WO2023103416A1 - 二维码检测装置 - Google Patents

二维码检测装置 Download PDF

Info

Publication number
WO2023103416A1
WO2023103416A1 PCT/CN2022/109378 CN2022109378W WO2023103416A1 WO 2023103416 A1 WO2023103416 A1 WO 2023103416A1 CN 2022109378 W CN2022109378 W CN 2022109378W WO 2023103416 A1 WO2023103416 A1 WO 2023103416A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
light
dimensional code
code detection
detection device
Prior art date
Application number
PCT/CN2022/109378
Other languages
English (en)
French (fr)
Inventor
李睿宇
朱佩佩
黄智成
Original Assignee
深圳思谋信息科技有限公司
北京思谋智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳思谋信息科技有限公司, 北京思谋智能科技有限公司 filed Critical 深圳思谋信息科技有限公司
Publication of WO2023103416A1 publication Critical patent/WO2023103416A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10831Arrangement of optical elements, e.g. lenses, mirrors, prisms

Definitions

  • the invention relates to the technical field of two-dimensional code detection, in particular to a two-dimensional code detection device.
  • Traditional lenses are mostly manufactured by injection molding, and in the mass production of lenses, it is usually necessary to mark the lenses in order to identify authenticity and trace the source.
  • the traditional marking method usually engraves a QR code on the injection mold of the lens, so that the lens can carry the QR code information after injection molding, and can be traced back to the injection mold of the lens by identifying the QR code on the lens.
  • it is currently difficult to identify the QR code on the lens which affects the traceability of lens molding.
  • a two-dimensional code detection device is provided.
  • a two-dimensional code detection device for detecting a two-dimensional code on a sample, the sample comprising a first side and a second side opposite to each other, the two-dimensional code detection device comprising:
  • a light source module the light emitted by the light source module can illuminate the sample from the first side
  • the scattering module located on the second side of the sample, the scattering module can reflect light passing through the sample to form scattered light;
  • An image sensing element for acquiring scattered light transmitted through the sample.
  • Figure 1 is an axonometric view of a two-dimensional code detection device in some embodiments
  • Figure 2 is a front view of a two-dimensional code detection device in some embodiments
  • Fig. 3 is a left view of a two-dimensional code detection device in some embodiments.
  • Fig. 4 is a schematic structural view of light source modules and samples in some embodiments.
  • Fig. 5 is a structural schematic diagram of another angle of the light source module and the sample shown in Fig. 4;
  • FIG. 6 is a schematic structural diagram of a scattering module and a fixture module in some embodiments
  • Fig. 7 is a structural schematic diagram of another angle of the scattering module and the jig module shown in Fig. 6;
  • Figure 8 is a schematic diagram of a reflective film in some embodiments.
  • Figure 9 is a schematic diagram of a scattering layer in some embodiments.
  • FIG. 1 , FIG. 2 and FIG. 3 are respectively an axonometric view, a front view and a left view of a two-dimensional code detection device 10 in some embodiments.
  • the two-dimensional code detection device 10 can be used to identify the two-dimensional code on the sample 20, for example, to identify the two-dimensional code on the lens (not shown).
  • the size of the lens sample 20 is usually small, for example, the radial dimension of the lens sample 20 is between 55mm-82mm, and the size of the two-dimensional code on the lens sample 20 is even smaller, such as the dots constituting the two-dimensional code
  • the array diameter is around 0.125mm.
  • the lens sample 20 is usually made of a transparent material and has an irregular shape, so that the light on the two-dimensional code of the lens sample 20 is prone to multiple reflections and/or refractions to form stray light, so it is difficult to directly obtain the lens sample 20 with the naked eye or a camera.
  • the clear image of the QR code on the top made it difficult to recognize the QR code of sample 20.
  • the present application provides a two-dimensional code detection device 10 capable of clearly identifying the two-dimensional code on the lens sample 20 .
  • the two-dimensional code detection device 10 includes a machine platform 110 and a light source module 120 , a scattering module 130 and an image sensing element 140 disposed on the machine platform 110 .
  • the material of the sample 20 is a light-transmitting material, and the sample 20 has a first side 210 and a second side 220 opposite to each other.
  • the light emitted by the light source module 120 can illuminate the sample 20 from the first side 210 .
  • the scattering module 130 is located on the second side 220 of the sample 20.
  • the light emitted by the light source module 120 passes through the sample 20 from the first side 210 and reaches the scattering module 130, which will be reflected by the scattering module 130 to form scattered light. Part of the scattered light formed by 130 illuminates the sample 20 from the second side 220 .
  • the image sensing element 140 can acquire the scattered light passing through the sample 20 , so as to acquire the image of the two-dimensional code on the sample 20 , so as to detect and identify the two-dimensional code of the sample 20 .
  • the light emitted by the light source module 120 can illuminate the sample 20 from the first side 210, including that the light source module 120 is opposite to the surface of the sample 20 facing the first side 210, and the light emitted by the light source module 120 directly hits The situation of the surface of the sample 20 facing the first side 210; it also includes that the light-emitting surface of the light source module 120 is not opposite to the sample 20, and the light emitted by the light source module 120 passes through the light guide element or the reflective element and then hits the sample 20 toward the first side 210 surface condition.
  • the shape of the sample 20 can be any irregular shape, for example, the sample 20 can be a lens with at least one side being a curved surface, and the sample 20 includes an opposite object side and an image side, then the first side 210 can be the object surface of the sample 20.
  • the laterally facing side, the second side 220 may be the laterally facing side of the sample 20 .
  • the scattering module 130 reflects the light passing through the sample 20 to form scattered light. It can be understood that the light emitted by the light source module 120 passes through the sample 20 and hits the scattering module 130, and will be reflected in multiple different directions, for example , the light is diffusely reflected on the scattering module 130 .
  • the scattered light formed by the scattering module 130 can strike the two-dimensional code on the surface of the sample 20 from multiple different directions.
  • the above-mentioned two-dimensional code detection device 10 irradiates the sample 20 with scattered light formed by the scattering module 130, and the scattered light can better adapt to the irregular shape of the surface of the sample 20. irradiating the surface of the sample 20 in a direction perpendicular to the surface of the sample 20 can also increase the proportion of light irradiating on the sample 20 in a direction perpendicular to the surface of the sample 20 . Therefore, when the two-dimensional code is placed on the irregular surface of the sample 20, part of the scattered light formed by the scattering module 130 can hit the sample 20 in a direction perpendicular to the surface where each dot matrix of the two-dimensional code is located, and then carry the sample 20.
  • the image information of the two-dimensional code on the sample 20 is received by the image sensing element 140, so that the image sensing element 140 can obtain a clear image of the two-dimensional code on the sample 20, and it is easier to recognize and detect the two-dimensional code.
  • FIG. 4 and FIG. 5 are structural schematic diagrams of the light source module 120 and the sample 20 at different angles in some embodiments.
  • the light source module 120 includes a light source 1210 for emitting light and a reflective plate assembly 1220 for changing the light path, the light emitted by the light source 1210 is reflected at least once on the reflective plate assembly 1220 and illuminates the sample 20 .
  • Setting the reflector assembly 1220 changes the optical path so that the light source 1210 does not need to face the sample 20, which is beneficial to meet the structural requirements of the two-dimensional code detection device 10 and makes the structure of the two-dimensional code detection device 10 more compact.
  • the reflector assembly 1220 includes a first reflector 1221 and a second reflector 1222, the first reflector 1221 is arranged on the light-emitting side of the light source 1210, and the second reflector 1222 is arranged on the sample 20 On the first side 210 , the first reflection plate 1221 is opposite to the second reflection plate 1222 .
  • the light emitted by the light source 1210 is reflected by the first reflector 1221 and the second reflector 1222 in sequence, and then hits the surface of the sample 20 facing the first side 210 .
  • the light emitting side of the light emitting source 1210 is the side to which the light emitting surface of the light emitting source 1210 faces.
  • the light emitting source 1210 is located between the second reflector 1222 and the sample 20, and the first reflector Plate 1221 is located on second side 220 of sample 20 .
  • the first reflector 1221 can fold the optical path into the machine 110, thereby further reducing the size of the two-dimensional code detection device 10 and improving space utilization.
  • the table top 1110 of the machine table 110 can be understood as an operation surface of the machine table 110 , such as a loading and unloading surface or a button control surface.
  • the projection of the light source 1210 and the sample 20 on the table 1110 is misaligned, the first reflector 1221 is inclined to the light emitting direction of the light source 1210 , and the first reflector 1221 is parallel to the second reflector 1222 .
  • the first reflection plate 1221 and the second reflection plate 1222 can guide the light emitted by the light source 1210 to the sample 20 more easily.
  • the relative positions of the light source 1210, the first reflector 1221 and the second reflector 1222 can also have other settings, as long as the light emitted by the light source 1210 can be reflected by the first reflector 1221 and the second reflector 1222 and then hit the Sample 20 is fine.
  • the light source module 120 may also include a reflector.
  • the light emitting source 1210 emits light toward the first side 210, and the light emitted by the light emitting source 1210 hits the sample 20 after one reflection, which can also realize folding.
  • the optical path thus compresses the effect of the size of the two-dimensional code detection device 10 .
  • the reflector assembly 1220 may also include three, four or more reflectors, so as to improve the space utilization of the two-dimensional code detection device 10 by folding the optical path multiple times.
  • the light source 1210 can also directly face the sample 20, and the light emitted by the light source 1210 directly hits the sample 20, as long as the light is reflected by the scattering module 130 and the two-dimensional code information on the sample 20 can be obtained.
  • the light output direction of the light emitting source 1210 can be understood as the propagation direction of the emitted light beam.
  • the luminescent light source 1210 is a coaxial light source capable of emitting light beams with good linearity, so that the light emitted by the luminous light source 1210 is more likely to reach the sample 20 through multiple reflections, and the utilization rate of light is improved.
  • the light beam with good linearity is more likely to hit the sample 20 after being reflected by the scattering module 130 .
  • the light emitting source 1210 can also emit more divergent light, so the light emitting direction of the light emitting source 1210 can be understood as the direction in which the light emitting surface of the light emitting source 1210 points to the front, or the direction in which the emitted light intensity is maximum.
  • the light emitting source 1210 further includes a backside facing away from the light emitting side, and the image sensing element 140 is disposed on the backside of the light emitting source 1210 . It can be understood that, after the scattered light formed by the scattering module 130 irradiates and passes through the sample 20, it will return along the original path. Then it reaches the light source 1210. However, if the image sensor element 140 is arranged on the back side of the light source 1210, the scattered light can pass through the light source 1210 and be received by the image sensor element 140 after reaching the light source 1210, without setting up other propagation spaces to receive the light, effectively improving the two Space utilization of the two-dimensional code detection device 10.
  • the image sensing element 140 may be a camera, a machine vision lens, or other elements capable of acquiring images.
  • FIG. 6 and FIG. 7 are structural diagrams of the scattering module 130 and the jig module 150 at different angles in some embodiments.
  • the two-dimensional code detection device 10 further includes a fixture module 150 disposed on the machine platform 110 , and the fixture module 150 is used for positioning the sample 20 and fixing the sample 20 on the machine platform 110 .
  • the fixture module 150 includes a fixing part 1510 and a positioning part 1520 , and the fixing part 1510 is used to fix the sample 20 on the table 1110 .
  • the positioning part 1520 includes a connecting part 1521 and a positioning part 1522 , the positioning part 1522 is located on the peripheral side of the sample 20 , and the connecting part 1521 is fixedly connected to the machine platform 110 and the positioning part 1522 .
  • the positioning part 1522 is formed with a positioning surface 1523 facing the sample 20 , and the positioning surface 1523 is adapted to the shape of the sample 20 .
  • the side surface of the sample 20 is any regular or irregular arc surface, and the positioning surface 1523 is adapted to the shape of the side surface of the sample 20 .
  • the fixing part 1510 includes a main body 1511 and a fixing part 1512.
  • the main body 1511 is fixedly arranged on the machine platform 110.
  • the fixing part 1512 is arranged on the side of the main body 1511 away from the table top 1110 and is used to fix the sample 20.
  • the fixing part 1512 is fixed by vacuum adsorption. Sample 20.
  • the main body 1511 is also made of light-transmitting material, so as to avoid blocking the passage of light between the sample 20 and the scattering module 130 .
  • the part of the machine 110 corresponding to the position between the main body 1511 and the scattering module 130 may be provided with holes or made of light-transmitting material to avoid blocking the passage of light between the sample 20 and the scattering module 130 .
  • the scattering module 130 includes a turntable 1310, a motor 1320, and a reflective film 1330 disposed on the turntable 1310.
  • the output shaft of the motor 1320 is connected to the turntable 1310.
  • the motor 1320 can drive the turntable 1310 to rotate, thereby driving the reflective film 1330 along the The axis of the sample 20 rotates.
  • the turntable 1310 is set to drive the reflective film 1330 to rotate, which can continuously change the angle at which the light reflects on the reflective film 1330, and enhance the diffuse reflection effect of the light on the reflective film 1330, thereby forming scattered light emitted in more directions, which is beneficial to the sample 20. Recognition of QR codes.
  • the rotating disk 1310 may not be provided in the scattering module 130, and the reflective film 1330 is fixed on the second side 220 of the sample 20, and the reflective film 1330 forms a diffuse reflection surface, and light rays can also diffuse on the reflective film 1330. reflected to form scattered light.
  • FIG. 8 is a schematic diagram of a reflective film 1330 in some embodiments
  • FIG. 9 is a schematic diagram of a scattering layer 1331 in some embodiments.
  • the reflective film 1330 includes a multi-layer structure, including a scattering layer 1331, the scattering layer 1331 includes a substrate and a plurality of microstructures 1332 arranged in an array on the substrate, and each microstructure 1332 includes at least two two reflective surfaces 1333 that are inclined to each other.
  • a scattering layer 1331 comprising a plurality of microstructures 1332 is provided, and the reflection surfaces 1333 of the microstructures 1332 are mutually inclined, so that a plurality of tiny reflection surfaces 1333 with different orientations can be formed on the scattering layer 1331, in other words, the scattering layer 1331 constitutes a diffuse reflection surface 1333, The light rays impinge on the scattering layer 1331 are reflected on the reflective surfaces 1333 with different orientations, so that they are reflected in different directions to form scattered light.
  • the microstructures 1332 are approximately polygonal pyramid structures, and the microstructures 1332 may include three, four or five reflective surfaces 1333 , and the plurality of microstructures 1332 are arranged in a regular array on the substrate.
  • the shape of the microstructures 1332 is not limited, and can be any regular or irregular shape, and the shapes of adjacent microstructures 1332 can be the same or different, as long as at least two mutually inclined reflecting surfaces 1333 can be formed.
  • the arrangement rules of the plurality of microstructures 1332 on the substrate are not limited, and can be arranged in any regular or irregular manner. The tighter the arrangement of the microstructures 1332 is, the better the scattering effect of the scattering layer 1331 is.
  • the microstructures 1332 have the same shape and are closely arranged in a regular array, and the reflective surfaces 1333 of the microstructures 1332 have the same area and shape.
  • the height of the microstructure 1332 on the substrate that is, the dimension A shown in Figure 9 is 15um-25um, specifically 20um, and the length of the connection between the reflective surface 1333 and the substrate, that is, the dimension B shown in Figure 9 is between 2um-8um Between, specifically can be 5um.
  • the microstructure 1332 can be rough processed by nano-imprinting, and can be formed by high-precision diamond prop finishing, and the scattering layer 1331 can be formed by replicating multiple microstructures 1332 on the substrate by optical pad printing.
  • the reflective film 1330 also includes an antireflection film layer 1334, a light-transmitting protective layer 1335, a reflective layer 1336, and an absorbing layer 1337 arranged in sequence in the direction that the sample 20 points to the reflective film 1330, and the scattering layer 1331 is arranged on the between the light-transmitting protective layer 1335 and the reflective layer 1336 .
  • the anti-reflection coating layer 1334 can be an anti-reflection and anti-reflection coating, which is used to enhance the transmission of incident light and reduce the reflection of light on the anti-reflection coating layer, improve the utilization rate of light, and can filter the incident light from the sample 20. Scattering light on the reflective film 1330 reduces interference light.
  • the light-transmitting protective layer 1335 is made of a hard material, such as glass or plastic, to enhance the structural strength of the reflective film 1330 and protect the scattering layer 1331 .
  • the reflectivity of the reflective layer 1336 is greater than or equal to 70%.
  • the reflective layer 1336 can be specifically a meson film reflective layer or other film layers with high reflectivity.
  • the reflective layer 1336 is arranged on the side of the scattering layer 1331 away from the sample 20 for The light passing through the scattering layer 1331 is reflected toward the sample 20 to improve the utilization rate of the light.
  • the absorbing layer 1337 can be made of a light absorbing material for absorbing light passing through the reflective layer 1336 to prevent light from leaking from the side of the reflective film 1330 facing away from the sample 20 to form interference light.
  • the image sensing element 140, the light source 1210, the first reflector 1221 and the second reflector 1222 all pass through the slider (not shown in the figure). ) is slidingly connected with the slide rail (not shown) of the machine 110, so that the relative positions of the image sensing element 140, the light source 1210, the first reflector 1221 and the second reflector 1222 can be adjusted, so that the light source 1210 can emit The light rays can be accurately incident on the sample 20.
  • the four corners of the first reflector 1221 and the second reflector 1222 are provided with pressing blocks 1223, which are used to fix the first reflector 1221 and the second reflector 1222, and can also adjust the first reflection.
  • the angle between the plate 1221 and the second reflective plate 1222 is also conducive to the light emitted by the light emitting source 1210 being accurately incident on the sample 20 .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种二维码检测装置(10),用于检测样品(20)上的二维码,样品(20)包括相背的第一侧(210)和第二侧(220),二维码检测装置(10)包括光源模组(120)、散射模组(130)以及图像传感器(140)。光源模组(120)发射的光线能够从第一侧(210)照射样品(20)。散射模组(130)设于样品(20)的第二侧(220),散射模组(130)能够将透过样品(20)的光线反射形成散射光。图像传感元件(140)用于获取透过样品(20)的散射光。

Description

二维码检测装置
本申请要求于2021年12月8日申请的,申请号为2021114948809、名称为“二维码检测装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及二维码检测技术领域,特别是涉及一种二维码检测装置。
背景技术
传统的镜片多采用注塑成型制造,且在镜片的大批量生产中,通常需要对镜片进行标记以便识别真伪和追本溯源。传统的标记方式通常在镜片的注塑模具上刻二维码,使得镜片经注塑成型后能够携带二维码信息,通过识别镜片上的二维码就能够追溯到镜片的注塑模具。然而,目前镜片上的二维码识别困难,影响镜片成型的追溯。
发明内容
根据本申请的各种实施例,提供一种二维码检测装置。
一种二维码检测装置,用于检测样品上的二维码,所述样品包括相背的第一侧和第二侧,所述二维码检测装置包括:
光源模组,所述光源模组发射的光线能够从所述第一侧照射所述样品;
散射模组,设于所述样品的第二侧,所述散射模组能够将透过所述样品的光线反射形成散射光;以及
图像传感元件,用于获取透过所述样品的散射光。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为一些实施例中二维码检测装置的轴测图;
图2为一些实施例中二维码检测装置的正视图;
图3为一些实施例中二维码检测装置的左视图;
图4为一些实施例中光源模组及样品的结构示意图;
图5为图4所示的光源模组及样品另一角度的结构示意图;
图6为一些实施例中散射模组与治具模组的结构示意图;
图7为图6所示的散射模组与治具模组另一角度的结构示意图;
图8为一些实施例中反射膜的示意图;
图9为一些实施例中散射层的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1、图2和图3,图1、图2和图3分别为一些实施例中二维码检测装置10的轴测图、正视图和左视图。二维码检测装置10可以用于识别样品20上的二维码,例如用于识别镜片上的二维码(图未示出)。值得一提的是,镜片样品20的尺寸通常较小,例如镜片样品20的径向尺寸在55mm-82mm之间,而镜片样品20上的二维码尺寸更小,例如构成二维码的点阵直径在0.125mm左右。并且,镜片样品20通常为透明材质,形状不规则,导致找到镜片样品20二维码上的光线容易发生多次反射和/或折射而形成杂散光,因而通过肉眼或相机难以直接获取镜片样品20上二维码的清晰图像,导致样品20二维码识别困难。
针对上述问题,本申请提供了一种二维码检测装置10,能够清晰识别镜片样品20上的二维码。具体地,在一些实施例中,二维码检测装置10包括机台110以及设置于机台110上的光源模组120、散射模组130和图像传感元件140。样品20的材质为透光材质,且样品20具有相背的第一侧210和第二侧220,光源模组120发射的光线能够从第一侧210照射样品20。散射模组130位于样品20的第二侧220,光源模组120发射的光线从第一侧210透过样品20后到达散射模组130,会被散射模组130反射形成散射光,散射模组130形成的部分散射光从第二侧220照射样品20。图像传感元件140能够获取透过样品20的散射光,从而获取样品20上的二维码图像,以便进行样品20二维码的检测和识别。
需要说明的是,光源模组120发射的光线能够从第一侧210照射样品20, 既包括光源模组120与样品20朝向第一侧210的表面相对,光源模组120发射的光线直接射到样品20朝向第一侧210的表面的情况;也包括光源模组120的出光面未与样品20相对,光源模组120发射的光线经过导光元件或反射元件后射到样品20朝向第一侧210的表面的情况。样品20的形状可以为任意不规则形状,例如,样品20可以为至少一侧面为弧形面的镜片,样品20包括相背的物侧面和像侧面,则第一侧210可以为样品20的物侧面朝向的一侧,第二侧220可以为样品20的像侧面朝向的一侧。另外,散射模组130将透过样品20的光线反射形成散射光,可以理解为光源模组120发射的光线透过样品20射到散射模组130后,会朝向多个不同的方向反射,例如,光线在散射模组130上发生漫反射。散射模组130形成的散射光能够从多个不同的方向射到样品20表面的二维码上。
上述二维码检测装置10,通过散射模组130形成散射光照射样品20,散射光能够更适应样品20表面的不规则形状,换言之,即便样品20表面为不规则形状,散射光从多个不同的方向射到样品20表面,也能够提升垂直于样品20表面的方向照射到样品20上的光线比例。因此,当二维码设于样品20的不规则表面上时,散射模组130形成的部分散射光能够以垂直于二维码各点阵所在表面的方向射到样品20上,进而携带样品20上的二维码图像信息透过样品20被图像传感元件140接收,使得图像传感元件140能够获取样品20上二维码的清晰图像,更容易进行二维码的识别和检测。
进一步地,参考图3、图4和图5所示,图4和图5分别为一些实施例中光源模组120及样品20不同角度的结构示意图。在一些实施例中,光源模组120包括用于发射光线的发光光源1210以及用于改变光路的反射板组件1220,发光光源1210发射的光线在反射板组件1220上发射至少一次反射后照射样品20。 设置反射板组件1220改变光路,使得发光光源1210不需要正对样品20,有利于适应二维码检测装置10的结构需求,使得二维码检测装置10的结构更加紧凑。
具体地,在一些实施例中,反射板组件1220包括第一反射板1221和第二反射板1222,第一反射板1221设于发光光源1210的出光侧,第二反射板1222设于样品20的第一侧210,第一反射板1221与第二反射板1222相对。发光光源1210发射的光线依次经第一反射板1221与第二反射板1222反射后射到样品20朝向第一侧210的表面。发光光源1210的出光侧即为发光光源1210的出光面朝向的一侧。可以理解的是,设置第一反射板1221与第二反射板1222将光路反射两次,能够实现折叠光路的效果,从而在满足光路传播距离的同时压缩二维码检测装置10的尺寸,使得二维码检测装置10的结构更加紧凑,提升空间利用率。
更进一步地,在一些实施例中,在样品20的轴向上,例如在垂直于机台110的台面1110的方向上,发光光源1210位于第二反射板1222与样品20之间,第一反射板1221位于样品20的第二侧220。如此设置,当样品20置于机台110的台面1110上时,第一反射板1221能够将光路折叠至机台110内,从而进一步压缩二维码检测装置10的尺寸,提升空间利用率。需要说明的是,机台110的台面1110可以理解为机台110的操作面,例如上下料面或按钮控制面。
在一些实施例中,发光光源1210与样品20在台面1110上的投影相错位,第一反射板1221倾斜于发光光源1210的出光方向,第一反射板1221平行于第二反射板1222。如此设置,第一反射板1221与第二反射板1222能够更容易将发光光源1210发射的光线导到样品20上。当然,发光光源1210、第一反射板1221与第二反射板1222的相对位置还可以有其他设置,只要发光光源1210发 射的光线能够经第一反射板1221与第二反射板1222反射后射到样品20上即可。
在另一些实施例中,光源模组120也可包括一个反射板,此时发光光源1210朝向第一侧210出光,发光光源1210发射的光线经过一次反射后射到样品20上,也能够实现折叠光路从而压缩二维码检测装置10的尺寸的效果。反射板组件1220也可包括三个、四个或更多数量的反射板,通过将光路折叠多次而提升二维码检测装置10的空间利用率。当然,发光光源1210也可直接与样品20相对,发光光源1210发射的光线直接射到样品20上,只要光线经散射模组130反射后能够获取样品20上的二维码信息即可。
需要说明的是,当发光光源1210发射的光线线性良好时,发光光源1210的出光方向可以理解为发射光束的传播方向。例如,在一些实施例中,发光光源1210为同轴光源,能够发射线性良好的光束,从而使得发光光源1210发射的光线更容易经多次反射到达样品20上,提升光线的利用率。同时,线性良好的光束在散射模组130上反射后也更容易射到样品20上。发光光源1210也可以发射较发散的光线,则发光光源1210的出光方向可以理解为发光光源1210的出光面指向正前方的方向,或者发射光强最大的方向。
在一些实施例中,发光光源1210还包括背向出光侧的背侧,图像传感元件140设于发光光源1210的背侧。可以理解的是,散射模组130形成的散射光照射并透过样品20后,会沿原路返回,换言之,透过样品20的散射光依次经第二反射板1222与第一反射板1221反射后到达发光光源1210处。而将图像传感元件140设置发光光源1210的背侧,散射光到达发光光源1210后能够透过发光光源1210被图像传感元件140接收,而不需要设置其他传播空间来接收光线,有效提升二维码检测装置10的空间利用率。在一些实施例中,图像传感元件140 可以为相机、机器视觉镜头等能够获取图像的元件。
参考图2、图6和图7所示,图6和图7分别为一些实施例中散射模组130与治具模组150不同角度的结构示意图。在一些实施例中,二维码检测装置10还包括设于机台110上的治具模组150,治具模组150用于对样品20定位并将样品20固定于机台110上。具体地,治具模组150包括固定件1510与定位件1520,固定件1510用于将样品20固定于台面1110上。定位件1520包括连接部1521和定位部1522,定位部1522位于样品20的周侧,连接部1521固定连接机台110与定位部1522。定位部1522形成有朝向样品20的定位面1523,定位面1523与样品20的形状相适应。例如,样品20的侧面为任意规则或不规则的弧形面,定位面1523与样品20侧面的形状相适应。当样品20置于固定件1510上时,定位部1522的定位面1523抵接样品20的侧面,从而实现样品20的准确定位,便于准确识别样品20上的二维码。固定件1510包括主体1511以及固定部1512,主体1511固定设置于机台110上,固定部1512设于主体1511背离台面1110的一侧并用于固定样品20,例如固定部1512通过真空吸附的方式固定样品20。可以理解的是,主体1511也采用透光材质,避免在样品20与散射模组130之间阻挡光线通过。同理,机台110与主体1511及散射模组130之间的位置对应的部分可开设有孔槽或采用透光材质,避免阻挡样品20与散射模组130之间的光线通过。
在一些实施例中,散射模组130包括转盘1310、电机1320以及设于转盘1310上的反射膜1330,电机1320的输出轴连接转盘1310,电机1320能够驱使转盘1310转动,从而带动反射膜1330沿样品20的轴线转动。设置转盘1310带动反射膜1330转动,能够不断改变光线在反射膜1330上发生反射的角度,提升光线在反射膜1330上的漫反射效应,从而形成朝更多方向射出的散射光,有 利于样品20上二维码的识别。当然,在另一些实施例中,散射模组130也可不设置转盘1310,反射膜1330固定于样品20的第二侧220,反射膜1330形成漫反射表面,光线在反射膜1330上也能够发生漫反射而形成散射光。
参考图2、图8和图9所示,图8为一些实施例中反射膜1330的示意图,图9为一些实施例中散射层1331的示意图。在一些实施例中,反射膜1330包括多层层结构,其中包括散射层1331,散射层1331包括基底以及在基底上呈阵列排布的多个微结构1332,且每个微结构1332包括至少两个相互倾斜的反射面1333。设置包括多个微结构1332的散射层1331,微结构1332的反射面1333相互倾斜,则散射层1331上能够形成朝向不同的多个微小反射面1333,换言之,散射层1331构成漫反射面1333,光线射到散射层1331上,在不同朝向的反射面1333上分别发生反射,从而朝向不同的方向反射形成散射光。在一些实施例中,微结构1332大致呈多棱锥状结构,微结构1332可包括三个、四个或五个反射面1333,多个微结构1332在基底上呈规则阵列排布。当然,微结构1332的形状不限,可以是任意规则或不规则的形状,且相邻微结构1332的形状可以相同,也可以不同,只要能够形成至少两个相互倾斜的反射面1333即可。多个微结构1332在基底上的排列规则不限,可以为任意规则或不规则的排列方式,微结构1332的排列越紧密,则散射层1331的散射效果越好。
在一些实施例中,各微结构1332的形状相同,且呈规则阵列紧密排布,微结构1332的各反射面1333的面积和形状相同。微结构1332在基底上的高度,即图9所示的尺寸A为15um-25um,具体可以为20um,反射面1333与基底连接处的长度,即图9所示的尺寸B在2um-8um之间,具体可以为5um。微结构1332可通过纳米压印粗加工,并通过高精度钻石道具精加工形成,散射层1331可以通过在基底上进行光学移印复制多个微结构1332形成。
在一些实施例中,反射膜1330还包括在样品20指向反射膜1330的方向上依次排布的增透膜层1334、透光保护层1335、反射层1336以及吸收层1337,散射层1331设于透光保护层1335与反射层1336之间。具体地,增透膜层1334可以为增透减反膜,用于增强入射光的透过而减少光线在增透膜层上的反射,提升光线的利用率,并能够过滤由样品20射到反射膜1330上的散射光,减少干扰光。透光保护层1335采用硬质材料,例如采用玻璃或塑料材质,用于提升反射膜1330的结构强度,并保护散射层1331。反射层1336的反射率大于或等于70%,反射层1336具体可以为介子膜反射层或其他具备高反射率的膜层,反射层1336设于散射层1331背离样品20的一侧,用于将透过散射层1331的光线朝样品20反射,提升光线的利用率。吸收层1337可以采用光吸收材质,用于吸收透过反射层1336的光线,防止光线从反射膜1330背离样品20的一侧泄露而形成干扰光。
请再参见图2、图4和图5所示,在一些实施例中,图像传感元件140、发光光源1210、第一反射板1221以及第二反射板1222均通过滑块(图未标出)与机台110的滑轨(图未标出)滑动连接,从而能够调整图像传感元件140、发光光源1210、第一反射板1221以及第二反射板1222的相对位置,便于发光光源1210发射的光线能够准确射到样品20上。在一些实施例中,第一反射板1221与第二反射板1222的四个角落均设置有压块1223,用于固定第一反射板1221与第二反射板1222,同时还能够调节第一反射板1221与第二反射板1222的角度,也有利于发光光源1210发射的光线能够准确射到样品20上。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等 指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述 的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种二维码检测装置,用于检测样品上的二维码,所述样品包括相背的第一侧和第二侧,所述二维码检测装置包括:
    光源模组,所述光源模组发射的光线能够从所述第一侧照射所述样品;
    散射模组,设于所述样品的第二侧,所述散射模组能够将透过所述样品的光线反射形成散射光;以及
    图像传感元件,用于获取透过所述样品的散射光。
  2. 根据权利要求1所述的二维码检测装置,其特征在于,所述光源模组包括发光光源以及反射板组件,所述发光光源发射的光线在所述反射板组件上发生至少一次反射后照射所述样品。
  3. 根据权利要求2所述的二维码检测装置,其特征在于,所述反射板组件包括第一反射板和第二反射板,所述第一反射板设于所述发光光源的出光侧,所述第二反射板设于所述样品的第一侧,所述第一反射板与所述第二反射板相对。
  4. 根据权利要求3所述的二维码检测装置,其特征在于,所述发光光源设于所述第二反射板及所述样品之间,所述第一反射板设于所述样品的第二侧;
    和/或,所述第一反射板倾斜于所述发光光源的出光方向,所述第一反射板平行于所述第二反射板。
  5. 根据权利要求3所述的二维码检测装置,其特征在于,所述发光光源还包括背向所述出光侧的背侧,所述图像传感元件设于所述发光光源的背侧。
  6. 根据权利要求2所述的二维码检测装置,其特征在于,所述发光光源为同轴光源。
  7. 根据权利要求1所述的二维码检测装置,其特征在于,所述散射模组包括转盘以及设于所述转盘上的反射膜,所述转盘能够驱使所述反射膜旋转。
  8. 根据权利要求7所述的二维码检测装置,其特征在于,所述反射膜包括散射层,所述散射层包括呈阵列排布的多个微结构,且每个所述微结构包括至少两个相互倾斜的反射面。
  9. 根据权利要求8所述的二维码检测装置,其特征在于,所述反射膜还包括在所述样品指向所述反射膜的方向上依次排布的增透膜层、反射层以及吸收层,所述反射层的反射率大于或等于70%,所述散射层设于所述增透膜层和所述反射层之间。
  10. 根据权利要求9所述的二维码检测装置,其特征在于,所述增透膜层为增透减反膜。
  11. 根据权利要求1所述的二维码检测装置,其特征在于,还包括治具模组,所述治具模组包括固定件与定位件,所述固定件用于固定所述样品,所述定位件设于所述样品的周侧,且所述定位件具有朝向所述样品的定位面,所述定位面与所述样品的形状相适应。
PCT/CN2022/109378 2021-12-08 2022-08-01 二维码检测装置 WO2023103416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111494880.9A CN114139562A (zh) 2021-12-08 2021-12-08 二维码检测装置
CN202111494880.9 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023103416A1 true WO2023103416A1 (zh) 2023-06-15

Family

ID=80385390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109378 WO2023103416A1 (zh) 2021-12-08 2022-08-01 二维码检测装置

Country Status (2)

Country Link
CN (1) CN114139562A (zh)
WO (1) WO2023103416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114139562A (zh) * 2021-12-08 2022-03-04 深圳思谋信息科技有限公司 二维码检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703692A (en) * 1995-08-03 1997-12-30 Bio-Rad Laboratories, Inc. Lens scatterometer system employing source light beam scanning means
KR20120126570A (ko) * 2011-05-12 2012-11-21 한국교통대학교산학협력단 레이저 산란 기반 시편 검사 장치
CN107430052A (zh) * 2016-01-26 2017-12-01 唯因弗Sys株式会社 成像粒子分析装置
CN209199115U (zh) * 2018-11-29 2019-08-02 武汉华工激光工程有限责任公司 二维码扫描设备
CN215814184U (zh) * 2021-08-04 2022-02-11 深圳思谋信息科技有限公司 隐形二维码识别装置及设备
CN114139562A (zh) * 2021-12-08 2022-03-04 深圳思谋信息科技有限公司 二维码检测装置
CN216647373U (zh) * 2021-12-08 2022-05-31 深圳思谋信息科技有限公司 二维码检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703692A (en) * 1995-08-03 1997-12-30 Bio-Rad Laboratories, Inc. Lens scatterometer system employing source light beam scanning means
KR20120126570A (ko) * 2011-05-12 2012-11-21 한국교통대학교산학협력단 레이저 산란 기반 시편 검사 장치
CN107430052A (zh) * 2016-01-26 2017-12-01 唯因弗Sys株式会社 成像粒子分析装置
CN209199115U (zh) * 2018-11-29 2019-08-02 武汉华工激光工程有限责任公司 二维码扫描设备
CN215814184U (zh) * 2021-08-04 2022-02-11 深圳思谋信息科技有限公司 隐形二维码识别装置及设备
CN114139562A (zh) * 2021-12-08 2022-03-04 深圳思谋信息科技有限公司 二维码检测装置
CN216647373U (zh) * 2021-12-08 2022-05-31 深圳思谋信息科技有限公司 二维码检测装置

Also Published As

Publication number Publication date
CN114139562A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
US7990584B2 (en) Rod-shaped light guide and image reading device
US8134760B2 (en) Achieving convergent light rays emitted by planar array of light sources
CN101994938B (zh) 发光装置
US8587778B2 (en) Light irradiation apparatus, component image pickup apparatus, and component mounting apparatus
US8562171B2 (en) LED linear light source and reading apparatus
KR20120084738A (ko) 고속, 고해상도, 3차원 태양 전지 검사 시스템
WO2023103416A1 (zh) 二维码检测装置
JPH11337496A (ja) 透明体の欠陥検出方法及び透明体の製造方法
JP2007011353A (ja) ドキュメント照射装置
JP2012159457A (ja) 積分球装置及び光測定方法
CN106092970B (zh) 一种光学检测系统及光学检测设备
TW583573B (en) An optical illumination system and method
TWI528100B (zh) 原稿照明裝置、密著型影像感測器模組及圖像讀取裝置
CN216647373U (zh) 二维码检测装置
JP6016524B2 (ja) 照明装置および画像読取装置
CN101079098A (zh) 光学反射信息读取传感器和电子装置
US9172836B2 (en) Optical scanner illumination system and method
WO2022267863A1 (zh) 接触式图像传感器
JP6671938B2 (ja) 表面形状測定装置、欠陥判定装置、および表面形状の測定方法
CN217688518U (zh) 一种塑封胶体表面缺陷检测装置
CN219996902U (zh) 一种用于外观缺陷检测的光学系统
KR102350544B1 (ko) 반도체 패키징 검사공정용 광학모듈
CN214623265U (zh) 一种相机背光源装置
JPH10255529A (ja) 指向性面状光源
CN220872334U (zh) 检测光源及检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902850

Country of ref document: EP

Kind code of ref document: A1