WO2023103123A1 - 蜗壳结构、风道组件以及空调器 - Google Patents

蜗壳结构、风道组件以及空调器 Download PDF

Info

Publication number
WO2023103123A1
WO2023103123A1 PCT/CN2021/142591 CN2021142591W WO2023103123A1 WO 2023103123 A1 WO2023103123 A1 WO 2023103123A1 CN 2021142591 W CN2021142591 W CN 2021142591W WO 2023103123 A1 WO2023103123 A1 WO 2023103123A1
Authority
WO
WIPO (PCT)
Prior art keywords
volute
structure according
guide ring
air
straight line
Prior art date
Application number
PCT/CN2021/142591
Other languages
English (en)
French (fr)
Inventor
代思全
张勇
张幼财
杨林
迟莽
Original Assignee
Tcl空调器(中山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl空调器(中山)有限公司 filed Critical Tcl空调器(中山)有限公司
Publication of WO2023103123A1 publication Critical patent/WO2023103123A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • the present application relates to the technical field of air conditioning, in particular to a volute structure, an air duct assembly and an air conditioner.
  • the fresh air fan can input fresh outdoor air into the room and discharge the dirty air from the room to the outdoor air circulation purification equipment.
  • the existing fresh air fans generally use forward centrifugal fans as power devices.
  • the gas flows out from the air outlet along the air outlet direction; however, the gas is easy to form a backflow at the air outlet near the volute tongue, and the gas of the backflow air will impact the volute tongue, and it is easy to generate a large aerodynamic noise. poor.
  • the present application provides a volute structure, an air duct assembly and an air conditioner to solve the technical problem of aerodynamic noise caused by backflow wind at the volute tongue in the prior art.
  • the present application provides a volute structure, comprising:
  • the volute body has a volute tongue and an air outlet
  • the baffle member whose fixed end is connected to the volute tongue, and whose free end extends away from the air outlet, is used to block the airflow impinging on the volute tongue.
  • the volute structure has an installation cavity for installing the centrifugal blade, and the extension direction of the free end is tangent to the upper edge of the centrifugal blade near the air outlet.
  • a tangent line between the free end and the upper edge is parallel to the wind outlet direction.
  • the flow blocking member is provided with micropores.
  • the fixed end is rotatably connected with the volute tongue.
  • a deflector is arranged in the volute body, and the deflector is installed on a side of the volute body away from the air outlet, and the deflector The extension direction is parallel to the wind outlet direction.
  • the deflector includes a first part and a second part, the first part is located at an end of the second part away from the air outlet, and the first part and the The extension directions of the second parts are different.
  • the volute structure includes a guide ring, the guide ring is installed in the volute body, the guide ring includes a circular arc segment and a straight line segment, the The arc segment is connected to the straight line segment, and the straight line segment is arranged opposite to the volute tongue.
  • the present application also provides an air duct assembly, including the above-mentioned volute structure and the centrifugal fan, and the centrifugal fan is installed in the volute body.
  • the present application also provides an air conditioner, including the air duct assembly as described above.
  • a volute structure, an air duct assembly and an air conditioner provided by the present application include: a volute body, the volute body has a volute tongue and an air outlet; Extending away from the air outlet, the blocking member is used to reduce the impact of the airflow at the air outlet on the volute tongue.
  • the baffle can block the backflow wind formed at the air outlet close to the volute tongue, and guide the backflow air after blocking and separation to both sides of the baffle, reducing the backflow wind
  • the impact on the volute tongue reduces the aerodynamic noise.
  • Fig. 1 is the structural representation of the volute structure provided by the embodiment of the present application.
  • Fig. 2 is the sectional view of the volute structure of the prior art at K in Fig. 1;
  • Fig. 3 is a cross-sectional view at K in Fig. 1 of the volute structure provided by the embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a guide ring provided in an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of an air duct assembly provided by an embodiment of the present application.
  • Volute structure 100 body part 110, annular flow channel 111, outlet part 120, air outlet 121, upper side plate 122, lower side plate 123, volute tongue 130, volute body 150, flow resistance 160, fixed end 161, Free end 162, guide plate 170, first part 171, second part 172, guide ring 180, arc section 181, straight section 182, air duct assembly 200, filter cover 210, air outlet direction F1, low pressure area A1 , High pressure area A2.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the embodiment of the present application provides a volute structure 100, including: a volute body 150 with a volute tongue 130 and an air outlet 121; a spoiler 160 whose fixed end 161 is connected to the volute tongue 130 Above, its free end 162 extends away from the air outlet 121 to block the airflow impacting on the volute tongue 130 .
  • volute structure 100 is shaped like a snail shell.
  • the volute structure 100 is enclosed by two volute-shaped volute bodies 150; in addition, the volute structure 100 can also be surrounded by a plurality of side plates and other structural forms. This is not too limited.
  • the volute body 150 has a body portion 110 and an outlet portion 120 connected to each other.
  • the cross-sectional shape of the body part 110 is approximately circular, and a centrifugal fan blade (not shown in the figure) can be arranged inside it, and the airflow flows through the annular flow channel 111 between the body part 110 and the centrifugal fan blade, and then flows from the outlet part 120 discharge.
  • the outlet portion 120 may be surrounded by four side plates including an upper side plate 122 and a lower side plate 123 .
  • the tangential direction of the closest edge of the centrifugal blade to the upper side plate 122 is usually the air outlet direction F1, which is usually the uppermost end of the centrifugal blade installed in the volute body 150 .
  • the air outlet 121 is located at an end of the outlet portion 120 away from the main body portion 110 and has a rectangular shape.
  • a volute tongue 130 is formed at the junction of the body part 110 and the outlet part 120, that is, a volute tongue 130 is formed at the junction of the lower side plate 123 and the body part 110.
  • the volute tongue 130 is mostly arc-shaped with smooth surface.
  • the airflow first enters the centrifugal fan blade from the external space, and is accelerated to flow out along the tangential direction at the edge of the centrifugal fan blade by the influence of centrifugal force; then enters the annular flow channel 111 and flows along it, and part of the airflow finally flows out along the outlet 120 .
  • Another part of the airflow does not enter the outlet portion 120 because it has just entered the centrifugal blade or is affected by the volute tongue 130 and the body portion 110 , and thus enters the annular flow channel 111 .
  • the baffle 160 can block and separate the backflow wind formed at the air outlet 121 close to the volute tongue 130, and guide the blocked and separated backflow wind to the two sides of the baffle 160 respectively. side, reducing the impact of the return air on the volute tongue 130, thereby reducing the aerodynamic noise.
  • the spoiler 160 is a plate-shaped piece; wherein, both sides of the plate-shaped spoiler 160 abut on the volute body 150 respectively, that is, there is no gap between the two sides of the spoiler 160 and the volute body 150 . gap.
  • the structure of the plate-shaped spoiler 160 is simple; and it is connected to the volute tongue 130 in conjunction with the above-mentioned fixed end 161, which reduces the gap between the spoiler 160 and the volute body 150, and can avoid high-speed airflow impacting the gap.
  • the generated aerodynamic noise improves user experience.
  • the free end 162 is an arc-shaped curved surface.
  • the surface of the free end 162 is smooth, and the airflow can pass through the baffle 160 relatively smoothly, reducing the aerodynamic noise.
  • the principle is the same or similar to that described above, and will not be elaborated here.
  • the volute structure 100 has an installation cavity for installing the centrifugal fan, and the extension direction of the free end 162 is tangent to the upper edge of the centrifugal fan near the air outlet 121 .
  • the free end 162 of the spoiler 160 By making the extending direction of the free end 162 of the spoiler 160 tangent to the upper edge of the centrifugal vane close to the air outlet 121 , that is, the free end 162 points directly to the part of the air flow of the volute tongue 130 in the tangential direction. This part of the airflow can be better blocked and separated, thereby reducing the airflow entering the recirculation area, weakening the air volume and wind speed of the recirculation air, and further reducing the aerodynamic noise.
  • the free end 162 is tangentially directed to part of the airflow of the volute tongue 130 , which can better block and separate this part of the airflow.
  • some centrifugal fan blades are arc-shaped, so the tangential direction of the airflow may be slightly deflected.
  • the extending direction of the free end 162 can fluctuate slightly up and down on the upper edge, for example, -10° to 10° , can better align the baffle member 160 with the airflow blowing towards the volute tongue 130 , which will not be limited too much here.
  • the extension direction of the fixed end 161 is parallel to the extension direction of the lower side plate 123 .
  • the fixed end 161 whose extension direction is parallel to the extension direction of the lower side plate 123 that is, the fixed end 161 and the lower side plate 123 are on the same plane and have a smooth transition; the obstruction of the air flow from the spoiler 160 to the lower side plate 123 can be reduced, Reduced aerodynamic noise.
  • the spoiler 160 further includes a guiding section, the guiding section is located between the fixed end 161 and the free end 162 , and the extending direction of the guiding section is parallel to the upper side plate 122 .
  • the air flow passing through the spoiler 160 can flow smoothly, avoiding the excessive angle between the fixed end 161 and the free end 162, which may cause The local air flow is disordered; thereby improving the aerodynamic efficiency of the volute structure 100 and reducing aerodynamic noise.
  • connection between the fixed end 161, the guide section and the free end 162 can also be set as a rounded corner, which can further improve the smoothness of the airflow passing through the spoiler 160, which will not be elaborated here. Many restrictions.
  • the extension direction of the guide section can also be other directions, for example, parallel to the wind outlet direction F1, or the included angle with the extension direction of the upper side plate 122 is 10°, or with the upper side plate 122 The included angle of the extending direction of the plate 122 is 15° or the like, which is not limited too much here.
  • the tangent line between the free end 162 and the upper edge is parallel to the wind outlet direction F1.
  • the air outlet direction F1 can be parallel to the tangent direction of the highest point of the centrifugal fan blade, and the tangent line between the free end 162 and the upper edge is parallel to the air outlet direction F1, that is, the free end 162 and the upper edge are at the same height.
  • micro holes are provided on the blocking element 160 .
  • the blocking member 160 blocks and separates part of the return air, the impact of the return air on the volute tongue 130 is reduced. However, there is still a part of the backflow wind that is not completely eliminated, which will continue to hit the spoiler 160 and generate aerodynamic noise.
  • tiny air columns will be formed in the micropores and the vicinity of the micropores, and the air columns can further extend to form a small-scale protective layer in the vicinity of the micropores.
  • the airflow such as the backflow wind hits the air column or the protective layer, it will cancel each other with the air column or the protective layer, thereby reducing the kinetic energy of the backflow wind and the wind speed of the backflow wind, thereby reducing the aerodynamic noise.
  • the aerodynamic noise formed when the backflow wind hits the baffle 160 can be reduced, and user experience can be improved.
  • the micropores are circular.
  • the round micro-holes have a smooth surface to further reduce aerodynamic noise.
  • the microholes may also be rectangular or elliptical, etc., which are not limited here too much.
  • the flow blocking element 160 includes a plurality of micropores, and the opening ratio of the flow blocking element 160 is B, where B satisfies: 10% ⁇ B ⁇ 50%.
  • the coverage of the air column or the protective layer on the spoiler 160 can be increased as much as possible, and the aerodynamic noise formed when the backflow wind hits the spoiler 160 can be further reduced.
  • microwell arrays are set.
  • a plurality of micropores arranged regularly can make the air column or protective layer evenly and regularly arranged on the surface of the spoiler 160 , which improves the noise reduction effect of the spoiler 160 .
  • the plurality of micropores may also be arranged randomly, which is not limited too much here.
  • B may also satisfy: 5% ⁇ B ⁇ 10%, or 50% ⁇ B ⁇ 60%, etc., which will not be limited too much here.
  • the fixed end 161 is rotatably connected with the volute tongue 130 .
  • the speed of the fluid in the volute body 150 is different when the rotational speed of the centrifugal fan blade is different; and at different flow velocities, affected by the structure of the volute structure 100 itself, the area formed by the return air in the vicinity of the volute tongue 130 There will be slight changes.
  • the backflow air is formed in a region of the volute tongue 130 close to the outlet portion 120 , or formed in a region of the volute tongue 130 close to the annular flow channel 111 .
  • the free end 162 can correspond to the central area of the return air at different flow rates; thus, it can better block the separation Return air to reduce aerodynamic noise.
  • the user can manually adjust the rotation of the spoiler 160 .
  • the user can adjust the rotating baffle 160 in real time according to the noise feedback, so that the free end 162 can correspond to the central area of the return air, reducing aerodynamic noise.
  • a driving mechanism may also be provided, for example, a stepping motor to adjust the rotation of the fixed end 161 , which is not limited here.
  • the volute body 150 is provided with a deflector 170, the deflector 170 is installed on the side of the volute body 150 away from the air outlet 121, and the extension direction of the deflector 170 is parallel to the air outlet direction F1 .
  • a high-pressure area A2 will be formed in the outlet part 120 and above the volute tongue 130.
  • the high-pressure area A2 Part of the airflow will flow back to the low-pressure area A1 near the volute tongue 130, which intensifies the formation of the backflow wind and increases the aerodynamic noise.
  • deflector 170 is installed above the centrifugal blades.
  • the deflector 170 By arranging the deflector 170 to at least partially isolate the air flow in the high-pressure area A2, the distribution of the flow field in the vicinity of the volute tongue 130 and the outlet portion 120 is changed. Part of the airflow in the high-pressure zone A2 is not affected by the low-pressure zone A1 and directly flows out from the outlet 120, which can reduce the flow of air entering the low-pressure zone A1, thereby weakening the flow rate of the return air and reducing aerodynamic noise.
  • both sides of the deflector 170 abut against the volute body 150 .
  • the gap between the deflector 170 and the housing body can be reduced, thereby reducing the aerodynamic noise.
  • the principle is the same or similar to that described above, and will not be elaborated here.
  • the extending direction of the deflector 170 may also have an included angle with the wind outlet direction F1, for example, 5°, or 10°, etc., which will not be limited too much here.
  • the deflector 170 includes a first part 171 and a second part 172, the first part 171 is located at the end of the second part 172 away from the air outlet 121, and the extension directions of the first part 171 and the second part 172 are different. .
  • first part 171 can be arranged in the annular flow channel 111, and the second part 172 can be arranged in the outlet part 120; since the annular flow channel 111 is circular, the circular airflow in the annular flow channel 111 flows in the same direction as The direction of the linear airflow in the outlet portion 120 is different.
  • the air flow entering the low-pressure area A1 can be further reduced, thereby weakening the The flow rate of the return air reduces the aerodynamic noise.
  • both the first part 171 and the second part 172 are straight plate bodies, and the angle between the extension directions of the first part 171 and the second part 172 ranges from 10° to 30°, and the first part 171 faces Extending in the direction close to the centrifugal fan blades.
  • the first part 171 can also be an arc-shaped plate body, whose shape is adapted to the annular flow channel 111; it can reduce the resistance of the first part 171 to the airflow in the annular flow channel 111, and reduce the Aerodynamic noise is not limited too much here.
  • the angle range between the extension directions of the first portion 171 and the second portion 172 may also be 5° to 10°, or 30° to 45°, etc., and no excessive limitation is made here. .
  • the volute structure 100 includes a guide ring 180 installed in the volute body 150 , and the guide ring 180 includes a circular arc segment 181 and a straight line segment 182 , The arc segment 181 is connected to the straight segment 182 , and the straight segment 182 is arranged opposite to the volute tongue 130 .
  • the cross-sectional shape of the guide ring 180 is a combination of a circular arc and a straight line, and the distance from each point on the straight line to the center of the circle is smaller than the radius of the circular arc; 111 is generally a regular circle, so the distance between the volute tongue 130 and the straight line segment 182 is greater than the width of the annular flow channel 111 .
  • the airflow near the volute tongue 130 in the annular flow channel 111 has more space to flow, and the airflow can flow closer to the straight line section 182 here; thereby reducing the airflow entering the low-pressure area A1 and weakening the return air , reducing aerodynamic noise.
  • the present application also provides an air duct assembly 200 , including the above-mentioned volute structure 100 and centrifugal fan blades installed in the volute body 150 . Since the air duct assembly 200 has the above-mentioned volute structure 100 , it has all the same beneficial effects, and the present application will not repeat them here.
  • the type of the air duct assembly 200 may be determined according to actual needs, and may be an indoor air duct assembly, a fresh air duct assembly, etc., which is not limited in this embodiment of the present application.
  • the air duct assembly 200 may further include a filter housing 210 .
  • the filter cover 210 is installed on the volute structure 100, the air enters the volute body 150 through the filter cover 210, and the filter cover 210 can filter the air to improve the air quality.
  • the present application also provides an air conditioner (not shown in the figure), including the air duct assembly 200 as described above. Since the air conditioner has the above-mentioned air duct assembly 200 , it has all the same beneficial effects, and the present application will not repeat them here.
  • the type of the air conditioner may be determined according to actual needs, such as a cabinet type air conditioner or a wall type air conditioner, which is not limited in this embodiment of the present application.
  • volute structure 100, the air duct assembly 200 and the air conditioner provided by the embodiment of the present application have been described above in detail.
  • specific examples are used to illustrate the principle and implementation of the present application.
  • the description of the above embodiments It is only used to help understand the technical solutions and core ideas of the present application; those skilled in the art should understand that they can still modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some of the technical features; However, these modifications or replacements do not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种蜗壳结构(100)、风道组件(200)以及空调器,包括:蜗壳本体(150),蜗壳本体(150)具有蜗舌(130)和出风口(121);阻流件(160),阻流件(160)的一端安装在蜗舌(130)上,另一端向背离出风口(121)方向延伸,阻流件(160)用于减少出风口(121)处的气流对蜗舌(130)的冲击。通过在蜗舌(130)处设置阻流件(160),阻流件(160)可以阻挡分隔形成在出风口(121)靠近蜗舌(130)处的回流风,并将阻挡分隔后的回流风分别引向阻流件(160)的两侧,减少了回流风对蜗舌(130)的冲击,进而降低了气动噪声。

Description

蜗壳结构、风道组件以及空调器
本申请要求于2021年12月8日提交中国国家知识产权局、申请号为202111494167.4、发明名称为“蜗壳结构、风道组件以及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空气调节技术领域,尤其涉及一种蜗壳结构、风道组件以及空调器。
背景技术
新风机能够将室外新鲜的空气输入室内,并将室内污浊的空气排出室外的空气循环净化设备。为了实现气流的驱动,现有的新风机普遍使用前向离心式风机作为动力装置。
离心风机在运行中,气体沿出风方向从出风口流出;但气体容易在出风口靠近蜗舌处形成回流风,回流风的气体会冲击蜗舌,并容易产生较大的气动噪声,用户体验较差。
技术问题
本申请提供一种蜗壳结构、风道组件以及空调器,以解决现有技术中在蜗舌处的回流风引发气动噪声的技术问题。
技术解决方案
一方面,本申请提供一种蜗壳结构,包括:
蜗壳本体,具有蜗舌和出风口;
阻流件,其固定端连接在所述蜗舌上,其自由端朝背离所述出风口方向延伸,以阻挡对所述蜗舌冲击的气流。
在本申请一种可能的实现方式中,所述蜗壳结构具有用于安装离心风叶的安装腔,所述自由端的延伸方向与所述离心风叶靠近所述出风口的上边缘相切。
在本申请一种可能的实现方式中,所述自由端和所述上边缘的切线与出风方向平行。
在本申请一种可能的实现方式中,所述阻流件上设有微孔。
在本申请一种可能的实现方式中,所述固定端与所述蜗舌转动连接。
在本申请一种可能的实现方式中,所述蜗壳本体内设有导流板,所述导流板安装在所述蜗壳本体内远离所述出风口的一侧,所述导流板的延伸方向与出风方向平行。
在本申请一种可能的实现方式中,所述导流板包括第一部和第二部,所述第一部位于所述第二部远离所述出风口的一端,所述第一部和所述第二部的延伸方向不同。
在本申请一种可能的实现方式中,所述蜗壳结构包括导流圈,所述导流圈安装在所述蜗壳本体内,所述导流圈包括圆弧段和直线段,所述圆弧段连接所述直线段,所述直线段相对所述蜗舌设置。
另一方面,本申请还提供风道组件,包括如上文所述的蜗壳结构和所述离心风叶,所述离心风叶安装在所述蜗壳本体内。
另一方面,本申请还提供一种空调器,包括如上文所述的风道组件。
有益效果
本申请提供的一种蜗壳结构、风道组件以及空调器,包括:蜗壳本体,蜗壳本体具有蜗舌和出风口;阻流件,阻流件的一端安装在蜗舌上,另一端向背离出风口方向延伸,阻流件用于减少出风口处的气流对蜗舌的冲击。通过在蜗舌处设置阻流件,阻流件可以阻挡分隔形成在出风口靠近蜗舌处的回流风,并将阻挡分隔后的回流风分别引向阻流件的两侧,减少了回流风对蜗舌的冲击,进而降低了气动噪声。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的蜗壳结构的结构示意图;
图2为现有技术的蜗壳结构在图1中K处的剖视图;
图3为本申请实施例提供的蜗壳结构在图1中K处的剖视图;
图4为本申请实施例提供的导流圈的结构示意图;
图5为本申请实施例提供的风道组件的结构示意图。
附图标记:
蜗壳结构100、本体部110、环形流道111、出口部120、出风口121、上侧板122、下侧板123、蜗舌130、蜗壳本体150、阻流件160、固定端161、自由端162、导流板170、第一部171、第二部172、导流圈180、圆弧段181、直线段182、风道组件200、过滤罩210、出风方向F1、低压区A1、高压区A2。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参考图1至图3,本申请实施例提供一种蜗壳结构100,包括:蜗壳本体150,具有蜗舌130和出风口121;阻流件160,其固定端161连接在蜗舌130上,其自由端162朝背离出风口121方向延伸,以阻挡对蜗舌130冲击的气流。
需要说明的是,蜗壳结构100形似蜗牛壳。在本申请实施例中,蜗壳结构100由两个的蜗牛壳形状的蜗壳本体150围合而成;此外,蜗壳结构100还可以是多个侧板围合而成等结构形式,在此不作过多的限定。
蜗壳本体150具有相互连接的本体部110和出口部120。其中,本体部110的截面形状近似为圆形,其内部可以设置离心风叶(图中未视出),气流流经本体部110与离心风叶之间的环形流道111后从出口部120排出。出口部120可以由包括上侧板122和下侧板123在内的四块侧板围合而成。其中,离心风叶距离上侧板122最近边缘处的切线方向通常为出风方向F1,其通常为安装在蜗壳本体150内的离心风叶的最上端。出风口121位于出口部120远离本体部110的一端,其形状为矩形。本体部110和出口部120的连接处形成有蜗舌130,即下侧板123与本体部110的连接处形成有蜗舌130,为了避免气流流经尖锐物体产生激波或噪音等,蜗舌130多为表面光滑的圆弧形。
另需说明的是,当离心风叶旋转时,气流首先从外部空间进入到离心风叶内,并受离心力的影响沿离心风叶的边缘处的切线方向加速流动出去;然后进入到环形流道111并沿其流动,部分气流最终沿出口部120流出。另一部分气流由于刚进入离心风叶内或受蜗舌130和本体部110的影响,未进入出口部120,从而进入环形流道111。故在蜗舌130的两侧会有两部分高速气流通过,高速气流带动蜗舌130附近的气流流走,进而在蜗舌130附近区域形成一个低压区A1,即回流区域。其中的部分进入出风部或进入环形流道111的空气会在低压区A1的吸力作用下,回流到回流区域,并在回流区域形成回流风,回流风多为涡旋气流,回流风会持续冲击蜗舌130,并形成气动噪音。
通过在蜗舌130处设置阻流件160,阻流件160可以阻挡分隔形成在出风口121靠近蜗舌130处的回流风,并将阻挡分隔后的回流风分别引向阻流件160的两侧,减少了回流风对蜗舌130的冲击,进而降低了气动噪声。
具体的,阻流件160为板状件;其中,板状的阻流件160的两侧分别抵接在蜗壳本体150上,即阻流件160的两侧与蜗壳本体150之间没有间隙。
板状的阻流件160的结构简单;且配合上文所述固定端161连接在蜗舌130上,减少了阻流件160与蜗壳本体150之间的间隙,可以避免高速气流冲击间隙后产生的气动噪声,提高用户体验。
具体的,自由端162为弧形曲面。
自由端162的表面光滑,气流可以较为顺畅地经过阻流件160,降低了气动噪声,其原理与上文所述相同或类似,在此不作过多的阐述。
在一些实施例中,蜗壳结构100具有用于安装离心风叶的安装腔,自由端162的延伸方向与离心风叶靠近出风口121的上边缘相切。
由上文可知,空气进入离心风叶后,受离心力的影响,会沿离心风叶的边缘处的切线方向加速流动出去。且由于离心风叶多为圆形,故离心风叶会在环形流道111内360度加速甩出气流;相应的,会存在部分气流的切线方向指向蜗舌130,即存在部分气流直接朝向蜗舌130流动,进而增加了回流风的风量,加剧了气动噪声。
通过将阻流件160的自由端162的延伸方向与离心风叶靠近出风口121的上边缘相切,即自由端162正对切线方向指向蜗舌130的这部分气流。可以更好地阻挡分离这部分气流,进而减少了进入回流区域的气流,减弱了回流风的风量和风速,进而进一步降低了气动噪声。
可以理解的是,自由端162正对切线方向指向蜗舌130的部分气流,可以较好的阻挡分离这部分气流。而由于现有技术中存在部分离心风叶的风叶形状为弧形,导致气流的切线方向可能略微偏转等情况。
故相应的,自由端162的延伸方向与自由端162的延伸方向和上边缘的连线存在夹角,即自由端162的延伸方向可以在上边缘上下轻微浮动,例如,-10°至10°,可以使阻流件160更好对准吹向蜗舌130的气流,在此不作过多的限定。
优选的,固定端161的延伸方向与下侧板123的延伸方向平行。
通过设置延伸方向与下侧板123延伸方向平行的固定端161,即固定端161与下侧板123在同一平面且平滑过渡;可以减少气流从阻流件160流动至下侧板123的阻挡,减少了气动噪音。
进一步地,在另一些实施例中,固定端161的延伸方向与下侧板123的延伸方向还可以存在夹角,其范围可以是15°至45°,在此不作过多的限定。
可选的,阻流件160还包括引导段,引导段位于固定端161和自由端162之间,引导段的延伸方向与上侧板122平行。
通过设置引导段以连接固定端161和自由端162,可以使得流经阻流件160的气流可以较为顺畅地流动,避免了因固定端161与自由端162延伸方向夹角过大,而造成的局部气流紊乱;进而提高了蜗壳结构100的气动效率,并降低了气动噪声。
进一步地,在另一些实施例中,固定端161,引导段和自由端162之间的连接处还可以设置为圆角,可以进一步提高气流流经阻流件160的顺畅性,在此不作过多的限定。
进一步地,在另一些实施例中,引导段的延伸方向还可以是其他方向,例如,与出风方向F1平行,或与上侧板122的延伸方向的夹角为10°,或与上侧板122的延伸方向的夹角为15°等,在此不作过多的限定。
在一些实施例中,自由端162和上边缘的切线与出风方向F1平行。
由上文可知,出风方向F1可以平行于离心风叶最高点的切线方向,而自由端162和上边缘的切线与出风方向F1平行,即自由端162和上边缘位于同一高度。
将自由端162和上边缘设置为同一高度,可以更好分隔进入出口部120的气流和进入环形流道111内的气流,进而降低了进入低压区A1的风量,降低了气动噪声。
在一些实施例中,阻流件160上设有微孔(图中未视出)。
需要说明的是,虽然阻流件160阻挡分离了部分回流风,降低回流风对蜗舌130的冲击。但仍存在部分未完全消除的回流风会继续冲击阻流件160,并产生气动噪声。
另需说明的是,当气流流经微孔时,将会在微孔及微孔的附近区域形成细小的气柱,气柱可以在微孔的附近区域进一步延伸形成小范围的保护层。当回流风等气流冲击气柱或保护层时,会与气柱或保护层互相抵消,从而降低了回流风的动能,降低了回流风等的风速,进而降低了气动噪声。
通过在阻流件160上设置微孔,可以降低回流风冲击阻流件160时形成的气动噪声,提高用户体验。
优选的,微孔为圆形。
圆形的微孔表面光滑,可以进一步减少气动噪声。
进一步地,在另一些实施例中,微孔还可以是矩形,或椭圆形等,在此不作过多的限定。
在一些实施例中,阻流件160包括多个微孔,阻流件160的开孔率为B,其中,B满足:10%≤B≤50%。
通过设置多个微孔,可以尽可能提高气柱或保护层覆盖阻流件160的范围,进一步降低回流风冲击阻流件160时形成的气动噪声。
具体的,多个微孔阵列设置。
规则排布的多个微孔,可以使得气柱或保护层均匀的规律地布置在阻流件160的表面上,提高了阻流件160的降噪效果。
进一步地,在另一些实施例中,多个微孔还可以是随机布置,在此不作过多的限定。
进一步地,在另一些实施例中,B还可以满足:5%≤B<10%,或50%<B≤60%等,在此不作过多的限定。
在一些实施例中,固定端161与蜗舌130转动连接。
需要说明的是,离心风叶的转速不同,蜗壳本体150内的流体速度就不同;而不同流速下,受蜗壳结构100本身的结构等的影响,回流风在蜗舌130附近形成的区域会有轻微变化。例如,回流风形成在蜗舌130靠近出口部120的区域,或形成在蜗舌130靠近环形流道111的区域等。
通过将固定端161与蜗舌130转动连接,即通过转动固定端161带动自由端162的延伸方向的改变,使得自由端162可以对应不同流速下回流风的中心区域;进而可以较好的阻挡分隔回流风,降低气动噪声。
具体的,用户可以手动调节阻流件160的转动。
手动调节时,用户可以实时根据噪音反馈调节转动阻流件160,进而使得自由端162可以对应回流风的中心区域,降低气动噪声。
进一步地,在另一些实施例中,还可以设置驱动机构,例如,步进电机等调节固定端161的转动,在此不作过多的限定。
在一些实施例中,蜗壳本体150内设有导流板170,导流板170安装在蜗壳本体150内远离出风口121的一侧,导流板170的延伸方向与出风方向F1平行。
需要说明的是,由于出口部120通常为喇叭形以及部分进入环形流道111气体等因素的影响,在出口部120内且位于蜗舌130的上方会形成一个高压区A2,在高压区A2的气流中有部分气流会回流到蜗舌130附近的低压区A1,加剧了回流风的形成,提高气动噪声。
另需说明的是,导流板170安装在离心风叶的上方。
通过设置导流板170对高压区A2的气流至少部分隔离,改变了蜗舌130附件区域和出口部120内的流场分布。使得高压区A2的部分气流不受低压区A1的影响直接从出口部120流出,可以减少进入低压区A1的气流量,进而减弱了回流风的流量,降低了气动噪声。
具体的,导流板170的两侧抵接在蜗壳本体150上。
如上,可以减少导流板170与壳体本体之间的间隙,进而降低了气动噪声,其原理与上文所述相同或类似,在此不作过多的阐述。
进一步地,在另一些实施例中,导流板170的延伸方向与出风方向F1还可以具有夹角,例如,5°,或10°等,在此不作过多的限定。
在一些实施例中,导流板170包括第一部171和第二部172,第一部171位于第二部172远离出风口121的一端,第一部171和第二部172的延伸方向不同。
需要说明的是,第一部171可以设置在环形流道111内,第二部172可以设置在出口部120内;由于环形流道111为圆形,环形流道111内的圆形气流流向与出口部120内的直线形的气流流向不同。
通过设置第一部171用于引导分散位于环形流道111内的气流,另通过设置第二部172引导分散位于出口部120内的气流;可以进一步减少进入低压区A1的气流量,进而减弱了回流风的流量,降低了气动噪声。
具体的,第一部171和第二部172均为直线形的板体,且第一部171和第二部172的延伸方向的夹角范围为10°至30°,且第一部171朝靠近离心风叶的方向延伸。
进一步地,在另一些实施例中,第一部171还可以是弧形板体,其形状与环形流道111相适配;可以减少第一部171对环形流道111内气流的阻挡,降低气动噪声,在此不作过多的限定。
进一步地,在另一些实施例中,第一部171和第二部172的延伸方向的夹角范围还可以是5°至10°,或30°至45°等,在此不作过多的限定。
请参考图2至图4,在一些实施例中,蜗壳结构100包括导流圈180,导流圈180安装在蜗壳本体150内,导流圈180包括圆弧段181和直线段182,圆弧段181连接直线段182,直线段182相对蜗舌130设置。
可以理解的是,导流圈180的截面形状为圆弧和直线的组合,该直线上各点距离圆心的距离小于圆弧的半径;且由于直线段182相对蜗舌130设置,以及环形流道111通常为规则的圆形,故蜗舌130距离直线段182的距离大于环形流道111的宽度。相应的,在环形流道111靠近蜗舌130处的气流具有更大的空间以流动,气流在此处可以更加贴近直线段182流动;进而减少了进入低压区A1的气流量,减弱了回流风,降低了气动噪声。
本申请还提供一种风道组件200,包括如上文所述的蜗壳结构100和离心风叶,离心风叶安装在蜗壳本体150内。由于该风道组件200具有上述蜗壳结构100,因此具有全部相同的有益效果,本申请在此不再赘述。
此外,风道组件200的类型可以根据实际需要决定,可以是室内风道组件、新风风道组件等类型,本申请实施例对此不作限定。
在一些实施例中,风道组件200还可以包括过滤罩210。过滤罩210安装在蜗壳结构100上,空气经过过滤罩210进入蜗壳本体150,过滤罩210可以对空气进行过滤,改善空气质量。
请参考图5,本申请还提供一种空调器(图中未视出),包括如上文所述的风道组件200。由于该空调器具有上述风道组件200,因此具有全部相同的有益效果,本申请在此不再赘述。此外,空调器的类型可以根据实际需要决定,可以采用诸如柜式空调器、或挂式空调器等类型,本申请实施例对此不作限定。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种蜗壳结构100、风道组件200以及空调器进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种蜗壳结构,其包括:
    蜗壳本体,具有蜗舌和出风口;
    阻流件,其固定端连接在所述蜗舌上,其自由端朝背离所述出风口方向延伸,以阻挡对所述蜗舌冲击的气流。
  2. 如权利要求1所述的蜗壳结构,其中,所述自由端为弧形曲面。
  3. 如权利要求1所述的蜗壳结构,其中,所述蜗壳结构具有用于安装离心风叶的安装腔,所述自由端的延伸方向与所述离心风叶靠近所述出风口的上边缘相切。
  4. 如权利要求3所述的蜗壳结构,其中,所述自由端和所述上边缘的切线与出风方向平行。
  5. 如权利要求1所述的蜗壳结构,其中,所述阻流件上设有微孔。
  6. 如权利要求5所述的蜗壳结构,其中,所述微孔为圆形。
  7. 如权利要求5所述的蜗壳结构,其中,所述阻流件包括多个所述微孔,所述阻流件的开孔率为B,其中,B满足:10%≤B≤50%。
  8. 如权利要求7所述的蜗壳结构,其中,多个所述微孔阵列设置。
  9. 如权利要求1所述的蜗壳结构,其中,所述固定端与所述蜗舌转动连接。
  10. 如权利要求1所述的蜗壳结构,其中,所述蜗壳本体内设有导流板,所述导流板安装在所述蜗壳本体内远离所述出风口的一侧,所述导流板的延伸方向与出风方向平行。
  11. 如权利要求10所述的蜗壳结构,其中,所述导流板包括第一部和第二部,所述第一部位于所述第二部远离所述出风口的一端,所述第一部和所述第二部的延伸方向不同。
  12. 如权利要求11所述的蜗壳结构,其中,所述第一部为弧形板体,所述第二部为直线形板体。
  13. 如权利要求1所述的蜗壳结构,其包括导流圈,所述导流圈安装在所述蜗壳本体内,所述导流圈包括圆弧段和直线段,所述圆弧段连接所述直线段,所述直线段相对所述蜗舌设置。
  14. 如权利要求3所述的蜗壳结构,其包括导流圈,所述导流圈安装在所述蜗壳本体内,所述导流圈包括圆弧段和直线段,所述圆弧段连接所述直线段,所述直线段相对所述蜗舌设置。
  15. 如权利要求4所述的蜗壳结构,其包括导流圈,所述导流圈安装在所述蜗壳本体内,所述导流圈包括圆弧段和直线段,所述圆弧段连接所述直线段,所述直线段相对所述蜗舌设置。
  16. 如权利要求5所述的蜗壳结构,其包括导流圈,所述导流圈安装在所述蜗壳本体内,所述导流圈包括圆弧段和直线段,所述圆弧段连接所述直线段,所述直线段相对所述蜗舌设置。
  17. 如权利要求7所述的蜗壳结构,其包括导流圈,所述导流圈安装在所述蜗壳本体内,所述导流圈包括圆弧段和直线段,所述圆弧段连接所述直线段,所述直线段相对所述蜗舌设置。
  18. 如权利要求10所述的蜗壳结构,其包括导流圈,所述导流圈安装在所述蜗壳本体内,所述导流圈包括圆弧段和直线段,所述圆弧段连接所述直线段,所述直线段相对所述蜗舌设置。
  19. 一种风道组件,其包括如权利要求1所述的蜗壳结构和所述离心风叶,所述离心风叶安装在所述蜗壳本体内。
  20. 一种空调器,其包括如权利要求19所述的风道组件。
PCT/CN2021/142591 2021-12-08 2021-12-29 蜗壳结构、风道组件以及空调器 WO2023103123A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111494167.4 2021-12-08
CN202111494167.4A CN116241506A (zh) 2021-12-08 2021-12-08 蜗壳结构、风道组件以及空调器

Publications (1)

Publication Number Publication Date
WO2023103123A1 true WO2023103123A1 (zh) 2023-06-15

Family

ID=86628293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142591 WO2023103123A1 (zh) 2021-12-08 2021-12-29 蜗壳结构、风道组件以及空调器

Country Status (2)

Country Link
CN (1) CN116241506A (zh)
WO (1) WO2023103123A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195992A (ja) * 1996-01-24 1997-07-29 Hitachi Ltd 2重うず巻きコンクリートケーシング
JP2004218446A (ja) * 2003-01-09 2004-08-05 Denso Corp 遠心式送風装置
CN104675754A (zh) * 2013-12-02 2015-06-03 海尔集团公司 柜机蜗壳防气流失速的方法
CN107461816A (zh) * 2017-09-04 2017-12-12 珠海格力电器股份有限公司 一种导流圈、风道结构、室内机以及空调器
CN110439862A (zh) * 2018-05-04 2019-11-12 宁波方太厨具有限公司 一种离心风机的蜗壳结构
CN110887146A (zh) * 2019-12-17 2020-03-17 珠海格力电器股份有限公司 风道组件及空调扇
CN213872825U (zh) * 2020-12-04 2021-08-03 广东万家乐燃气具有限公司 一种吸油烟机蜗壳

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195992A (ja) * 1996-01-24 1997-07-29 Hitachi Ltd 2重うず巻きコンクリートケーシング
JP2004218446A (ja) * 2003-01-09 2004-08-05 Denso Corp 遠心式送風装置
CN104675754A (zh) * 2013-12-02 2015-06-03 海尔集团公司 柜机蜗壳防气流失速的方法
CN107461816A (zh) * 2017-09-04 2017-12-12 珠海格力电器股份有限公司 一种导流圈、风道结构、室内机以及空调器
CN110439862A (zh) * 2018-05-04 2019-11-12 宁波方太厨具有限公司 一种离心风机的蜗壳结构
CN110887146A (zh) * 2019-12-17 2020-03-17 珠海格力电器股份有限公司 风道组件及空调扇
CN213872825U (zh) * 2020-12-04 2021-08-03 广东万家乐燃气具有限公司 一种吸油烟机蜗壳

Also Published As

Publication number Publication date
CN116241506A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
KR20210006484A (ko) 송풍장치 및 이를 포함하는 공기조화기의 실외기
CN102422025B (zh) 离心风扇及空调机
CN101410627B (zh) 改进的叶轮和风扇
JP4690682B2 (ja) 空調機
KR100408598B1 (ko) 직교류송풍기
CN103597288A (zh) 空气调节机
JP2000205589A (ja) 空気調和機
CN204063280U (zh) 空气调节机
KR102321173B1 (ko) 팬 및 이를 구비하는 공기 조화기 실내기
CN109854523A (zh) 风机及具有其的空调室内机
JP2011122517A (ja) 多翼遠心ファンおよびそれを用いた空気調和機
EP3726061B1 (en) Air duct assembly for axial fan
JP2000065418A (ja) 空気調和機
WO2023103121A1 (zh) 蜗壳结构、风道组件以及空调器
EP4365498A1 (en) Air channel assembly and air conditioning device having same
WO2023103123A1 (zh) 蜗壳结构、风道组件以及空调器
CN114046270B (zh) 离心风机和电器设备
WO2023050796A1 (zh) 一种贯流风道和出风装置
JP2024519553A (ja) ファンアセンブリ及び空調機
JP5590016B2 (ja) ターボファン、空気調和装置
JP2016003641A (ja) 遠心ファン
WO2021139508A1 (zh) 扩压器、送风装置及吸尘设备
JP2012177363A (ja) 送風装置
CN219415150U (zh) 风道组件、新风装置及新风空调
CN216346477U (zh) 薄型烟机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE