WO2023103343A1 - 用于二次锂离子电池的多层次复合材料及制备方法和应用 - Google Patents

用于二次锂离子电池的多层次复合材料及制备方法和应用 Download PDF

Info

Publication number
WO2023103343A1
WO2023103343A1 PCT/CN2022/100701 CN2022100701W WO2023103343A1 WO 2023103343 A1 WO2023103343 A1 WO 2023103343A1 CN 2022100701 W CN2022100701 W CN 2022100701W WO 2023103343 A1 WO2023103343 A1 WO 2023103343A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
silicon
carbon
nano
based composite
Prior art date
Application number
PCT/CN2022/100701
Other languages
English (en)
French (fr)
Inventor
邵金
罗飞
Original Assignee
溧阳天目先导电池材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 溧阳天目先导电池材料科技有限公司 filed Critical 溧阳天目先导电池材料科技有限公司
Publication of WO2023103343A1 publication Critical patent/WO2023103343A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of material technology, in particular to a multi-layer composite material for secondary lithium ion batteries, a preparation method and application.
  • a conventional rechargeable Li-ion battery mainly consists of a negative electrode (usually a carbonaceous material such as graphite), a positive electrode (such as LiCoO 2 , LiMn 2 O 2 , and LiFePO 4 ), and an electrolyte-impregnated separator through which lithium ions pass through the liquid electrolyte Shuttle back and forth between the two electrodes, the charge will be transferred through the external circuit.
  • a negative electrode usually a carbonaceous material such as graphite
  • a positive electrode such as LiCoO 2 , LiMn 2 O 2 , and LiFePO 4
  • electrolyte-impregnated separator through which lithium ions pass through the liquid electrolyte Shuttle back and forth between the two electrodes, the charge will be transferred through the external circuit.
  • the traditional graphite anode material has a limited theoretical specific capacity of only 372mAh/g, which cannot meet the growing demand for high-performance storage capacity.
  • the development of high-capacity anode materials with excellent electrochemical performance has been proven to be a key solution to meet Li-ion storage and improve the overall energy density.
  • Silicon is a promising substitute for graphite anodes in Li-ion batteries due to its natural abundance, environmental friendliness, low discharge potential, and high theoretical capacity (4200 mAh/g). However, the large volume variation (300%–400%) of silicon hinders the practical application of silicon-based anodes.
  • Embodiments of the present invention provide a multi-layer composite material for secondary lithium ion batteries, its preparation method and application.
  • the multi-layer composite material for secondary lithium-ion batteries of the present invention has a stable structure. Compared with traditional silicon-based materials, through the interaction between the multi-layer structure and composite materials, the material has small volume expansion and good cycle performance. and better magnification performance.
  • an embodiment of the present invention provides a multi-layer composite material for a secondary lithium-ion battery, the multi-layer composite material comprising: a carbon matrix, a nano-silicon-based composite material, and a carbon shell;
  • the carbon matrix is a matrix material for depositing nano-silicon-based composite materials
  • the nano-silicon-based composite material is prepared from one or more of silane and gaseous compounds containing any element of C, N, B, and P by vapor deposition; the particle size of the nano-silicon-based composite material is The size is 0.1-200nm; the carbon atoms in the nano-silicon-based composite material are uniformly embedded at the atomic level, and the carbon atoms combine with the silicon atoms to form an amorphous Si-C bond; the nitrogen atoms combine with the silicon atoms to form an amorphous Si-C bond. Si-N bond; boron doping and/or phosphorus doping make silicon crystals in the nano-silicon-based composite material form defects;
  • the carbon shell is coated on the outer layer of the carbon matrix deposited with the nano-silicon-based composite material.
  • the carbon shell is prepared by gas phase coating, liquid phase coating or solid phase coating.
  • the NMR spectrum of the solid-state nuclear magnetic resonance of the multi-layer composite material shows that when the peak of silicon is located at -70ppm to -130ppm, at 20ppm to -20ppm There is a resonance peak of Si-C between them; the area ratio of the resonance peak of Si-C to the silicon peak is 0.1-5.0.
  • the mass of the nano-silicon-based composite material accounts for 20%-80% of the overall mass; 0.1%-50% of the mass of the nano-silicon composite material;
  • the mass of the carbon matrix accounts for 20%-70% of the overall mass
  • the mass of the carbon shell accounts for 0-10% of the overall mass.
  • an embodiment of the present invention provides a method for preparing a multi-layer composite material for a secondary lithium-ion battery described in the first aspect, the preparation method comprising:
  • the protective gas is nitrogen, argon, hydrogen or any mixed gas above;
  • silane and gaseous compounds containing any element of C, N, B, P into the reaction vessel, and perform vapor deposition on the carbon substrate; wherein, the gas flow rate of silane is 0.5-10L/ min, the gas flow rate of the gaseous compound is 0.5-10L/min, the temperature of the vapor deposition is 500-1500°C, and the deposition time is 1-20 hours;
  • carbon coating is performed on the product after vapor phase deposition to obtain the multi-layer composite material for secondary lithium ion batteries.
  • the reaction vessel includes: gap or continuous reaction equipment, specifically including any one of a rotary furnace, a tube furnace, a bell furnace or a fluidized bed.
  • the silane includes: one or more of monosilane, disilane, tetrafluorosilane, chlorosilane, hexamethyldisilane, and dimethylsiloxane.
  • the gaseous compound containing C element includes: one or more of acetylene, methane, propylene, ethylene, propane and gaseous ethanol;
  • Gaseous compounds containing N elements include: one or more of nitrogen, ammonia, urea, melamine and hydrazine;
  • the gaseous compound containing B element includes: one or more of diborane, trimethyl borate, tripropyl borate and boron tribromide;
  • the gaseous compounds containing P element include: phosphine and/or phosphorus oxychloride.
  • an embodiment of the present invention provides a negative electrode material, which includes the multi-layered composite material for secondary lithium ion batteries described in the first aspect above.
  • an embodiment of the present invention provides a lithium battery, which includes the multi-layer composite material for secondary lithium ion batteries described in the first aspect above.
  • the multi-layer composite material for secondary lithium ion battery provided by the embodiment of the present invention, through the three-layer structure of carbon matrix, nano-silicon-based composite material and carbon shell, and the interaction between the composite materials, the material has volume expansion Small size, better cycle performance and rate performance.
  • nano-silicon-based composite materials prepared by vapor deposition of silane and one or more of gaseous compounds containing any element of C, N, B, and P: carbon atoms are uniformly embedded at the atomic level, The combination of carbon atoms and silicon atoms forms an amorphous Si-C bond, which makes the material structure more stable in the process of lithium intercalation and deintercalation, and the volume expansion is small.
  • Fig. 1 is the structural representation of the multilayer composite material used for secondary lithium ion battery that the embodiment of the present invention provides;
  • Fig. 2 is the flow chart of the preparation method for the multilayer composite material of secondary lithium ion battery provided by the embodiment of the present invention
  • Fig. 3 is a nuclear magnetic resonance (NMR) spectrum of the solid-state nuclear magnetic resonance of the multi-layer composite material provided by Example 1 of the present invention.
  • FIG. 1 is a schematic structural diagram of the multi-layer composite material in an embodiment of the present invention.
  • the multi-layer composite material includes: carbon matrix, nano-silicon-based composite material and carbon shell;
  • the carbon matrix is a matrix material for depositing nano-silicon-based composite materials, which may specifically include one or more of porous activated carbon, carbon nanotubes, carbon fibers, and mesocarbon microspheres;
  • Nano-silicon-based composite materials are prepared by vapor deposition of silane and one or more of gaseous compounds containing any element of C, N, B, and P; the particle size of nano-silicon-based composite materials is 0.1- 200nm; carbon atoms in nano-silicon-based composite materials are uniformly embedded at the atomic level, carbon atoms combine with silicon atoms to form amorphous Si-C bonds; nitrogen atoms combine with silicon atoms to form amorphous Si-N bonds; boron Doping and/or phosphorus doping makes silicon crystals in the nano-silicon-based composite material form defects;
  • the carbon shell is coated on the outer layer of the carbon matrix deposited with nano-silicon-based composite materials.
  • the carbon shell can be prepared specifically by gas-phase coating, liquid-phase coating or solid-phase coating.
  • the NMR spectrum of the solid state nuclear magnetic resonance of the multilayer composite material shows that when the peak of silicon is located at -70ppm ⁇ -130ppm, there is Si-C between 20ppm ⁇ -20ppm Resonance peak; the area ratio of the resonance peak of Si-C to the silicon peak is 0.1-5.0.
  • the mass of the nano-silicon-based composite material accounts for 20%-80% of the overall mass; 0.1%-50% of the mass; the mass of the carbon matrix accounts for 20%-70% of the overall mass; the mass of the carbon shell accounts for 0-10% of the overall mass.
  • the material of the present invention can be prepared through the flow chart of the Faon method shown in FIG. 2 . As shown in Figure 2, the main steps include:
  • Step 110 passing a protective gas into the reaction vessel loaded with the carbon matrix at a flow rate of 1-2 L/min;
  • the reaction vessel includes: gap or continuous reaction equipment, specifically including any one of a rotary furnace, a tube furnace, a bell furnace or a fluidized bed.
  • the protective gas introduced is nitrogen, argon, hydrogen or a mixture of any two or three of the above gases.
  • Step 120 passing one or more of silane and gaseous compounds containing any element of C, N, B, and P into the reaction vessel, and performing vapor deposition on the carbon substrate;
  • the silane includes: one or more of monosilane, disilane, tetrafluorosilane, chlorosilane, hexamethyldisilane, and dimethylsiloxane.
  • Gaseous compounds containing C elements include: one or more of acetylene, methane, propylene, ethylene, propane and gaseous ethanol;
  • Gaseous compounds containing N elements include: one or more of nitrogen, ammonia, urea, melamine and hydrazine;
  • the gaseous compound containing B element includes: one or more of diborane, trimethyl borate, tripropyl borate and boron tribromide;
  • the gaseous compounds containing P element include: phosphine and/or phosphorus oxychloride.
  • the gaseous compounds are carried by the solution of the above-mentioned element compounds to form gaseous compounds and brought into the reaction vessel.
  • the gas flow rate of silane is 0.5-10L/min
  • the gas flow rate of gaseous compound is 0.5-10L/min
  • the temperature of vapor deposition is 500-1500°C
  • the deposition time is 1-20 hours.
  • step 130 carbon coating is performed on the product after vapor phase deposition by at least one of gas phase coating, liquid phase coating and solid phase coating to obtain a multi-layer composite material for secondary lithium ion batteries.
  • the multi-layered composite material for secondary lithium ion batteries proposed by the invention can be used as negative electrode material of lithium ion batteries and applied in lithium ion batteries.
  • the multi-layer composite material for secondary lithium ion battery provided by the embodiment of the present invention, through the three-layer structure of carbon matrix, nano-silicon-based composite material and carbon shell, and the interaction between the composite materials, the material has volume expansion Small size, better cycle performance and rate performance.
  • nano-silicon-based composite materials prepared by vapor deposition of silane and one or more of gaseous compounds containing any element of C, N, B, and P: carbon atoms are uniformly embedded at the atomic level, The combination of carbon atoms and silicon atoms forms an amorphous Si-C bond, which makes the material structure more stable in the process of lithium intercalation and deintercalation, and the volume expansion is small.
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • Nitrogen gas was passed into the rotary furnace of the reaction vessel equipped with the carbon substrate as the silane deposition protection gas, and the flow rate was 1 L/min.
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • Argon gas was introduced into the tube furnace of the reaction vessel equipped with the carbon substrate as the protective gas for silane deposition, and the flow rate was 1.5 L/min.
  • Disilane and nitrogen-containing compound ammonia are passed into the reaction vessel in the form of gas, and vapor deposition is carried out on the carbon substrate.
  • the gas flow rate of disilane is 0.8 L/min
  • the gas flow rate of ammonia gas is 0.8 L/min
  • the deposition temperature is 600° C.
  • the deposition time is 12.5 hours.
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • Nitrogen gas was passed into the bell furnace of the reaction vessel equipped with the carbon substrate as the silane deposition protection gas, and the flow rate was 2 L/min.
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • Argon gas was introduced into the tube furnace of the reaction vessel equipped with the carbon substrate as the protective gas for silane deposition, and the flow rate was 1.5 L/min.
  • silane disilane and gaseous compounds methane, ammonia, trimethyl borate and phosphorus oxychloride containing C, N, B and P elements into the reaction vessel in the form of gas, and perform vapor deposition on the carbon substrate , the gas flow rate of silane disilane is 0.8L/min, the flow rate of methane, ammonia gas, trimethyl borate and phosphorus oxychloride gaseous compound is 0.2L/min, the deposition temperature is 600°C, and the deposition time is 12.5 Hour.
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • Nitrogen gas was passed into the bell furnace of the reaction vessel equipped with the carbon substrate as the silane deposition protection gas, and the flow rate was 2 L/min.
  • silane tetrafluorosilane and gaseous compounds containing C, N, B and P elements propylene, urea, tripropyl borate and phosphine into the reaction vessel in the form of gas, and perform vapor deposition on the carbon substrate.
  • the gas flow rate of silane tetrafluorosilane is 1L/min
  • the gas flow rate of propylene, urea, tripropyl borate and phosphine gaseous compound is 0.25L/min
  • the deposition temperature is 700°C
  • the deposition time is 10 hours.
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • Nitrogen gas is passed into the rotary furnace of the reaction vessel equipped with the carbon substrate as the silane deposition protection gas, and the flow rate is 2 L/min.
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • Nitrogen gas was passed into the bell furnace of the reaction vessel equipped with the carbon substrate as the silane deposition protection gas, and the flow rate was 2 L/min.
  • the gas flow rate of monosilane, disilane and tetrafluorosilane is 1.3L/min, and the gas flow rate of acetylene, methane, nitrogen, ammonia, diborane, trimethyl borate, phosphine and phosphorus oxychloride gaseous compounds Both are 0.5 L/min, the deposition temperature is 1100° C., and the deposition time is 2.5 hours.
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • the gas flow rate of monosilane, disilane and hexamethyldisilane is 1.7L/min, and the gas flow rate of methane, propylene, ammonia, urea, trimethyl borate, boric acid, phosphine and phosphorus oxychloride gaseous compounds Both are 0.6 L/min, the deposition temperature is 1200° C., and the deposition time is 2 hours.
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • Nitrogen gas is passed into the rotary furnace of the reaction vessel equipped with the carbon substrate as the silane deposition protection gas, and the flow rate is 2 L/min.
  • the gas flow rate of monosilane, disilane and dimethylsiloxane is 2.7L/min, and the gaseous compounds of ethylene, propane, urea, melamine, tripropyl borate, boron tribromide, phosphine and phosphorus oxychloride
  • the gas flow rate is 1 L/min
  • the deposition temperature is 1400° C.
  • the deposition time is 1.25 hours.
  • This embodiment provides a method for preparing a multi-layered composite material for a secondary lithium ion battery, comprising the following steps:
  • the gas flow rate of monosilane, disilane, tetrafluorosilane, hexamethyldisilane is 2.5L/min, acetylene, propane, ammonia, hydrazine, tripropyl borate, boron tribromide, phosphine and trichloro
  • the gas flow rate of the oxyphosphorus gaseous compound is 1 L/min
  • the deposition temperature is 1500° C.
  • the deposition time is 1 hour.
  • This comparative example provides a method for preparing a silicon-carbon composite material in the prior art, comprising the following steps:
  • the composite materials obtained in the above examples and comparative examples were composited with commercial graphite in proportion to form a 450mAh/g composite material, assembled with lithium cobaltate to form a button-type full battery, and cycled at 1C to evaluate its cycle performance. Record the data in Table 1.
  • Example 1 459 92.37 88.03
  • Example 2 454 92.47 88.14
  • Example 3 449 92.82 88.22
  • Example 4 447 93.25 88.68
  • Example 5 455 92.46 88.15
  • Example 6 450 92.80 88.23
  • Example 7 446 93.01 89.16
  • Example 8 440 92.48 88.07
  • Example 9 435 92.18 87.94
  • Example 10 431 92.09 87.77
  • Example 11 436 92.07 87.69
  • Example 12 415 85.89 79.95 Comparative example 1 462 92.03 70.73
  • the invention can further improve the first effect and cycle performance of the material by regulating the deposition time, temperature and gas flow rate. If the gas flow rate and temperature are too high, the silane will be decomposed too quickly and deposited directly on the surface of the carbon substrate, and the recombination of the deposited silicon with C, N, B and P elements will be uneven, which will affect the performance of the battery. However, if the temperature is too low, the decomposition of silane will be incomplete, and it will not be well recombined with C, N, B and P elements, which will affect the cycle performance.
  • the multi-layer composite material for secondary lithium ion battery provided by the embodiment of the present invention, through the three-layer structure of carbon matrix, nano-silicon-based composite material and carbon shell, and the interaction between the composite materials, the material has volume expansion Small size, better cycle performance and rate performance.
  • nano-silicon-based composite materials prepared by vapor deposition of silane and one or more of gaseous compounds containing any element of C, N, B, and P: carbon atoms are uniformly embedded at the atomic level, The combination of carbon atoms and silicon atoms forms an amorphous Si-C bond, which makes the material structure more stable in the process of lithium intercalation and deintercalation, and the volume expansion is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明实施例涉及一种用于二次锂离子电池的多层次复合材料及制备方法和应用,多层次复合材料包括:碳基体、纳米硅基复合材料和碳壳;碳基体为用以沉积纳米硅基复合材料的基体材料;纳米硅基复合材料由硅烷与含C、N、B、P任一元素的气态化合物中的一种或多种通过气相沉积的方法制备而成;纳米硅基复合材料的颗粒尺寸大小为0.1-200nm;纳米硅基复合材料中碳原子以原子级呈均匀内嵌分布,碳原子与硅原子结合形成无定型的Si-C键;氮原子与硅原子结合形成无定型的Si-N键;硼掺杂和/或磷掺杂使得纳米硅基复合材料中的硅晶体形成缺陷;碳壳包覆在沉积有纳米硅基复合材料的碳基体外层。

Description

用于二次锂离子电池的多层次复合材料及制备方法和应用
本申请要求于2021年12月10日提交中国专利局、申请号为202111510520.3、发明名称为“用于二次锂离子电池的多层次复合材料及制备方法和应用”的中国专利申请的优先权。
技术领域
本发明涉及材料技术领域,尤其涉及一种用于二次锂离子电池的多层次复合材料及制备方法和应用。
背景技术
在过去的几十年中,商业化的锂离子电池具有长循环寿命,高能量密度以及对环境有益的优点,取得了巨大的成功。常规的可再充电锂离子电池主要由负电极(通常是碳质材料,例如石墨),正电极(例如LiCoO 2,LiMn 2O 2和LiFePO 4)和电解质浸渍的隔膜组成,锂离子通过液体电解质在两个电极之间来回穿梭,电荷将通过外部电路传输。
然而,传统的石墨阳极材料理论比容量有限,仅为372mAh/g,已不能满足日益增长的高性能存储容量需求。随着便携式电子、电动汽车和可再生能源利用需求的日益增长,开发具有优良电化学性能的高容量负极材料已被证明是实现满足锂离子存储和提高整体能量密度的关键解决方案。
硅由于其自然丰度,环境友好性,低放电电位和高理论容量(4200mAh/g)而成为锂离子电池石墨负极的有前途的替代品。然而,由于硅的体积变化很大(300%-400%),阻碍了硅基负极的实际应用。
研究发现,硅与碳材料结合可以有效改善硅负极的缺点。专利CN  108598389 B中将纳米硅与纳米石墨片在水中分散均匀,再加入有机碳溶液并进行喷雾干燥,将得到的粉末煅烧制得硅碳复合材料。该材料在一定程度上改善了硅导电性以及循环稳定性差的问题,然而该制备方法通过物理混合的方式与碳材料复合,难以保证硅与碳材料均匀分散,影响了其电化学性能。
发明内容
本发明实施例提供了一种用于二次锂离子电池的多层次复合材料及制备方法和应用。本发明的用于二次锂离子电池的多层次复合材料具有稳定的结构,相对于传统硅基材料,通过多层次结构及复合材料之间的相互作用,使得本材料具有体积膨胀小,循环性能和倍率性能更优的特点。
第一方面,本发明实施例提供了一种用于二次锂离子电池的多层次复合材料,所述多层次复合材料包括:碳基体、纳米硅基复合材料和碳壳;
所述碳基体为用以沉积纳米硅基复合材料的基体材料;
所述纳米硅基复合材料由硅烷与含C、N、B、P任一元素的气态化合物中的一种或多种通过气相沉积的方法制备而成;所述纳米硅基复合材料的颗粒尺寸大小为0.1-200nm;所述纳米硅基复合材料中碳原子以原子级呈均匀内嵌分布,碳原子与硅原子结合形成无定型的Si-C键;氮原子与硅原子结合形成无定型的Si-N键;硼掺杂和/或磷掺杂使得所述纳米硅基复合材料中的硅晶体形成缺陷;
所述碳壳包覆在沉积有纳米硅基复合材料的碳基体外层。
优选的,所述碳壳通过气相包覆、液相包覆或固相包覆制备得到。
优选的,当所述多层次复合材料中包含C元素时,所述多层次复合材料的固体核磁共振的NMR谱图中显示,当硅的峰位于-70ppm~-130ppm时,在20ppm~-20ppm之间存在Si-C的共振峰;Si-C的共振峰与硅峰的面积比为0.1~5.0。
优选的,所述多层次复合材料中,所述纳米硅基复合材料的质量占整体质量的20%-80%;与硅进行复合的所述C、N、B、P任一元素的质量占所述纳米硅复合材料的质量的0.1%-50%;
所述碳基体的质量占整体质量的20%-70%;
所述碳壳的质量占整体质量的0-10%。
第二方面,本发明实施例提供了一种第一方面所述的用于二次锂离子电池的多层次复合材料的制备方法,所述制备方法包括:
向装载有碳基体的反应容器中通入保护气体,流速为1-2L/min;所述保护气体为氮气,氩气,氢气或者以上的任意混合气体;
将硅烷和含C、N、B、P任一元素的气态化合物中的一种或多种通入反应容器,在所述碳基体上进行气相沉积;其中,硅烷的气体流速为0.5-10L/min,所述气态化合物的气体流速为0.5-10L/min,所述气相沉积的温度为500-1500℃,沉积的时间为1-20小时;
通过气相包覆、液相包覆、固相包覆中的至少一种方式,对所述气相沉积后的产物进行碳包覆,得到所述用于二次锂离子电池的多层次复合材料。
优选的,所述反应容器包括:间隙或连续反应设备,具体包括回转炉、管式炉、钟罩炉或流化床中的任一种。
优选的,所述硅烷包括:甲硅烷、乙硅烷、四氟硅烷、氯硅烷、六甲基二硅烷、二甲基硅氧烷中的一种或多种。
优选的,含C元素的气态化合物包括:乙炔、甲烷、丙烯、乙烯、丙烷以及气态乙醇中的一种或多种;
含N元素的气态化合物包括:氮气、氨气、尿素、三聚氰胺以及肼中的一种或多种;
含B元素的气态化合物包括:乙硼烷、硼酸三甲酯、硼酸三丙酯以及三溴化硼中的一种或多种;
含P元素的气态化合物包括:磷化氢和/或三氯氧磷。
第三方面,本发明实施例提供了一种负极材料,所述负极材料包括上述第一方面所述的用于二次锂离子电池的多层次复合材料。
第四方面,本发明实施例提供了一种锂电池,所述锂电池包括上述第一方面所述的用于二次锂离子电池的多层次复合材料。
本发明实施例提供的用于二次锂离子电池的多层次复合材料,通过碳基体、纳米硅基复合材料和碳壳的三层结构以及复合材料之间的相互作用,使得本材料具有体积膨胀小,循环性能和倍率性能更优的特点。特别是硅烷与含C、N、B、P任一元素的气态化合物中的一种或多种通过气相沉积的方法制备的纳米硅基复合材料:通过碳原子以原子级呈均匀内嵌分布,碳原子与硅原子结合形成无定型的Si-C键,使得在脱嵌锂过程中材料结构更稳定,体积膨胀小,用于锂电池负极时,具有更好的循环性能;通过氮原子与硅原子结合形成无定型的Si-N键,更有利于锂离子的嵌入和嵌出,提高锂离子电池的倍率性能;硼掺杂和/或磷掺杂使得纳米硅基复合材料中的硅晶体形成缺陷,能够缓解充电过程中得体积膨胀,提高了电池的循环性能。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例提供的用于二次锂离子电池的多层次复合材料的结构示意图;
图2为本发明实施例提供的用于二次锂离子电池的多层次复合材料的制备方法的流程图;
图3为本发明实施例1提供的多层次复合材料的固体核磁共振的核磁共振(NMR)谱图。
具体实施方式
下面通过附图和具体的实施例,对本发明进行进一步的说明,但应当理解为这些实施例仅仅是用于更详细说明之用,而不应理解为用以任何形式限制本发明,即并不意于限制本发明的保护范围。
本发明的提出了一种用于二次锂离子电池的多层次复合材料,图1是本发明实施例的多层次复合材料的结构示意图。如图1所示,多层次复合材料包括:碳基体、纳米硅基复合材料和碳壳;
碳基体为用以沉积纳米硅基复合材料的基体材料,具体可包括多孔活性炭、碳纳米管、碳纤维以及中间相碳微球中的一种或多种;
纳米硅基复合材料由硅烷与含C、N、B、P任一元素的气态化合物中的一种或多种通过气相沉积的方法制备而成;纳米硅基复合材料的颗粒尺寸大小为0.1-200nm;纳米硅基复合材料中碳原子以原子级呈均匀内嵌分布,碳原子与硅原子结合形成无定型的Si-C键;氮原子与硅原子结合形成无定型的Si-N键;硼掺杂和/或磷掺杂使得所述纳米硅基复合材料中的硅晶体形成缺陷;
碳壳包覆在沉积有纳米硅基复合材料的碳基体外层。碳壳可以具体通过气相包覆、液相包覆或固相包覆制备得到。
当多层次复合材料中包含C元素时,多层次复合材料的固体核磁共振的NMR谱图中显示,当硅的峰位于-70ppm~-130ppm时,在20ppm~-20ppm之间存在Si-C的共振峰;Si-C的共振峰与硅峰的面积比为0.1~5.0。
多层次复合材料中,纳米硅基复合材料的质量占整体质量的20%-80%;与硅进行复合的所述C、N、B、P任一元素的质量占所述纳米硅复合材料的质量的0.1%-50%;碳基体的质量占整体质量的20%-70%;碳壳的质量占整体质量的0-10%。
本发明的材料可以通过如图2所示的制备发昂法流程图制备得到。如图2所示,主要步骤包括:
步骤110,向装载有碳基体的反应容器中通入保护气体,流速为1-2 L/min;
具体的,反应容器包括:间隙或连续反应设备,具体包括回转炉、管式炉、钟罩炉或流化床中的任一种。通入的保护气体为氮气,氩气,氢气或者以上气体中的任意两种或三种的混合气体。
步骤120,将硅烷和含C、N、B、P任一元素的气态化合物中的一种或多种通入反应容器,在碳基体上进行气相沉积;
其中,硅烷包括:甲硅烷、乙硅烷、四氟硅烷、氯硅烷、六甲基二硅烷、二甲基硅氧烷中的一种或多种。
含C元素的气态化合物包括:乙炔、甲烷、丙烯、乙烯、丙烷以及气态乙醇中的一种或多种;
含N元素的气态化合物包括:氮气、氨气、尿素、三聚氰胺以及肼中的一种或多种;
含B元素的气态化合物包括:乙硼烷、硼酸三甲酯、硼酸三丙酯以及三溴化硼中的一种或多种;
含P元素的气态化合物包括:磷化氢和/或三氯氧磷。
上述含N元素、含B元素、含P元素的化合物本身在常温常压下呈液态或固态时,其气态化合物是对上述元素化合物的溶液采取通气体携带的形式形成气态化合物带进反应容器中。
硅烷的气体流速为0.5-10L/min,气态化合物的气体流速为0.5-10L/min,气相沉积的温度为500-1500℃,沉积的时间为1-20小时。
步骤130,通过气相包覆、液相包覆、固相包覆中的至少一种方式,对气相沉积后的产物进行碳包覆,得到用于二次锂离子电池的多层次复合材料。
因气相包覆、液相包覆、固相包覆都是业内常用的包覆方法,本领域技术人员均已知晓如何采用上述方法实现碳包覆,因此在这里不再展开赘述。
本发明提出的用于二次锂离子电池的多层次复合材料可用作锂离子电池负极材料,应用在锂离子电池中。
本发明实施例提供的用于二次锂离子电池的多层次复合材料,通过碳基体、纳米硅基复合材料和碳壳的三层结构以及复合材料之间的相互作用,使得本材料具有体积膨胀小,循环性能和倍率性能更优的特点。特别是硅烷与含C、N、B、P任一元素的气态化合物中的一种或多种通过气相沉积的方法制备的纳米硅基复合材料:通过碳原子以原子级呈均匀内嵌分布,碳原子与硅原子结合形成无定型的Si-C键,使得在脱嵌锂过程中材料结构更稳定,体积膨胀小,用于锂电池负极时,具有更好的循环性能;通过氮原子与硅原子结合形成无定型的Si-N键,更有利于锂离子的嵌入和嵌出,提高锂离子电池的倍率性能;硼掺杂和/或磷掺杂使得纳米硅基复合材料中的硅晶体形成缺陷,能够缓解充电过程中得体积膨胀,提高了电池的循环性能。
为更好的理解本发明提供的技术方案,下述以多个具体实例分别说明应用本发明上述实施例提供的方法制备多层次复合材料的具体过程,以及将其应用于二次锂离子电池的方法和电池特性。
实施例1
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器回转炉中通入氮气作为硅烷沉积保护气体,流速为1L/min。
(2)将甲硅烷和含C元素的化合物甲烷,以气体的形式通入反应容器,在碳基体上进行气相沉积。甲硅烷的气体流速为0.5L/min,甲烷的气体流速为0.5L/min,沉积的温度为500℃,沉积的时间为20小时。
(3)通过气相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离子电池的多层次复合材料。
实施例2
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器管式炉中通入氩气作为硅烷沉积保护气体,流速为1.5L/min。
(2)将乙硅烷和含N元素的化合物氨气以气体的形式通入反应容器,在碳基体上进行气相沉积。乙硅烷的气体流速为0.8L/min,含氨气的气体流速为0.8L/min,沉积的温度为600℃,沉积的时间为12.5小时。
(3)通过液相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离子电池的多层次复合材料。
实施例3
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器钟罩炉中通入氮气作为硅烷沉积保护气体,流速为2L/min。
(2)将四氟硅烷和含B元素的化合物硼酸三丙酯以气体的形式通入反应容器,在碳基体上进行气相沉积。四氟硅烷的气体流速为1L/min,含硼酸三丙酯的气体流速为1L/min,沉积的温度为700℃,沉积的时间为10小时。
(3)通过固相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离子电池的多层次复合材料。
实施例4
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器流化床中通入氩气作为硅烷沉积保护气体,流速为2L/min。
(2)将氯硅烷和含P元素的化合物三氯氧磷,以气体的形式通入反应容器,在碳基体上进行气相沉积。氯硅烷的气体流速为1.25L/min,三氯氧磷气态化合物的气体流速为1.25L/min,沉积的温度为800℃,沉积的时间为8小时。
(3)通过气相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离子电池的多层次复合材料。
实施例5
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器管式炉中通入氩气作为硅烷沉积保护气体,流速为1.5L/min。
(2)将硅烷乙硅烷和含C、N、B及P元素的气态化合物甲烷、氨气、硼酸三甲酯和三氯氧磷以气体的形式通入反应容器,在碳基体上进行气相沉积,硅烷乙硅烷的气体流速为0.8L/min,甲烷、氨气、硼酸三甲酯和三氯氧磷气态化合物的流速均为0.2L/min,沉积的温度为600℃,沉积的时间为12.5小时。
(3)通过液相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离子电池的多层次复合材料。
实施例6
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器钟罩炉中通入氮气作为硅烷沉积保护气体,流速为2L/min。
(2)将硅烷四氟硅烷和含C、N、B及P元素的气态化合物丙烯、尿素、硼酸三丙酯和磷化氢以气体的形式通入反应容器,在碳基体上进行气相沉积。硅烷四氟硅烷的气体流速为1L/min,丙烯、尿素、硼酸三丙酯和磷 化氢气态化合物的气体流速均为0.25L/min,沉积的温度为700℃,沉积的时间为10小时。
(3)通过固相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离子电池的多层次复合材料。
实施例7
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器回转炉中通入氮气作为硅烷沉积保护气体,流速为2L/min。
(2)将六甲基二硅烷和含C、N、B及P元素的化合物丙烷、肼、乙硼烷和磷化氢,以气体的形式通入反应容器,在碳基体上进行气相沉积。六甲基二硅烷的气体流速为2L/min,丙烷、肼、乙硼烷和磷化氢的气体流速均为0.5L/min,沉积的温度为900℃,沉积的时间为5小时。
(3)通过液相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离子电池的多层次复合材料。
实施例8
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器管式炉中通入入氩气作为硅烷沉积保护气体,流速为2L/min。
(2)将甲硅烷、乙硅烷和含C、N、B及P元素的化合物乙醇、氮气、硼酸三甲酯和三氯氧磷,以气体的形式通入反应容器,在碳基体上进行气相沉积。甲硅烷、乙硅烷的气体流速均为1.2L/min,乙醇、氮气、硼酸三甲酯和三氯氧磷气态化合物的气体流速为0.6L/min,沉积的温度为1000℃,沉积的时间为4小时。
(3)通过固相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离 子电池的多层次复合材料。
实施例9
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器钟罩炉中通入氮气作为硅烷沉积保护气体,流速为2L/min。
(2)将甲硅烷、乙硅烷、四氟硅烷和含C、N、B及P元素的化合物乙炔、甲烷、氮气、氨气、乙硼烷、硼酸三甲酯、磷化氢和三氯氧磷,以气体的形式通入反应容器,在碳基体上进行气相沉积。甲硅烷、乙硅烷、四氟硅烷的气体流速均为1.3L/min,乙炔、甲烷、氮气、氨气、乙硼烷、硼酸三甲酯、磷化氢和三氯氧磷气态化合物的气体流速均为0.5L/min,沉积的温度为1100℃,沉积的时间为2.5小时。
(3)通过气相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离子电池的多层次复合材料。
实施例10
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器流化床中通入入氩气作为硅烷沉积保护气体,流速为2L/min。
(2)将甲硅烷、乙硅烷、六甲基二硅烷和含C、N、B及P元素的化合物甲烷、丙烯、氨气、尿素、硼酸三甲酯、硼酸、磷化氢和三氯氧磷,以气体的形式通入反应容器,在碳基体上进行气相沉积。甲硅烷、乙硅烷、六甲基二硅烷的气体流速均为1.7L/min,甲烷、丙烯、氨气、尿素、硼酸三甲酯、硼酸、磷化氢和三氯氧磷气态化合物的气体流速均为0.6L/min,沉积的温度为1200℃,沉积的时间为2小时。
(3)通过液相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离 子电池的多层次复合材料。
实施例11
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器回转炉中通入氮气作为硅烷沉积保护气体,流速为2L/min。
(2)将甲硅烷,乙硅烷、二甲基硅氧烷和含C、N、B及P元素的化合物乙烯、丙烷、尿素、三聚氰胺、硼酸三丙酯、三溴化硼、磷化氢和三氯氧磷,以气体的形式通入反应容器,在碳基体上进行气相沉积。甲硅烷,乙硅烷、二甲基硅氧烷的气体流速均为2.7L/min,乙烯、丙烷、尿素、三聚氰胺、硼酸三丙酯、三溴化硼、磷化氢和三氯氧磷气态化合物的气体流速均为1L/min,沉积的温度为1400℃,沉积的时间为1.25小时。
(3)通过固相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离子电池的多层次复合材料。
实施例12
本实施例提供了一种用于二次锂离子电池的多层次复合材料的制备方法,包括以下步骤:
(1)向装有碳基体的反应容器管式炉中通入入氩气作为硅烷沉积保护气体,流速为2L/min。
(2)将甲硅烷、乙硅烷、四氟硅烷、六甲基二硅烷和含C、N、B及P元素的化合物乙炔、丙烷、氨气、肼、硼酸三丙酯、三溴化硼、磷化氢和三氯氧磷,以气体的形式通入反应容器,在碳基体上进行气相沉积。甲硅烷、乙硅烷、四氟硅烷、六甲基二硅烷的气体流速均为2.5L/min,乙炔、丙烷、氨气、肼、硼酸三丙酯、三溴化硼、磷化氢和三氯氧磷气态化合物的气体流速均为1L/min,沉积的温度为1500℃,沉积的时间为1小时。
(3)通过气相包覆对气相沉积的产物进行碳包覆,得到用于二次锂离 子电池的多层次复合材料。
对比例1
本对比例提供了一种现有技术下的硅碳复合材料的制备方法,包括以下步骤:
(1)在乙醇体系中,加入硅颗粒、碳源前驱体聚乙烯吡咯烷酮、石墨以及抗氧化剂柠檬酸,按照质量比1:1:1:0.1,进行砂磨得到分散液。
(2)对该分散液进行喷雾干燥,得到硅碳粉末。
(3)再对该粉末进行气相包覆,最终得到硅碳复合材料。
将上述各实施例和对比例得到的复合材料与商品石墨按比例复合为450mAh/g的复合材料,与钴酸锂组装为扣式全电池,在1C下循环,评估其循环性能。将数据记录在表1中。
序号 充电比容量(mAh/g) 首周效率(%) 循环300次
实施例1 459 92.37 88.03
实施例2 454 92.47 88.14
实施例3 449 92.82 88.22
实施例4 447 93.25 88.68
实施例5 455 92.46 88.15
实施例6 450 92.80 88.23
实施例7 446 93.01 89.16
实施例8 440 92.48 88.07
实施例9 435 92.18 87.94
实施例10 431 92.09 87.77
实施例11 436 92.07 87.69
实施例12 415 85.89 79.95
对比例1 462 92.03 70.73
表1循环性能对比
由表1中的结果可以看出,在对比例中,通过机械混合制备的硅碳复合材料其首效较高,但是循环性能较差,本发明的多层次复合材料具有更 好的循环性能。
本发明通过调控沉积的时间、温度以及气体的流速可以进一步提高材料的首效和循环性能。如果气体流速和温度过高时,会导致硅烷分解过快,直接沉积到碳基体的表面,并且沉积的硅与C、N、B及P元素的复合也不均匀,影响电池的性能。而温度过低会导致硅烷分解不完全,并且不能很好地与C、N、B及P元素进行复合,影响循环性能。
本发明实施例提供的用于二次锂离子电池的多层次复合材料,通过碳基体、纳米硅基复合材料和碳壳的三层结构以及复合材料之间的相互作用,使得本材料具有体积膨胀小,循环性能和倍率性能更优的特点。特别是硅烷与含C、N、B、P任一元素的气态化合物中的一种或多种通过气相沉积的方法制备的纳米硅基复合材料:通过碳原子以原子级呈均匀内嵌分布,碳原子与硅原子结合形成无定型的Si-C键,使得在脱嵌锂过程中材料结构更稳定,体积膨胀小,用于锂电池负极时,具有更好的循环性能;通过氮原子与硅原子结合形成无定型的Si-N键,更有利于锂离子的嵌入和嵌出,提高锂离子电池的倍率性能;硼掺杂和/或磷掺杂使得纳米硅基复合材料中的硅晶体形成缺陷,能够缓解充电过程中得体积膨胀,提高了电池的循环性能。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于二次锂离子电池的多层次复合材料,其特征在于,所述多层次复合材料包括:碳基体、纳米硅基复合材料和碳壳;
    所述碳基体为用以沉积纳米硅基复合材料的基体材料;
    所述纳米硅基复合材料由硅烷与含C、N、B、P任一元素的气态化合物中的一种或多种通过气相沉积的方法制备而成;所述纳米硅基复合材料的颗粒尺寸大小为0.1-200nm;所述纳米硅基复合材料中碳原子以原子级呈均匀内嵌分布,碳原子与硅原子结合形成无定型的Si-C键;氮原子与硅原子结合形成无定型的Si-N键;硼掺杂和/或磷掺杂使得所述纳米硅基复合材料中的硅晶体形成缺陷;
    所述碳壳包覆在沉积有纳米硅基复合材料的碳基体外层。
  2. 根据权利要求1所述的多层次复合材料,其特征在于,所述碳壳通过气相包覆、液相包覆或固相包覆制备得到。
  3. 根据权利要求1所述的多层次复合材料,其特征在于,当所述多层次复合材料中包含C元素时,所述多层次复合材料的固体核磁共振的NMR谱图中显示,当硅的峰位于-70ppm~-130ppm时,在20ppm~-20ppm之间存在Si-C的共振峰;Si-C的共振峰与硅峰的面积比为0.1~5.0。
  4. 根据权利要求1所述的多层次复合材料,其特征在于,所述多层次复合材料中,所述纳米硅基复合材料的质量占整体质量的20%-80%;与硅进行复合的所述C、N、B、P任一元素的质量占所述纳米硅复合材料的质量的0.1%-50%;
    所述碳基体的质量占整体质量的20%-70%;
    所述碳壳的质量占整体质量的0-10%。
  5. 一种上述权利要求1-4任一所述的用于二次锂离子电池的多层次复合材料的制备方法,其特征在于,所述制备方法包括:
    向装载有碳基体的反应容器中通入保护气体,流速为1-2L/min;所 述保护气体为氮气,氩气,氢气或者以上的任意混合气体;
    将硅烷和含C、N、B、P任一元素的气态化合物中的一种或多种通入反应容器,在所述碳基体上进行气相沉积;其中,硅烷的气体流速为0.5-10L/min,所述气态化合物的气体流速为0.5-10L/min,所述气相沉积的温度为500-1500℃,沉积的时间为1-20小时;
    通过气相包覆、液相包覆、固相包覆中的至少一种方式,对所述气相沉积后的产物进行碳包覆,得到所述用于二次锂离子电池的多层次复合材料。
  6. 根据权利要求5所述的制备方法,其特征在于,所述反应容器包括:间隙或连续反应设备,具体包括回转炉、管式炉、钟罩炉或流化床中的任一种。
  7. 根据权利要求5所述的制备方法,其特征在于,所述硅烷包括:甲硅烷、乙硅烷、四氟硅烷、氯硅烷、六甲基二硅烷、二甲基硅氧烷中的一种或多种。
  8. 根据权利要求5所述的制备方法,其特征在于,
    含C元素的气态化合物包括:乙炔、甲烷、丙烯、乙烯、丙烷以及气态乙醇中的一种或多种;
    含N元素的气态化合物包括:氮气、氨气、尿素、三聚氰胺以及肼中的一种或多种;
    含B元素的气态化合物包括:乙硼烷、硼酸三甲酯、硼酸三丙酯以及三溴化硼中的一种或多种;
    含P元素的气态化合物包括:磷化氢和/或三氯氧磷。
  9. 一种负极材料,其特征在于,所述负极材料包括上述权利要求1-5任一所述的用于二次锂离子电池的多层次复合材料。
  10. 一种锂离子电池,其特征在于,所述锂电池包括上述权利要求1-5任一所述的用于二次锂离子电池的多层次复合材料。
PCT/CN2022/100701 2021-12-10 2022-06-23 用于二次锂离子电池的多层次复合材料及制备方法和应用 WO2023103343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111510520.3 2021-12-10
CN202111510520.3A CN116259726A (zh) 2021-12-10 2021-12-10 用于二次锂离子电池的多层次复合材料及制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023103343A1 true WO2023103343A1 (zh) 2023-06-15

Family

ID=86686712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100701 WO2023103343A1 (zh) 2021-12-10 2022-06-23 用于二次锂离子电池的多层次复合材料及制备方法和应用

Country Status (2)

Country Link
CN (1) CN116259726A (zh)
WO (1) WO2023103343A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116895747A (zh) * 2023-07-11 2023-10-17 广东凯金新能源科技股份有限公司 磷掺杂硅碳复合材料及其制备方法、及二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137765A (zh) * 2005-03-14 2008-03-05 德古萨有限责任公司 涂覆的碳颗粒的制造方法及其在锂离子电池阳极材料中的应用
CN109004203A (zh) * 2018-08-02 2018-12-14 内蒙古三信实业有限公司 一种硅碳复合负极材料及其制备方法
CN110311125A (zh) * 2019-08-15 2019-10-08 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及其制备方法
CN113078318A (zh) * 2021-03-26 2021-07-06 广东凯金新能源科技股份有限公司 一种三维多孔硅碳复合材料、其制备方法及其应用
US20210276875A1 (en) * 2020-03-08 2021-09-09 Nexeon Limited Electroactive Materials for Metal-Ion Batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137765A (zh) * 2005-03-14 2008-03-05 德古萨有限责任公司 涂覆的碳颗粒的制造方法及其在锂离子电池阳极材料中的应用
CN109004203A (zh) * 2018-08-02 2018-12-14 内蒙古三信实业有限公司 一种硅碳复合负极材料及其制备方法
CN110311125A (zh) * 2019-08-15 2019-10-08 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及其制备方法
US20210276875A1 (en) * 2020-03-08 2021-09-09 Nexeon Limited Electroactive Materials for Metal-Ion Batteries
CN113078318A (zh) * 2021-03-26 2021-07-06 广东凯金新能源科技股份有限公司 一种三维多孔硅碳复合材料、其制备方法及其应用

Also Published As

Publication number Publication date
CN116259726A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
Yan et al. Low‐temperature synthesis of graphitic carbon‐coated silicon anode materials
JP2012523075A (ja) カーボン複合材料の製造方法
CN110416522B (zh) 一种含锂复合负极材料、其制备方法和其在锂二次电池中的应用
US11929509B2 (en) Metal lithium metal, supporting framework, and inorganic lithium compound, method for preparing the same, and electrode, battery, battery module, battery pack and apparatus comprising the same
CN111653737B (zh) 一种具有梯度预锂化结构的氧化硅复合材料及其制备方法、应用
WO2022002057A1 (zh) 硅氧复合负极材料、负极和锂离子电池及其制备方法
CN110148729B (zh) 一种碳包覆氧化亚硅材料的制备方法及应用
CN108923037A (zh) 一种富硅SiOx-C材料及其制备方法和应用
CN113130858A (zh) 硅基负极材料及其制备方法、电池和终端
WO2024087383A1 (zh) 一种二次电池及用电设备
WO2023103343A1 (zh) 用于二次锂离子电池的多层次复合材料及制备方法和应用
CN112125294A (zh) 一种煤基硅碳复合负极材料其制备方法
CN112768668A (zh) 一种锂离子电池硅碳负极材料及其制备工艺和设备
CN102945950B (zh) 一种在金属集流器上原位生长碳纳米管阵列的方法
CN115020682B (zh) 一种高能量密度快充石墨负极材料的制备方法
CN103280581A (zh) 一种锂离子电池负极材料及其制备方法
CN116314722A (zh) 一种氟氮掺杂无定形碳包覆硅碳复合材料及其制备方法
CN114105149B (zh) 一种碳包覆氮磷双掺杂氧化亚硅复合材料及其制备方法和在锂离子电池中的应用
CN115084488A (zh) 一种硫化铜掺杂碳基复合材料及其制备方法、钠离子电池
CN108288705A (zh) 一种锂离子电池用硅碳负极材料及其制备方法
CN115832237A (zh) 负极活性材料及其制备方法、负极极片、电池和用电设备
CN113921784A (zh) 一种负极材料及其制备方法和应用
Liu Recent progress of anode and cathode materials for lithium ion battery
WO2023050726A1 (zh) 一种用于二次锂电池的新型复合材料及制备方法和应用
WO2024000823A1 (zh) 一种超高温制备的多层次复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902780

Country of ref document: EP

Kind code of ref document: A1