WO2023000901A1 - 用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱 - Google Patents

用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱 Download PDF

Info

Publication number
WO2023000901A1
WO2023000901A1 PCT/CN2022/100136 CN2022100136W WO2023000901A1 WO 2023000901 A1 WO2023000901 A1 WO 2023000901A1 CN 2022100136 W CN2022100136 W CN 2022100136W WO 2023000901 A1 WO2023000901 A1 WO 2023000901A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
power
dioxide incubator
current temperature
heating
Prior art date
Application number
PCT/CN2022/100136
Other languages
English (en)
French (fr)
Inventor
陈欢
胡伟
段泽鹏
徐志宏
鞠焕文
陈海涛
Original Assignee
青岛海尔生物医疗科技有限公司
青岛海尔生物医疗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔生物医疗科技有限公司, 青岛海尔生物医疗股份有限公司 filed Critical 青岛海尔生物医疗科技有限公司
Priority to DE112022000224.7T priority Critical patent/DE112022000224T5/de
Priority to JP2023542633A priority patent/JP2024503676A/ja
Priority to US18/550,441 priority patent/US20240150857A1/en
Publication of WO2023000901A1 publication Critical patent/WO2023000901A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/24Heat exchange systems, e.g. heat jackets or outer envelopes inside the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q3/00Condition responsive control processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the present application relates to the technical field of temperature control, for example, to a method and device for power distribution of a carbon dioxide incubator and a carbon dioxide incubator.
  • the carbon dioxide incubator is a device for culturing cells/tissues in vitro by simulating a growth environment similar to cells/tissues in an organism in the incubator. It is an advanced instrument for cell, tissue, and bacterial culture. It is the key equipment necessary for immunology, oncology, genetics and bioengineering. This also makes this kind of equipment have extremely strict requirements on temperature, humidity and internal environment. However, the problem of condensation often occurs during the use of carbon dioxide incubators, and condensation will breed bacteria, which is not allowed in carbon dioxide incubators. .
  • the power of multiple heating wires is controlled separately through multiple sets of PID algorithms, which makes it very troublesome and redundant to control the power of multiple heating wires on each side of the carbon dioxide incubator, which wastes system resources.
  • Embodiments of the present disclosure provide a method and device for power distribution of a carbon dioxide incubator and a carbon dioxide incubator, so as to improve the efficiency of controlling the power of heating wires on each side of the carbon dioxide incubator and save system resources.
  • multiple inner surfaces of the carbon dioxide incubator are provided with heating wires, the method comprising:
  • the power and/or start-stop time of the heating wires of each inner surface are adjusted.
  • the device includes:
  • a processor and a memory storing program instructions the processor is configured to execute the above-mentioned control method for a carbon dioxide incubator when executing the above-mentioned program instructions.
  • the carbon dioxide incubator includes:
  • control device for a carbon dioxide incubator for a carbon dioxide incubator.
  • the method, device, and carbon dioxide incubator provided in the embodiments of the present disclosure for power distribution of a carbon dioxide incubator can achieve the following technical effects:
  • the power index is obtained according to the current temperature and the target temperature, and the heating strategy of each inner surface of the carbon dioxide incubator is obtained through the power index, and the power and/or start-stop time of the heating wires on each inner surface are adjusted according to this strategy, so as to realize the cultivation of carbon dioxide
  • Separate control of the heating wires on the inner surface of the tank prevents condensation in the carbon dioxide incubator. It does not need to calculate the control of the heating wires through multiple sets of control algorithms, which reduces the redundancy of the algorithm, improves the control efficiency, and saves system resources. .
  • FIG. 1 is a schematic diagram of a method for power distribution in a carbon dioxide incubator provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a method for power distribution in a carbon dioxide incubator provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a method for power distribution in a carbon dioxide incubator provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of a method for power distribution in a carbon dioxide incubator provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of a device for power distribution in a carbon dioxide incubator provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • correspondence may refer to an association relationship or a binding relationship, and the correspondence between A and B means that there is an association relationship or a binding relationship between A and B.
  • an embodiment of the present disclosure provides a method for power distribution of a carbon dioxide incubator, including:
  • the carbon dioxide incubator determines the power index according to the current temperature and the target temperature of the box.
  • the carbon dioxide incubator determines the heating strategy of each inner surface according to the power index and looks up the table.
  • the carbon dioxide incubator adjusts the power and/or start-stop time of the heating wires on each inner surface according to the heating strategy of each inner surface.
  • the power index is obtained according to the current temperature and the target temperature, and then the heating strategy for each inner surface of the carbon dioxide incubator is obtained through the power index, and each inner surface is adjusted according to the strategy The power and/or start-stop time of the heating wire on the surface, so as to realize the separate control of the heating wire on each inner surface of the carbon dioxide incubator, and prevent condensation in the carbon dioxide incubator.
  • a power index can be obtained only through a set of algorithms, and the heating strategies of the heating wires on the inner surfaces of the carbon dioxide incubator can be obtained through the table lookup of the power index.
  • the control of the heating wire does not need to be calculated separately through multiple sets of control algorithms, which reduces the redundancy of the algorithm, improves the control efficiency, and saves system resources.
  • the carbon dioxide incubator determines the power index according to the current temperature and the target temperature of the carbon dioxide incubator box, including: the carbon dioxide incubator obtains the current temperature; the carbon dioxide incubator inputs the current temperature and the target temperature into the proportional-integral-differential PID algorithm, and outputs power index.
  • the power index can be obtained.
  • the power index is calculated by a set of PID algorithms. Compared with the prior art that uses multiple sets of PID algorithms to separately calculate the heating power of each inner surface of the carbon dioxide incubator, this embodiment reduces the control redundancy caused by multiple sets of PID algorithms. System resources are saved and control efficiency is improved.
  • the carbon dioxide incubator determines the heating strategy of each inner surface of the carbon dioxide incubator according to the power index by looking up the table: the carbon dioxide incubator determines the heating wire power of each inner surface corresponding to the power index according to the preset power table and/or, the carbon dioxide incubator determines the output time of the heating wires on each inner surface corresponding to the power index according to the preset schedule.
  • the pre-set power table the power of the heating wires corresponding to each inner surface on the power table is searched according to the power index, that is, the control strategy of the heating wires on each inner surface can be obtained through a power index.
  • the output time of the heating wires on each inner surface can be obtained at the corresponding position of the timetable through a power index.
  • the output time and power of the heating wires on each inner surface can be obtained according to a power index.
  • the carbon dioxide incubator adjusts the heating wire power and/or start-stop time of each inner surface according to the heating strategy of each inner surface, including: the carbon dioxide incubator adjusts the heating of each inner surface according to the heating wire power of each inner surface The power of the wires reaches the set power; and/or, the carbon dioxide incubator controls the start-stop time of the heating wires on each inner surface according to the output time of the heating wires on each inner surface.
  • the control of the start and stop time of the heating wires on the inner surfaces of the carbon dioxide incubator can be realized by silicon controlled silicon.
  • silicon controlled rectifiers can be installed on multiple inner surfaces of the carbon dioxide incubator, one silicon controlled rectifier and a heating wire on one inner surface, and the silicon controlled rectifiers can be assigned values according to the determined output time of the heating wires on each inner surface to control the temperature of the heating wires. Start and stop.
  • the heating wires on each inner surface are controlled to the set power, and the power of the heating wires on each inner surface of the carbon dioxide incubator is respectively controlled, and the heating wires on each inner surface
  • the power is distributed reasonably to prevent the generation of condensation.
  • the output time of each inner surface heating wire determined according to the schedule, and control the start and stop time of each inner surface heating wire of the carbon dioxide incubator by controlling the start and stop of each inner surface heating wire, the on and off of the heating wire is controlled.
  • the output time of a heating stage so as to distribute the power of the heating wire, realize the separate control of multiple inner surfaces of the carbon dioxide incubator, and prevent the occurrence of condensation.
  • an embodiment of the present disclosure provides a method for power distribution of a carbon dioxide incubator, including:
  • the carbon dioxide incubator determines the power index according to the current temperature and the target temperature of the box.
  • the carbon dioxide incubator determines the heating strategy of each inner surface according to the power index and looks up the table.
  • the carbon dioxide incubator adjusts the power and/or start-stop time of the heating wires on each inner surface according to the heating strategy of each inner surface.
  • the carbon dioxide incubator acquires the first current temperature and temperature change rate of the box.
  • the carbon dioxide incubator calculates the second current temperature according to the first current temperature, the temperature change rate and the remaining time.
  • the carbon dioxide incubator adjusts the power and/or output time of the heating wires on each inner surface according to the difference between the first current temperature and the second current temperature.
  • the remaining time is the time difference between the time to reach the target temperature and the first set time.
  • the first current temperature and temperature change rate of the carbon dioxide incubator box can be obtained, and it can be predicted that after the remaining time period, the carbon dioxide incubator Whether the temperature inside the box reaches the target temperature. If the target temperature is not reached, it means that the heating strategy of each inner surface in the carbon dioxide incubator cannot meet the demand at this time, and condensation may occur. Therefore, according to the difference between the predicted temperature of the second link and the target temperature, the heating strategy is re-determined, and the power and/or output time of the heating wires on each inner surface are adjusted according to the heating strategy. Avoid unexpected situations after the carbon dioxide incubator determines the heating strategy and adjusts the heating wire according to the heating strategy, resulting in the inability to achieve the target temperature within the set time, improving the applicability of the carbon dioxide incubator.
  • the remaining time and temperature change value can be obtained, and the temperature change value and the currently detected first link temperature can be summed to predict after the remaining time The second current temperature of .
  • the carbon dioxide incubator adjusting the power of the heating wires on each inner surface according to the difference between the first current temperature and the second current temperature includes: the carbon dioxide incubator determines each temperature corresponding to the difference according to a preset corresponding relationship. The power of the heating wire on the inner surface; the carbon dioxide incubator adjusts the power of the heating wire on each inner surface to the corresponding power according to the power of the heating wire.
  • the preset corresponding relationship determine the heating wire power of each inner surface corresponding to the difference, formulate a control strategy for the heating wires on each inner surface of the carbon dioxide incubator, and adjust the heating of each inner surface according to the heating wire power The power of the wire to the corresponding power. Control the heating wires on the inner surface according to the corresponding control strategy, so that the carbon dioxide incubator can reach the target temperature within the set time, realize the response to unexpected situations, and improve the applicability of the carbon dioxide incubator.
  • the carbon dioxide incubator adjusting the output time of the heating wires on each inner surface according to the difference between the first current temperature and the second current temperature includes: the carbon dioxide incubator determines the temperature corresponding to the difference according to the preset corresponding relationship. The output time of each inner surface; the carbon dioxide incubator controls the start and stop time of the heating wire on each inner surface according to the output time of the heating wire.
  • the preset corresponding relationship determine the output time of each inner surface corresponding to the difference, formulate a control strategy for the heating wires on each inner surface of the carbon dioxide incubator, and control the heating of each inner surface according to the output time of the heating wire
  • the start and stop times of the wires are controlled according to the corresponding control strategy to control the heating wires on the inner surface, so that the carbon dioxide incubator can reach the target temperature within the set time, which realizes the response to unexpected situations and improves the applicability of the carbon dioxide incubator.
  • the carbon dioxide incubator adjusting the power and output time of the heating wires on each inner surface according to the difference between the first current temperature and the second current temperature includes: the carbon dioxide incubator determines the temperature corresponding to the difference according to the preset corresponding relationship. Corresponding to the heating wire power and output time of each inner surface; the carbon dioxide incubator adjusts the power of the heating wire on each inner surface to the corresponding power according to the heating wire power; the carbon dioxide incubator controls the heating wire on each inner surface according to the output time of the heating wire start-stop time.
  • the preset corresponding relationship determine the heating wire power and output time of each inner surface corresponding to the difference, formulate a control strategy for the heating wires on each inner surface of the carbon dioxide incubator, and adjust each inner surface according to the heating wire power. From the power of the heating wire on the surface to the corresponding power, control the start and stop time of the heating wire on each inner surface according to the output time of the heating wire, and control the heating wire on each inner surface according to the corresponding control strategy, so that the carbon dioxide incubator can The target temperature is achieved, the response to unexpected situations is realized, and the applicability of the carbon dioxide incubator is improved.
  • an embodiment of the present disclosure provides a method for power distribution of a carbon dioxide incubator, including:
  • the carbon dioxide incubator determines the power index according to the current temperature and the target temperature of the box.
  • the carbon dioxide incubator determines the heating strategy of each inner surface according to the power index and looks up the table.
  • the carbon dioxide incubator adjusts the power and/or start-stop time of the heating wires on each inner surface according to the heating strategy of each inner surface.
  • the carbon dioxide incubator determines the temperature control strategy of each inner surface by looking up a table according to the power index.
  • the carbon dioxide incubator reduces the power of the heating wires on each inner surface according to the temperature control strategy of each inner surface, and/or reduces the output time of the heating wires on each inner surface.
  • the carbon dioxide incubator acquires the first current temperature and temperature change rate of the box.
  • the carbon dioxide incubator calculates the second current temperature according to the first current temperature, the temperature change rate and the remaining time.
  • the carbon dioxide incubator adjusts the power and/or output time of the heating wires on each inner surface according to the difference between the first current temperature and the second current temperature.
  • the remaining time is the time difference between the time to reach the target temperature and the first set time.
  • the power index When the current temperature is greater than the target temperature, according to the power index, look up the table to determine the temperature control strategy of each inner surface of the carbon dioxide incubator, and reduce the power of the heating wire on each inner surface according to the temperature control strategy of each inner surface, or , reduce the output time of the heating wires on each inner surface, or reduce the power of the heating wires on each inner surface, and reduce the output time of the heating wires on each inner surface. In order to reduce the output heat of the heating wire on each inner surface, reduce its heating efficiency. Thereby ensuring the biological preservation function inside the carbon dioxide incubator and avoiding damage to internal samples.
  • an embodiment of the present disclosure provides a method for power distribution of a carbon dioxide incubator, including:
  • the carbon dioxide incubator determines the power index according to the current temperature and the target temperature of the box.
  • the carbon dioxide incubator determines the heating strategy of each inner surface according to the power index and looks up the table.
  • the carbon dioxide incubator adjusts the power and/or start-stop time of the heating wires on each inner surface according to the heating strategy of each inner surface.
  • the carbon dioxide incubator acquires the first current temperature and temperature change rate of the box.
  • the carbon dioxide incubator calculates the second current temperature according to the first current temperature, the temperature change rate and the remaining time.
  • the carbon dioxide incubator adjusts the power and/or output time of the heating wires on each inner surface according to the difference between the first current temperature and the second current temperature.
  • the carbon dioxide incubator determines the temperature control strategy of each inner surface by looking up a table according to the power index.
  • the carbon dioxide incubator reduces the power of the heating wires on each inner surface according to the temperature control strategy of each inner surface, and/or reduces the output time of the heating wires on each inner surface.
  • the remaining time is the time difference between the time to reach the target temperature and the first set time.
  • the power index When the current temperature is greater than the target temperature, according to the power index, look up the table to determine the temperature control strategy of each inner surface of the carbon dioxide incubator, and reduce the power of the heating wire on each inner surface according to the temperature control strategy of each inner surface, or , reduce the output time of the heating wires on each inner surface, or reduce the power of the heating wires on each inner surface, and reduce the output time of the heating wires on each inner surface. In order to reduce the output heat of the heating wire on each inner surface, reduce its heating efficiency. Thereby ensuring the biological preservation function inside the carbon dioxide incubator and avoiding damage to internal samples.
  • an embodiment of the present disclosure provides a device for power distribution of a carbon dioxide incubator, including a processor (processor) 100 and a memory (memory) 101 .
  • the device may also include a communication interface (Communication Interface) 102 and a bus 103.
  • Communication interface 102 may be used for information transfer.
  • the processor 100 can call the logic instructions in the memory 101 to execute the method for power allocation of the carbon dioxide incubator of the above-mentioned embodiments.
  • the above logic instructions in the memory 101 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes the program instructions/modules stored in the memory 101 to execute functional applications and data processing, that is, to realize the method for power distribution of the carbon dioxide incubator in the above-mentioned embodiments.
  • the memory 101 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides a carbon dioxide incubator, in which multiple inner surfaces are provided with heating wires, and the heating wires on each inner surface are controlled by corresponding silicon controlled rectifiers, and also include the above-mentioned device for power distribution of the carbon dioxide incubator .
  • An embodiment of the present disclosure provides a storage medium storing computer-executable instructions, the computer-executable instructions being configured to execute the above-mentioned method for power allocation of a carbon dioxide incubator.
  • the above-mentioned storage medium may be a transitory computer-readable storage medium, or a non-transitory storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to make a computer device (which can be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Abstract

一种用于二氧化碳培养箱功率分配的方法,用于二氧化碳培养箱功率分配的装置及二氧化碳培养箱。所述方法根据箱体的当前温度和目标温度得到功率索引,通过功率索引得到二氧化碳培养箱的各内表面的加热策略,并按该策略调节各内表面的加热丝的功率和/或启停时间,从而实现对二氧化碳培养箱给内表面的加热丝的分别控制,防止二氧化碳培养箱出现凝露,不需要通过多套控制算法计算实现对加热丝的控制,减少了算法的冗余,提高了控制效率,节省了系统资源。

Description

用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱
本申请基于申请号为202110825839.9、申请日为2021年7月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及温度控制技术领域,例如涉及一种用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱。
背景技术
二氧化碳培养箱是通过在培养箱箱体内模拟形成一个类似细胞/组织在生物体内的生长环境,来对细胞/组织进行体外培养的一种装置,是细胞、组织、细菌培养的一种先进仪器,是开展免疫学、肿瘤学、遗传学及生物工程所必须的关键设备。这也就使得这种设备对温度,湿度及内部环境要求极其严格,但是,二氧化碳培养箱在使用过程中经常出现凝露的问题,而凝露会滋生细菌,这是二氧化碳培养箱所不允许的。
现有技术存在通过控制二氧化碳培养箱各个面的多路加热丝的功率来解决凝露问题的技术方案,通常采用多套PID(Proportion,Integration,Differentiation比例-积分-微分)算法分别控制各路加热丝的功率或者通过一路可控硅控制各个面的多路加热丝功率,来实现对各个面的多路加热丝的功率的控制。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
通过多套PID算法分别控制多路加热丝的功率,使得对二氧化碳培养箱各个面的多路加热丝的功率的控制十分麻烦且冗余,浪费系统资源。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱,以提高对二氧化碳培养箱各个面的加热丝的功率的控制的效率,节省系统资源。
在一些实施例中,二氧化碳培养箱的多个内表面均设置有加热丝,所述方法包括:
根据二氧化碳培养箱箱体的当前温度和目标温度确定功率索引;
在当前温度小于或等于目标温度的情况下,根据功率索引,查表确定二氧化碳培养箱的各内表面的加热策略;
按照各内表面的加热策略,调节各内表面的加热丝的功率和/或启停时间。
在一些实施例中,所述装置包括:
处理器和存储有程序指令的存储器,处理器被配置为在执行上述程序指令时,执行上述的用于二氧化碳培养箱的控制方法。
在一些实施例中,所述二氧化碳培养箱包括:
上述的用于二氧化碳培养箱的控制装置。
本公开实施例提供的用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱,可以实现以下技术效果:
根据当前温度和目标温度得到功率索引,通过功率索引得到二氧化碳培养箱的各内表面的加热策略,并按该策略调节各内表面的加热丝的功率和/或启停时间,从而实现对二氧化碳培养箱给内表面的加热丝的分别控制,防止二氧化碳培养箱出现凝露,不需要通过多套控制算法计算实现对加热丝的控制,减少了算法的冗余,提高了控制效率,节省了系统资源。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于二氧化碳培养箱功率分配的方法的示意图;
图2是本公开实施例提供的一个用于二氧化碳培养箱功率分配的方法的示意图;
图3是本公开实施例提供的一个用于二氧化碳培养箱功率分配的方法的示意图;
图4是本公开实施例提供的一个用于二氧化碳培养箱功率分配的方法的示意图;
图5是本公开实施例提供的一个用于二氧化碳培养箱功率分配的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开 实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
结合图1所示,本公开实施例提供一种用于二氧化碳培养箱功率分配的方法,包括:
S01,二氧化碳培养箱根据箱体的当前温度和目标温度确定功率索引。
S02,在当前温度小于或等于目标温度的情况下,二氧化碳培养箱根据功率索引,查表确定各内表面的加热策略。
S03,二氧化碳培养箱按照各内表面的加热策略,调节各内表面的加热丝的功率和/或启停时间。
采用本公开实施例提供的用于二氧化碳培养箱功率分配的方法,根据当前温度和目标温度得到功率索引,接着通过功率索引得到二氧化碳培养箱的各内表面的加热策略,并按该策略调节各内表面的加热丝的功率和/或启停时间,从而实现对二氧化碳培养箱各内表面的加热丝的分别控制,防止二氧化碳培养箱出现凝露。本实施例只需要通过一套算法即可得到一个功率索引,通过该功率索引查表就可得到二氧化碳培养箱各内表面的加热丝的加热策略。不需要通过多套控制算法分别计算实现对加热丝的控制,减少了算法的冗余,提高了控制效率,节省了系统资源。
可选地,二氧化碳培养箱据二氧化碳培养箱箱体的当前温度和目标温度确定功率索引包括:二氧化碳培养箱获取当前温度;二氧化碳培养箱将当前温度与目标温度输入比例-积分-微分PID算法,输出功率索引。
这样,采用PID算法,根据二氧化碳培养箱内部的当前温度与目标温度作为PID算法的输入值,可以得到功率索引。通过一套PID算法计算出功率索引,相比于现有技术通过多套PID算法分别计算二氧化碳培养箱各内表面的加热功率的方案,本实施例减少了多套PID算法导致的控制冗余,节省了系统资源,提高了控制效率。
可选地,二氧化碳培养箱根据功率索引,查表确定二氧化碳培养箱的各内表面的加热策略包括:二氧化碳培养箱根据预先设置好的功率表,确定与功率索引对应的各内表面的加热丝功率;和/或,二氧化碳培养箱根据预先设置好的时间表,确定与功率索引对应的各内表面的加热丝输出时间。
这样,通过预先设置好的功率表,根据功率索引查找功率表上对应的各内表面的加热丝功率,即通过一个功率索引即可获取各内表面上的加热丝的控制策略。或者,通过预先设置好的时间表,通过一个功率索引即可在时间表的对应位置获取各内表面的加热丝的输出时间。或者,通过预选设定好的功率表与时间表,根据一个功率索引即可获取各内表面的加热丝的输出时间与功率。
可选地,二氧化碳培养箱按照各内表面的加热策略,调节各内表面的加热丝的功率和/或启停时间包括:二氧化碳培养箱按照各内表面的加热丝功率,调节各内表面的加热丝的功率至设定功率;和/或,二氧化碳培养箱按照各内表面的加热丝输出时间,控制各内表面的加热丝的启停时间。
其中,控制二氧化碳培养箱各内表面的加热丝的启停时间,可以通过可控硅实现。具体的,可以在二氧化碳培养箱多个内表面设置可控硅,一个可控硅一个内表面的加热丝,根据确定的各内表面加热丝的输出时间对可控硅赋值,以控制加热丝的启停。
这样,根据功率表确定好的各内表面加热丝的功率,控制各内表面的加热丝至设定功率,实现分别控制二氧化碳培养箱各内表面的加热丝的功率,对各内表面的加热丝的功率进行了合理的分配,防止了凝露的产生。或者,根据时间表确定好的各内表面加热丝的输出时间,并控制二氧化碳培养箱各内表面的加热丝的启停时间,通过控制各内表面加热丝的启停,来控制加热丝的在一个加热阶段的输出的时间,从而分配加热丝的功率,实现了对二氧化碳培养箱多个内表面的分别控制,防止了凝露的发生。或者,根据功率表和时间表确定各内表面加热丝的功率和输出时间,控制各内表面加热丝的功率大小和启停时间,实现了对二氧化碳培养箱多个内表面的分别控制,防止了凝露的发生。
结合图2所示,本公开实施例提供一种用于二氧化碳培养箱功率分配的方法,包括:
S01,二氧化碳培养箱根据箱体的当前温度和目标温度确定功率索引。
S02,在当前温度小于或等于目标温度的情况下,二氧化碳培养箱根据功率索引, 查表确定各内表面的加热策略。
S03,二氧化碳培养箱按照各内表面的加热策略,调节各内表面的加热丝的功率和/或启停时间。
S21,在第一设定时长后,二氧化碳培养箱获取箱体的第一当前温度与温度变化速率。
S22,二氧化碳培养箱根据第一当前温度、温度变化速率和剩余时长,计算第二当前温度。
S23,在第二当前温度小于目标温度的情况下,二氧化碳培养箱根据第一当前温度与第二当前温度的差值,调节各内表面的加热丝的功率和/或输出时间。
其中,剩余时长为达到目标温度的时间与第一设定时间的时间差值。
采用本公开实施例提供的用于二氧化碳培养箱功率分配的方法,在第一设定时长之后,获取二氧化碳培养箱箱体的第一当前温度与温度变化速率,可以预测经过剩余时长之后,二氧化碳培养箱内部的温度是否达到目标温度。如果未达到目标温度,说明此时二氧化碳培养箱内的各内表面的加热策略不能满足需求,可能产生凝露。因此,根据预测的第二环节温度与目标温度的差值,重新确定加热策略,按照加热策略调节各内表面的加热丝的功率和/或输出时间。避免二氧化碳培养箱在确定加热策略并按照加热策略调节加热丝之后出现的意外情况,导致无法实现在设定时间内达到目标温度,提高了二氧化碳培养箱的适用性。
可选地,二氧化碳培养箱根据第一当前温度和温度变化速率,计算第二当前温度包括:二氧化碳培养箱计算T2=T1+t×V;其中,T2为第二当前温度,T1为第一当前温度,t为剩余时长,V为温度变化速率。
这样,通过计算剩余时长与温度变化率的乘积,即可获取经过剩余时长,温度的变化值,将该温度的变化值与当前检测到的第一环节温度求和,即可预测经过剩余时长之后的第二当前温度。
可选地,二氧化碳培养箱根据第一当前温度与第二当前温度的差值,调节各内表面的加热丝的功率包括:二氧化碳培养箱根据预设的对应关系,确定与差值相对应的各内表面的加热丝功率;二氧化碳培养箱按照加热丝功率,调节各内表面的加热丝的功率至对应功率。
这样,根据预设的对应关系,确定与差值相对应的各内表面的加热丝功率,为二氧化碳培养箱各内表面的加热丝制定控制策略,并按照加热丝功率,调节各内表面的加热丝的功率至对应功率。按照对应的控制策略控制各内表面加热丝,使二氧化碳培养箱在 设定时间内能够达到目标温度,实现了对意外情况的应对,提高了二氧化碳培养箱的适用性。
可选地,二氧化碳培养箱根据第一当前温度与第二当前温度的差值,调节各内表面的加热丝的输出时间包括:二氧化碳培养箱根据预设的对应关系,确定与差值相对应的各内表面的输出时间;二氧化碳培养箱按照加热丝输出时间,控制各内表面的加热丝的启停时间。
这样,根据预设的对应关系,确定与差值相对应的各内表面的输出时间,为二氧化碳培养箱各内表面的加热丝制定控制策略,并按照加热丝输出时间,控制各内表面的加热丝的启停时间,按照对应的控制策略控制各内表面加热丝,使二氧化碳培养箱在设定时间内能够达到目标温度,实现了对意外情况的应对,提高了二氧化碳培养箱的适用性。
可选地,二氧化碳培养箱根据第一当前温度与第二当前温度的差值,调节各内表面的加热丝的功率和输出时间包括:二氧化碳培养箱根据预设的对应关系,确定与差值相对应的各内表面的加热丝功率和输出时间;二氧化碳培养箱按照加热丝功率,调节各内表面的加热丝的功率至对应功率;二氧化碳培养箱按照加热丝输出时间,控制各内表面的加热丝的启停时间。
这样,根据预设的对应关系,确定与差值相对应的各内表面的加热丝功率和输出时间,为二氧化碳培养箱各内表面的加热丝制定控制策略,并按照加热丝功率,调节各内表面的加热丝的功率至对应功率,按照加热丝输出时间,控制各内表面的加热丝的启停时间,按照对应的控制策略控制各内表面加热丝,使二氧化碳培养箱在设定时间内能够达到目标温度,实现了对意外情况的应对,提高了二氧化碳培养箱的适用性。
结合图3所示,本公开实施例提供一种用于二氧化碳培养箱功率分配的方法,包括:
S01,二氧化碳培养箱根据箱体的当前温度和目标温度确定功率索引。
S02,在当前温度小于或等于目标温度的情况下,二氧化碳培养箱根据功率索引,查表确定各内表面的加热策略。
S03,二氧化碳培养箱按照各内表面的加热策略,调节各内表面的加热丝的功率和/或启停时间。
S31,在当前温度大于目标温度的情况下,二氧化碳培养箱根据功率索引,查表确定各内表面的控温策略。
S32,二氧化碳培养箱按照各内表面的控温策略,降低各内表面的加热丝的功率,和/或,减少各内表面的加热丝的输出时间。
S21,在第一设定时长后,二氧化碳培养箱获取箱体的第一当前温度与温度变化速 率。
S22,二氧化碳培养箱根据第一当前温度、温度变化速率和剩余时长,计算第二当前温度。
S23,在第二当前温度小于目标温度的情况下,二氧化碳培养箱根据第一当前温度与第二当前温度的差值,调节各内表面的加热丝的功率和/或输出时间。
其中,剩余时长为达到目标温度的时间与第一设定时间的时间差值。
采用本公开实施例提供的用于二氧化碳培养箱功率分配的方法,在二氧化碳培养箱内部的当前温度大于目标温度的情况下,倘若此时再对二氧化碳培养箱各内表面的加热丝进行控制,盲目提高加热效率,会破坏二氧化碳培养箱内部的样品的保藏,因此,需要对二氧化碳培养箱制定对应的控制策略。在当前温度大于目标温度的情况下,根据功率索引,查表确定二氧化碳培养箱的各内表面的控温策略,并按照各内表面的控温策略,降低各内表面的加热丝的功率,或者,减少各内表面的加热丝的输出时间,或者,降低各内表面的加热丝的功率,并减少各内表面的加热丝的输出时间。以减少各内表面上的加热丝的输出的热量,降低其加热效率。从而保证二氧化碳培养箱内部的生物保藏功能,避免对内部样品造成破坏。
结合图4所示,本公开实施例提供一种用于二氧化碳培养箱功率分配的方法,包括:
S01,二氧化碳培养箱根据箱体的当前温度和目标温度确定功率索引。
S02,在当前温度小于或等于目标温度的情况下,二氧化碳培养箱根据功率索引,查表确定各内表面的加热策略。
S03,二氧化碳培养箱按照各内表面的加热策略,调节各内表面的加热丝的功率和/或启停时间。
S21,在第一设定时长后,二氧化碳培养箱获取箱体的第一当前温度与温度变化速率。
S22,二氧化碳培养箱根据第一当前温度、温度变化速率和剩余时长,计算第二当前温度。
S23,在第二当前温度小于目标温度的情况下,二氧化碳培养箱根据第一当前温度与第二当前温度的差值,调节各内表面的加热丝的功率和/或输出时间。
S31,在当前温度大于目标温度的情况下,二氧化碳培养箱根据功率索引,查表确定各内表面的控温策略。
S32,二氧化碳培养箱按照各内表面的控温策略,降低各内表面的加热丝的功率,和/或,减少各内表面的加热丝的输出时间。
其中,剩余时长为达到目标温度的时间与第一设定时间的时间差值。
采用本公开实施例提供的用于二氧化碳培养箱功率分配的方法,在二氧化碳培养箱内部的当前温度大于目标温度的情况下,倘若此时再对二氧化碳培养箱各内表面的加热丝进行控制,盲目提高加热效率,会破坏二氧化碳培养箱内部的样品的保藏,因此,需要对二氧化碳培养箱制定对应的控制策略。在当前温度大于目标温度的情况下,根据功率索引,查表确定二氧化碳培养箱的各内表面的控温策略,并按照各内表面的控温策略,降低各内表面的加热丝的功率,或者,减少各内表面的加热丝的输出时间,或者,降低各内表面的加热丝的功率,并减少各内表面的加热丝的输出时间。以减少各内表面上的加热丝的输出的热量,降低其加热效率。从而保证二氧化碳培养箱内部的生物保藏功能,避免对内部样品造成破坏。
结合图5所示,本公开实施例提供一种用于二氧化碳培养箱功率分配的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于二氧化碳培养箱功率分配的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于二氧化碳培养箱功率分配的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种二氧化碳培养箱,其多个内表面均设置有加热丝,各内表面的加热丝受对应可控硅的控制,还包含上述的用于二氧化碳培养箱功率分配的装置。
本公开实施例提供了一种存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于二氧化碳培养箱功率分配的方法。
上述的存储介质可以是暂态计算机可读存储介质,也可以是非暂态存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储 在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如 多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于二氧化碳培养箱功率分配的方法,其特征在于,所述二氧化碳培养箱的多个内表面均设置有加热丝;所述方法包括:
    根据所述二氧化碳培养箱箱体的当前温度和目标温度确定功率索引;
    在所述当前温度小于或等于目标温度的情况下,根据所述功率索引,查表确定二氧化碳培养箱的各内表面的加热策略;
    按照所述各内表面的加热策略,调节各内表面的加热丝的功率和/或启停时间。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述二氧化碳培养箱箱体的当前温度和目标温度确定功率索引,包括:
    获取所述当前温度;
    将所述当前温度与所述目标温度输入比例-积分-微分PID算法,输出所述功率索引。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述功率索引,查表确定二氧化碳培养箱的各内表面的加热策略,包括:
    根据预先设置好的功率表,确定与所述功率索引对应的各内表面的加热丝功率;和/或,
    根据预先设置好的时间表,确定与所述功率索引对应的各内表面的加热丝输出时间。
  4. 根据权利要求3所述的方法,其特征在于,所述按照所述各内表面的加热策略,调节各内表面的加热丝的功率和/或启停时间,包括:
    按照所述各内表面的加热丝功率,调节各内表面的加热丝的功率至设定功率;和/或,
    按照所述各内表面的加热丝输出时间,控制各内表面的加热丝的启停时间。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述按照所述各内表面的加热策略,调节各内表面的加热丝的功率和/或启停时间后,还包括:
    在第一设定时长后,获取所述二氧化碳培养箱箱体的第一当前温度与温度变化速率;
    根据所述第一当前温度、所述温度变化速率和剩余时长,计算第二当前温度;
    在所述第二当前温度小于所述目标温度的情况下,根据所述第一当前温度与所述第二当前温度的差值,调节各内表面的加热丝的功率和/或输出时间;
    其中,所述剩余时长为达到所述目标温度的时间与所述第一设定时间的时间差值。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一当前温度和所述温度变化速率,计算第二当前温度,包括:
    计算T2=T1+t×V;
    其中,T2为所述第二当前温度,T1为所述第一当前温度,t为所述剩余时长,V为所述温度变化速率。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述第一当前温度与所述第二当前温度的差值,调节各内表面的加热丝的功率和/或输出时间,包括:
    根据预设的对应关系,确定与所述差值相对应的所述各内表面的加热丝功率和/或输出时间;
    按照所述加热丝功率,调节各内表面的加热丝的功率至对应功率;和/或,
    按照所述加热丝输出时间,控制所述各内表面的加热丝的启停时间。
  8. 根据权利要求1至4任一项所述的方法,其特征在于,所述根据所述二氧化碳培养箱箱体的当前温度和目标温度确定功率索引后,还包括:
    在当前温度大于目标温度的情况下,根据所述功率索引,查表确定二氧化碳培养箱的各内表面的控温策略;
    按照所述各内表面的控温策略,降低各内表面的加热丝的功率,和/或,减少各内表面的加热丝的输出时间。
  9. 一种用于二氧化碳培养箱功率分配的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至8任一项所述的用于二氧化碳培养箱功率分配的方法。
  10. 一种二氧化碳培养箱,其多个内表面均设置有加热丝,各内表面的加热丝受对应可控硅的控制,其特征在于,还包括如权利要求9所述的用于二氧化碳培养箱功率分配的装置。
PCT/CN2022/100136 2021-07-21 2022-06-21 用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱 WO2023000901A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022000224.7T DE112022000224T5 (de) 2021-07-21 2022-06-21 Verfahren und Vorrichtung zur Leistungsverteilung in einem Kohlendioxid-Inkubator und Kohlendioxid-Inkubator
JP2023542633A JP2024503676A (ja) 2021-07-21 2022-06-21 二酸化炭素インキュベーターの電力配分用の方法、装置及び二酸化炭素インキュベーター
US18/550,441 US20240150857A1 (en) 2021-07-21 2022-06-21 Method and device for power allocation in carbon dioxide incubator, and carbon dioxide incubator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110825839.9 2021-07-21
CN202110825839.9A CN113667600B (zh) 2021-07-21 2021-07-21 用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱

Publications (1)

Publication Number Publication Date
WO2023000901A1 true WO2023000901A1 (zh) 2023-01-26

Family

ID=78539734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100136 WO2023000901A1 (zh) 2021-07-21 2022-06-21 用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱

Country Status (5)

Country Link
US (1) US20240150857A1 (zh)
JP (1) JP2024503676A (zh)
CN (1) CN113667600B (zh)
DE (1) DE112022000224T5 (zh)
WO (1) WO2023000901A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667600B (zh) * 2021-07-21 2023-08-11 青岛海特生物医疗有限公司 用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱
CN114317239A (zh) * 2021-12-07 2022-04-12 青岛海尔生物医疗科技有限公司 用于调节培养箱内气体浓度的方法及装置、培养箱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519188A (en) * 1993-07-22 1996-05-21 Sanyo Electric Co., Ltd. Incubator
CN203229541U (zh) * 2013-05-17 2013-10-09 上海三腾仪器有限公司 二氧化碳细胞培养箱的加热装置
CN107924203A (zh) * 2015-07-09 2018-04-17 英国气体贸易有限公司 温度控制系统
CN108376662A (zh) * 2018-04-23 2018-08-07 北京铂阳顶荣光伏科技有限公司 工艺腔、工艺腔的加热控制方法及装置
CN111254229A (zh) * 2020-02-25 2020-06-09 青岛海尔生物医疗股份有限公司 二氧化碳培养箱控制方法、控制系统和二氧化碳培养箱
CN112015205A (zh) * 2019-05-28 2020-12-01 青岛海尔智能技术研发有限公司 一种射频加热模块的温度控制方法及射频加热装置
CN113667600A (zh) * 2021-07-21 2021-11-19 青岛海特生物医疗有限公司 用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106190835A (zh) * 2016-07-13 2016-12-07 天津卫凯生物工程有限公司 一种灌注式细胞培养系统及方法
JP7262966B2 (ja) * 2018-10-18 2023-04-24 リュ ルン-クァン 細胞培養器
CN110558617B (zh) * 2019-07-30 2022-12-27 深圳麦克韦尔科技有限公司 电子雾化装置、加热控制方法、装置和存储介质
CN112725178A (zh) * 2021-02-10 2021-04-30 上海塔望智能科技有限公司 一种细胞低氧高压培养装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519188A (en) * 1993-07-22 1996-05-21 Sanyo Electric Co., Ltd. Incubator
CN203229541U (zh) * 2013-05-17 2013-10-09 上海三腾仪器有限公司 二氧化碳细胞培养箱的加热装置
CN107924203A (zh) * 2015-07-09 2018-04-17 英国气体贸易有限公司 温度控制系统
CN108376662A (zh) * 2018-04-23 2018-08-07 北京铂阳顶荣光伏科技有限公司 工艺腔、工艺腔的加热控制方法及装置
CN112015205A (zh) * 2019-05-28 2020-12-01 青岛海尔智能技术研发有限公司 一种射频加热模块的温度控制方法及射频加热装置
CN111254229A (zh) * 2020-02-25 2020-06-09 青岛海尔生物医疗股份有限公司 二氧化碳培养箱控制方法、控制系统和二氧化碳培养箱
CN113667600A (zh) * 2021-07-21 2021-11-19 青岛海特生物医疗有限公司 用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG JING, ZHANG XUESONG,CHEN LONG: "Research on Fuzzy control algorithm in the temperature control system", JOURNAL OF NORTH CHINA INSTITUTE OF SCIENCE AND TECHNOLOGY, vol. 7, no. 2, 30 April 2010 (2010-04-30), pages 59 - 63, XP093026083, ISSN: 1672-7169 *

Also Published As

Publication number Publication date
DE112022000224T5 (de) 2023-11-02
CN113667600B (zh) 2023-08-11
US20240150857A1 (en) 2024-05-09
JP2024503676A (ja) 2024-01-26
CN113667600A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2023000901A1 (zh) 用于二氧化碳培养箱功率分配的方法、装置及二氧化碳培养箱
CN111174375B (zh) 面向数据中心能耗最小化的作业调度和机房空调调控方法
CN105371420A (zh) 一种制冷控制方法、装置及系统
EP4174590A3 (en) Combined learned and dynamic control method
US9745547B2 (en) Method for controlled operation of a biotechnological apparatus and bioreactor system
CN113801967A (zh) 用于培养箱温度调控的方法、装置及培养箱
WO2022193704A1 (zh) 用于家电控制的方法、装置和智能家电
WO2023273333A1 (zh) 用于双蒸发器空调控制的方法、装置和双蒸发器空调
CN112415902A (zh) 用于控制智能家电的方法及装置、智能家电
CN108691795B (zh) 电子设备的风扇控制与修正方法
CN113091231B (zh) 用于空调的控制方法、装置及空调
CN114383297A (zh) 用于控制空调的方法、装置和多联机空调
JP2016192872A (ja) ゲートウェイ装置、デマンドレスポンスシステム及びゲートウェイ装置のプログラム
CN101885969A (zh) 一种集气管压力控制方法
CN102351190A (zh) 还原炉控制方法及装置
CN115076851A (zh) 用于空调器清洁控制的方法及装置、空调器、存储介质
CN115822790A (zh) 调频控制策略以及基于调频控制策略的控制执行系统
CN108845651A (zh) 一种无系统的服务器自主降温方法及系统
CN109489153B (zh) 一种制热共用方法及系统
CN113188229A (zh) 一种智能空调控制系统及方法
CN114322223A (zh) 用于控制空调的方法、装置和多联机空调
CN104456826A (zh) 空调机组自动控制方法及系统
CN112146284B (zh) 用于热水器系统的控制方法及装置、热水器系统
CN116742631B (zh) 基于智能软开关和温控负荷的有源配电网优化方法
CN110416831B (zh) 用于插座的控制方法、控制装置及插座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022000224

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2023542633

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18550441

Country of ref document: US