WO2022267863A1 - 接触式图像传感器 - Google Patents
接触式图像传感器 Download PDFInfo
- Publication number
- WO2022267863A1 WO2022267863A1 PCT/CN2022/096968 CN2022096968W WO2022267863A1 WO 2022267863 A1 WO2022267863 A1 WO 2022267863A1 CN 2022096968 W CN2022096968 W CN 2022096968W WO 2022267863 A1 WO2022267863 A1 WO 2022267863A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light source
- image sensor
- contact image
- scanned
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 45
- 230000003287 optical effect Effects 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 8
- 230000004308 accommodation Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000011521 glass Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000004313 glare Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000003760 hair shine Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- AZCUJQOIQYJWQJ-UHFFFAOYSA-N oxygen(2-) titanium(4+) trihydrate Chemical compound [O-2].[O-2].[Ti+4].O.O.O AZCUJQOIQYJWQJ-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N2021/0106—General arrangement of respective parts
- G01N2021/0112—Apparatus in one mechanical, optical or electronic block
Definitions
- the present invention relates to the technical field of image detection, in particular to a contact image sensor.
- the contact image sensor is linear scanning, which has the advantages of wide format, compact structure, space saving, 1:1 image and no distortion.
- the application range of the touch sensor in the prior art is relatively small.
- the contact image sensor scans the object to be scanned with unevenness, since the object to be scanned has a protruding convex part, and there is an incident angle between the detection light and the surface of the object to be scanned, in this way, a part of the light source emits The probe light cannot be irradiated to the root of the convex part of the object to be scanned, resulting in insufficient light in this area (that is, the brightness of this area is low), and then shadows appear in the corresponding position of the scanned image and this area, which will cause image scanning effect, causing the problem that the above-mentioned areas cannot be recognized.
- the detection light emitted by the light source shines on the object to be scanned and is located above the lens.
- the contact image sensor scans the smooth or uneven surface of the object to be scanned, it is easy to fail to read the local information of the object to be scanned.
- the main purpose of the present invention is to provide a contact image sensor to solve the problem that the contact image sensor in the prior art cannot easily read the local information of the object to be scanned when scanning the object to be scanned with a smooth surface or an uneven surface. question.
- the present invention provides a contact image sensor, comprising: a frame with a housing cavity; a light source located in the housing cavity, the light source is used to emit a detection beam; a beam splitter located in the housing cavity, the beam splitter is located On one side, the beam splitting part is used to divide the detection beam emitted by the light source into reflected light and transmitted light; the light receiving part includes a lens located in the accommodating cavity and used to converge the light. Based on the principle of reflection, the reflected light is vertically incident on the object to be scanned And after being reflected by the object to be scanned, it enters the lens vertically.
- the contact image sensor further includes a light absorbing part located on the inner wall of the housing cavity, the light absorbing part and the light source are respectively located on two sides of the light splitting part, and the transmitted light is absorbed by the light absorbing part.
- angle A there is an angle A between the detection beam emitted by the light source and the incident surface of the beam splitter, and the angle A satisfies: 10° ⁇ A ⁇ 80°, so that the reflected light from the beam splitter in the probe beam is vertically incident on the scan object.
- the detection beam is perpendicular to the optical axis of the lens, and the included angle A is 45°.
- the contact image sensor further includes a diffuser plate for scattering the detection beam, the light source, the diffuser plate and the beam splitter are sequentially arranged along the optical path, and the diffuser plate is located between the light source and the beam splitter.
- the contact image sensor further includes a light collecting part for converging the detection beam, the light source, the light collecting part and the light splitting part are sequentially arranged along the optical path, and the light collecting part is located between the light source and the light splitting part.
- the frame includes a supporting frame and a light-transmitting plate for the detection beam to pass through, the light-transmitting plate and the supporting frame enclose an accommodating cavity, and the light source and the beam splitter are located above the lens.
- the frame includes two supporting frames and a plurality of light-transmitting plates corresponding to the two supporting frames, the light source and the beam splitting part are located in one of the two supporting frames, and the light receiving part is located in one of the two supporting frames. within another support frame.
- the two support frames are located on opposite sides of the object to be scanned
- the support frame provided with the light source has an opening
- a light-transmitting plate is provided at the opening
- the contact image sensor also includes a reflective part, and the reflected light and the transmitted light pass through the reflective part After being reflected, it passes through the light-transmitting plate and enters the object to be scanned.
- the light-reflecting part and the light source are located on opposite sides of the light-splitting part, or the light-reflecting part and the light-transmitting plate are located on opposite sides of the light-splitting part.
- the light source, the spectroscopic part and the light receiving part are located on the same side of the object to be scanned.
- the light source includes a PCB board vertically arranged on the side wall of the accommodating cavity and a plurality of LED chips linearly arranged on the PCB board; or, the light source includes a light guide rod type linear light source arranged vertically;
- the light receiving part further includes a substrate and a photosensitive element for sensing the detection light beam converged by the lens, and the photosensitive element is disposed on the substrate.
- the light splitter that can divide the detection beam into reflected light and transmitted light on one side of the light source, and the reflected light can be vertically incident on the object to be scanned, so that the reflected light and the
- the incident angle between the objects to be scanned is zero, and based on the principle of reflection, the reflected light will be reflected by the object to be scanned and enter the lens vertically, so that, on the one hand, the reflected light can directly irradiate the surface of the object to be scanned with uneven surfaces
- the root of the convex part and reflect the reflected light vertically into the lens, so as to avoid the problem of shadows on the concave and convex surface due to the blocking of the reflected light by the convex part, so that the contact image sensor can read the convex part of the object to be scanned.
- the reflected light can enter the point corresponding to the lens of the object to be scanned vertically and then enter the lens vertically after being reflected, so as to avoid the phenomenon of glare on the smooth surface, and then make the contact type
- the image sensor can read the information of the area corresponding to the lens of the object to be scanned. Therefore, the embodiment of the present invention can accurately read the information of the object to be scanned, that is to say, the embodiment of the present invention solves the problem of the contact image sensor in the prior art when scanning an object to be scanned with a smooth surface or an uneven surface. There is a problem that the partial information of the object to be scanned cannot be read.
- FIG. 1 shows a schematic structural view of Embodiment 1 of the contact image sensor of the present invention (wherein, the object to be scanned has a concave-convex surface);
- Fig. 2 shows a schematic structural view of the contact image sensor of Fig. 1 (wherein, the object to be scanned has a smooth surface);
- FIG. 3 shows a schematic structural diagram of Embodiment 2 of the contact image sensor of the present invention
- FIG. 4 shows a schematic structural view of Embodiment 3 of the contact image sensor of the present invention
- FIG. 5 shows a schematic structural view of Embodiment 4 of the contact image sensor of the present invention
- FIG. 6 shows a schematic structural view of Embodiment 5 of the contact image sensor of the present invention.
- FIG. 7 shows a schematic structural view of Embodiment 6 of the contact image sensor of the present invention.
- FIG. 8 shows a schematic structural diagram of Embodiment 7 of the contact image sensor of the present invention.
- the surface of the light splitter is specially treated, generally made of silicon dioxide and trititanium pentoxide cross-vacuum coating, silicon dioxide can effectively improve the transmission of light Titanium pentoxide has a very high refractive index. Therefore, when these two materials are used for vacuum coating, an optical film will be formed on the glass surface in which titanium pentoxide and silicon dioxide coexist.
- the detection beam emitted by the light source 2 is irradiated on the surface of the spectroscopic sheet, a part of the detection beam is specularly reflected due to being irradiated on the surface of trititanium pentoxide with a higher refractive index, that is, the reflected light od in Figure 1; the other part
- the probe beam irradiates on the surface of silicon dioxide with a small refractive index and directly penetrates the spectroscopic sheet and irradiates the inner wall of the cavity opposite to the light source 2, namely the transmitted light oe in FIG. 1 .
- Embodiment 1 of the present invention provides a contact image sensor.
- the contact image sensor includes a frame 12, a light source 2, a spectroscopic part 3 and a light receiving part.
- the frame 12 has an accommodating chamber; the light source 2 is located in the accommodating chamber, and the light source 2 is used to emit a detection beam; The detection light beam is divided into reflected light and transmitted light; the light receiving part includes a lens 7 located in the accommodation cavity and used to converge the light. Based on the principle of reflection, the reflected light enters the object to be scanned vertically and then enters vertically after being reflected by the object to be scanned 8 Lens7.
- the spectroscopic part 3 capable of dividing the probe beam into reflected light and transmitted light, and the reflected light can be vertically incident on the object to be scanned 8, like this, the reflection of the incident object to be scanned 8
- the angle of incidence between the light and the object to be scanned 8 is zero, and based on the principle of reflection, the reflected light will be reflected by the object to be scanned 8 and enter the lens 7 vertically, so that, on the one hand, the reflected light can directly irradiate on the object with At the root b of the convex part 801 of the object 8 to be scanned on the uneven surface, and reflect the reflected light vertically into the lens 7, so as to avoid the problem of shadows on the concave and convex surface due to the blocking of the reflected light by the convex part 801, and then make the contact type image sensor can accurately read the information at the root b of the convex portion 801 of the object to be
- the contact image sensor of the embodiment of the present invention can be applied to objects to be scanned with uneven surfaces, objects to be scanned with smooth surfaces, and conventional objects to be scanned, so that the applicable range of the contact image sensor can be increased .
- the light splitter 3 is a light splitter.
- Embodiment 1 of the present invention The contact image sensor also includes a light absorbing part 11 located on the inner wall of the housing cavity, the light absorbing part 11 and the light source 2 are respectively located on both sides of the light splitting part 3, and the transmitted light is absorbed by the light absorbing part 11.
- the entire inner wall surface of the accommodating cavity or the part of the inner wall surface of the accommodating cavity corresponding to the transmitted light oe can be set to black, that is, the light-absorbing part 11 is a black wall surface, so that The transmitted light oe is absorbed.
- Embodiment 1 of the present invention there is an angle A between the detection beam emitted by the light source 2 and the incident surface of the beam splitter 3, and the angle A satisfies: 10° ⁇ A ⁇ 80°, In order to make the reflected light beam split by the light splitter 3 in the detection beam vertically enter the object 8 to be scanned.
- the detection beam co can be divided into reflected light od and transmitted light oe by the spectroscopic part 3, and the reflected light od is vertically incident on the object 8 to be scanned, so that the reflected light vertically incident on the object 8 to be scanned can also be It can be incident vertically into the lens 7, so that the contact image sensor can accurately read all the information of the object 8 to be scanned.
- the detection beam is perpendicular to the optical axis of the lens 7 , and the included angle A is 45°.
- a part of the detection beam co enters the spectroscopic part 3 at an incident angle of 45°, undergoes specular reflection, and exits at a reflection angle of 45°.
- the reflected light od is perpendicular to the detection light beam co, that is, the reflected light od and
- the optical axes of the lens 7 are parallel, so that the reflected light od is irradiated on the object 8 to be scanned along the optical axis direction of the lens 7, and then the above-mentioned reflected light od enters the lens 7 vertically after being reflected on the surface of the object 8 to be scanned, So that the contact image sensor can accurately read all the information of the object 8 to be scanned.
- the reflected light od since the reflected light od is irradiated vertically on the object 8 to be scanned, it can be irradiated at the root b of the convex portion 801 in FIG. 1 , and the light irradiated at b will be Reflected by the object 8 to be scanned, a part of the light ao parallel to or approximately parallel to the optical axis of the lens 7 will be irradiated on the surface of the spectroscopic part 3.
- part of the light ao is in the spectroscopic part Specular reflection occurs on the surface of 3 (that is, light oc), and the side where the light source 2 is irradiated is absorbed or reflected.
- the other part of the light ao will pass through the beam splitter 3 (ie, the light beam of) and enter the lens 7 .
- the light source 2 includes a PCB board 201 vertically arranged on the side wall of the housing cavity and a plurality of LED chips 202 linearly arranged on the PCB board 201 .
- the light source 2 can be made to emit multiple probe beams perpendicular to the optical axis of the lens 7, so that the brightness of the light source 2 can be improved to increase the light intensity of the light source 2, so that the scanned image has sufficient brightness to meet its requirements. Requirements.
- the LED chip 202 can be light of any wavelength band.
- a plurality of LED chips 202 are linearly arranged along the length direction of the inner wall surface of the housing cavity, the arrangement direction of the plurality of LED chips 202 is parallel to the lens 7, and the detection beams emitted by the LED chips are aligned with the The optical axis of the lens 7 is vertical.
- the frame 12 includes a support frame 1 and a light-transmitting plate 4 for the detection beam to pass through, and the light-transmitting plate 4 and the support frame 1 enclose an accommodating cavity , the light source 2 and the beam splitter 3 are located above the lens 7 .
- the transparent plate 4 and the support frame 1 enclose the receiving chamber, which can prevent dust or moisture from adhering to the light source 2, thereby improving the image quality of the scanned image.
- the probe beam co is irradiated on the spectroscopic part 3 parallel to the transparent plate 4 and is reflected by the spectroscopic part 3 to form a reflected light od that is emitted in a direction perpendicular to the transparent plate 4 and perpendicular to the transparent plate 4. Irradiate on the object 8 to be scanned.
- the frame 12 is made of materials such as plastic or metal.
- the frame 12 may be a separate composite structure, or may be an integrally formed structure.
- the transparent plate 4 can be made of glass or transparent plastic.
- the light receiving part further includes a substrate 6 and a photosensitive element 5 for sensing the detection beam converged by the lens 7 , and the photosensitive element 5 is disposed on the substrate 6 .
- the substrate 6 may be a PCB board.
- the detection light beam converged by the lens 7 can directly irradiate the photosensitive member 5, so as to convert the optical signal reflected by the object 8 to be scanned into an electronic signal.
- the light source 2 , the spectroscopic part 3 and the light receiving part are located on the same side of the object 8 to be scanned.
- one side of the object 8 to be scanned can be scanned, and an electronic image can be formed on the light receiving part.
- the light source 2 used in Embodiment 1 of the present invention is a linear array light source composed of a plurality of LED chip arrays, because there is a distance between two adjacent LED chips, and the larger the distance, the light source 2 in a limited space
- the number of LED chips in the LED chip is less, so the brightness of the light source 2 is also lower.
- the cost of the contact image sensor can be reduced, due to the high reflectivity and transmittance of the beam splitter, the diffuse reflection will Rarely, and a plurality of LED chips arranged at intervals can easily make the light source 2 uneven in brightness and darkness, thus resulting in uneven brightness and darkness in the scanned image.
- the scattering plate 9 for scattering the probe beam, the light source 2 , the scattering plate 9 and the spectroscopic part 3 are sequentially arranged along the optical path, and the diffusing plate 9 is located between the light source 2 and the spectroscopic part 3 .
- a diffusion plate 9 is added between the light source 2 and the beam splitter 3. After the light emitted by the light source 2 enters the diffuser plate 9, it is diffusely reflected and exits the diffuser plate 9, and is irradiated on the beam splitter 3, so that the light source 2 The emitted light is more uniform, thereby eliminating the problem of uneven brightness of the light source 2 due to a certain distance between multiple LED chips, and further eliminating the alternate light and dark stripes caused by the peaks and valleys of the LED array light source.
- the contact image sensor in the third embodiment of the present invention also includes a light concentrating part 10 for converging the detection beam, a light source 2, a light concentrating The part 10 and the spectroscopic part 3 are arranged in sequence along the optical path, and the light collecting part 10 is located between the light source 2 and the spectroscopic part 3 .
- adding a light-concentrating unit 10 between the light source 2 and the spectroscopic unit 3 can converge the probe light beam, thereby improving the utilization rate of the light source 2 and improving the image quality of the scanned image.
- the light concentrating part 10 is a circular or semicircular or other linear convex lens, which is made of a transparent material, such as: glass, PMMA (polymethyl methacrylate) , PC (polycarbonate) and other optically transparent materials.
- a transparent material such as: glass, PMMA (polymethyl methacrylate) , PC (polycarbonate) and other optically transparent materials.
- Embodiment 3 of the present invention if the reflectance and transmittance of the light splitter 3 are both 50%, and other losses of light during transmission are ignored. In this way, after the detection beam emitted by the light source 2 is split twice by the spectroscopic part 3, theoretically, the light intensity reaching the lens 7 is only a quarter of the original light intensity, and if other losses are added, it will be even less. However, if the number of LED chips 202 is increased, on the one hand, this will increase the cost of the contact image sensor; It also reduces the life of the light source 2 .
- the utilization rate of the light source 2 can be improved, and thus the image quality of the scanned image can be improved when fewer LED chips 202 are installed.
- a diffusion plate 9 may also be added between the light collecting part 10 and the light splitting part 3 .
- the difference between the fourth embodiment of the present invention and the first embodiment lies in the specific structure of the light source 2 .
- the light source 2 includes a light guide rod type linear light source arranged in the vertical direction.
- the light guide rod type linear light source includes a PCB board 201, a plurality of LED chips 202 arranged on the PCB board 201, a light guide rod 205 located on one side of the LED chip 202, a reflective pattern 203 and the housing 204 located on the outer periphery of the light guide rod 205, the above-mentioned light guide rod type linear light source is the prior art, and will not be repeated here.
- the LED chip 202 may be light of any wavelength band, or a combination of various lights.
- the difference between the fifth embodiment of the present invention and the first embodiment lies in the specific structure of the frame 12 .
- the frame 12 includes two support frames 1 and a plurality of light-transmitting plates 4 corresponding to the two support frames 1, and the light source 2 and the beam splitter 3 are located in the two support frames 1.
- the light receiving part is located in the other support frame 1 of the two support frames 1 .
- the light source 2 and the light splitting part 3 can be separated from the light receiving part to form an independent light splitting light source system.
- the relative distance between the light source 2 and the light receiving part can be adjusted freely, which is convenient to use.
- the support frame 1 provided with the light source 2 is provided with two light-transmitting plates 4 , and the two light-transmitting plates 4 are respectively located on the upper and lower sides of the support frame 1 in FIG. 6 .
- Embodiment 5 of the present invention when installing the above-mentioned support frame 1 provided with the light source 2, it should be ensured that the reflected light od basically coincides with the optical axis nf of the lens 7, so that the scanning effect can be improved, and the higher the degree of coincidence The higher, the better the scanning effect.
- the difference between Embodiment 6 and Embodiment 5 of the present invention lies in the relative positions of the two support frames 1 and the addition of a reflective portion 207 .
- the two support frames 1 are located on opposite sides of the object to be scanned 8
- the support frame 1 provided with the light source 2 has an opening
- a light-transmitting plate 4 is provided at the opening
- the contact image sensor also includes a reflective portion 207 to reflect light and the transmitted light are reflected by the reflective part 207 and then pass through the light-transmitting plate 4 and enter the object to be scanned.
- the light-reflecting part 207 and the light source 2 are located on opposite sides of the light-splitting part 3, or the light-reflecting part 207 and the light-transmitting plate 4 are located in the light-splitting part 3 opposite sides.
- the spectroscopic light source system in the fifth embodiment above can be used as a transmission light source.
- the reflected light in FIG. 7 irradiates the object to be scanned 8 at a vertical or approximately vertical angle.
- the scanned image boundary can be made clearer, thereby avoiding the impact on the scanning accuracy due to the shadow that appears when scanning the object to be scanned 8 with angular light, Furthermore, the measurement accuracy of the external dimensions can be improved.
- the contact image sensor of Embodiment 6 of the present invention includes two reflective parts 207, so that after the detection beam emitted by the light source 2 is split by the spectroscopic part 3, the reflected light is irradiated on the support frame 1 in FIG. 207 on the side, and reflected by the reflective portion 207 through the spectroscopic portion 3 to irradiate on the object 8 to be scanned, while the transmitted light is vertically irradiated on the reflective portion 207 located on the right side of the support frame 1 in FIG.
- the reflective part 207 is reflected onto the light splitting part 3 , and after being reflected by the light splitting part 3 , it is then vertically irradiated onto the object 8 to be scanned, so that the utilization rate of light can be improved.
- the reflected light om of the spectroscopic light source system and the optical axis nf of the lens 7 should coincide as much as possible, and the higher the degree of coincidence, the better the scanning effect.
- the difference between the seventh embodiment of the present invention and the sixth embodiment is that the two support frames 1 of the seventh embodiment are located on the same side of the object 8 to be scanned, and the two support frames 1 are arranged along the left and right directions.
- the spectroscopic part 3 extends along the horizontal direction, and there is a predetermined acute angle between the reflected light emitted by the spectroscopic part and the optical axis of the lens 7 .
- the object 8 to be scanned can be scanned at a preset angle to obtain specific scanning effects, such as concave-convex scanning, dust scanning, footprint scanning, etc.
- Light with excellent directionality can reduce the influence of stray light, so as to obtain better scanning effect.
- the support frame 1 provided with the light source 2 according to the seventh embodiment of the present invention includes a light-transmitting plate 4 for transmitting light.
- Embodiment 7 of the present invention after the light source 2 emits the detection beam pk and is split by the spectroscopic part 3, the transmitted light kq is vertically irradiated onto a reflective part 207, and then is vertically reflected back to the spectroscopic part 3, and then passed through the spectroscopic part 3 for splitting Afterwards, the light ks is vertically irradiated on another reflective part 207, and then is vertically reflected back to the spectroscopic part 3 by another reflective part 207. After being split by the spectroscopic part 3, part of the light will pass through the spectroscopic part 3 and overlap with the light od. Thereby, the utilization rate of light can be improved.
- the light-splitting light source system in Embodiment 5, Embodiment 6, and Embodiment 7 can also be provided with structures such as the scattering plate 9, the light-condensing portion 10, and the light-guiding rod type linear light source in other embodiments.
- the above-mentioned embodiments of the present invention have achieved the following technical effects: by setting a spectroscopic part that can divide the detection beam into reflected light and transmitted light on one side of the light source, and the reflected light can be vertically incident
- the object to be scanned in this way, the incident angle between the reflected light that enters the object to be scanned and the object to be scanned is zero, and based on the principle of reflection, the reflected light will be reflected by the object to be scanned and enter the lens vertically, so that, on the one hand,
- the reflected light can directly irradiate the root of the convex part of the object to be scanned with uneven surface, and reflect the reflected light vertically into the lens, thereby avoiding the problem of shadows on the concave and convex surface due to the blocking of the reflected light by the convex part.
- the contact image sensor can read the information of the root of the convex part of the object to be scanned.
- the reflected light can enter the point corresponding to the lens of the object to be scanned vertically and be reflected and then enter the lens vertically, so that The phenomenon of glare on the smooth surface is avoided, and then the contact image sensor can read the information of the point corresponding to the lens of the object to be scanned. Therefore, the embodiments of the present invention solve the problem that the contact image sensor in the prior art cannot easily read the local information of the object to be scanned when scanning the object to be scanned with a smooth surface or an uneven surface.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
一种接触式图像传感器。接触式图像传感器包括:框架(12),具有容纳腔;光源(2),位于容纳腔内,光源(2)用于发射探测光束(co,pk);分光部(3),位于容纳腔内,分光部(3)位于光源(2)的一侧,分光部(3)用于将光源(2)发出的探测光束(co,pk)分成反射光线(od)和透射光线(oe,kq);光线接收部,包括位于容纳腔内且用于汇聚光线的透镜(7),基于反射原理,反射光线(od)垂直射入待扫描物(8)并经待扫描物(8)反射后垂直射入透镜(7)。解决了现有技术中的接触式图像传感器在扫描表面光滑或表面凹凸不平的待扫描物(8)时易出现无法读取待扫描物(8)的全部信息的问题。
Description
本申请要求于2021年6月22日提交至中国国家知识产权局、申请号为202110694903.4、发明名称为“接触式图像传感器”的专利申请的优先权。
本发明涉及图像检测技术领域,具体而言,涉及一种接触式图像传感器。
目前,工业图像的检测领域,主要采用两种方式,一种是面阵相机(CCD)加各种光源,另一种就是接触式图像传感器。接触式图像传感器为线性扫描,具有幅面宽、结构紧凑、节约空间、图像为1:1和无畸变等优势。
但是,现有技术中的接触式传感器的应用范围较小。一方面,接触式图像传感器在扫描具有高低不平的待扫描物时,由于待扫描物具有凸出的凸部,并且探测光线与待扫描物的表面之间存在入射角,这样,光源发出的一部分探测光无法照射到待扫描物的凸部的根部,从而造成该区域内光线不足(即这一区域的亮度较低),进而使扫描图像的与该区域的对应位置出现阴影,这样会影像扫描效果,造成无法识别上述区域的问题。另一方面,当待扫描物为玻璃和光亮的金属板等表面光滑的物体(即对光线具有很高的反射率的物体)时,光源发出的探测光照射在待扫描物的位于透镜上方的一点,由于探测光线与待扫描物的表面之间存在入射角,大部分的光线会以镜面反射的方式反射出去,漫反射进入透镜的光线很少,而当探测光照射在待扫描物的与透镜相错开的另一点(即另一点与上述的一点具有间隔)时,由于探测光线与待扫描物的表面之间存在入射角和镜面反射的原因,这样,大部分的光线会进入透镜,这样,另一点的反射光会遮盖上述的一点的漫反射光线,这样,上述位于透镜上方的一点会出现无法读取信息的问题。
综上所述,接触式图像传感器在扫描表面光滑或表面凹凸不平的待扫描物时易出现无法读取待扫描物的局部信息的问题。
发明内容
本发明的主要目的在于提供一种接触式图像传感器,以解决现有技术中的接触式图像传感器在扫描表面光滑或表面凹凸不平的待扫描物时易出现无法读取待扫描物的局部信息的问题。
为了实现上述目的,本发明提供了一种接触式图像传感器,包括:框架,具有容纳腔;光源,位于容纳腔内,光源用于发射探测光束;分光部,位于容纳腔内,分光部位于光源的一侧,分光部用于将光源发出的探测光束分成反射光线和透射光线;光线接收部,包括位于 容纳腔内且用于汇聚光线的透镜,基于反射原理,反射光线垂直射入待扫描物并经待扫描物反射后垂直射入透镜。
进一步地,接触式图像传感器还包括位于容纳腔的内壁面的吸光部,吸光部和光源分别位于分光部的两侧,透射光线被吸光部吸收。
进一步地,光源发出的探测光束与分光部的入射面之间具有夹角A,夹角A满足:10°≤A≤80°,以使探测光束中经分光部分出的反射光线垂直射入待扫描物。
进一步地,探测光束垂直于透镜的光轴,且夹角A为45°。
进一步地,接触式图像传感器还包括用于散射探测光束的散射板,光源、散射板和分光部沿光路依次设置,且散射板位于光源和分光部之间。
进一步地,接触式图像传感器还包括用于汇聚探测光束的聚光部,光源、聚光部和分光部沿光路依次设置,且聚光部位于光源和分光部之间。
进一步地,框架包括一个支撑框和用于供探测光束穿过的透光板,透光板与支撑框围成容纳腔,光源和分光部位于透镜的上方。
进一步地,框架包括两个支撑框和与两个支撑框对应的多个透光板,光源和分光部均位于两个支撑框中的一个支撑框内,光线接收部位于两个支撑框中的另一个支撑框内。
进一步地,两个支撑框位于待扫描物的相对两侧,设有光源的支撑框具有开口,开口处设有透光板,接触式图像传感器还包括反光部,反射光线和透射光线经反光部反射后穿过透光板并射入待扫描物,反光部和光源位于分光部的相对两侧,或者,反光部和透光板位于分光部的相对两侧。
进一步地,光源、分光部和光线接收部位于待扫描物的同一侧。
进一步地,光源包括沿竖直方向设置于容纳腔的侧壁的PCB板和呈线性布置在PCB板上的多个LED芯片;或者,光源包括沿竖直方向布置的导光棒式线性光源;或者,光线接收部还包括基板和用于感应透镜汇聚的探测光束的感光件,感光件设置于基板。
应用本发明的技术方案,通过在光源的一侧设置能够将探测光束分成反射光线和透射光线的分光部,并且反射光线能够垂直射入待扫描物,这样,射入待扫描物的反射光线和待扫描物之间的入射角为零,并且基于反射原理,反射光线会经待扫面物反射垂直射入透镜,这样,一方面,反射光线能够直接照射在具有凹凸不平表面的待扫描物的凸部的根部,并且将反射光线垂直反射至透镜中,从而可以避免因凸部阻挡反射光线而在凹凸面出现阴影的问题,进而使接触式图像传感器就可以读取待扫描物的凸部的根部的信息,另一方面,反射光线能够垂直射入待扫描物的与透镜相对应的点并且被反射后垂直射入透镜,从而可以避免在光滑表面出现炫光的现象,进而可以使接触式图像传感器能够读取待扫描物的与透镜相对应的区域的信息。因此,本发明的实施例能够准确读取待扫描物的信息,也就是说本发明的实施例 解决了现有技术中的接触式图像传感器在扫描表面光滑或表面凹凸不平的待扫描物时易出现无法读取待扫描物的局部信息的问题。
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明的接触式图像传感器的实施例一的结构示意图(其中,待扫描物具有凹凸表面);
图2示出了图1的接触式图像传感器的结构示意图(其中,待扫描物具有光滑表面);
图3示出了本发明的接触式图像传感器的实施例二的结构示意图;
图4示出了本发明的接触式图像传感器的实施例三的结构示意图;
图5示出了本发明的接触式图像传感器的实施例四的结构示意图;
图6示出了本发明的接触式图像传感器的实施例五的结构示意图;
图7示出了本发明的接触式图像传感器的实施例六的结构示意图;以及
图8示出了本发明的接触式图像传感器的实施例七的结构示意图。
其中,上述附图包括以下附图标记:
1、支撑框;2、光源;3、分光部;4、透光板;5、感光件;6、基板;7、透镜;8、待扫描物;801、凸部;9、散射板;10、聚光部;11、吸光部;12、框架;201、PCB板;202、LED芯片;203、反射图形;204、外壳;205、导光棒;207、反光部。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要说明的是,本发明的实施例中,分光片的表面是经过特殊处理的,一般是采用二氧化硅和五氧化三钛交叉真空镀膜而成,二氧化硅可以有效地提高光线的透过率,五氧化三钛具有很高的折射率,因此,当利用这两种材料进行真空镀膜后,就会在玻璃表面形成一种五氧化三钛和二氧化硅同时存在的光学膜,这样,当光源2发出的探测光束照射在分光片的表面时,一部分探测光束因照射在具有较高的折射率的五氧化三钛的表面而发生镜面反射,即图1中的反射光线od;另一部分探测光束因照射在具有折射率较小的二氧化硅的表面直接穿透分光片并照射到光源2对面的容纳腔的内壁面上,即图1中的透射光线oe。
实施例一
如图1和2所示,本发明的实施例一提供了一种接触式图像传感器。接触式图像传感器包括框架12、光源2、分光部3和光线接收部。其中,框架12具有容纳腔;光源2位于容纳腔内,光源2用于发射探测光束;分光部3位于容纳腔内,分光部3位于光源2的一侧,分光部3用于将光源2发出的探测光束分成反射光线和透射光线;光线接收部包括位于容纳腔内且用于汇聚光线的透镜7,基于反射原理,反射光线垂直射入待扫描物并经待扫描物8反射后垂直射入透镜7。
上述技术方案中,通过在光源2的一侧设置能够将探测光束分成反射光线和透射光线的分光部3,并且反射光线能够垂直射入待扫描物8,这样,射入待扫描物8的反射光线和待扫描物8之间的入射角为零,并且基于反射原理,反射光线会经待扫描物8反射垂直射入透镜7,这样,一方面,反射光线能够直接照射在图1中的具有凹凸不平表面的待扫描物8的凸部801的根部b处,并且将反射光线垂直反射至透镜7中,从而可以避免因凸部801阻挡反射光线而在凹凸面出现阴影的问题,进而使接触式图像传感器就可以准确读取待扫描物8的凸部801的根部b处的信息,另一方面,反射光线能够垂直射入图2中的待扫描物8的与透镜7相对应的点b处并且被反射后垂直射入透镜7,从而可以避免在光滑表面出现炫光的现象,进而接触式图像传感器能够准确读取待扫描物8的与透镜7相对应的点b的信息。因此,本发明的实施例解决了现有技术中的接触式图像传感器在扫描表面光滑或表面凹凸不平的待扫描物8时易出现无法读取待扫描物8的局部信息的问题。
进一步地,本发明的实施例的接触式图像传感器可以适用于具有凹凸表面的待扫描物、具有光滑表面的待扫描物和常规的待扫描物,这样,可以增大接触式图像传感器的适用范围。
优选地,本发明的实施例一中,分光部3为分光片。
为了避免照射在容纳腔的内壁面上的透射光线oe发生反射并直接或间接进入透镜7中,从而影响接触式图像传感器的扫描效果,如图1和图2所示,本发明的实施例一的接触式图像传感器还包括位于容纳腔的内壁面的吸光部11,吸光部11和光源2分别位于分光部3的两侧,透射光线被吸光部11吸收。
通过上述设置,就可以将透过分光部3的全部或绝大部分的透射光线oe吸收掉,从而避免透射光线oe被容纳腔的内壁面发射而影响接触式图像传感器的扫描效果。
优选地,本发明的实施例一中,可以将容纳腔的全部内壁面或将容纳腔的内壁面的与透射光线oe对应的部分设置为黑色,即吸光部11为黑色壁面,这样,就可以将透射光线oe吸收掉。
如图1和图2所示,本发明的实施例一中,光源2发出的探测光束与分光部3的入射面之间具有夹角A,夹角A满足:10°≤A≤80°,以使探测光束中经分光部3分出的反射光线垂直射入待扫描物8。
通过上述设置,可以使探测光束co通过分光部3分成反射光线od和透射光线oe,并且使反射光线od垂直射入待扫描物8,这样也可以使垂直射入待扫描物8的反射光线也能够垂直射入透镜7中,从而使接触式图像传感器能够准确读取待扫描物8的全部信息。
如图1和图2所示,本发明的实施例一中,探测光束垂直于透镜7的光轴,且夹角A为45°。
通过上述设置,一部分的探测光束co以45°的入射角射入分光部3发生镜面反射,并且以45°的反射角射出,这样,反射光线od就与探测光束co垂直,即反射光线od与透镜7的光轴平行,从而使反射光线od沿着透镜7的光轴方向照射到待扫描物8上,进而上述反射光线od在待扫描物8的表面上发生反射后垂直进入透镜7中,以使接触式图像传感器能够准确读取待扫描物8的全部信息。
具体地,本发明的实施例一中,由于反射光线od垂直照射在待扫描物8上,因此,能够照射在图1中的凸部801的根部b处,并且照射在b处的光会被待扫描物8反射,其中一部分平行或近似平行于透镜7的光轴的光线ao会照射在分光部3的表面上,同样的,由于分光部3的分光原理,光线ao的一部分光线在分光部3表面发生镜面反射(即光线oc),并且照射到光源2所在的一侧被吸收或反射。而另一部分光线ao会穿过分光部3(即光束of),并且进入透镜7中。
如图1和图2所示,本发明的实施例一中,光源2包括沿竖直方向设置于容纳腔的侧壁的PCB板201和呈线性布置在PCB板201上的多个LED芯片202。
通过上述设置,可以使光源2发出多束垂直于透镜7的光轴的探测光束,这样可以提高光源2的亮度,以增加光源2的光强,从而使扫描的图像有足够的亮度,满足其使用要求。
优选地,本发明的实施例一中,LED芯片202可以为任何波段的光。
优选地,本发明的实施例一中,多个LED芯片202沿着容纳腔的内壁面的长度方向线性排列,多个LED芯片202的布置方向与透镜7平行,LED芯片的发出的探测光束与透镜7的光轴垂直。
如图1和图2所示,本发明的实施例一中,框架12包括一个支撑框1和用于供探测光束穿过的透光板4,透光板4与支撑框1围成容纳腔,光源2和分光部3位于透镜7的上方。
通过上述设置,透光板4与支撑框1围成容纳腔可以避免灰尘或者水分附着在光源2处,从而可以提高扫描图像的画质。
具体地,本发明的实施例一中,探测光束co平行于透光板4照射在分光部3上并通过分光部3反射后形成反射光线od向垂直于透光板4的方向射出,并垂直照射在待扫描物8上。
优选地,本发明的实施例一中,框架12由塑料或金属等材质制成。
优选地,本发明的实施例一中,框架12可以为分体组合结构,也可以为一体成型结构。
优选地,本发明的实施例一中,透光板4可以采用玻璃或透明塑料制成。
如图1和图2所示,本发明的实施例一中,光线接收部还包括基板6和用于感应透镜7汇聚的探测光束的感光件5,感光件5设置于基板6。其中,基板6可以为PCB板。
通过上述设置,经透镜7汇聚后的探测光束可以直接照射在感光件5,从而将待扫描物8反射的光信号转变成电子信号。
如图1和图2所示,本发明的实施例中,光源2、分光部3和光线接收部位于待扫描物8的同一侧。
通过上述设置,可以对待扫描物8的一侧进行扫描,并且在光线接收部形成电子图像。
实施例二
本发明的实施例一所采用的光源2为多个LED芯片阵列组成的线性阵列光源,因为两个相邻的LED芯片之间是有距离的,并且距离越大,在有限的空间内光源2中的LED芯片的数量就越少,所以光源2的亮度也就越低,这样,虽然可以降低接触式图像传感器的成本,但是,由于分光片具有高的反射率和透过率,漫反射会很少,而多个LED芯片间隔设置很容易使光源2明暗不均,从而导致扫描出来的图像存在明暗不均的现象。
为了解决上述光源2导致的成像明暗不均的问题,如图3所示,本发明的实施例二与实施例一的不同点在于,本发明的实施例二的接触式图像传感器还包括用于散射探测光束的散射板9,光源2、散射板9和分光部3沿光路依次设置,且散射板9位于光源2和分光部3之间。
上述技术方案中,在光源2与分光部3之间增加散射板9,光源2发出的光进入散射板9后,发生漫反射后射出散射板9,照射在分光部3上,从而使光源2发出的光更加均匀,从而消除因多个LED芯片之间具有一定的距离而使光源2产生亮度不均的问题,进而消除LED阵列光源的波峰波谷而造成的明暗相间的条纹。
本发明的实施例二中的接触式图像传感器的其它结构与实施例一相同,此处不再赘述。
实施例三
如图4所示,本发明的实施例三与实施例一的不同点在于,本发明的实施三中的接触式图像传感器还包括用于汇聚探测光束的聚光部10,光源2、聚光部10和分光部3沿光路依次设置,且聚光部10位于光源2和分光部3之间。
上述技术方案中,在光源2和分光部3之间增加聚光部10,可以对探测光束进行汇聚,从而可以提高光源2的利用率,以提高扫描图像的画质。
优选地,本发明的实施例三中,聚光部10为圆形或半圆形或其它线性形状的凸透镜,其由透明材质材料制成,例如:玻璃、PMMA(聚甲基丙烯酸甲酯)、PC(聚碳酸酯)等光学透明材料。
优选地,本发明的实施例三中,若分光部3的反射率和透射率均为50%,并且忽略光线在传输过程中的其他损失。这样,光源2发出的探测光束在经过分光部3的两次分光后,理论上,到达透镜7的光线强度只有原先的四分之一,如果再加上其他损失,那就更少了。而如果增加LED芯片202的数量,一方面这样会增加接触式图像传感器的成本,另一方面,大数量的LED芯片具有较大的发热量,这样就需要增加散热装置,不仅使结构复杂,而且也会降低光源2的寿命。因此,本实施例三通过利用线性凸透镜的聚光原理,即增加聚光部10,可以提高光源2的利用率,从而在设置较少的LED芯片202时,也可以提高扫描图像的画质。
当然,在聚光部10与分光部3之间,也可以增加散射板9。
本发明的实施例三中的接触式图像传感器的其它结构与实施例一相同,此处不再赘述。
实施例四
如图5所示,本发明的实施例四与实施例一的不同点在于,光源2的具体结构。具体地,实施例四中,光源2包括沿竖直方向布置的导光棒式线性光源。
上述技术方案中,由于导光棒式线性光源输出的探测光束在导光棒的长度方向上具有较好的连续性,因此,可以避免扫描的图像出现明暗不均的问题,这样,该实施例四也就不需要增加散射板9等结构,可以降低接触式图像传感器的成本,简化其结构。
具体地,本发明的实施例四中,导光棒式线性光源包括PCB板201、设置于PCB板201上的多个LED芯片202、位于LED芯片202的一侧的导光棒205、反射图形203以及位于导光棒205的外周的外壳204,上述导光棒式线性光源为现有技术,此不赘述。
优选地,本发明的实施例四中,LED芯片202可以是任何波段的光,也可以是各种光的组合。
本发明的实施例四中的接触式图像传感器的其它结构与实施例一相同,此处不再赘述。
实施例五
如图6所示,本发明的实施例五与实施例一的不同点在于,框架12的具体结构。具体地,本发明的实施例五中,框架12包括两个支撑框1和与两个支撑框1对应的多个透光板4,光源2和分光部3均位于两个支撑框1中的一个支撑框1内,光线接收部位于两个支撑框1中的另一个支撑框1内。
通过上述设置,可以将光源2和分光部3与光线接收部分离,从而形成一个独立的分光光源系统,这样光源2和光线接收部之间的相对距离可以自由调整,使用方便。
优选地,本发明的实施例五中,设有光源2的支撑框1上设有两个透光板4,两个透光板4分别位于图6中的支撑框1的上下两侧。
具体地,本发明的实施例五中,在安装上述设有光源2的支撑框1时,应保证反射光线od与透镜7的光轴nf基本重合,这样,可以提高扫描效果,并且重合度越高,扫描效果越好。
本发明的实施例五中的接触式图像传感器的其它结构与实施例一相同,此处不再赘述。
实施例六
如图7所示,本发明的实施例六与实施例五的不同点在于,两个支撑框1的相对位置以及增加了反光部207。具体地,两个支撑框1位于待扫描物8的相对两侧,设有光源2的支撑框1具有开口,开口处设有透光板4,接触式图像传感器还包括反光部207,反射光线和透射光线经反光部207反射后穿过透光板4并射入待扫描物,反光部207和光源2位于分光部3的相对两侧,或者,反光部207和透光板4位于分光部3的相对两侧。
通过上述设置,可以将上述实施例五中的分光光源系统作为透射光源使用,这样,探测光束经过分光部3分光后,图7中的反射光线以垂直或近似垂直的角度照射在待扫描物8上,这样,在作为透射光源使用对待扫描物8的外形尺寸进行测量时,可以使扫描的图像边界更清晰,从而避免因利用角度光扫描待扫描物8出现的阴影而对扫描精度产生影响,进而可以提高外形尺寸的测量精度。
具体地,本发明的实施例六的接触式图像传感器包括两个反光部207,这样,光源2发出的探测光束经分光部3分光后,反射光线照射在位于图7中的支撑框1的上侧的反光部207上,并经反光部207反射穿过分光部3照射在待扫描物8上,而透射光线垂直照射到图7中位于支撑框1的右侧的反光部207上,并被反光部207反射到分光部3上,经分光部3反射后,再垂直照射到待扫描物8上,从而可以提高光的利用率。
优选地,本发明的实施例六中,分光光源系统的反射光线om与透镜7的光轴nf应尽量重合,重合度越高,扫描效果越好。
本发明的实施例六中的接触式图像传感器的其它结构与实施例五相同,此处不再赘述。
实施例七
如图8所示,本发明的实施例七与实施例六的不同点在于,本实施例七的两个支撑框1位于待扫描物8的同一侧,两个支撑框1沿左右方向布置,分光部3沿水平方向延伸,经分光部分出的反射光线与透镜7的光轴之间具有预设锐角。
上述技术方案中,通过利用分光光源系统的光线的较好的方向性,可以对待扫描物8以预设角度进行扫描,以得到特定的扫描效果,例如凹凸感扫描、灰尘扫描、脚印扫描等,具有优良的方向性的光线能够能减少杂散光的影响,从而得到更好的扫描效果。
优选的,本发明的实施例七的设有光源2的支撑框1包括一个用于透过光线的透光板4。
具体地,本发明的实施例七中,光源2发出探测光束pk经分光部3分光后,透射光线kq垂直照射到一个反光部207上,然后被垂直反射回分光部3,经过分光部3分光后,光线ks垂直照射到另一反光部207上,然后又被另一个反光部207垂直反射回分光部3,经分光部3分光后,一部分的光线会透过分光部3与光线od重合,从而可以提高光的利用率。
本发明的实施例七中的接触式图像传感器的其它结构与实施例六相同,此处不再赘述。
需要说明的是,实施例五、实施例六和实施例七中的分光光源系统,也可以设置其它实施例中所具有的散射板9、聚光部10和导光棒式线性光源等结构。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:通过在光源的一侧设置能够将探测光束分成反射光线和透射光线的分光部,并且反射光线能够垂直射入待扫描物,这样,射入待扫描物的反射光线和待扫描物之间的入射角为零,并且基于反射原理,反射光线会经待扫面物反射垂直射入透镜,这样,一方面,反射光线能够直接照射在具有凹凸不平表面的待扫描物的凸部的根部,并且将反射光线垂直反射至透镜中,从而可以避免因凸部阻挡反射光线而在凹凸面出现阴影的问题,进而使接触式图像传感器就可以读取待扫描物的凸部的根部的信息,另一方面,反射光线能够垂直射入待扫描物的与透镜相对应的点并且被反射后垂直射入透镜,从而可以避免在光滑表面出现炫光的现象,进而可以使接触式图像传感器能够读取待扫描物的与透镜相对应的点的信息。因此,本发明的实施例解决了现有技术中的接触式图像传感器在扫描表面光滑或表面凹凸不平的待扫描物时易出现无法读取待扫描物的局部信息的问题。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (11)
- 一种接触式图像传感器,其特征在于,包括:框架(12),具有容纳腔;光源(2),位于所述容纳腔内,所述光源(2)用于发射探测光束;分光部(3),位于所述容纳腔内,所述分光部(3)位于所述光源(2)的一侧,所述分光部(3)用于将所述光源(2)发出的探测光束分成反射光线和透射光线;光线接收部,包括位于所述容纳腔内且用于汇聚光线的透镜(7),基于反射原理,所述反射光线垂直射入待扫描物并经所述待扫描物(8)反射后垂直射入所述透镜(7)。
- 根据权利要求1所述的接触式图像传感器,其特征在于,所述接触式图像传感器还包括位于所述容纳腔的内壁面的吸光部(11),所述吸光部(11)和所述光源(2)分别位于所述分光部(3)的两侧,所述透射光线被所述吸光部(11)吸收。
- 根据权利要求1所述的接触式图像传感器,其特征在于,所述光源(2)发出的探测光束与所述分光部(3)的入射面之间具有夹角A,所述夹角A满足:10°≤A≤80°,以使所述探测光束中经所述分光部(3)分出的所述反射光线垂直射入所述待扫描物(8)。
- 根据权利要求3所述的接触式图像传感器,其特征在于,所述探测光束垂直于所述透镜(7)的光轴,且所述夹角A为45°。
- 根据权利要求1至4中任一项所述的接触式图像传感器,其特征在于,所述接触式图像传感器还包括用于散射所述探测光束的散射板(9),所述光源(2)、所述散射板(9)和所述分光部(3)沿光路依次设置,且所述散射板(9)位于所述光源(2)和所述分光部(3)之间。
- 根据权利要求1至4中任一项所述的接触式图像传感器,其特征在于,所述接触式图像传感器还包括用于汇聚所述探测光束的聚光部(10),所述光源(2)、所述聚光部(10)和所述分光部(3)沿光路依次设置,且所述聚光部(10)位于所述光源(2)和所述分光部(3)之间。
- 根据权利要求1至4中任一项所述的接触式图像传感器,其特征在于,所述框架(12)包括一个支撑框(1)和用于供所述探测光束穿过的透光板(4),所述透光板(4)与所述支撑框(1)围成所述容纳腔,所述光源(2)和所述分光部(3)位于所述透镜(7)的上方。
- 根据权利要求7所述的接触式图像传感器,其特征在于,所述框架(12)包括两个所述支撑框(1)和与两个所述支撑框(1)对应的多个透光板(4),所述光源(2)和所述分光部(3)均位于两个所述支撑框(1)中的一个所述支撑框(1)内,所述光线接收部位于两个所述支撑框(1)中的另一个所述支撑框(1)内。
- 根据权利要求8所述的接触式图像传感器,其特征在于,两个所述支撑框(1)位于所述待扫描物(8)的相对两侧,设有所述光源(2)的所述支撑框(1)具有开口,所述开口处设有所述透光板(4),所述接触式图像传感器还包括反光部(207),所述反射光线和所述透射光线经所述反光部(207)反射后穿过所述透光板(4)并射入所述待扫描物,所述反光部(207)和所述光源(2)位于所述分光部(3)的相对两侧,或者,所述反光部(207)和所述透光板(4)位于所述分光部(3)的相对两侧。
- 根据权利要求1至4中任一项所述的接触式图像传感器,其特征在于,所述光源(2)、所述分光部(3)和所述光线接收部位于所述待扫描物(8)的同一侧。
- 根据权利要求1至4中任一项所述的接触式图像传感器,其特征在于,所述光源(2)包括沿竖直方向设置于所述容纳腔的侧壁的PCB板(201)和呈线性布置在所述PCB板(201)上的多个LED芯片(202);或者,所述光源(2)包括沿竖直方向布置的导光棒式线性光源;或者,所述光线接收部还包括基板(6)和用于感应所述透镜(7)汇聚的所述探测光束的感光件(5),所述感光件(5)设置于所述基板(6)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110694903.4 | 2021-06-22 | ||
CN202110694903.4A CN113358656A (zh) | 2021-06-22 | 2021-06-22 | 接触式图像传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022267863A1 true WO2022267863A1 (zh) | 2022-12-29 |
Family
ID=77535877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/096968 WO2022267863A1 (zh) | 2021-06-22 | 2022-06-02 | 接触式图像传感器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113358656A (zh) |
WO (1) | WO2022267863A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113358656A (zh) * | 2021-06-22 | 2021-09-07 | 威海华菱光电股份有限公司 | 接触式图像传感器 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08307597A (ja) * | 1995-05-10 | 1996-11-22 | Matsushita Electric Ind Co Ltd | 密着型イメージセンサー |
JP2011106912A (ja) * | 2009-11-16 | 2011-06-02 | Ushio Inc | 撮像照明手段およびパターン検査装置 |
CN104580806A (zh) * | 2015-01-20 | 2015-04-29 | 威海华菱光电股份有限公司 | 图像读取器 |
JP2017017391A (ja) * | 2015-06-26 | 2017-01-19 | 日本板硝子株式会社 | イメージセンサユニット及び画像読取装置の製造方法 |
CN207753772U (zh) * | 2017-12-01 | 2018-08-21 | 深圳市国翊科技有限公司 | 接触式影像传感器及具有接触式影像传感器的扫描装置 |
CN109495667A (zh) * | 2018-12-18 | 2019-03-19 | 敦南科技(无锡)有限公司 | 同轴光照射型接触式影像传感器模块 |
EP3581881A1 (de) * | 2018-06-15 | 2019-12-18 | Hexagon Technology Center GmbH | Oberflächenvermessung mittels angeregter fluoreszenz |
CN113358656A (zh) * | 2021-06-22 | 2021-09-07 | 威海华菱光电股份有限公司 | 接触式图像传感器 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN206074473U (zh) * | 2016-08-31 | 2017-04-05 | 深圳市鹰眼在线电子科技有限公司 | 应用于pcb板自动光学检测设备的光学系统和光学装置 |
CN107561089B (zh) * | 2017-09-15 | 2024-04-02 | 深圳市牧激科技有限公司 | 内孔检测光学系统及内孔检测设备 |
CN111163240B (zh) * | 2020-02-14 | 2024-10-18 | 威海华菱光电股份有限公司 | 接触式图像传感器及图像处理方法 |
CN111781202A (zh) * | 2020-07-16 | 2020-10-16 | 中山欣刚科技设备有限公司 | 一种板件孔洞检测装置 |
CN112649435B (zh) * | 2020-12-01 | 2023-07-07 | 上海御微半导体技术有限公司 | 一种焦面测量装置及缺陷检测设备 |
CN215768260U (zh) * | 2021-06-22 | 2022-02-08 | 威海华菱光电股份有限公司 | 接触式图像传感器 |
-
2021
- 2021-06-22 CN CN202110694903.4A patent/CN113358656A/zh active Pending
-
2022
- 2022-06-02 WO PCT/CN2022/096968 patent/WO2022267863A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08307597A (ja) * | 1995-05-10 | 1996-11-22 | Matsushita Electric Ind Co Ltd | 密着型イメージセンサー |
JP2011106912A (ja) * | 2009-11-16 | 2011-06-02 | Ushio Inc | 撮像照明手段およびパターン検査装置 |
CN104580806A (zh) * | 2015-01-20 | 2015-04-29 | 威海华菱光电股份有限公司 | 图像读取器 |
JP2017017391A (ja) * | 2015-06-26 | 2017-01-19 | 日本板硝子株式会社 | イメージセンサユニット及び画像読取装置の製造方法 |
CN207753772U (zh) * | 2017-12-01 | 2018-08-21 | 深圳市国翊科技有限公司 | 接触式影像传感器及具有接触式影像传感器的扫描装置 |
EP3581881A1 (de) * | 2018-06-15 | 2019-12-18 | Hexagon Technology Center GmbH | Oberflächenvermessung mittels angeregter fluoreszenz |
CN109495667A (zh) * | 2018-12-18 | 2019-03-19 | 敦南科技(无锡)有限公司 | 同轴光照射型接触式影像传感器模块 |
CN113358656A (zh) * | 2021-06-22 | 2021-09-07 | 威海华菱光电股份有限公司 | 接触式图像传感器 |
Also Published As
Publication number | Publication date |
---|---|
CN113358656A (zh) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI468800B (zh) | 面光源裝置 | |
CN110300950B (zh) | 触摸感测系统中的光学耦合 | |
US8405637B2 (en) | Optical position sensing system and optical position sensor assembly with convex imaging window | |
KR100657914B1 (ko) | 프리즘 시트 및 이를 채용한 백라이트 유니트 | |
JP2013502692A (ja) | 照明光学系のための集光器 | |
WO2021108968A1 (zh) | 屏下光学指纹识别装置及系统、液晶显示屏 | |
CN110945527B (zh) | 指纹识别装置和电子设备 | |
JP4575202B2 (ja) | 透明板状体の欠点検査方法及び欠点検査装置 | |
WO2017118030A1 (zh) | 光学指纹传感器模组 | |
WO2022267863A1 (zh) | 接触式图像传感器 | |
JP2023512682A (ja) | 改良型タッチ検知装置 | |
TWI409678B (zh) | 光學觸控系統 | |
CN215768260U (zh) | 接触式图像传感器 | |
CN204334724U (zh) | 接触式图像传感器 | |
US6081351A (en) | Image reading apparatus | |
JPH02208631A (ja) | 液晶表示素子照明用面発光体装置 | |
CN101374188B (zh) | 图像传感器 | |
KR0166144B1 (ko) | 조명장치 및 이를 사용한 액정표시장치 | |
WO2018006474A1 (zh) | 光学指纹传感器模组 | |
CN104580808A (zh) | 接触式图像传感器 | |
CN103685833B (zh) | 照明设备、图像传感器单元及纸张类识别设备 | |
CN216560302U (zh) | 接触式图像传感器 | |
CN220156600U (zh) | 接触式图像传感器 | |
CN216313192U (zh) | 接触式图像传感器 | |
KR20150056361A (ko) | 광학시트 및 이를 포함하는 액정표시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22827360 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22827360 Country of ref document: EP Kind code of ref document: A1 |