential term and the gas leakage compensation value, and determines the above sum as the on-time.
  • the PID control algorithm is compensated by the above-mentioned gas leakage compensation value, fully considering the influence of the sealing of the box on the adjustment of the carbon dioxide concentration by the PID control algorithm, and improving the accuracy of the PID control algorithm for adjusting the carbon dioxide concentration.
  • the incubator controls the conduction of the gas solenoid valve according to the compensated conduction period, so as to compensate the carbon dioxide leaked in the incubator, including: the incubator determines the conduction period as the working period of the gas solenoid valve; During the working cycle of the gas solenoid valve, the gas solenoid valve is controlled to run according to the compensated conduction time.
  • the conduction time of the PID control algorithm is the open time of the gas solenoid valve in the current working cycle.
  • the incubator determines the conduction time as the working time of the gas solenoid valve, and controls the working time of the gas solenoid valve within the working cycle of the gas solenoid valve.
  • the PID control algorithm is compensated by the above-mentioned gas leakage compensation value, fully considering the influence of the sealing of the box on the adjustment of the carbon dioxide concentration by the PID control algorithm.
  • the opening time of the gas solenoid valve in the current working cycle is adapted to the actual concentration of carbon dioxide in the box and the tightness of the box, and the accuracy of the PID control algorithm for adjusting the carbon dioxide concentration is improved.
  • the calculation cycle of the PID control algorithm of the incubator is much shorter than the duty cycle of the gas solenoid valve.
  • the conduction time calculated by the latest PID control algorithm is obtained, and according to the conduction time, the gas solenoid valve is controlled to run according to the compensated conduction time in the current work cycle.
  • an embodiment of the present disclosure provides a device for adjusting gas concentration in an incubator, including a processor (processor) 100 and a memory (memory) 101 .
  • the device may also include a communication interface (Communication Interface) 102 and a bus 103.
  • Communication interface 102 may be used for information transfer.
  • the processor 100 can call the logic instructions in the memory 101 to execute the method for adjusting the gas concentration in the incubator of the above-mentioned embodiment.
  • the above logic instructions in the memory 101 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes the program instructions/modules stored in the memory 101 to execute functional applications and data processing, that is, to realize the method for adjusting the gas concentration in the incubator in the above-mentioned embodiments.
  • the memory 101 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides an incubator, including a pipeline for delivering carbon dioxide into the incubator and a gas solenoid valve that controls the on-off of the pipeline, and delivers carbon dioxide to the incubator when the gas solenoid valve is turned on; And the above-mentioned device for adjusting the gas concentration in the incubator.
  • An embodiment of the present disclosure provides a storage medium storing computer-executable instructions, the computer-executable instructions being configured to execute the above-mentioned method for adjusting gas concentration in an incubator.
  • the above-mentioned storage medium may be a transient storage medium or a non-transitory storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Abstract

一种用于调节培养箱内气体浓度的方法,包括:采用PID控制算法计算气体电磁阀的导通时长;利用设定的气体泄露补偿值对导通时长进行补偿;根据补偿后的导通时长控制气体电磁阀的导通,以对培养箱内泄漏的二氧化碳进行补偿。

Description

用于调节培养箱内气体浓度的方法及装置、培养箱
本申请基于申请号为202111486895.0、申请日为2021年12月7日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及生物医疗技术领域,例如涉及一种用于调节培养箱内气体浓度的方法及装置、培养箱。
背景技术
目前,二氧化碳培养箱是通过在培养箱箱体内模拟形成一个类似细胞/组织在生物体内的生长环境,来对细胞/组织进行体外培养的一种装置,是细胞、组织、细菌培养的一种先进仪器,是开展免疫学、肿瘤学、遗传学及生物工程所必须的关键设备。二氧化碳培养箱需要因此,需要精确调节箱体内的二氧化碳的浓度,用于培养人体的组织和细胞。
现有技术通过PID(Proportion,Integration,Differentiation比例-积分-微分)的算法控制二氧化碳培养箱调节箱体内的二氧化碳浓度。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
由于工艺水平限制,二氧化碳培养箱的箱体的密封性无法做到百分百的密封,箱体内二氧化碳气体会发生泄露,导致箱体内的二氧化碳浓度下降。这样通过PID控制算法调节箱体内的二氧化碳浓度时,会受到箱体的密封性影响而产生误差,导致对二氧化碳浓度的调节不够精确。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于调节培养箱内气体浓度的方法及装置、培养箱,以减少箱体的密封性对二氧化碳浓度调节的影响,提高对二氧化碳浓度调节的精确性。
在一些实施例中,所述培养箱包括用于向培养箱内输送二氧化碳的管路和控制管路通断的气体电磁阀,在气体电磁阀导通的情况下向培养箱内输送二氧化碳;所述方法包括:采用PID控制算法计算气体电磁阀的导通时长;利用设定的气体泄露补偿值对导通时长进行补偿;根据补偿后的导通时长控制气体电磁阀的导通,以对培养箱内泄漏的二氧化碳进行补偿。
在一些实施例中,所述装置包括:处理器和存储有程序指令的存储器,上述处理器被配置为在执行上述程序指令时,执行上述的用于调节培养箱内气体浓度的方法。
在一些实施例中,所述二氧化碳培养箱包括:用于向培养箱内输送二氧化碳的管路和控制管路通断的气体电磁阀,在气体电磁阀导通的情况下向培养箱内输送二氧化碳;以及上述的用于调节培养箱内气体浓度的装置。
本公开实施例提供的用于调节培养箱内气体浓度的方法及装置、二氧化碳培养箱,可以实现以下技术效果:
培养箱采用PID控制算法,获得气体电磁阀的导通时长,并通过设定的气体泄露补偿值对导通时长进行补偿,以控制气体电磁阀的导通,从而实现对培养箱内泄漏的二氧化碳进行补偿。充分考虑了箱体的密封性对PID控制算法调节二氧化碳浓度的影响。培养箱根据补偿后的导通时长控制气体电磁阀的导通,能够减少箱体的密封性对二氧化碳浓度调节的影响,提高了二氧化碳浓度调节的准确性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于调节培养箱内气体浓度的方法的示意图;
图2是本公开实施例提供的另一个用于调节培养箱内气体浓度的方法的示意图;
图3是本公开实施例提供的另一个用于调节培养箱内气体浓度的方法的示意图;
图4是本公开实施例提供的另一个用于调节培养箱内气体浓度的方法的示意图;
图5是本公开实施例提供的另一个用于调节培养箱内气体浓度的方法的示意图;
图6是本公开实施例提供的一个用于调节培养箱内气体浓度的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
本公开实施例公开了一种培养箱,包括用于向培养箱内输送二氧化碳的管路和控制管路通断的气体电磁阀,在气体电磁阀导通的情况下向培养箱内输送二氧化碳。
基于上述的培养箱的结构,结合图1所示,本公开实施例提供一种用于调节培养箱内气体浓度的方法,包括:
S01,培养箱采用PID控制算法计算气体电磁阀的导通时长。
S02,培养箱利用设定的气体泄露补偿值对导通时长进行补偿。
S03,培养箱根据补偿后的导通时长控制气体电磁阀的导通,以对培养箱内泄漏的二氧化碳进行补偿。
采用本公开实施例提供的用于调节培养箱内气体浓度的方法,由于工艺水平限制,培养箱的箱体的密封性无法做到百分百的密封,箱体内二氧化碳气体会发生通常会发生缓慢的泄露,导致箱体内的二氧化碳浓度下降。这样,通过PID控制算法调节箱体内的二氧化碳浓度时,由于二氧化碳的泄露,导致PID控制算法在计算时产生误差,从而输出结果与培养箱的实际情况不匹配。因此,培养箱采用PID控制算法,获得导通时长,并通过对导通时长进行补偿,以控制气体电磁阀的通断,从而实现对培养箱内泄漏的二 氧化碳进行补偿。充分考虑了箱体的密封性对PID控制算法调节二氧化碳浓度的影响。培养箱根据补偿后的导通时长控制气体电磁阀的启停,能够减少箱体的密封性对二氧化碳浓度调节的影响,提高了二氧化碳浓度调节的准确性。可选地,气体泄露补偿值可以根据如下方式获得:培养箱获取PID控制算法的计算周期和气体电磁阀的工作周期;培养箱计算所述工作周期和所述计算周期的比值;培养箱计算比值与PID输出的最小精度的乘积;将乘积确定为气体泄露补偿值。其中,PID输出的最小精度为PID控制算法输出的气体电磁阀在工作周期内开启的时长的最小值。
这样,利用计算周期和工作周期确定补偿时长,充分考虑了箱体的密封性对PID控制算法调节二氧化碳浓度的影响。培养箱根据补偿后的导通时长控制气体电磁阀的启停,能够减少箱体的密封性对二氧化碳浓度调节的影响,提高了二氧化碳浓度调节的准确性。
结合图2所示,本公开实施例提供一种用于调节培养箱内气体浓度的方法,包括:
S01,培养箱采用PID控制算法计算气体电磁阀的导通时长。
S21,培养箱获取箱体的气体泄露速率,并根据气体泄露速率设定气体泄露补偿值。
S02,培养箱利用设定的气体泄露补偿值对导通时长进行补偿。
S03,培养箱根据补偿后的导通时长控制气体电磁阀的导通,以对培养箱内泄漏的二氧化碳进行补偿。
采用本公开实施例提供的用于调节培养箱内气体浓度的方法,培养箱能够根据气体泄露速率确定气体泄露补偿值,进而通过气体泄露补偿值对PID控制算法计算出的导通时长进行补偿,充分考虑了箱体的密封性对PID控制算法调节二氧化碳浓度的影响,提高了PID控制算法对二氧化碳浓度调节的准确性。
结合图3所示,本公开实施例提供一种用于调节培养箱内气体浓度的方法,包括:
S01,培养箱采用PID控制算法计算气体电磁阀的导通时长。
S31,培养箱根据用户设定的补偿值作为气体泄漏补偿值。
S02,培养箱利用设定的气体泄露补偿值对导通时长进行补偿。
S03,培养箱根据补偿后的导通时长控制气体电磁阀的导通,以对培养箱内泄漏的二氧化碳进行补偿。
采用本公开实施例提供的用于调节培养箱内气体浓度的方法,培养箱能够通过任意的设定补偿值对PID控制算法计算出的的导通时长进行补偿,并根据补偿后的二氧化碳的浓度曲线确定一个与实际情况相适应的气体泄露补偿值,例如,设定补偿值可以为PID 控制算法的计算周期。培养箱进而通过气体泄露补偿值对PID控制算法计算出的导通时长进行补偿,充分考虑了箱体的密封性对PID控制算法调节二氧化碳浓度的影响,提高了PID控制算法对二氧化碳浓度调节的准确性。
结合图4所示,本公开实施例提供一种用于调节培养箱内气体浓度的方法,包括:
S01,培养箱采用PID控制算法计算气体电磁阀的导通时长。
S41,培养箱计算v=Δc×V1/Tg。
S42,培养箱根据气体泄露速率设定气体泄露补偿值。
S02,培养箱利用设定的气体泄露补偿值对导通时长进行补偿。
S03,培养箱根据补偿后的导通时长控制气体电磁阀的导通,以对培养箱内泄漏的二氧化碳进行补偿。
其中,v为气体泄露速率,Δc为Tg时间内的气体泄漏的浓度百分比,V1为箱体的容积,Tg为气体的泄露时间。
采用本公开实施例提供的用于调节培养箱内气体浓度的方法,培养箱能够根据泄露时间内气体的浓度差值计算出气体泄露速率。例如,在培养箱的箱体内通入设定浓度的气体,例如15%浓度的二氧化碳。接着关闭进气阀,在经过设定时间后,检测气体的剩余浓度,这样,设定浓度与剩余浓度的差值即为设定时间内的气体泄漏的浓度百分比,将上述的浓度百分比乘以箱体的体积V1再除以上述的设定时间即为气体泄露速率,其中,泄露时间即为上述的设定时间。进而根据气体泄漏速率确定气体泄露补偿值。充分考虑了箱体的密封性对PID控制算法调节二氧化碳浓度的影响,提高了PID控制算法对二氧化碳浓度调节的准确性。
可选地,培养箱根据气体泄露速率设定气体泄露补偿值,包括:培养箱获取气体电磁阀设定的工作周期,并根据气体泄露速率和工作周期,确定工作周期内泄露的气体体积;培养箱根据工作周期内泄露的气体体积设定气体泄露补偿值。
这样,培养箱根据单位时间的箱体的气体泄漏速率和气体电磁阀的设定的工作周期,即可得到工作周期内箱体内泄露的气体体积。从而根据气体体积计算基础工作周期内的气体泄露补偿值。
可选地,培养箱根据气体泄露速率和工作周期,确定工作周期内泄露的气体体积,包括:培养箱计算V2=v×T1;其中,T1为气体电磁阀设定的工作周期,V2为工作周期内泄露的气体体积。这样,即可根据工作周期内泄露的气体体积计算工作周期内的气体泄露补偿值。可选地,培养箱根据工作周期内泄露的气体体积设定气体泄露补偿值,包 括:培养箱计算T2=V2/Flow;其中,T2为气体泄露补偿值,Flow为气体电磁阀的流速。
这样,培养箱在根据气体泄露速率得到工作周期内泄露的气体体积后,除以气体电磁阀的流速即可得到一个气体电磁阀的开启时间,结果即为气体泄露补偿值。通过上述的气体泄露补偿值对PID控制算法进行补偿,充分考虑了箱体的密封性对PID控制算法调节二氧化碳浓度的影响,提高了PID控制算法对二氧化碳浓度调节的准确性。
结合图5所示,本公开实施例提供一种用于调节培养箱内气体浓度的方法,包括:
S01,培养箱采用PID控制算法计算气体电磁阀的导通时长。
S51,培养箱计算气体泄漏补偿值与导通时长的和值,并将和值确定为补偿后的导通时长。
S03,培养箱根据补偿后的导通时长控制气体电磁阀的导通,以对培养箱内泄漏的二氧化碳进行补偿。
采用本公开实施例提供的用于调节培养箱内气体浓度的方法,培养箱能够根据气体泄露率确定箱体的气体泄露速率,进而根据气体泄漏速率和气体电磁阀的流量确定气体泄露补偿值。充分考虑了箱体的密封性对PID控制算法调节二氧化碳浓度的影响,提高了PID控制算法对二氧化碳浓度调节的准确性。
可选地,培养箱采用PID控制算法计算气体电磁阀的导通时长,包括:培养箱计算E k=Set-Cur,delta=E k-E k-1,Pout=P×E k,Dout=D×delta,T2=Pout+Dout;其中,E k为当前计算周期的误差值,Set为设定浓度值,Cur为当前浓度值,delta为误差的变化率,E k-1为上一计算周期的误差值,Pout为比例项,P为比例系数,Dout为微分项,D为微分系数,T2为导通时长。
其中,当前浓度值为PID控制算法在当前计算周期的进行计算的时间点的箱体内的二氧化碳的浓度。当前计算周期的误差值为:设定浓度值减去当前浓度值。上一计算周期的误差值为:设定浓度值减去上一计算周期的PID控制算法进行计算的时间点的箱体内的二氧化碳的浓度值。
这样,上述步骤中PID控制算法去掉了积分项,是因为PID控制算法的积分项的作用是消除系统稳态误差,而由于气体扩散的较快,系统的响应也快,所以在短时间内PID控制算法的积分项是不起作用的,可以忽略。所以在通过PID控制算法对二氧化碳浓度调节的时候去掉了积分项,以减轻系统的计算压力。培养箱根据箱体内二氧化碳的当前浓度值和设定浓度值,确定PID控制算法的比例项和微分项。忽略了传统PID控制算法的积分项,减轻了系统压力。培养箱计算比例项、微分项和气体泄露补偿值的和值,并 将上述的和值确定为导通时长。通过上述的气体泄露补偿值对PID控制算法进行补偿,充分考虑了箱体的密封性对PID控制算法调节二氧化碳浓度的影响,提高了PID控制算法对二氧化碳浓度调节的准确性。
可选地,培养箱根据补偿后的导通时长控制气体电磁阀的导通,以对培养箱内泄漏的二氧化碳进行补偿,包括:培养箱将导通时长确定为气体电磁阀的工作时长;培养箱在气体电磁阀的工作周期内,控制气体电磁阀按照补偿后的导通时长运行。
这样,由于培养箱在对二氧化碳进行浓度调节时的执行器为气体电磁阀,因此PID控制算法的导通时长为气体电磁阀在当前工作周期内的开启时长。培养箱将导通时长确定为气体电磁阀的工作时长,并在气体电磁阀的工作周期内,控制气体电磁阀运行工作时长。通过上述的气体泄露补偿值对PID控制算法进行补偿,充分考虑了箱体的密封性对PID控制算法调节二氧化碳浓度的影响。使气体电磁阀在当前工作周期内的开启时长与箱体内的二氧化碳的实际浓度与箱体密封性相适应,提高了PID控制算法对二氧化碳浓度调节的准确性。在实际使用过程中,培养箱的PID控制算法的计算周期远小于气体电磁阀的工作周期。在工作周期内,气体电磁阀开启前,获取最近一次PID控制算法计算的导通时长,并根据该导通时长控制气体电磁阀在当前工作周期内的按照补偿后的导通时长运行。
结合图6所示,本公开实施例提供一种用于调节培养箱内气体浓度的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于调节培养箱内气体浓度的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于调节培养箱内气体浓度的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据 等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种培养箱,包含用于向培养箱内输送二氧化碳的管路和控制管路通断的气体电磁阀,在气体电磁阀导通的情况下向培养箱内输送二氧化碳;以及上述的用于调节培养箱内气体浓度的装置。
本公开实施例提供了一种存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于调节培养箱内气体浓度的方法。
上述的存储介质可以是暂态存储介质,也可以是非暂态存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算 法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于调节培养箱内气体浓度的方法,所述培养箱包括用于向培养箱内输送二氧化碳的管路和控制所述管路通断的气体电磁阀,在所述气体电磁阀导通的情况下向培养箱内输送二氧化碳,其特征在于,所述方法包括:
    采用比例-积分-微分PID控制算法计算所述气体电磁阀的导通时长;
    利用设定的气体泄露补偿值对所述导通时长进行补偿;
    根据补偿后的导通时长控制所述气体电磁阀的导通,以对所述培养箱内泄漏的二氧化碳进行补偿。
  2. 根据权利要求1所述的方法,其特征在于,按下述方式设定气体泄漏补偿值:
    获取箱体的气体泄露速率,并根据所述气体泄露速率设定所述气体泄露补偿值;或者,
    根据用户设定的补偿值作为所述气体泄漏补偿值。
  3. 根据权利要求2所述的方法,其特征在于,所述获取箱体的气体泄露速率,包括:
    计算v=Δc×V1/Tg;
    其中,v为所述气体泄露速率,Δc为Tg时间内的气体泄漏的浓度百分比,V1为箱体的容积,Tg为气体的泄露时间。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述气体泄露速率设定所述气体泄露补偿值,包括:
    获取所述气体电磁阀设定的工作周期,并根据所述气体泄露速率和所述工作周期,确定所述工作周期内泄露的气体体积;
    根据所述工作周期内泄露的气体体积设定所述气体泄露补偿值。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述气体泄露速率和所述工作周期,确定所述工作周期内泄露的气体体积,包括:
    计算V2=v×T1;
    其中,T1为所述气体电磁阀设定的工作周期,V2为所述工作周期内泄露的气体体积。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述工作周期内泄露的气体体积设定所述气体泄露补偿值,包括:
    计算T2=V2/Flow;
    其中,T2为所述气体泄露补偿值,Flow为所述气体电磁阀的流速。
  7. 根据权利要求1所述的方法,其特征在于,所述利用设定的气体泄露补偿值对所述导通时长进行补偿,包括:
    计算所述气体泄漏补偿值与所述导通时长的和值,并将所述和值确定为所述补偿后的导通时长。
  8. 根据权利要求1至6任一项所述的方法,其特征在于,所述根据补偿后的导通时长控制所述气体电磁阀的导通,以对所述培养箱内泄漏的二氧化碳进行补偿,包括:
    将所述补偿后的导通时长确定为所述气体电磁阀的工作时长;
    在所述气体电磁阀的工作周期内,控制所述气体电磁阀按照所述补偿后的导通时长运行。
  9. 一种用于调节培养箱内气体浓度的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至8任一项所述的用于调节培养箱内气体浓度的方法。
  10. 一种二氧化碳培养箱,所述培养箱包括用于向培养箱内输送二氧化碳的管路和控制所述管路通断的气体电磁阀,在所述气体电磁阀导通的情况下向培养箱内输送二氧化碳,其特征在于,还包括如权利要求9所述的用于调节培养箱内气体浓度的装置。
PCT/CN2022/109744 2021-12-07 2022-08-02 用于调节培养箱内气体浓度的方法及装置、培养箱 WO2023103422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111486895.0 2021-12-07
CN202111486895.0A CN114317239A (zh) 2021-12-07 2021-12-07 用于调节培养箱内气体浓度的方法及装置、培养箱

Publications (1)

Publication Number Publication Date
WO2023103422A1 true WO2023103422A1 (zh) 2023-06-15

Family

ID=81048911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109744 WO2023103422A1 (zh) 2021-12-07 2022-08-02 用于调节培养箱内气体浓度的方法及装置、培养箱

Country Status (2)

Country Link
CN (1) CN114317239A (zh)
WO (1) WO2023103422A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114317239A (zh) * 2021-12-07 2022-04-12 青岛海尔生物医疗科技有限公司 用于调节培养箱内气体浓度的方法及装置、培养箱
CN114717364A (zh) * 2022-04-18 2022-07-08 青岛海尔生物医疗科技有限公司 用于三气培养箱控制的方法及装置、三气培养箱

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418131A (en) * 1994-04-13 1995-05-23 General Signal Corporation Humidity compensated carbon dioxide gas measurement and control
US20040045624A1 (en) * 2002-09-06 2004-03-11 Kendro Laboratory Products, Inc. Enhanced/proactive CO2/O2 gas control
CN2859512Y (zh) * 2005-06-14 2007-01-17 中国农业科学院农业环境与可持续发展研究所 气体环境控制装置
CN203520182U (zh) * 2013-09-13 2014-04-02 福建省农业科学院植物保护研究所 一种人工气候二氧化碳浓度控制仪
CN204803319U (zh) * 2015-05-12 2015-11-25 宁波市双嘉仪器有限公司 一种二氧化碳培养箱
CN205313575U (zh) * 2016-01-17 2016-06-15 南阳师范学院 一种二氧化碳培养箱
CN207143251U (zh) * 2017-07-21 2018-03-27 宁波市双嘉仪器有限公司 一种智能化二氧化碳培养箱
CN109810900A (zh) * 2019-03-12 2019-05-28 华道(上海)生物医药有限公司 全封闭细胞培养气体控制系统
CN113699032A (zh) * 2020-05-22 2021-11-26 青岛海尔智能家电科技有限公司 培养箱及控制的方法、装置
CN114317239A (zh) * 2021-12-07 2022-04-12 青岛海尔生物医疗科技有限公司 用于调节培养箱内气体浓度的方法及装置、培养箱

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113153A (ja) * 2002-09-27 2004-04-15 Sanyo Electric Co Ltd Co2インキュベータ
US20180002650A1 (en) * 2016-07-02 2018-01-04 Zhengzhou Viri Biotech Co.,Ltd. Shaker capable of being used in carbon dioxide incubator and cell suspension culture method
JP2022524551A (ja) * 2019-03-11 2022-05-06 フォーエバー・ラボラトリーズ・インコーポレイテッド 動的インキュベータシステムおよび方法
CN113667600B (zh) * 2021-07-21 2023-08-11 青岛海特生物医疗有限公司 用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418131A (en) * 1994-04-13 1995-05-23 General Signal Corporation Humidity compensated carbon dioxide gas measurement and control
US20040045624A1 (en) * 2002-09-06 2004-03-11 Kendro Laboratory Products, Inc. Enhanced/proactive CO2/O2 gas control
CN2859512Y (zh) * 2005-06-14 2007-01-17 中国农业科学院农业环境与可持续发展研究所 气体环境控制装置
CN203520182U (zh) * 2013-09-13 2014-04-02 福建省农业科学院植物保护研究所 一种人工气候二氧化碳浓度控制仪
CN204803319U (zh) * 2015-05-12 2015-11-25 宁波市双嘉仪器有限公司 一种二氧化碳培养箱
CN205313575U (zh) * 2016-01-17 2016-06-15 南阳师范学院 一种二氧化碳培养箱
CN207143251U (zh) * 2017-07-21 2018-03-27 宁波市双嘉仪器有限公司 一种智能化二氧化碳培养箱
CN109810900A (zh) * 2019-03-12 2019-05-28 华道(上海)生物医药有限公司 全封闭细胞培养气体控制系统
CN113699032A (zh) * 2020-05-22 2021-11-26 青岛海尔智能家电科技有限公司 培养箱及控制的方法、装置
CN114317239A (zh) * 2021-12-07 2022-04-12 青岛海尔生物医疗科技有限公司 用于调节培养箱内气体浓度的方法及装置、培养箱

Also Published As

Publication number Publication date
CN114317239A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023103422A1 (zh) 用于调节培养箱内气体浓度的方法及装置、培养箱
AU2023200986B2 (en) System and methods for estimation of blood flow characteristics using reduced order model and machine learning
CN109506028B (zh) 一种压力调节阀的快速随动控制方法
EP3321759A1 (en) Flow control method for proportional valve of breathing machine
WO2020118871A1 (zh) 自适应压力与氧浓度控制方法
KR20160047430A (ko) 유량 제어 장치 및 유량 제어 프로그램
WO2023024510A1 (zh) 阀门开度的控制方法、装置、非易失性存储介质及处理器
CN115388329B (zh) 一种气瓶供气装置及其压力控制方法
EA039070B1 (ru) Способ контролирования мощности аппарата для анестезии на основе нечеткого адаптивного пид-контролирования
Mansouri et al. Preload-based Starling-like control of rotary blood pumps: An in-vitro evaluation
WO2023000901A1 (zh) 用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱
US10316835B2 (en) Method of determining output flow rate of gas output by flow rate controller of substrate processing apparatus
TW201506570A (zh) 用於控制使用反饋的流量速率控制器的方法和系統
US6752928B2 (en) Flow matching method and system using two transducers
WO2021103959A1 (zh) 窗户控制方法、装置及窗户
US11669111B2 (en) Valve assembly and system used to control flow rate of a fluid
CN114545983A (zh) 流量控制装置、流量控制方法以及程序存储介质
JP2013254448A (ja) ポジショナ
CN115505938A (zh) 制氢控制的方法、装置、存储介质和控制器
CN109695893B (zh) 一种锅炉系统中的氧气浓度控制方法、装置、设备及系统
KR20190070295A (ko) 유체 장치 및 유체 장치용 프로그램
CN114717364A (zh) 用于三气培养箱控制的方法及装置、三气培养箱
US10969797B2 (en) Mass flow valve controller and control method with set point filter and linearization system based on valve model
TWI822173B (zh) 運算裝置、控制裝置、培養系統以及培養系統的設計方法
JP2009015477A (ja) シミュレーション装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902856

Country of ref document: EP

Kind code of ref document: A1