WO2023103132A1 - 发光器件及显示装置 - Google Patents

发光器件及显示装置 Download PDF

Info

Publication number
WO2023103132A1
WO2023103132A1 PCT/CN2021/143694 CN2021143694W WO2023103132A1 WO 2023103132 A1 WO2023103132 A1 WO 2023103132A1 CN 2021143694 W CN2021143694 W CN 2021143694W WO 2023103132 A1 WO2023103132 A1 WO 2023103132A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
emitting device
layer
emitting
Prior art date
Application number
PCT/CN2021/143694
Other languages
English (en)
French (fr)
Inventor
孙雷蒙
李坤
李慧芸
刘芳
杨丹
Original Assignee
华引芯(武汉)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华引芯(武汉)科技有限公司 filed Critical 华引芯(武汉)科技有限公司
Publication of WO2023103132A1 publication Critical patent/WO2023103132A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the invention relates to the technical field of light-emitting semiconductors and backlight displays, in particular to a light-emitting device and a display device.
  • the present invention provides a light-emitting device and a display device, which improves the overall light intensity of the light-emitting device through a light extraction component, and at the same time partially suppresses the light output from the top surface of the light-emitting device, weakens the light output intensity from the top of the light-emitting device, provides an ultra-thin display device, and does not Cause dark areas or bright spots on the display device.
  • the present invention provides a light-emitting device, the light-emitting device includes a semiconductor light source, the semiconductor light source includes a first light-emitting surface and an electrical connection component surface opposite, and a connection between the first light-emitting surface and the electrical connection component surface Several second light-emitting surfaces, two electrical connection components are arranged on the electrical connection surface;
  • the wavelength conversion member is stacked on the first light-emitting surface, and includes a first abutting surface abutting against the first light-emitting surface, a second abutting surface opposite to the first abutting surface, and a connection
  • the side wall between the first abutment surface and the second abutment surface is used to receive and convert the wavelength of light;
  • a light extraction member surrounding the semiconductor light source and the wavelength conversion member, the light extraction member is spaced apart from the second light-emitting surface, and abuts against the side wall, for extracting the second light-emitting surface face light;
  • the light-transmitting layer is stacked on the second abutting surface, and the projection of the light-transmitting layer along the stacking direction completely covers the second abutting surface;
  • the light-inhibiting layer is stacked on the top surface of the light-transmitting layer away from the wavelength conversion member, and is used to partially suppress the brightness of the light emitted from the top surface of the light-transmitting layer.
  • the projected area of the two abutting surfaces is smaller than the projected area of the transparent layer on the second abutting surface along the stacking direction.
  • the light-inhibiting layer is provided with several circular through holes, and the several through-holes are uniformly distributed in the light-inhibiting layer.
  • projections of peripheral edges of the light-inhibiting layer, the light-transmitting layer and the second abutting surface in the stacking direction are all coincident.
  • the projections of the peripheral edges of the light-transmitting layer and the second abutting surface in the stacking direction overlap, and the projection of the peripheral edge of the light-inhibiting layer in the stacking direction falls on the second abutting surface Inside.
  • the light-transmitting layer is provided with a groove, and the groove is recessed from the surface of the light-transmitting layer away from the wavelength conversion member toward the wavelength conversion member, and the light-inhibiting layer is accommodated in the In the groove, the light-inhibiting layer and the light-transmitting layer are flush on a side away from the wavelength converting member.
  • the light emitting device further includes an extension member connected to the two electrical connection parts of the semiconductor light source, the extension member includes two extension sheets having opposite front and back sides and arranged at intervals, and covering the two extension sheets and Adhesive insulating reflective coating, the fronts of the two expansion sheets are respectively connected to the two electrical connection parts one by one, the insulating reflective coating exposes the back of the expansion sheet and partially exposes the front of the expansion sheet
  • the insulating reflective coating also fills the space between the two expansion sheets, and the insulating reflective coating on the front side of the expansion sheet and in the space is also connected to the semiconductor light source.
  • a step is provided on the back of the extension sheet, and the interval is formed between the steps of the two extension sheets;
  • the insulating reflective coating on the front surface of the expansion sheet is distributed along the periphery away from the interval, and has a U-shape.
  • the space between the second light output surface and the inner wall of the light extraction member is filled with a transparent sealing component
  • the wavelength conversion member includes a first wavelength conversion film and a first wavelength conversion film sequentially stacked along a side close to the semiconductor light source.
  • the second wavelength conversion film, the first wavelength conversion film excites the light in the red band
  • the second wavelength conversion film excites the light in the green band
  • the transparent sealing member abuts and seals the first wavelength conversion film
  • the gap between the second light output surface and the inner wall of the light extraction member is filled with a transparent sealing member
  • the wavelength conversion member includes a third wavelength conversion film that simultaneously excites light in the red wavelength band and green wavelength band , reflective layers disposed on both ends of the third wavelength conversion film along the vertical stacking direction, and transparent layers disposed on both sides of the third wavelength conversion film along the stacking direction, the transparent layer and the reflective layer wrapping the In the third wavelength conversion film, the transparent sealing member abuts and seals the transparent layer.
  • the present invention also provides a display device, which includes a substrate, several light-emitting devices arranged on the substrate, a reflector surrounding at least one of the light-emitting devices, A diffusion sheet and a brightness enhancement sheet,
  • the light-emitting device includes the structure of the above-mentioned light-emitting device, the projection of the light-emitting device in a direction parallel to the substrate falls in the reflection cover, and the diffusion sheet is in contact with the reflection cover , the brightness enhancement sheet is stacked on the side of the diffusion sheet away from the reflection cover.
  • the beneficial effect of the present invention is to provide a light-emitting device and a display device.
  • the light-emitting device extracts the light emitted from the side (second light-emitting surface) of the semiconductor light source through a light-extracting member, and collects the light from the side to the top together with the first light-emitting surface.
  • Emit to the wavelength conversion member emit white light from the top (second contact surface) of the wavelength conversion member, pass through the thickness direction of the light-transmitting layer and the top of the light-inhibiting layer after passing through the light-transmitting layer, and emit white light.
  • the inhibitory layer is partially inhibited.
  • the light-emitting device of the present invention can improve the overall light output intensity, partially suppress the light output from the top, and avoid the situation that the top is directly completely suppressed in the prior art, resulting in dark areas on the top and excessive loss of overall brightness.
  • the light mixing distance can be small, the display device is thinner and the overall brightness is high.
  • FIG. 1 is a schematic structural view of a light-emitting device provided in Embodiment 1 of the present invention in a top view;
  • Fig. 2 is a schematic diagram of the cross-sectional structure of Fig. 1 along the M-M direction;
  • Figure 3 is an enlarged detail view of A in Figure 1;
  • Fig. 4 is a schematic structural view of the light emitting device provided by Embodiment 2 of the present invention in a top view;
  • Fig. 5 is a schematic diagram of a cross-sectional structure along the N-N direction of Fig. 4;
  • Fig. 6 is a schematic cross-sectional structure diagram of the light-emitting device provided by Embodiment 3 of the present invention along the stacking direction;
  • Fig. 7 is a schematic cross-sectional structure diagram of the light-emitting device provided by Embodiment 4 of the present invention along the stacking direction;
  • Fig. 8 is a schematic diagram of the top view of the expansion member in Fig. 7;
  • Fig. 9 is a schematic bottom view of the expansion member in Fig. 7;
  • Fig. 10 is a schematic structural view of the front of the expansion piece in the expansion member in Fig. 7 after being shielded;
  • Fig. 11 is a schematic structural view of the front of the expansion sheet after removing the occlusion in Fig. 10;
  • Fig. 12 is a schematic structural diagram of the reverse side of the expansion sheet in Fig. 10;
  • Fig. 13 is a schematic cross-sectional structure diagram of a light emitting device provided by Embodiment 5 of the present invention.
  • Fig. 14 is a schematic diagram of another cross-sectional structure of the light extraction member in Embodiment 5.
  • Figure 15 is an enlarged detail view at B in Figure 14;
  • FIG. 16 is a schematic cross-sectional structure diagram of a display device provided by Embodiment 6 of the present invention.
  • 100-light-emitting device 1-semiconductor light source; 11-first light-emitting surface; 12-electrical connection surface; 13-second light-emitting surface; 2-wavelength conversion member; 21-first abutting surface; 22-second abutting surface 23-side wall; 24-first wavelength conversion film; 25-second wavelength conversion film; 26-third wavelength conversion film; 27-sealing body; 271-transparent layer; 272-reflective layer; 3-light extraction Component; 4-translucent layer; 5-light suppression layer; 51-through hole; 52-rough surface; 6-expansion member; 61-expansion sheet; 611-front side; 62-insulating reflective coating; 7-adhesive member; 8-transparent sealing part; 200-display device; 210-substrate; 220-reflective cover; 230-diffusion sheet;
  • FIGS. 1-3 is a light emitting device 100 provided in Embodiment 1 of the present invention.
  • the light emitting device 100 includes a semiconductor light source 1 , a wavelength conversion member 2 , a light extraction member 3 , a light-transmitting layer 4 and a light-inhibiting layer 5 .
  • the light-emitting device 100 of the embodiment of the present invention generates white light.
  • the principle is that the semiconductor light source 1 emitting blue light excites the phosphors emitting red and green light in the wavelength conversion member 2 to generate white light.
  • other colors or other combinations for generating white light are also applicable to the structures of the embodiments of the present invention.
  • the overall size of the light-emitting device 100 of the present invention can be made very small, and the light-emitting semiconductor can also be a conventional blue light chip. At this time, the overall size of the light-emitting device 100 can be no more than 1.2 times that of the chip, which is chip-level.
  • the semiconductor light source 1 includes a first light-emitting surface 11, an electrical connection surface 12 and several second light-emitting surfaces 13.
  • the semiconductor light source 1 here is a cuboid, the first light-emitting surface 11 is the top light-emitting surface, and the second light-emitting surface 13 is the side light-emitting surface.
  • the surface 12 is provided with two electrical connection components (such as electrodes), the electrical connection surface 12 is arranged opposite to the first light-emitting surface 11, and several second light-emitting surfaces 13 are connected between the electrical connection surface 12 and the first light-emitting surface 11.
  • the present invention implements
  • the semiconductor light source 1 in this example is a cuboid blue light chip with four first light-emitting surfaces 11 , of course, other forms or shapes of the semiconductor light source 1 are not limited to the embodiments of the present invention.
  • the wavelength conversion member 2 is stacked on the first light-emitting surface 11, including a first abutting surface 21 and a second abutting surface 22 oppositely disposed, and a side connecting the first abutting surface 21 and the second abutting surface 22
  • the wall 23 is used to receive and convert the wavelength of light.
  • the first abutting surface 21 is in contact with the first light-emitting surface 11.
  • the wavelength conversion member 2 is a phosphor film, which is phosphor powder or quantum dot phosphor The powder is mixed with silica gel, and then evenly sprayed onto the steel mesh to form the composition.
  • the wavelength conversion member 2 is fluorescent colloid, which is directly mixed with transparent silicone resin and sealed in the colloid.
  • the light extraction member 3 is surrounded by the semiconductor light source 1 and the wavelength conversion member 2, and includes a surrounding wall that continuously surrounds a plurality of second light-emitting surfaces 13.
  • the light-emitting surfaces 13 are arranged at intervals, and at the same time, the surrounding wall is also in contact with the side wall 23 of the wavelength conversion member 2 to seal the semiconductor light source 1.
  • the top of the surrounding wall is flush with the second abutting surface 22 of the wavelength conversion member 2, so that the semiconductor The light emitted from the light source 1 passes through the wavelength converting member 2 and then exits from the second abutting surface 22 .
  • the light extraction member 3 of the embodiment of the present invention includes, but is not limited to, the preparation of a light reflection film with high reflectivity.
  • the light reflection film is preferably a white resin, and the white resin is prepared by filling a white pigment in a light-transmitting resin.
  • the white pigment may include But not limited to titanium oxide, aluminum oxide, zinc oxide, barium carbonate, barium sulfate and glass filler etc.
  • a reflective surface opposite to the second light-emitting surface 13 can also be provided on the surrounding wall.
  • the reflective surface in the embodiment of the present invention is an inclined plane that presents an angle of ⁇ 90° with the second light-emitting surface 13.
  • the reflective surface may be an arc surface presenting a certain arc.
  • the space between the second light-emitting surface 13 and the inner wall of the light-extracting member 3 is filled with a transparent sealing member 8, and the light-extracting member 3 gathers the blue light on the second light-emitting surface at the top and converts the wavelength of the blue light at the top like the blue light on the first light-emitting surface 11
  • Component 2 emits white light to ensure that as much white light as possible enters the light-transmitting layer 4.
  • the above arrangement of semiconductor light source 1, wavelength conversion component 2 and light extraction component 3 can prevent the leakage of blue light from semiconductor light source 1 and improve the brightness of light output.
  • the light-transmitting layer 4 covers the top of the light-extracting member 3 and the wavelength conversion member 2 away from the semiconductor light source 1, that is, the light-transmitting layer 4 is stacked on the second abutting surface 22, and the periphery of the light-transmitting layer 4 is in the direction of stacking.
  • the projection coincides with the periphery of the light extraction member 3 to facilitate the preparation of the light emitting device 100 .
  • the space between the semiconductor light source 1 and the light extraction member 3 is filled with a transparent sealing member 8 , and the transparent sealing body 27 , the light extraction member 3 , and the light-transmitting layer 4 abut to seal the wavelength conversion member 2 .
  • the overall thickness of the light-emitting device 100 can be avoided from being too thick, and at the same time, it can ensure that as much light as possible is emitted from the light-transmitting layer 4 .
  • the light-inhibiting layer 5 is stacked on the top surface of the light-transmitting layer 4 away from the wavelength conversion member 2, and is used to partially suppress the light output brightness of the top surface of the light-transmitting layer 4.
  • the light-inhibiting layer 5 can be used in conjunction with light extraction.
  • the light reflective film with the same high reflectivity as component 3 is prepared.
  • the light suppression layer 5 in the following embodiments is all described by taking the light reflective film as an example.
  • the top light suppression is generally achieved by directly covering the top of the chip or the top light-emitting surface with a light-reflecting film or a distributed Bragg reflector, which will lead to a large loss of brightness of the entire structure and excessive top light suppression It will also form a dark area at the top and greatly reduce the brightness of the light output.
  • the projected area of the light-inhibiting layer 5 on the second abutting surface 22 along the stacking direction is smaller than the projected area of the light-transmitting layer 4 on the second abutting surface 22 along the stacking direction.
  • Embodiment 1 The top surface of the light-transmitting layer 4 is covered with the light-inhibiting layer 5, and the projections of the peripheral edges of the light-inhibiting layer 5, the light-transmitting layer 4, and the second abutting surface 22 in the stacking direction all overlap, and only on the light-inhibiting layer 5 Offer some through openings, that is, the periphery of the light-inhibiting layer 5 is flush with the periphery of the light-transmitting layer 4, but open holes are opened on the light-inhibiting layer 5, so that the area of the light-inhibiting layer 5 is smaller than the top surface of the light-transmitting layer 4 Area. Optionally, a number of openings are evenly distributed on the light suppression layer 5.
  • the suppression of the top light is adjusted, and then the top light emission is controlled.
  • the top light emission is controlled.
  • equidistant and dense openings can be formed in the light-inhibiting layer 5 to uniformly suppress light from the top of the light-emitting device 100 .
  • the light emitting device 100 includes a semiconductor light source 1 , a wavelength conversion member 2 , a light extraction member 3 , a light-transmitting layer 4 and a light-inhibiting layer 5 .
  • the structure and positional relationship of the semiconductor light source 1 , the wavelength conversion component 2 , the light extraction component 3 and the light-transmitting layer 4 are the same as those in the first embodiment.
  • the difference between the second embodiment and the first embodiment lies in that the structural arrangement of the light suppression layer 5 is different.
  • the light suppression layer 5 in the second embodiment is laminated on the top surface of the transparent layer 4 away from the wavelength conversion member 2 , and is used to partially suppress the light emission brightness of the top surface of the transparent layer 4 .
  • the projected area of the light-inhibiting layer 5 on the second abutting surface 22 along the stacking direction is smaller than the projected area of the light-transmitting layer 4 on the second abutting surface 22 along the stacking direction.
  • the light-inhibiting layer 5 is covered on the top surface of the light-transmitting layer 4, the projections of the peripheral edges of the light-transmitting layer 4 and the second abutting surface 22 in the stacking direction overlap, and the projection of the peripheral edges of the light-inhibiting layer 5 in the stacking direction falls in the transparent layer 4 , that is, the light inhibiting layer 5 only covers the center of the top surface of the transparent layer 4 and exposes the periphery of the top surface of the transparent layer 4 .
  • a groove (not shown) is opened on the light-transmitting layer 4, and the groove is from the top surface of the light-transmitting layer 4 toward the wavelength conversion layer. Depression, the light suppression layer 5 is accommodated in the groove.
  • matching concavo-convex lines may be provided on the sides where the light-inhibiting layer 5 and the groove are connected, so as to secure the connection between the light-inhibiting layer 5 and the groove.
  • FIG. 6 is a light-emitting device 100 provided by Embodiment 3 of the present invention.
  • the light-emitting device 100 includes a semiconductor light source 1 , a wavelength conversion member 2 , a light extraction member 3 , a light-transmitting layer 4 and a light-inhibiting layer 5 .
  • the structure and positional relationship of the semiconductor light source 1, the wavelength conversion component 2, the light extraction component 3, and the light-transmitting layer 4 are the same as those in the first and second embodiments. Please refer to the description in the first embodiment for details and will not be repeated here.
  • the difference between the third embodiment and the first and second embodiments is that the structure of the light suppression layer 5 is different.
  • the light-inhibiting layer 5, the projected areas of the light-inhibiting layer 5 and the light-transmitting layer 4 on the second abutting surface 22 along the stacking direction are equal to the area of the second abutting surface 22, that is, the light-inhibiting layer 5 completely covers the light-transmitting layer 4
  • the side away from the wavelength conversion member 2, and the surface of the light-inhibiting layer 5 facing away from the light-transmitting layer 4 is a rough surface 52. Since the light-inhibiting layer 5 completely covers the light-emitting side of the top of the light-transmitting layer 4, in order to allow the light-inhibiting layer 5 Part of the light can be transmitted while suppressing light emission. Therefore, the surface of the side of the light-inhibiting layer 5 facing away from the light-transmitting layer 4 is roughened to form a matte surface so that part of the light can be transmitted through the top.
  • the light extraction member 3 is used to extract the light emitted from the plurality of second light-emitting surfaces 13 on the side of the semiconductor light source 1, and the light from the plurality of second light-emitting surfaces 13 on the side is collected to the top and the first light-emitting device.
  • the outer periphery of the outer layer can normally transmit light; or the light-emitting side of the light-inhibiting layer 5 can be roughened to increase light transmission.
  • the light-emitting device 100 of the above embodiment can increase the overall light output intensity, partially suppress the light output from the top, and avoid the situation that the top is directly completely suppressed in the prior art, resulting in dark areas on the top and excessive loss of overall brightness.
  • it is used in backlight devices. Among them, the light mixing distance is small, the backlight device is also thinner and the overall brightness is high.
  • Embodiment 4 of the present invention provides a light emitting device 100, please refer to Fig. 7-Fig. Component 6.
  • the structure and positional relationship of the semiconductor light source 1, the wavelength conversion member 2, the light extraction member 3, and the light-transmitting layer 4 can be the same as at least one of Embodiments 1 to 3, refer to the descriptions in Embodiments 1 to 3 for details , which will not be repeated here.
  • Embodiment 4 is based on the structure of Embodiment 1 to Embodiment 3.
  • An expansion member 6 for expanding the area of the electrical connection part of the semiconductor light source 1 is provided.
  • the light-emitting device 100 In practical application of the light-emitting device 100 described above, its electrical connection structure (electrode) needs to be fixed to the corresponding connection part (such as the pad on the carrier board). Since the size of the light-emitting device 100 itself is small, its corresponding electrical connection The smaller the structure, the more difficult it will be to fix. Therefore, the expansion pads are often prepared on the electrical connection structure of the light emitting device 100, so as to expand the welding area of the electrical connection structure, but the current expansion pads are all on an insulating substrate. , Conductive extension pads are arranged on both the front and back of the substrate, a through hole is opened in the middle of the insulating substrate, the through hole is connected to the extension pads on the front and back, and the through hole is filled with conductive material.
  • the overall thickness of the extended pad is made too thin, the metal layer filled in the through hole is likely to break. Usually, the overall thickness is greater than 100 ⁇ m-500 ⁇ m. If the overall thickness is larger, the overall thickness of the light emitting device 100 will be increased.
  • the extension member 6 of Embodiment 4 of the present invention can be made thinner, and the thickness can be 20 ⁇ m-50 ⁇ m.
  • the extension member 6 includes two extension sheets 61 arranged at intervals and an insulating reflective coating 62 covering the two extension sheets 61 and having adhesiveness.
  • the two extension sheets 61 have the same structure and are distributed symmetrically.
  • 61 is connected to the two electrical connection components of the semiconductor light source 1 in one-to-one correspondence.
  • Each expansion sheet 61 has a front 611 and a reverse surface 612 oppositely arranged. The front 611 of each expansion sheet 61 is welded to the electrical connection components.
  • the insulating reflective coating 62 is completely Exposing the back side 612 of the extension sheet 61 and partially exposing the front side 611 of the extension sheet 61 cover the extension sheet 61, while the insulating reflective coating 62 also fills the gap between the two extension sheets 61, and the insulating reflective coating 62 in the interval can play a role.
  • the role of connecting two extension sheets 61 can also be used to connect the extension sheet 61 and the semiconductor light source 1, and the insulating reflective coating 62 partially covered by the front side 611 of the extension sheet 61 can be used to connect the semiconductor light source 1 and the extension sheet 61, because During the preparation process, it needs to be transferred on the adhesive film (such as UV film) multiple times, so the firmness of the connection between the expansion sheet 61 and the semiconductor light source 1 must be ensured, otherwise the expansion sheet 61 will fall off.
  • the expansion sheet 61 can be made of copper, gold and other metals with good electrical conductivity; optionally, the two expansion sheets 61 have a uniform thickness and the same volume.
  • the insulating reflective coating 62 can be white paint, and the white paint should also have adhesion, insulation and high reflectivity.
  • the insulating reflective layer 272 can also reflect the light emitted by the semiconductor light source 1 and/or the light reflected by the light suppression layer 5 .
  • a step 613 is provided on the reverse side 612 of the expansion piece 61, and the step 613 is formed by recessing the reverse side 612 of the expansion piece 61 toward the front side 611, and the steps 613 of the two expansion pieces 61 are opposite to each other, and are arranged at intervals , the formed interval is an isosceles trapezoidal cross-section in the stacking direction, and the arrangement of the above two expansion pieces 61 can make the distance S1 between the front surfaces 611 of the two expansion pieces 61 relatively small, while the back surfaces 612 of the two expansion pieces 61 The distance S2 between them is greater than S1, the front side 611 satisfies the condition that the distance between the two electrical connection parts is relatively close, and the back side 612 meets the condition that
  • the insulating reflective coating 62 filled in the interval is also an isosceles trapezoid, and the insulating reflective coating 62 in the interval is an isosceles trapezoid whether it is connecting two expansion sheets 61 or connecting the expansion sheet 61 and the semiconductor light source 1
  • the firmness has been improved.
  • the insulating reflective coating 62 in the interval can also play the role of connecting the extension sheet 61 and the semiconductor light source 1, only for local connection, it is still necessary to keep the overall firmness between the extension sheet 61 and the semiconductor light source 1 in the manufacturing process.
  • the insulating reflective coating 62 on the front 611 of the expansion sheet 61 needs to reserve a connection space for the electrical connection components, the insulating reflective coating 62 can only partially cover the front 611 of the expansion sheet 61, and because the two electrical The distance between the connecting parts is relatively short and the two electrical connecting parts are respectively connected to two expansion sheets 61, so the connection between the electrical connection parts and the front 611 of the expansion sheet 61 should be close to the interval, preferably, the front 611 of the expansion sheet 61
  • the insulating reflective coating 62 is distributed along the front 611 of the expansion sheet 61 away from the periphery of the interval, and the shape is U-shaped.
  • a T-shaped shield 614 is formed on the front 611 of the expansion sheet 61 to form a U-shaped
  • the openings are aligned with the intervals, and this setting makes the insulating reflective coating 62 evenly distributed on the front 611 of the extension sheet 61, which plays a role in adhering the extension sheet 61 and the semiconductor light source 1 well, and at the same time, does not affect the electrical connection components Connection with the front side 611 of the expansion sheet 61 .
  • the light-emitting device 100 in the fourth embodiment will add a second reflow process during subsequent mounting and use, so that the reverse side 612 of the extension sheet 61 in the extension member 6 is welded and fixed, but due to the extension sheet 61
  • the front side 611 is welded and fixed together with the electrical connection parts. If the welding between the expansion sheet 61 and the electrical connection parts (primary reflow soldering) adopts a conventional solder solidification connection, during the second reflow soldering, in order not to affect the firmness of the first reflow soldering,
  • the secondary reflow soldering process uses low-temperature solder with volatile flux to solder the reverse side 612 of the extension piece 61 , which affects the soldering strength.
  • the front side 611 of the expansion piece 61 is connected to the electrical connection part through the adhesive member 7, which is a conductive member, which is different from conventional solder
  • the inside of the adhesive member 7 does not contain flux, and it is pressed with a pressure that does not cause plastic deformation as much as possible under the temperature condition of the melting temperature or lower, so that the adhesive member 7 and the expansion sheet 61 or the electric wire are bonded together.
  • the base materials of the joined parts are bonded to each other to allow the diffusion of atoms generated between the two surfaces, thereby enhancing the strength of the joint.
  • the bonding member 7 includes gold alloys, silver alloys, palladium alloys, indium alloys, tin alloys, aluminum alloys, lead-palladium alloys, gold-gallium alloys, gold-tin alloys, tin-copper alloys, and tin-silver alloys. alloy, gold-chromium alloy, gold-silicon alloy, copper-indium alloy mixture.
  • the adhesive member 7 may be in liquid form, paste form or solid form (sheet form, block form, powder form or wire form), and may be appropriately selected according to the composition and shape of the supporting member.
  • the bonding member 7 may be a single member or a combination of several members.
  • the adhesive member 7 can be evaporated on the electrical connection part, or the adhesive member 7 can be electroplated on the extension sheet 61 .
  • the embodiment of the present invention utilizes the blue light chip to excite the red and green phosphors to emit white light, but usually the red phosphors have poor stability under high temperature and high humidity conditions. Therefore, the fifth embodiment of the present invention provides a light emitting device 100, which is On the basis of the structures of Examples 1, 2, 3 and 4, the light emitting device 100 of Embodiment 5 of the present invention may include a semiconductor light source 1, a wavelength converting member 2, a light extraction member 3, a light-transmitting layer 4, a light-inhibiting layer 5, and a light-inhibiting Layer 5 and/or extension member 6, and the wavelength conversion structure therein is improved, other structural descriptions can refer to Embodiments 1, 2, 3 and 4. Please refer to FIG. 14-FIG.
  • Embodiment 5 of the present invention provides two different wavelength conversion structures to improve the sealing performance of the red phosphor.
  • the structure of the first wavelength conversion member 2 includes a first wavelength conversion film 24 and a second wavelength conversion film 25 sequentially laminated along the side close to the semiconductor light source 1, the first wavelength conversion film 24 excites light in the red band, and the second wavelength conversion film 24 The film 25 excites light in the green wavelength band, and the transparent sealing member 8 abuts and seals the first wavelength conversion film 24, by sealing the first wavelength conversion film 24 within the second wavelength conversion film 25, the light extraction member 3 and the transparent sealing member 8 To improve the tightness of the red phosphor.
  • the structure of the second wavelength conversion member 2 includes a third wavelength conversion film 26 that simultaneously excites light in the red band and a green band, and a sealing body 27 that wraps the third wavelength converting film 26.
  • the sealing body 27 includes The reflective layer 272 disposed at both ends of the third wavelength conversion film 26 and the transparent layer 271 disposed on both sides of the third wavelength conversion film 26 along the stacking direction, the transparent layer 271 and the reflective layer 272 wrap the third wavelength conversion film 26, transparent sealing The component 8 abuts against and seals the transparent layer 271 , and the sealability of the red phosphor powder is improved through the peripheral sealing body 27 .
  • Embodiment 6 of the present invention provides a display device 200. Please refer to FIG. 16.
  • the display device 200 includes a substrate 210, several light-emitting devices 100, a reflector 220, a diffusion sheet 230, and a light-enhancing sheet 240.
  • the light-emitting device 100 includes the aforementioned light-emitting The structure of the device 100, several light emitting devices 100 are evenly arranged on the substrate 210, and the reflector 220 surrounds at least one light emitting device 100, for example, one reflector 220 can cover nine (3*3) evenly arranged light emitting devices 100 , or four (2*2) evenly arranged light emitting devices 100, etc., the diffusion sheet 230 and the brightness enhancement sheet 240 are sequentially stacked on several light emitting devices 100 along the side close to the light emitting device 100, and the light emitting device 100 is parallel to the direction of the substrate 210
  • the projection falls in the reflector 220, that is, the height of the light-emitting device 100 relative to the substrate 210 is lower than the height of the reflector 220 relative to the substrate 210, the diffuser 230 can be directly covered on the reflector 220, and the diffuser 230 is almost directly attached.
  • the light mixing distance is close to zero, forming an ultra-thin display device 200,

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

一种发光器件(100)及显示装置(200),发光器件(100)通过光提取构件(3)提取半导体光源侧面(第二出光面,13)出射的光线,将侧面的光汇集至顶部与第一出光面(11)一同出射至波长转换构件(2),从波长转换构件(2)的顶部(第二抵接面,22)出射白光,经过透光层(4)后通过透光层(4)的厚度方向以及设有光抑制层(5)的顶部出射白光,顶部白光会被光抑制层(5)部分抑制。发光器件(100)能提升整体出光强度,部分抑制顶部出光,避免顶部直接被全抑制,造成顶部出现暗区且整体亮度损失过大的情况,在用于显示装置(200)中,混光距离可以很小,显示装置(200)也更薄且整体亮度高。

Description

发光器件及显示装置 技术领域
本发明涉及发光半导体和背光显示技术领域,特别是涉及一种发光器件及显示装置。
背景技术
随着小间距LED技术的发展,越来越多的背光模组中运用了更小尺寸的芯片,虽然芯片尺寸小,混光距离相对于普通芯片来说小,但是其仍需要5-10mm的混光距离(optical distance,OD),目前有直接遮挡芯片顶部出光,使顶部发光减少,但此方案会造成芯片顶部产生发光暗区。
鉴于此,亟需提供一种新的发光器件及显示装置以解决以上缺陷。
发明内容
基于此,本发明提供一种发光器件及显示装置,通过光提取构件提升发光器件整体光强,同时部分抑制发光器件顶面出光,减弱发光器件顶部出光强度,提供超薄显示装置,并且不会造成显示装置的暗区或亮点。
本发明提供了一种发光器件,所述发光器件包括半导体光源,所述半导体光源包括相对的第一出光面和电连接部件面以及连接所述第一出光面和所述电连接部件面之间的若干第二出光面,所述电连接面上设置有两个电连接部件;
波长转换构件,叠设于所述第一出光面上,包括与所述第一出光面抵接的第一抵接面和与所述第一抵接面相对设置的第二抵接面以及连接所述第一抵接面和所述第二抵接面之间的侧壁,用于接收并转换光的波长;
光提取构件,围设所述半导体光源和所述波长转换构件外,所述光提取构件与所述第二出光面间隔设置,且与所述侧壁相抵接,用于提取所述第二出光面的光;
透光层,叠设于所述第二抵接面上,所述透光层沿叠设方向的投影完全覆盖所述第二抵接面;
光抑制层,叠设于所述透光层远离所述波长转换构件的顶面,用于部分抑制所述透光层的顶面出光亮度,所述光抑制层沿叠设方向在所述第二抵接面的投影面积小于所述透光层沿叠设方向在所述第二抵接面的投影面积。
优选的,所述光抑制层开设有贯通的若干圆形通孔,若干所述通孔均匀分布于所述光抑制层。
优选的,所述光抑制层、所述透光层和所述第二抵接面三者的周缘在叠设方向的投影均重合。
优选的,所述透光层和所述第二抵接面两者的周缘在叠设方向的投影重合,所述光抑制层的周缘在叠设方向的投影落于所述第二抵接面内。
优选的,所述透光层设有凹槽,所述凹槽自所述透光层远离所述波长转换构件一侧的表面朝向所述波长转换构件凹陷,所述光抑制层容置于所述凹槽内,所述光抑制层和所述透光层在远离所述波长转换构件一侧齐平。
优选的,所述发光器件还包括与所述半导体光源的两电连接部件连接的扩展构件,所述扩展构件包括具有相对正反面且间隔设置的两个扩展片以及覆盖两个所述扩展片且具有粘附性的绝缘反射涂层,两个所述扩展片的正面分别与两电连接部件一一对应连接,所述绝缘反射涂层以露出所述扩展片背面和部分露出所述扩展片正面的形式覆盖所述扩展片,所述绝缘反射涂层还填充两个所述扩展片之间的间隔,所述扩展片正面和所述间隔中的绝缘反射涂层还与所述半导体光源连接。
优选的,所述扩展片的背面开设有台阶,两个所述扩展片的所述台阶之间形成所述间隔;
和/或,所述扩展片正面上的绝缘反射涂层沿远离所述间隔的周缘分布,形状呈U型。
优选的,所述第二出光面和所述光提取构件的内壁之间的间隔填充有透明密封部件,所述波长转换构件包括沿靠近所述半导体光源一侧顺序层叠的第一波长转换薄膜和第二波长转换薄膜,所述第一波长转换薄膜激发红色波段的光,所述第二波长转换薄膜激发绿色波段的光,所述透明密封部件抵接密封所述第一波长转换薄膜;
优选的,所述第二出光面和所述光提取构件的内壁之间的间隔填充有透明密封部件,所述波长转换构件包括同时激发红色波段的光和绿色波段的光的第三波长转换薄膜、沿垂直叠设方向分设于所述第三波长转换薄膜两端的反射层以及沿叠设方向分设于所述第三波长转换薄膜两侧的透明层,所述透明层和所述反射层包裹所述第三波长转换薄膜,所述透明密封部件抵接密封所述透明层。
本发明还提供了一种显示装置,所述显示装置包括基板、排列于所述基板的若干发光器件、至少围设于一个所述发光器件周围的反射罩、层叠于若干所述发光器件上的扩散片和增光片,所述发光器件包括以上所述发光器件的结构,所述发光器件在平行所述基板方向的投影落于所述反射罩内,所述扩散片与所述反射罩抵接,所述增光片叠设于所述扩散片远离所述反射罩一侧。
本发明的有益效果在于提供了一种发光器件及显示装置,该发光器件通过光提取构件提取半导体光源侧面(第二出光面)出射的光线,将侧面的光汇集至顶部与第一出光面一同出射至波长转换构件,从波长转换构件的顶部(第二抵接面)出射白光,经过透光层后通过透光层的厚度方向以及设有光抑制层的顶部出射白光,顶部白光会被光抑制层部分抑制。本发明的发光器件,能提升整体出光强度,部分抑制顶部出光,避免现有技术中顶部直接被全抑制,造成 顶部出现暗区且整体亮度损失过大的情况,另外在用于显示装置中,混光距离可以很小,显示装置也更薄且整体亮度高。
附图说明
图1为本发明实施例一提供的发光器件在俯视下的结构示意图;
图2为图1沿M-M方向截面结构示意图;
图3为图1中A处放大细节图;
图4为本发明实施例二提供的发光器件在俯视下的结构示意图;
图5为图4沿N-N方向截面结构示意图;
图6为本发明实施例三提供的发光器件沿叠设方向截面结构示意图;
图7为本发明实施例四提供的发光器件沿叠设方向截面结构示意图;
图8为图7中扩展构件俯视结构示意图;
图9为图7中扩展构件仰视结构示意图;
图10为图7扩展构件中扩展片正面设置遮挡后的结构示意图;
图11为图10去掉遮挡后扩展片正面的结构示意图;
图12为图10扩展片反面的结构示意图;
图13为本发明实施例五提供的发光器件的截面结构示意图;
图14为实施例五中光提取构件的另一种截面结构示意图;
图15为图14中B处放大细节图;
图16为本发明实施例六提供的显示装置的截面结构示意图;
附图中各标号的含义为:
100-发光器件;1-半导体光源;11-第一出光面;12-电连接面;13-第二出光面;2-波长转换构件;21-第一抵接面;22-第二抵接面;23-侧壁;24-第一波长转换薄膜;25-第二波长转换薄膜;26-第三波长转换薄膜;27-密封体; 271-透明层;272-反射层;3-光提取构件;4-透光层;5-光抑制层;51-通孔;52-粗糙面;6-扩展构件;61-扩展片;611-正面;612-反面;613-台阶;614-遮挡;62-绝缘反射涂层;7-粘合构件;8-透明密封部件;200-显示装置;210-基板;220-反射罩;230-扩散片;240-增光片。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参阅图1-图3,为本发明实施例一提供的发光器件100,发光器件100包括半导体光源1、波长转换构件2、光提取构件3、透光层4和光抑制层5。需要说明的是,本发明实施例的发光器件100产生白光,原理为出射蓝光的半导体光源1,激发波长转换构件2中发红光和绿光的磷光体以产生白光。当然其他颜色或者其他产生白光的组合也适用本发明实施例的结构。另外,本发明的发光器件100整体尺寸可以做到很小,发光半导体还可以为常规蓝光芯片,此时,发光器件100整体尺寸可以不超过芯片的1.2倍,为芯片级大小。
半导体光源1包括第一出光面11、电连接面12和若干第二出光面13,这 里的半导体光源1为长方体,第一出光面11为顶部出光,第二出光面13为侧面出光,电连接面12设有两电连接部件(例如电极),电连接面12与第一出光面11相对设置,若干第二出光面13连接于电连接面12和第一出光面11之间,本发明实施例的半导体光源1为长方体的蓝光芯片,具有四个第一出光面11,当然其他形式或形状的半导体光源1这里也不局限于本发明实施例中。
波长转换构件2叠设于第一出光面11上,包括相对设置的第一抵接面21和第二抵接面22以及连接第一抵接面21和第二抵接面22之间的侧壁23,用于接收并转换光的波长,第一抵接面21与第一出光面11接触,在本发明实施例中,波长转换构件2为荧光体薄膜,其是荧光粉或量子点荧光粉混合硅胶,后均匀喷涂到钢网组成,其他实施例中波长转换构件2为荧光胶体,其为荧光粉直接混合透明硅树脂后密封于胶体内。
光提取构件3围设于半导体光源1和波长转换构件2外,包括连续包围若干第二出光面13的围壁,围壁沿着若干第二出光面13的外围周向延伸,并且与第二出光面13间隔设置,同时,围壁还与波长转换构件2的侧壁23抵接,以密封半导体光源1,围壁的顶部与波长转换构件2的第二抵接面22齐平,使得半导体光源1的出射光经过波长转换构件2后从第二抵接面22出射。可选的,本发明实施例的光提取构件3包括但不限于采用反射率高的光反射膜制备,光反射膜优选白色树脂,白色树脂由透光树脂内填充白色颜料制备,白色颜料可以包括但不限于氧化钛,氧化铝,氧化锌,碳酸钡,硫酸钡和玻璃填料等。另外,围壁上还可以设有与第二出光面13相对的反射面,本发明实施例中的反射面是与第二出光面13之间呈现<90°的夹角的倾斜平面,其他实施例中反射面可以是呈现一定弧度的弧面。
第二出光面13和光提取构件3的内壁之间的间隔填充有透明密封部件8, 光提取构件3将第二发光面的蓝光汇集于顶部与第一出光面11的蓝光一样通过顶部的波长转换构件2出射产生白光,保证尽可能多的白光进入到透光层4,以上半导体光源1、波长转换构件2以及光提取构件3的设置,可以避免半导体光源1的蓝光漏出同时提升出光亮度。
透光层4覆盖光提取构件3和波长转换构件2远离半导体光源1一侧的顶部,即透光层4叠设在第二抵接面22上,透光层4的周缘在叠设方向的投影与光提取构件3的周缘重合,方便发光器件100的制备。半导体光源1和光提取构件3之间的间隔填充有透明密封部件8,透明密封体27、光提取构件3以及透光层4抵接密封波长转换构件2。通过设置适当厚度的透光层4,能够避免发光器件100整体厚度过厚,同时还能保证尽可能多的光从透光层4中出射。
光抑制层5,叠设于透光层4远离波长转换构件2的顶面,用于部分抑制透光层4的顶面出光亮度,在本发明实施例中光抑制层5可以采用与光提取构件3相同的高反射率的光反射膜制备,具体材料请参阅前文记载内容,后面实施例中的光抑制层5都以光反射膜制备为举例说明。现有的封装结构中,一般是直接用光反射膜或者分布式布拉格反射镜全覆盖芯片顶部或者全覆盖顶部出光面实现顶部光抑制,这样会导致整个结构光亮度损失大,顶部出光抑制过大也会在顶部形成暗区同时大大降低了出光亮度。本发明实施例一中光抑制层5沿叠设方向在第二抵接面22的投影面积小于透光层4沿叠设方向在第二抵接面22的投影面积,在实施例一中,透光层4的顶面覆设光抑制层5,光抑制层5、透光层4和第二抵接面22三者的周缘在叠设方向的投影均重合,只在光抑制层5上开设若干贯穿的开孔,即光抑制层5的周缘与透光层4的周缘齐平,但是在光抑制层5上开设开孔,使得光抑制层5的面积小于透光层4的顶面面积,可选的,若干开孔均匀分布在光抑制层5上,通过控制若干开孔的总面积 在光抑制层5面积的占比,以调整对顶部光的抑制情况,继而控制顶部出光。可选的,通过激光束在光抑制层5上进行开孔,可以在光抑制层5上形成等距且致密的开孔,以均匀抑制发光器件100顶部出光。
请参阅图4-图5,本发明实施例二提供的发光器件100,发光器件100包括半导体光源1、波长转换构件2、光提取构件3、透光层4和光抑制层5。其中半导体光源1、波长转换构件2、光提取构件3和透光层4的结构和位置关系与实施例一相同,具体参阅实施例一中的描述,这里不再赘述。实施例二与实施例一的区别在于光抑制层5的结构设置不同。实施例二中的光抑制层5叠设于透光层4远离波长转换构件2的顶面,用于部分抑制透光层4的顶面出光亮度。本发明实施例二中的光抑制层5沿叠设方向在第二抵接面22的投影面积小于透光层4沿叠设方向在第二抵接面22的投影面积,在实施例二中,透光层4的顶面覆设光抑制层5,透光层4和第二抵接面22两者的周缘在叠设方向的投影重合,光抑制层5的周缘在叠设方向的投影落于透光层4内,即光抑制层5只覆盖透光层4顶面的中央而露出透光层4顶面的四周。可选的,为了使光抑制层5与透光层4之间的结合更紧密,透光层4上开设有凹槽(图未示),凹槽自透光层4顶面朝向波长转换层凹陷,光抑制层5容设于凹槽内。可选的,在光抑制层5和凹槽连接的侧面分别可以设置配合的凹凸纹路(图未示),能够牢固光抑制层5和凹槽之间的连接。
请参阅图6,为本发明实施例三提供的发光器件100,发光器件100包括半导体光源1、波长转换构件2、光提取构件3、透光层4和光抑制层5。其中半导体光源1、波长转换构件2、光提取构件3和透光层4的结构和位置关系与实施例一和实施例二中的相同,具体参阅实施例一中的描述,这里不再赘述。实施例三与实施例一和实施例二的区别在于光抑制层5的结构设置不同。光抑 制层5,光抑制层5和透光层4沿叠设方向在第二抵接面22的投影面积均等于第二抵接面22的面积,即光抑制层5全覆盖透光层4远离波长转换构件2一侧,另外在光抑制层5背离透光层4一侧的表面为粗糙面52,由于光抑制层5全覆盖透光层4顶部出光一侧,为了让光抑制层5能够抑制出光的同时部分透光,因此,将光抑制层5背离透光层4一侧表面粗化,形成雾面,使顶部透过部分光。
本发明实施例一至三的发光器件100,利用光提取构件3提取半导体光源1侧面的若干第二出光面13出射的光线,将侧面的若干第二出光面13的光汇集至顶部与第一出光面11一同出射至波长转换构件2,从波长转换构件2的第二抵接面22出射白光,经过透光层4后通过透光层4的厚度方向以及设有光抑制层5的顶部出射白光,顶部白光会被光抑制层5部分抑制,或通过均匀且致密的若干开孔部分透光;或通过光抑制层5仅对透光层4顶部中央区域的光进行抑制,透光层4顶部的外周可以正常透过光;或通过光抑制层5出光一侧粗化增加透光。以上实施例的发光器件100,能提升整体出光强度,部分抑制顶部出光,避免现有技术中顶部直接被全抑制,造成顶部出现暗区且整体亮度损失过大的情况,另外在用于背光装置中,混光距离小,背光装置也更薄且整体亮度高。
本发明实施例四提供了一种发光器件100,请参阅图7-图13,发光器件100包括半导体光源1、波长转换构件2、光提取构件3、透光层4、光抑制层5以及扩展构件6。其中半导体光源1、波长转换构件2、光提取构件3和透光层4的结构和位置关系可以与实施例一至实施例三中的至少一种相同,具体参阅实施例一至实施例三中的描述,这里不再赘述。实施例四在实施例一至实施例三结构的基础上设置了用于扩展半导体光源1的电连接部件面积的扩展构件 6。前文记载的发光器件100在实际应用中,需要将其电连接结构(电极)固接到对应连接部件(如载板上的焊盘),由于发光器件100本身尺寸很小,其对应的电连接结构更小,固接难度会更大,因此,往往会在发光器件100的电连接结构制备扩展焊盘,以此扩大电连接结构的焊接面积,但是目前的扩展焊盘都是在一块絶縁基板,在基板正反面均设置导电的扩展焊盘,絶縁基板中间开设通孔,通孔连通正反面的扩展焊盘,通孔内填充导电材料。这种扩展焊盘整体厚度如果做的太薄,通孔内填充的金属层很容易发生断裂,通常整体厚度大于100μm-500μm,厚度较大,会增加发光器件100整体厚度。本发明实施例四的扩展构件6能够做得更薄,厚度能做到20μm-50μm。
可选的,扩展构件6包括两个间隔设置的扩展片61以及覆盖两个扩展片61且具有粘附性的绝缘反射涂层62,两个扩展片61结构相同且对称分布,两个扩展片61与半导体光源1的两个电连接部件一一对应连接,各扩展片61具有相对设置的正面611和反面612,各扩展片61的正面611和电连接部件焊接,绝缘反射涂层62以完全露出扩展片61反面612和部分露出扩展片61正面611的形式覆盖所述扩展片61,同时绝缘反射涂层62还填充两个扩展片61的间隔,间隔内的绝缘反射涂层62既可以起到连接两个扩展片61的作用,还可以用于连接扩展片61和半导体光源1,而扩展片61正面611部分覆盖的绝缘反射涂层62可以用于连接半导体光源1和扩展片61,由于在制备过程中,需要多次在粘附膜(例如UV膜)上转移,因此要保证扩展片61和半导体光源1之间连接的牢固性,否则会出现扩展片61脱落的问题。可选的,扩展片61可以选用铜材、金材等导电性能好的金属;可选的,两个扩展片61为厚度均匀且体积大小相同。可选的,绝缘反射涂层62可以选用白色涂料,白色涂料还应该具有粘附性、绝缘性以及高反射性。绝缘反射层272还可以起到反射半导体光源 1出射的光线和/或光抑制层5反射的光线。
由于两个电连接部件之间的距离较近,两个电连接部件分别与两个扩展片61对应连接,在使用过程中扩展片61之间的距离是尽可能的远才好避免发生短路的情况,在实施例四的基础上,在扩展片61的反面612设有台阶613,台阶613由扩展片61的反面612朝向正面611凹陷形成,两个扩展片61的台阶613相对,朝向间隔设置,形成的间隔在叠设方向截面为等腰梯形,以上两个扩展片61的设置,可以使得两个扩展片61的正面611之间的间隔距离S1比较小,而两个扩展片61反面612之间的间隔距离S2大于S1,正面611满足两个电连接部件距离比较近的条件,反面612满足贴装时两个焊盘离得远的条件,同时由于两个扩展片61之间的间隔为等腰梯形,则间隔内填充的绝缘反射涂层62也为等腰梯形,间隔内呈等腰梯形的绝缘反射涂层62不论是连接两个扩展片61还是连接扩展片61和半导体光源1的牢固度都得到了提升。
尽管间隔内的绝缘反射涂层62也可以起到连接扩展片61和半导体光源1的作用,但是只对局部连接,要想保持在制备过程扩展片61和半导体光源1之间整体的牢固度还是不够,可选的,由于扩展片61正面611上的绝缘反射涂层62需要给电连接部件预留连接空间,则绝缘反射涂层62只能部分覆盖扩展片61正面611,又由于两个电连接部件之间的距离比较近且两个电连接部件分别对应连接两个扩展片61,则电连接部件与扩展片61正面611连接处应该是靠近间隔处,优选的,扩展片61正面611上的绝缘反射涂层62沿扩展片61正面611远离间隔的周缘分布,形状呈U型,在制备U型绝缘反射涂层62时,在扩展片61正面611形成T型遮挡614,形成U型的开口对准间隔处,这种设置使得绝缘反射涂层62均匀分布于扩展片61正面611,起到很好的粘附扩展片61和半导体光源1的作用,同时,又不会影响电连接部件与扩展片61正面 611的连接。
由于设置了扩展构件6,实施例四中的发光器件100在后续贴装使用时会增加二次回流焊工序,以使得扩展构件6中扩展片61的反面612焊接固定,但是由于扩展片61的正面611与电连接部件焊接固定一起,如果扩展片61和电连接部件之间的焊接(一次回流焊)采用常规带焊料固化连接,二次回流焊时,为了不影响一次回流焊的牢固度,二次回流焊过程使用低温带有易挥发的助焊剂焊料焊接扩展片61的反面612,这样影响了焊接强度。因此,为了保证二次回流焊的焊接强度且又不熔化一次回流焊的焊接,扩展片61正面611和电连接部件之间通过粘合构件7连接,粘合构件是导电构件,和常规焊料不同,粘合构件7内部不含有助焊剂,在熔融温度或更低温度的温度条件下,以尽可能不引起塑性变形的压力对其加压,从而将粘合构件7和和扩展片61或者电连接部件的基础材料彼此粘合以使两者表面之间产生的原子扩散,进而增强连接处的牢固度。更具体地,粘合构件7包括金合金,银合金,钯合金,铟合金,锡合金,铝合金,铅-钯合金,金-镓合金,金-锡合金,锡-铜合金,锡-银合金,金-铬合金,金-硅合金,铜-铟合金的混合物。可选的,粘合构件7可以是液体形式,糊剂形式或固体形式(片形式,块形式,粉末形式或线形式),并且可以根据支撑构件的组成和形状适当地选择。此外,粘合构件7可以是单个成员,也可以是几种成员的组合。可选的,粘合构件7可以蒸镀于电连接部件上,或粘合构件7电镀于扩展片61上。
本发明实施例是利用蓝光芯片激发红、绿荧光粉发白光,但是通常红色荧光粉在高温和高湿度环形下稳定性差,因此,本发明实施例五提供了一种发光器件100,在以上实施例一、二、三和四的结构基础上,本发明实施例五的发光器件100可以包括半导体光源1、波长转换构件2、光提取构件3、透光层4、 光抑制层5,光抑制层5和/或扩展构件6,并对其中的波长转换结构进行改进,其他结构描述可以参阅实施例一、二、三和四。请参阅图14-图16,本发明实施例五提供了两种不同的波长转换结构,以提高红色荧光粉的密封性。第一种波长转换构件2的结构包括沿靠近半导体光源1一侧顺序层叠的第一波长转换薄膜24和第二波长转换薄膜25,第一波长转换薄膜24激发红色波段的光,第二波长转换薄膜25激发绿色波段的光,透明密封部件8抵接密封第一波长转换薄膜24,通过将第一波长转换薄膜24密封在第二波长转换薄膜25、光提取构件3以及透明密封部件8之内以提升红色荧光粉的密封性。第二种波长转换构件2的结构包括同时激发红色波段的光和绿色波段的光的第三波长转换薄膜26以及包裹第三波长转换薄膜26的密封体27,密封体27包括沿垂直叠设方向分设于第三波长转换薄膜26两端的反射层272以及沿叠设方向分设于第三波长转换薄膜26两侧的透明层271,透明层271和反射层272包裹第三波长转换薄膜26,透明密封部件8抵接密封透明层271,通过外围的密封体27提升红色荧光粉的密封性。
本发明实施例六提供了一种显示装置200,请参阅图16,显示装置200包括基板210、若干发光器件100、反射罩220、扩散片230和增光片240,发光器件100包括前文记载的发光器件100结构,若干发光器件100均匀排列于基板210上,反射罩220至少围设于一个发光器件100周围,例如,一个反射罩220可以罩设9个(3*3)均匀排列的发光器件100,或者4个(2*2)均匀排列的发光器件100等等,扩散片230和增光片240沿靠近发光器件100一侧顺序层叠于若干发光器件100上,发光器件100在平行基板210方向的投影落于反射罩220内,即发光器件100相对于基板210的高度低于反射罩220相对于基板210的高度,扩散片230可以直接盖设在反射罩220上,扩散片230几乎 直接贴设于发光器件100,混光距离趋近于零,形成超薄显示装置200,且不会出现亮点或暗区,整体亮度也强。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的优选的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种发光器件,其特征在于,所述发光器件包括半导体光源,所述半导体光源包括相对的第一出光面和电连接面以及连接所述第一出光面和所述电连接面之间的若干第二出光面,所述电连接面上设置有两个电连接部件;
    波长转换构件,叠设于所述第一出光面上,包括与所述第一出光面抵接的第一抵接面和与所述第一抵接面相对设置的第二抵接面以及连接所述第一抵接面和所述第二抵接面之间的侧壁,用于接收并转换光的波长;
    光提取构件,围设所述半导体光源和所述波长转换构件外,所述光提取构件与所述第二出光面间隔设置,且与所述侧壁相抵接,用于提取所述第二出光面的光;
    透光层,叠设于所述第二抵接面上,所述透光层沿叠设方向的投影完全覆盖所述第二抵接面;
    光抑制层,叠设于所述透光层远离所述波长转换构件的顶面,用于部分抑制所述透光层的顶面出光亮度,所述光抑制层沿叠设方向在所述第二抵接面的投影面积小于所述透光层沿叠设方向在所述第二抵接面的投影面积。
  2. 如权利要求1所述的发光器件,其特征在于,
    所述光抑制层开设有贯通的若干圆形通孔,若干所述通孔均匀分布于所述光抑制层。
  3. 如权利要求2所述的发光器件,其特征在于,
    所述光抑制层、所述透光层和所述第二抵接面三者的周缘在叠设方向的投影均重合。
  4. 如权利要求1所述的发光器件,其特征在于,所述透光层和所述第二抵接面两者的周缘在叠设方向的投影重合,所述光抑制层的周缘在叠设方向的投影落于所述第二抵接面内。
  5. 如权利要求4所述的发光器件,其特征在于,所述透光层设有凹槽,所述凹槽自所述透光层远离所述波长转换构件一侧的表面朝向所述波长转换构件凹陷,所述光抑制层容置于所述凹槽内,所述光抑制层和所述透光层在远离所述波长转换构件一侧齐平。
  6. 如权利要求1所述的发光器件,其特征在于,所述发光器件还包括与所述半导体光源的两电连接部件连接的扩展构件,所述扩展构件包括具有相对正反面且间隔设置的两个扩展片以及覆盖两个所述扩展片且具有粘附性的绝缘反射涂层,两个所述扩展片的正面分别与两电连接部件一一对应连接,所述绝缘反射涂层以露出所述扩展片背面和部分露出所述扩展片正面的形式覆盖所述扩展片,所述绝缘反射涂层还填充两个所述扩展片之间的间隔,所述扩展片正面和所述间隔中的绝缘反射涂层还与所述半导体光源连接。
  7. 如权利要求6所述的发光器件,其特征在于,所述扩展片的背面开设有台阶,两个所述扩展片的所述台阶之间形成所述间隔;
    和/或,所述扩展片正面上的绝缘反射涂层沿远离所述间隔的周缘分布,形状呈U型。
  8. 如权利要求1所述的发光器件,其特征在于,所述第二出光面和所述光提取构件的内壁之间填充有透明密封部件,所述波长转换构件包括沿靠近所述半导体光源一侧顺序层叠的第一波长转换薄膜和第二波长转换薄膜,所述第一波长转换薄膜激发红色波段的光,所述第二波长转换薄膜激发绿色波段的光,所述透明密封部件抵接密封所述第一波长转换薄膜。
  9. 如权利要求1所述的发光器件,其特征在于,所述第二出光面和所述光提取构件的内壁之间的间隔填充有透明密封部件,所述波长转换构件包括同时激发红色波段的光和绿色波段的光的第三波长转换薄膜、沿垂直叠设方向分 设于所述第三波长转换薄膜两端的反射层以及沿叠设方向分设于所述第三波长转换薄膜两侧的透明层,所述透明层和所述反射层包裹所述第三波长转换薄膜,所述透明密封部件抵接密封所述透明层。
  10. 一种显示装置,其特征在于,所述显示装置包括基板、排列于所述基板的若干发光器件、至少围设于一个所述发光器件周围的反射罩、层叠于若干所述发光器件上的扩散片和增光片,所述发光器件包括权利要求1-9任一所述发光器件的结构,所述发光器件在平行所述基板方向的投影落于所述反射罩内,所述扩散片与所述反射罩抵接,所述增光片叠设于所述扩散片远离所述反射罩一侧。
PCT/CN2021/143694 2021-12-06 2021-12-31 发光器件及显示装置 WO2023103132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111474793.7 2021-12-06
CN202111474793.7A CN113888994B (zh) 2021-12-06 2021-12-06 发光器件及显示装置

Publications (1)

Publication Number Publication Date
WO2023103132A1 true WO2023103132A1 (zh) 2023-06-15

Family

ID=79015634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143694 WO2023103132A1 (zh) 2021-12-06 2021-12-31 发光器件及显示装置

Country Status (2)

Country Link
CN (1) CN113888994B (zh)
WO (1) WO2023103132A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090296389A1 (en) * 2008-05-30 2009-12-03 Chia-Liang Hsu Light source module, related light bar and related liquid crystal display
JP2017152475A (ja) * 2016-02-23 2017-08-31 スタンレー電気株式会社 発光装置
CN108365071A (zh) * 2018-01-04 2018-08-03 海迪科(南通)光电科技有限公司 一种具有扩展电极的芯片级封装结构
JP2019114709A (ja) * 2017-12-25 2019-07-11 日亜化学工業株式会社 発光装置および発光装置の製造方法
CN110246948A (zh) * 2018-03-09 2019-09-17 三星电子株式会社 发光二极管封装件及其制造方法
CN112885943A (zh) * 2019-11-29 2021-06-01 日亚化学工业株式会社 发光装置及led封装
CN113345994A (zh) * 2021-07-20 2021-09-03 华引芯(武汉)科技有限公司 发光半导体封装结构和其封装单元及显示模组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805602B (zh) * 2009-02-18 2014-03-26 深圳市绎立锐光科技开发有限公司 光波长转换材料的封装方法及结构
KR20210149898A (ko) * 2019-04-30 2021-12-09 코닝 인코포레이티드 양자점들을 갖는 백라이트 유닛들
US11594665B2 (en) * 2019-08-02 2023-02-28 Nichia Corporation Light-emitting unit and surface-emission light source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090296389A1 (en) * 2008-05-30 2009-12-03 Chia-Liang Hsu Light source module, related light bar and related liquid crystal display
JP2017152475A (ja) * 2016-02-23 2017-08-31 スタンレー電気株式会社 発光装置
JP2019114709A (ja) * 2017-12-25 2019-07-11 日亜化学工業株式会社 発光装置および発光装置の製造方法
CN108365071A (zh) * 2018-01-04 2018-08-03 海迪科(南通)光电科技有限公司 一种具有扩展电极的芯片级封装结构
CN110246948A (zh) * 2018-03-09 2019-09-17 三星电子株式会社 发光二极管封装件及其制造方法
CN112885943A (zh) * 2019-11-29 2021-06-01 日亚化学工业株式会社 发光装置及led封装
CN113345994A (zh) * 2021-07-20 2021-09-03 华引芯(武汉)科技有限公司 发光半导体封装结构和其封装单元及显示模组

Also Published As

Publication number Publication date
CN113888994A (zh) 2022-01-04
CN113888994B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
KR102117909B1 (ko) 발광 장치
JP5214128B2 (ja) 発光素子及び発光素子を備えたバックライトユニット
JP5906038B2 (ja) 発光素子
US20100163920A1 (en) Semiconductor light emitting device
JP2012178604A (ja) 発光素子パッケージ
US20080237621A1 (en) Light emitting device and method of producing the same
JP2007036073A (ja) 照明装置およびこの照明装置を用いた表示装置
CN104979447B (zh) 倒装led封装结构及制作方法
JP6448365B2 (ja) 発光装置および投射装置
JP2018536297A (ja) 発光ダイオードデバイスおよびその製造方法
CN100485989C (zh) 发光元件及其制造方法和具备发光元件的背光灯单元及其制造方法
JP2009283653A (ja) 発光装置およびその製造方法
CN101276873A (zh) 发光元件及其制造方法
JP6065586B2 (ja) 発光装置及びその製造方法
JP2023089162A (ja) 発光モジュール及び発光モジュールの製造方法
JP2018174334A (ja) 発光装置及びその製造方法
JP2015220307A (ja) 発光装置及びその製造方法
JP2010225754A (ja) 半導体発光装置
JP2010040791A (ja) 光半導体装置
WO2023103132A1 (zh) 发光器件及显示装置
KR20100028033A (ko) 발광장치 및 발광장치용 패키지 집합체
KR20100028115A (ko) 발광장치
CN209896060U (zh) 一种发光二极管封装结构
JP2011258677A (ja) 発光装置及びその製造方法
CN111211212A (zh) 一种led器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967044

Country of ref document: EP

Kind code of ref document: A1