WO2023050796A1 - 一种贯流风道和出风装置 - Google Patents

一种贯流风道和出风装置 Download PDF

Info

Publication number
WO2023050796A1
WO2023050796A1 PCT/CN2022/089930 CN2022089930W WO2023050796A1 WO 2023050796 A1 WO2023050796 A1 WO 2023050796A1 CN 2022089930 W CN2022089930 W CN 2022089930W WO 2023050796 A1 WO2023050796 A1 WO 2023050796A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air outlet
cross
air duct
dislocation
Prior art date
Application number
PCT/CN2022/089930
Other languages
English (en)
French (fr)
Inventor
张驰
柳洲
梁浩
梁文龙
饶长健
田伶
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023050796A1 publication Critical patent/WO2023050796A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards

Definitions

  • the present disclosure relates to the technical field of fans, in particular to a cross-flow air channel and an air outlet device.
  • the tower fans on the market are slender in appearance, occupy a small area, have no exposed blades, and have a higher safety factor; the multi-bladed cross-flow wind wheel cooperates with the long-stroke air duct, which cuts the wind evenly up and down, and has good air supply continuity.
  • the corresponding air outlet is relatively narrow, and the volute of the cross-flow duct is mostly designed with Archimedes spiral or logarithmic spiral, and the fluid formed along the spiral It is sent out in a tangential direction, and the wind pressure at the position close to the volute shape line will be higher than the wind pressure at the position far away from the volute, resulting in a difference in the wind speed at the position near the volute and the wind speed at the position far away from the volute, and also That is, the wind speed on the left and right sides of the air outlet is uneven, and due to the limited air outlet area and narrow air supply range, the user's body surface temperature uniformity is poor.
  • the technical problem to be solved in the present disclosure is to overcome the defect of the narrow air supply range of the cross-flow air duct in the related art, so as to provide a cross-flow air duct and an air outlet device that can increase the air supply range.
  • This embodiment provides a cross-flow air duct, including: a volute, the volute includes a first body, the first side of the first body is the air inlet side, and the second side of the first body is the air outlet side; volute tongue, spaced apart from the volute, the volute tongue includes a second body, the first side of the second body is the air inlet side, and the second side of the second body is the air outlet side,
  • An installation space suitable for installing a wind wheel is formed between the first body and the second body, an air inlet is formed between the first side of the first body and the first side of the second body, and the An air outlet is formed between the second side of the first body and the second side of the second body;
  • the air outlet includes several first air outlet openings and several second air outlet openings, the first air outlet openings and the second air outlet openings
  • the second air outlet openings are arranged in a staggered interval along the axial direction of the volute.
  • the second side of the first body is provided with a plurality of first air deflectors distributed at intervals along the axial direction of the volute, and the first air deflector is formed between the first air deflector and the second body. outlet opening;
  • the second side of the second body is provided with a plurality of second air deflectors distributed at intervals along the axial direction of the volute, and the second wind deflector is formed between the second air deflector and the first body.
  • the first wind deflector and the second wind deflector are arranged alternately in the axial direction of the volute.
  • the included angle between the first surface and the second surface is ⁇ , 0 ⁇ 40°.
  • the center symmetry plane between the second side of the first body and the second side of the second body as a dislocation reference plane
  • the first surface and the second surface are located on both sides of the dislocation reference plane
  • the included angle between the first surface and the dislocation reference plane is ⁇ 1
  • the included angle between the second surface and the dislocation reference surface is ⁇ 2, 0 ⁇ 1 ⁇ 20°, and/or, 0 ⁇ 2 ⁇ 20°.
  • the first side of the first body is provided with a plurality of third air deflectors spaced along the axial direction of the volute.
  • the first side of the second body is provided with an air inlet and air guiding surface.
  • the cross-flow air duct also includes: an air outlet grille, which is arranged at the air outlet, and the air outlet grille includes a first grille segment and a second grille segment arranged staggered along the axial direction of the volute,
  • the first grille segment and the second grille segment are respectively provided in plurality, the first grille segment is correspondingly arranged on the first air outlet opening, and the second grille segment is correspondingly arranged on the On the second air outlet opening, and the longitudinal central symmetrical plane of the first grille section is close to the second side of the first body, and the longitudinal central symmetrical plane of the second grille section is close to the second the second side of the body.
  • the longitudinal center symmetry plane of the first grid segment as the first center symmetry plane
  • the longitudinal center symmetry plane of the second grid segment is the second center symmetry plane
  • the included angle between the two centrosymmetric planes is ⁇ , and 0 ⁇ 50°.
  • the central symmetry plane of the second side of the first body and the second side of the second body as a dislocation reference plane
  • the angle between the first central symmetry plane and the dislocation reference plane is ⁇ 1
  • the included angle between the second central symmetry plane and the dislocation reference plane is ⁇ 2, 0 ⁇ 1 ⁇ 25°, and/or, 0 ⁇ 2 ⁇ 25°.
  • the cross-flow air duct also includes a wind wheel arranged in the installation space, and the diameter of the wind wheel is D.
  • the cross section of the second body is an arc, and the axis of the second body is collinear with the axis of the wind wheel.
  • the radial minimum distance between the second body and the wind wheel is A, 1D/28 ⁇ A ⁇ 1D/10.
  • the position where the distance between the first body and the wind wheel is the smallest is the worm throat, and the distance between the worm throat and the wind wheel is B, 1D/22 ⁇ B ⁇ 1D/11.
  • the length of the first grid segment and/or the second grid segment is C, 1D/9 ⁇ C ⁇ 1D/4.
  • the radial distance between the outlet grille and the wind wheel is F, 1D/6 ⁇ F ⁇ 1D/3.
  • the wind wheel includes a multi-section wind wheel segment, two adjacent first air deflectors, or, two adjacent second air deflectors, or, two adjacent first grille segments, or, adjacent
  • the distance between the two second grid segments is the length of N-section wind rotor segments, 1 ⁇ N ⁇ 3.
  • This embodiment also provides an air outlet device, including the above-mentioned cross-flow air channel.
  • an air outlet and an air inlet are formed between the first body and the second body, and the air outlet is divided into first air outlet openings and several
  • the second air outlet opening constitutes multiple groups of air outlet areas in different directions. It can be defined that the side where the volute is located is the left side, and the side where the volute tongue is located is the right side. Then the left side where the first air outlet opening is located is opposite to the second air outlet. The left side of the opening is to the left, and the right side of the second air outlet opening is to the right relative to the right side of the first air outlet opening, so the air outlet width is enlarged on the whole, and the air supply range is improved.
  • FIG. 1 is a schematic structural view of the through-flow air duct provided in Embodiment 1 of the present disclosure
  • Fig. 2 is a schematic structural view of the wind wheel in Fig. 1;
  • Fig. 3 is the top view of Fig. 1;
  • Fig. 4 is a schematic structural view of the through-flow air duct in Fig. 1 without an outlet grille;
  • Fig. 5 is a schematic structural diagram at the air inlet side of Fig. 4;
  • Fig. 6 is a schematic structural view of the cross-flow air duct in Fig. 5 without a wind wheel;
  • Fig. 7 is the structural representation of volute
  • Fig. 8 is a structural schematic diagram at an angle of the volute tongue
  • Fig. 9 is a structural schematic diagram at another angle of the volute tongue.
  • FIG. 10 is a top view of FIG. 4 .
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present disclosure in specific situations.
  • the tower fans on the market are slender in appearance, occupy a small area, have no exposed blades, and have a higher safety factor; the multi-bladed cross-flow wind wheel cooperates with the long-stroke air duct, which cuts the wind evenly up and down, and has good air supply continuity.
  • the corresponding air outlet is relatively narrow, and the volute of the cross-flow duct is mostly designed with Archimedes spiral or logarithmic spiral, and the fluid formed along the spiral It is sent out in a tangential direction, and the wind pressure at the position close to the volute shape line will be higher than the wind pressure at the position far away from the volute, resulting in a difference in the wind speed at the position near the volute and the wind speed at the position far away from the volute, and also That is, the wind speed on the left and right sides of the air outlet is uneven, and due to the limited air outlet area and narrow air supply range, the user's body surface temperature uniformity is poor.
  • this embodiment provides a cross-flow air duct, which can increase the range of air supply.
  • the cross-flow air duct includes a volute 1 and a volute tongue 2 .
  • the volute 1 includes a first body 101, the first side of the first body 101 is the air inlet side, the second side of the first body 101 is the air outlet side; Two bodies 201, the first side of the second body 201 is the wind inlet side, the second side of the second body 201 is the wind outlet side, and the installation suitable for installing the wind wheel 3 is formed between the first body 101 and the second body 201.
  • the air inlet is formed between the first side of the first body 101 and the first side of the second body 201
  • the air outlet is formed between the second side of the first body 101 and the second side of the second body 201
  • the air outlet It includes a plurality of first air outlet openings and a plurality of second air outlet openings, and the first air outlet openings and the second air outlet openings are alternately arranged along the axial direction of the volute.
  • An air outlet and an air inlet are formed between the first body 101 and the second body 201; , thereby forming multiple sets of air outlet areas in different directions.
  • the second side of the first body 101 is provided with a plurality of first air deflectors 102 spaced along the axial direction of the volute 1, and the first air outlet is formed between the first air deflectors 102 and the second body. Opening, the second side of the second body 201 is provided with a plurality of second air deflectors 202 spaced apart along the axial direction of the volute 1, and the first air deflector 202 is formed between the second air deflector 202 and the first body 101.
  • Two air outlet openings; the first air deflector 102 and the second air deflector 202 are arranged alternately in the axial direction of the volute 1 . It can be defined that the side where the volute 1 is located is the left side, and the side where the volute tongue 2 is located is the right side, then the left side where the first air outlet is located is to the left of the second air outlet opening, and the right side of the second air outlet opening is Relative to the right side of the first air outlet opening, the air outlet width is enlarged on the whole, and the air supply range is improved.
  • the first air guide plate 102 includes a first plate body 1021 and a first air guide surface provided at the end of the first plate body 1021 and extending toward the outside of the installation space. 1022, the second side of the first plate body 1021 is also provided with a second air guide surface 103, and the second air guide surface 103 extends toward the outside of the installation space; the second air guide plate 202 includes the second plate body 2021 and the The end of the second board body 2021 extends toward the third air guide surface 2022 outside the installation space, and the second side of the second board body 2021 is also provided with a fourth air guide surface 203, and the fourth air guide surface 203 faces the side of the installation space. Outer extension.
  • the setting of the first wind guiding surface 1022, the second wind guiding surface 103, the third wind guiding surface 2022, and the fourth wind guiding surface 203 can guide the direction of the wind to ensure that the wind blows toward the outside to avoid The airflow at the outlet is turbulent.
  • the end surface of the first plate body 1021, the end surface of the second plate body 2021, the second side of the first body 101, and the second side of the second body 201 can be respectively provided with guide slopes, The air outlet direction is guided by the guide slope.
  • the first wind guiding surface 1022, the second wind guiding surface 103, the third wind guiding surface 2022, and the fourth wind guiding surface 203 can respectively extend outward along the radial direction of the wind wheel 3.
  • the central symmetric plane between the first wind guiding surface 1022 and the second wind guiding surface 103 is defined as the first surface 6, and the third wind guiding surface is defined.
  • the central symmetry plane between 2022 and the fourth wind guiding surface 203 is the second plane 7, the angle between the first plane 6 and the second plane 7 is ⁇ , and 0 ⁇ 40°.
  • the included angle between the first surface 6 and the second surface 7 is also the misalignment angle between the first air outlet area and the second air outlet area.
  • the misalignment angle between the first air outlet area and the second air outlet area by limiting the misalignment angle between the first air outlet area and the second air outlet area, it can avoid the aggravation of the uneven air velocity and pressure distribution inside the cross-flow air duct due to the excessively large misalignment angle.
  • the volute 1 and the wind wheel 3 On the volute tongue 2, the volute 1 and the wind wheel 3, the pulsation of airflow pressure with time will be formed, and the air flow pulsation caused by the rotation of the fan blade of the wind wheel 3 will continuously and periodically impact the volute tongue 2, the volute 1 and other air duct shapes , increasing the peak value of the rotational noise, the greater the inhomogeneity of the airflow, the stronger the noise will be, when the misalignment is too large.
  • the air outlet width can be enlarged, and the air supply range can be increased without increasing noise and affecting the air volume of the air duct.
  • is 40°. In some alternative embodiments, ⁇ is 20° or 30°.
  • the central symmetry plane defining the second side of the first body 101 and the second side of the second body 201 is the dislocation reference plane 5
  • the first plane 6 and the second plane 7 is located on both sides of the dislocation reference plane 5
  • the angle between the first surface 6 and the dislocation reference plane 5 is ⁇ 1
  • the angle between the second surface 7 and the dislocation reference plane 5 is ⁇ 2, 0 ⁇ 1 ⁇ 20° , 0 ⁇ 2 ⁇ 20°.
  • 0 ⁇ 1 ⁇ 20°, ⁇ 2 is greater than 20°, or, ⁇ 1 is greater than 20°, 0 ⁇ 2 ⁇ 20°.
  • the fluid at the outlet is ejected along the tangent line of the original volute 1 chord line, so the wind speed at the direction of the spiral extension near the volute 1 back plate will be higher than that far from the volute 1, If the misalignment angle of the first air outlet area and the second air outlet area is too large, the wind pressure gradient of the adjacent segment air duct will increase, so that the adjacent first air outlet area and the second air outlet area will have a higher wind speed. Uneven, while noise and sound quality will also be affected.
  • this embodiment limits the angle between the first surface 6 and the dislocation reference plane 5, and the angle between the second surface 7 and the dislocation reference plane 5, that is, the center of the first air outlet area and the dislocation
  • the included angle of the reference plane 5, the center of the second air outlet area and the included angle of the dislocation reference plane 5 are limited, which can avoid the uneven wind speed of the adjacent first air outlet area and the second air outlet area, and will not Increase the noise, but also ensure sound quality.
  • the first side of the first body 101 is provided with a plurality of third air deflectors 104 distributed at intervals along the axial direction of the volute 1 .
  • the arrangement of the third air deflector 104 can ensure the stability of the cross-flow air duct.
  • the first side of the second body 201 is provided with an air inlet and air guide surface 204 .
  • the air inlet guide surface 204 cooperates with the volute 1 to make the outside air enter into the through-flow air duct smoothly.
  • the air inlet guide surface 204 is an inclined surface extending along the radial direction of the wind wheel 3 .
  • the cross-flow air duct also includes an air outlet grille 4, which is arranged at the air outlet, and the air outlet grille 4 includes a first grille segment 401 and a second grille that are staggered along the axial direction of the volute 1 Segment 402, the first grid segment 401 and the second grid segment 402 are respectively provided with a plurality, and the longitudinal center symmetrical plane of the first grid segment 401 is close to the second side of the first body 101, the second grid segment 402
  • the longitudinal center plane of symmetry is close to the second side of the second body 201 . It should be noted that the longitudinal center symmetry plane is coplanar with the axis of the wind wheel 3 .
  • the second grille by interlacing the first grille segment 401 and the second grille segment 402, and the longitudinal central symmetry plane of the first grille segment 401 is close to the second side of the first body 101, the second grille The longitudinal central symmetry plane of the segment 402 is close to the second side of the second body 201, the first grille segment 401 is correspondingly arranged on the first air outlet opening, and the second grille segment 402 is correspondingly arranged on the second On the air outlet opening, the second side of the first body 101 is on the left side, and the second side of the second body 201 is on the right side, so it can effectively improve the problem of the narrow air supply range of the existing cross-flow air duct, and ensure the tower fan
  • the cross-flow air duct achieves a wider range of air supply while the upper and lower cut winds are connected linearly, thereby improving the wind feeling of the whole machine and improving the user's comfort experience.
  • the longitudinal center symmetry plane of the first grid segment 401 is defined as the first center symmetry plane 4011
  • the longitudinal center symmetry plane of the second grid segment 402 is the second center symmetry plane.
  • the plane 4021, the angle between the first central symmetrical plane 4011 and the second central symmetrical plane 4021 is ⁇ , and 0 ⁇ 50°.
  • the included angle between the first central symmetry plane 4011 and the second central symmetry plane 4021 is the misalignment angle of the first grid segment 401 and the second grid segment 402, if the misalignment of the first grid segment 401 and the second grid segment 402 If the angle is too large, it will cause abnormal noise and air volume. Therefore, this embodiment limits the misalignment angle of the first grille section 401 and the second grille section 402, which can ensure the air supply range without increasing the noise. , to ensure the air volume.
  • the central symmetry plane between the second side of the first body 101 and the second side of the second body 201 is defined as the dislocation reference plane 5, and the first central symmetry plane 4011 and the dislocation
  • the included angle between the reference planes 5 is ⁇ 1
  • the included angle between the second central symmetry plane 4021 and the dislocation reference plane 5 is ⁇ 2, 0 ⁇ 1 ⁇ 25°, 0 ⁇ 2 ⁇ 25°.
  • 0 ⁇ 1 ⁇ 25°, ⁇ 2 is greater than 25°, or, 0 ⁇ 2 ⁇ 25°, ⁇ 1 is greater than 25°.
  • the angle between the first central symmetry plane 4011 and the dislocation reference plane 5 is the angle at which the first grid segment 401 deflects to the left
  • the angle between the second central symmetry plane 4021 and the dislocation reference plane 5 Angle is the angle by which the second grille segment 402 is deflected to the right.
  • the deflection angles of the first grille section 401 and the second grille section 402 are further limited, which can ensure the air volume without increasing the noise while ensuring the air supply range.
  • the length of the first grid segment 401 and/or the second grid segment 402 is C, and 1D/9 ⁇ C ⁇ 1D/4. If the lengths of the first grille section 401 and the second grille section 402 are too short, the wind guiding effect will be weakened, and at the same time, the outlet wind pressure will be insufficient, and the wind speed will be reduced, which will affect the air supply effect of the air duct; If the lengths of the first grille section 401 and the second grille section 402 are too long, the static and dynamic interference between the grille and the air supply fluid will be increased, resulting in increased noise peaks.
  • the lengths of the first grille section 401 and the second grille section 402 are limited, so as to ensure the air blowing effect without increasing the noise. It should be noted that the lengths of the first grille segment 401 and the second grille segment 402 are along the air outlet direction.
  • the lengths of the first grating segment 401 and the second grating segment 402 are equal. In other alternative embodiments, the length of the first grid segment 401 and the length of the second grid segment 402 are not equal.
  • the cross-flow air duct further includes a wind wheel 3 arranged in the installation space, and the diameter of the wind wheel 3 is D.
  • the volute 1 , the volute tongue 2 , the wind wheel 3 , and the outlet grill 4 jointly form a through-flow air duct.
  • the cross section of the second body 201 is a circular arc, and the axis of the second body 201 is collinear with the axis of the wind wheel 3 .
  • the volute tongue 2 can better guide the airflow and play the role of a splitter cone.
  • the radial minimum distance between the second body 201 and the wind wheel 3 is A, and 1D/28 ⁇ A ⁇ 1D/10.
  • the radial distance between the second body 201 and the wind wheel 3 is the gap between the worm tongue 2 and the wind wheel 3, and the ratio of the gap between the worm tongue 2 and the wind wheel 3 to the diameter of the wind wheel 3 affects the flow rate and efficiency Significantly, and has a certain impact on the pressure of the cross-flow air duct. When the gap is large, the pressure of the fan decreases and the flow rate decreases.
  • the minimum radial distance between the second body 201 and the wind wheel 3 is limited to ensure a certain pressure and flow without increasing noise and affecting sound quality.
  • the position where the distance between the first body 101 and the wind wheel 3 is the smallest is the worm throat 105, and the distance between the worm throat 105 and the wind wheel 3 is B, 1D/22 ⁇ B ⁇ 1D/11.
  • An increase in the distance between the wind wheel 3 and the volute 1 will lead to a decrease in the air volume, and will cause the vortex area on the first side of the volute 1 to gradually increase, and the noise of the diversion turbulence will increase, while the distance between the volute throat 105 and the wind wheel 3 Too small will increase the non-uniformity of the airflow velocity and pressure inside the wind wheel 3, increase the pulsation force in the area around the volute 1, and increase the rotation noise. Therefore, in this embodiment, the distance between the worm throat 105 and the wind wheel 3 is limited, which can ensure the uniformity of wind speed and pressure inside the wind wheel 3 and reduce noise.
  • the radial distance between the outlet grille 4 and the wind wheel 3 is F, 1D/6 ⁇ F ⁇ 1D/3. If the distance between the air outlet grid 4 and the wind wheel 3 is too small, the pressure pulsation at the outlet of the air duct will increase, thereby increasing the broadband noise in the flow field. In addition, the too small outlet gap will cause uneven fluid transition in the flow field , resulting in loss of air volume and reduced outlet wind speed. Therefore, in this embodiment, the radial distance between the outlet grille 4 and the wind wheel 3 is limited, which can prevent loud noise at the outlet of the air duct, reduce air volume loss, and ensure the size of the outlet wind speed.
  • the wind rotor 3 includes a multi-section wind rotor segment 301, two adjacent first grid segments 401, or two adjacent The second grille segment 402, the distance between two adjacent first air deflectors 102, or the distance between two adjacent second air deflectors 202 is the length of N-section wind wheel segments 301, 1 ⁇ N ⁇ 3.
  • the distance between two adjacent first grid segments 401 is the height of the second grid segment 402, and the distance between two adjacent second grid segments 402 is the height of the first grid segment 401,
  • the height of the first grille section 401 and the height of the second grille section 402 are limited, that is, the frequency of the discrete dislocation of the grilles is limited.
  • a vortex is formed inside the flow field of the impeller 3, and when the vortex deviates from the center of the impeller rotation axis, cross-flow will be generated; if the height of the first grid section 401 and the second grid section 402 are too low, the discrete frequency of the flow field at the outlet will increase, affecting The wind pressure inside the air duct makes the position of the single-segment eccentric vortex unstable, and cannot form a stable cross-flow area inside the impeller.
  • the flow field between adjacent segments is disordered, which will greatly affect the noise, sound quality, outlet wind speed and flow of the whole machine.
  • the height of the first grille section 401 and the second grille section 402 are too large, the displacement of the flow field will increase, resulting in the dislocation of air ducts in adjacent sections that cannot converge at a far distance, resulting in obvious The left and right deviation wind sense affects the user experience. Therefore, in this embodiment, the height of the first grille section 401 and the height of the second grille section 402 are limited, which can ensure the formation of a stable through-flow area inside the impeller, and will not affect the overall machine noise, sound quality, outlet wind speed and The flow is affected, and the left and right wind speeds are uniform.
  • This embodiment provides an air outlet device, specifically a fan structure, or other air outlet devices such as air conditioners and coolers, including the through-flow air duct provided in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种贯流风道和出风装置。贯流风道包括蜗壳(1),蜗壳(1)包括第一本体(101),第一本体(101)的第一侧为进风侧,第二侧为出风侧;蜗舌(2),蜗舌(2)包括第二本体(201),第二本体(201)的第一侧为进风侧,第二侧为出风侧,第一侧之间构成进风口,第二侧之间构成出风口;出风口包括若干第一出风开口和若干第二出风开口,第一出风开口和第二出风开口沿蜗壳(1)的轴向间隔交错设置。该贯流风道构成多组不同方向的出风区域,整体上扩大了出风宽度,提高了送风范围。

Description

一种贯流风道和出风装置
本公开要求于2021年09月30日提交中国专利局、申请号为202111168578.4、发明名称为“一种贯流风道和出风装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及风扇技术领域,具体涉及一种贯流风道和出风装置。
背景技术
随着生活水平的提高,人们对风扇的功能、性能多样性需求也随之增加,对于能够带来舒适体验的风扇更为青睐。目前市面上的塔扇外观纤细,占地小,无外露叶片,安全系数更高;其多叶贯流风轮配合长行程风道,上下切风均匀,送风连续性好。但受限于塔式造型及较小的风轮直径,其对应出风口较窄,且贯流风道蜗壳大多采用阿基米德螺旋线或对数螺旋线设计,流体沿着螺旋线形成的切向方向送出,而靠近蜗壳形线位置处的风压会高于远离蜗壳位置处的风压,导致出风口靠近蜗壳的位置处的风速与远离蜗壳处的风速有差异,也即出风口左右两侧风速不均匀,且由于出风面积有限,送风范围较窄,导致用户体表温度均匀性较差。
发明内容
因此,本公开要解决的技术问题在于克服相关技术中贯流风道的送风范围较窄的缺陷,从而提供一种可提高送风范围的贯流风道及出风装置。
本实施例提供一种贯流风道,包括:蜗壳,所述蜗壳包括第一本体,所述第一本体的第一侧为进风侧,所述第一本体的第二侧为出风侧;蜗舌,与所述 蜗壳间隔设置,所述蜗舌包括第二本体,所述第二本体的第一侧为进风侧,所述第二本体的第二侧为出风侧,所述第一本体及所述第二本体之间构成适于安装风轮的安装空间,所述第一本体的第一侧与所述第二本体的第一侧之间构成进风口,所述第一本体的第二侧与所述第二本体的第二侧之间构成出风口;所述出风口包括若干第一出风开口和若干第二出风开口,所述第一出风开口和所述第二出风开口沿所述蜗壳的轴向间隔交错设置。
所述第一本体的第二侧设有多个沿所述蜗壳的轴向间隔分布的第一导风板,所述第一导风板与所述第二本体间成型有所述第一出风开口;
所述第二本体的第二侧设有多个沿所述蜗壳的轴向间隔分布的第二导风板,所述第二导风板与所述第一本体间成型有所述第二出风开口,所述第一导风板与所述第二导风板在所述蜗壳的轴向交错设置。
所述第一导风板包括第一板本体及设在所述第一板本体的端部且朝向所述安装空间的外侧延伸的第一导风面,所述第一板本体的第二侧还设有第二导风面,所述第二导风面朝向所述所述安装空间的外侧延伸;
所述第二导风板包括第二板本体及设在所述第二板本体的端部且朝向所述安装空间外侧延伸的第三导风面,所述第二板本体的第二侧还设有第四导风面,所述第四导风面朝向所述安装空间的外侧延伸。
定义所述第一导风面与所述第二导风面的中心对称面为第一面,定义所述第三导风面与所述第四导风面的中心对称面为第二面,所述第一面与所述第二面的夹角为θ,0<θ≤40°。
定义所述第一本体的第二侧与所述第二本体的第二侧的中心对称面为错位基准面,所述第一面和所述第二面位于所述错位基准面的两侧,所述第一面与所述错位基准面之间的夹角为θ1,所述第二面与所述错位基准面之间的夹角为θ2,0<θ1≤20°,和/或,0<θ2≤20°。
所述第一本体的第一侧设有多个沿所述蜗壳的轴向间隔分布的第三导风板。
第二本体的第一侧设有进风导风面。
贯流风道还包括:出风格栅,设置在所述出风口处,且所述出风格栅包括沿所述蜗壳的轴向交错设置的第一格栅段和第二格栅段,所述第一格栅段和所述第二格栅段分别设有多个,所述第一格栅段对应设置在所述第一出风开口上,所述第二格栅段对应设置在所述第二出风开口上,且所述第一格栅段的纵向中心对称面靠近所述第一本体的第二侧,所述第二格栅段的纵向中心对称面靠近所述第二本体的第二侧。
定义所述第一格栅段的纵向中心对称面为第一中心对称面,所述第二格栅段的纵向中心对称面为第二中心对称面,所述第一中心对称面与所述第二中心对称面的夹角为β,0<β≤50°。
定义所述第一本体的第二侧与所述第二本体的第二侧的中心对称面为错位基准面,所述第一中心对称面与所述错位基准面之间的夹角为β1,所述第二中心对称面与所述错位基准面之间的夹角为β2,0<β1≤25°,和/或,0<β2≤25°。
贯流风道还包括设置在所述安装空间中的风轮,所述风轮的直径为D。
第二本体的横截面为圆弧,所述第二本体的轴线与所述风轮的轴线共线。
第二本体与所述风轮之间的径向最小距离为A,1D/28≤A≤1D/10。
第一本体与所述风轮的间距最小的位置为蜗喉,所述蜗喉与所述风轮的间距为B,1D/22≤B≤1D/11。
第一格栅段和/或所述第二格栅段的长度为C,1D/9≤C≤1D/4。
出风格栅与所述风轮之间的径向距离为F,1D/6≤F≤1D/3。
风轮包括多节风轮段,相邻的两个第一导风板,或,相邻的两个第二导风板,或,相邻的两个第一格栅段,或,相邻的两个第二格栅段之间的距离为N节风轮段的长度,1≤N≤3。
本实施例还提供一种出风装置,包括上述的贯流风道。
本公开技术方案,具有如下优点:
本公开提供的贯流风道,通过第一本体和第二本体间成型有出风口和进风口,通过将出风口分为沿所述蜗壳的轴向间隔交错设置的第一出风开口和若干第二出风开口,进而构成多组不同方向的出风区域,可以定义蜗壳所在侧为左侧,蜗舌所在侧为右侧,则第一出风开口所在的左侧相对第二出风开口的左侧偏左,第二出风开口的右侧相对第一出风开口的右侧偏右,因此整体上扩大了出风宽度,提高了送风范围。
附图说明
为了更清楚地说明本公开具体实施方式或相关技术中的技术方案,下面将对具体实施方式或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开的实施例1中提供的贯流风道的结构示意图;
图2为图1中风轮的结构示意图;
图3为图1的俯视图;
图4为图1中的贯流风道未设置出风格栅的结构示意图;
图5为图4的进风侧处的结构示意图;
图6为图5的贯流风道未设置风轮的结构示意图;
图7为蜗壳的结构示意图;
图8为蜗舌的一个角度处的结构示意图;
图9为蜗舌的另一个角度处的结构示意图;
图10为图4的俯视图。
附图标记说明:
1、蜗壳;101、第一本体;102、第一导风板;1021、第一板本体;1022、第一导风面;103、第二导风面;104、第三导风板;105、蜗喉;2、蜗舌;201、第二本体;202、第二导风板;2021、第二板本体;2022、第三导风面;203、第四导风面;204、进风导风面;3、风轮;301、风轮段;4、出风格栅;401、第一格栅段;4011、第一中心对称面;402、第二格栅段;4021、第二中心对称面;5、错位基准面;6、第一面;7、第二面。
具体实施方式
下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
此外,下面所描述的本公开不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
随着生活水平的提高,人们对风扇的功能、性能多样性需求也随之增加,对于能够带来舒适体验的风扇更为青睐。目前市面上的塔扇外观纤细,占地小,无外露叶片,安全系数更高;其多叶贯流风轮配合长行程风道,上下切风均匀,送风连续性好。但受限于塔式造型及较小的风轮直径,其对应出风口较窄,且贯流风道蜗壳大多采用阿基米德螺旋线或对数螺旋线设计,流体沿着螺旋线形成的切向方向送出,而靠近蜗壳形线位置处的风压会高于远离蜗壳位置处的风压,导致出风口靠近蜗壳的位置处的风速与远离蜗壳处的风速有差异,也即出风口左右两侧风速不均匀,且由于出风面积有限,送风范围较窄,导致用户体表温度均匀性较差。
为此,如图1至图10所示,本实施例提供一种贯流风道,能够提高送风范围。
在一个实施方式中,贯流风道包括蜗壳1和蜗舌2。蜗壳1包括第一本体101,第一本体101的第一侧为进风侧,第一本体101的第二侧为出风侧;蜗舌2与蜗壳1间隔设置,蜗舌2包括第二本体201,第二本体201的第一侧为进风侧,第二本体201的第二侧为出风侧,第一本体101及第二本体201之间构成适于安装风轮3的安装空间,第一本体101的第一侧与第二本体201的第一侧 之间构成进风口,第一本体101的第二侧与第二本体201的第二侧之间构成出风口,出风口包括若干第一出风开口和若干第二出风开口,第一出风开口和第二出风开口沿所述蜗壳的轴向间隔交错设置。
通过第一本体101和第二本体201间成型有出风口和进风口,通过将出风口分为沿所述蜗壳1的轴向间隔交错设置的第一出风开口和若干第二出风开口,进而构成多组不同方向的出风区域。第一本体101的第二侧设有多个沿蜗壳1的轴向间隔分布的第一导风板102,第一导风板102与所述第二本体间成型有所述第一出风开口,第二本体201的第二侧设有多个沿蜗壳1的轴向间隔分布的第二导风板202,第二导风板202与所述第一本体101间成型有所述第二出风开口;第一导风板102与第二导风板202在蜗壳1的轴向交错设置。可以定义蜗壳1所在侧为左侧,蜗舌2所在侧为右侧,则第一出风开口所在的左侧相对第二出风开口的左侧偏左,第二出风开口的右侧相对第一出风开口的右侧偏右,因此整体上扩大了出风宽度,提高了送风范围。
在上述实施方式的基础上,在一些实施方式中,第一导风板102包括第一板本体1021及设在第一板本体1021的端部且朝向安装空间的外侧延伸的第一导风面1022,第一板本体1021的第二侧还设有第二导风面103,第二导风面103朝向安装空间的外侧延伸;第二导风板202包括第二板本体2021及设在第二板本体2021的端部且朝向安装空间外侧延伸的第三导风面2022,第二板本体2021的第二侧还设有第四导风面203,第四导风面203朝向安装空间的外侧延伸。在该实施方式中,第一导风面1022、第二导风面103、第三导风面2022、第四导风面203的设置可以对出风方向进行引导,确保风朝向外侧吹,避免出风处气流紊乱。在一个可替换的实施方式中,可以分别将第一板本体1021的端面、第二板本体2021的端面、第一本体101的第二侧、第二本体201的第二侧分别设置引导斜面,通过引导斜面来对出风方向进行引导。
具体在一个实施方式中,可以使第一导风面1022、第二导风面103、第三 导风面2022、第四导风面203分别沿着风轮3的径向向外延伸。
在上述实施方式的基础上,在一些实施方式中,如图7所示,定义第一导风面1022与第二导风面103的中心对称面为第一面6,定义第三导风面2022与第四导风面203的中心对称面为第二面7,第一面6与第二面7的夹角为θ,0<θ≤40°。在该实施方式中,第一面6与第二面7的夹角也为第一出风区域与第二出风区域的错位角。该实施方式通过限定第一出风区域与第二出风区域的错位角度,可以避免因错位角度过大而加剧贯流风道内部的气流速度及压力分布不均,而这种不均匀的气流作用在蜗舌2、蜗壳1和风轮3上,会形成气流压力随时间的脉动,风轮3的风叶旋转导致的气流脉动会连续周期性地冲击蜗舌2、蜗壳1等风道形体,增大旋转噪声的峰值,气流的不均匀性越大,会导致噪声越强,当错位过大。会破坏风轮3内部贯流连续性,还会产生明显的左右偏差风感,影响风道的风量及送风效果。因此,该实施方式通过限定第一出风区域与第二出风区域的错位角度,既能扩大出风宽度,提高送风范围,同时不会增加噪声,不会影响风道的风量。
具体在一个实施方式中,θ为40°。在一些可替换的实施方式中,θ为20°或30°。
在上述实施方式的基础上,在一些实施方式中,定义第一本体101的第二侧与第二本体201的第二侧的中心对称面为错位基准面5,第一面6和第二面7位于错位基准面5的两侧,第一面6与错位基准面5之间的夹角为θ1,第二面7与错位基准面5之间的夹角为θ2,0<θ1≤20°,0<θ2≤20°。作为可变换的实施方式,0<θ1≤20°,θ2大于20°,或,θ1大于20°,0<θ2≤20°。由于贯流风道蜗壳1弦线螺旋设置,出口处流体沿原本蜗壳1弦线切线喷出,因此在螺旋线延长段近蜗壳1背板方向处风速会高于远蜗壳1处,若第一出风区域、第二出风区域错位角度过大,会导致相邻节段风道风压梯度增大,从而使相邻的第一出风区域、第二出风区域出风风速不均匀,同时噪音及音质也会受到影响。 因此,该实施方式对第一面6与错位基准面5之间的夹角、第二面7与错位基准面5之间的夹角进行限定,也即对第一出风区域的中心与错位基准面5的夹角、第二出风区域的中心与错位基准面5的夹角进行限定,可以避免相邻的第一出风区域、第二出风区域出风风速不均匀,同时不会增大噪音,也可确保音质。
在上述实施方式的基础上,在一些实施方式中,第一本体101的第一侧设有多个沿蜗壳1的轴向间隔分布的第三导风板104。在该实施方式中,第三导风板104的设置可保证贯流风道的稳定。
在上述实施方式的基础上,在一些实施方式中,第二本体201的第一侧设有进风导风面204。在该实施方式中,进风导风面204与蜗壳1共同配合,使外界的空气顺利进入贯流风道中。进风导风面204为沿风轮3的径向延伸的斜面。
贯流风道还包括出风格栅4,出风格栅4设置在出风口处,且出风格栅4包括沿蜗壳1的轴向交错设置的第一格栅段401和第二格栅段402,第一格栅段401和第二格栅段402分别设有多个,且第一格栅段401的纵向中心对称面靠近第一本体101的第二侧,第二格栅段402的纵向中心对称面靠近第二本体201的第二侧。需要说明的是,纵向中心对称面为与风轮3的轴线共面。
在该实施方式中,通过将第一格栅段401和第二格栅段402交错设置,且第一格栅段401的纵向中心对称面靠近第一本体101的第二侧,第二格栅段402的纵向中心对称面靠近第二本体201的第二侧,第一格栅段401对应设置在所述第一出风开口上,所述第二格栅段402对应设置在所述第二出风开口上,第一本体101的第二侧处于左侧,第二本体201的第二侧处于右侧,因此可有效改善现有贯流风道送风范围较窄的问题,在保证塔扇贯流风道上下切风连线性的同时,实现更广范围送风,从而提高整机风感,提升用户舒适性体验。
在上述实施方式的基础上,在一些实施方式中,定义第一格栅段401的纵向中心对称面为第一中心对称面4011,第二格栅段402的纵向中心对称面为第二中心对称面4021,第一中心对称面4011与第二中心对称面4021的夹角为β,0<β≤50°。第一中心对称面4011与第二中心对称面4021的夹角为第一格栅段401和第二格栅段402的错位角度,若第一格栅段401和第二格栅段402的错位角度过大会导致噪声及风量出现异常,因此,该实施方式对第一格栅段401和第二格栅段402的错位角度进行限定,可以在保证送风范围的前提下,不会增大噪声,确保风量。
在上述实施方式的基础上,在一些实施方式中,定义第一本体101的第二侧与第二本体201的第二侧的中心对称面为错位基准面5,第一中心对称面4011与错位基准面5之间的夹角为β1,第二中心对称面4021与错位基准面5之间的夹角为β2,0<β1≤25°,0<β2≤25°。作为可变换的实施方式,0<β1≤25°,β2大于25°,或,0<β2≤25°,β1大于25°。在该实施方式中,第一中心对称面4011与错位基准面5之间的夹角为第一格栅段401向左偏转的角度,第二中心对称面4021与错位基准面5之间的夹角为第二格栅段402向右偏转的角度。该实施方式对第一格栅段401、第二格栅段402的偏转角度进行进一步限定,可以在保证送风范围的前提下,不会增大噪声,确保风量。
在上述实施方式的基础上,在一些实施方式中,第一格栅段401和/或第二格栅段402的长度为C,1D/9≤C≤1D/4。若第一格栅段401、第二格栅段402的长度过短,会使其导风效果减弱,同时会使出口风压不足,风速会有所降低,影响风道送风效果;而若第一格栅段401、第二格栅段402的长度过长,则会增大格栅与送风流体之间的动静干涉,导致噪声峰值增高。因此,该实施方式对第一格栅段401、第二格栅段402的长度进行限定,可以在确保送风效果的同时不增大噪声。需要说明的是,第一格栅段401和第二格栅段402的长度为沿出风方向的长度。
在一个实施方式中,第一格栅段401和第二格栅段402的长度相等。在其他可替换的实施方式中,第一格栅段401的长度和第二格栅段402的长度不相等。
在上述实施方式的基础上,在一些实施方式中,贯流风道还包括设置在安装空间中的风轮3,风轮3的直径为D。在该实施方式中,蜗壳1、蜗舌2、风轮3、出风格栅4共同形成贯流风道。
在上述实施方式的基础上,在一些实施方式中,第二本体201的横截面为圆弧,第二本体201的轴线与风轮3的轴线共线。在该实施方式中,蜗舌2能够较好的引导气流,起到分流锥的作用。
在上述实施方式的基础上,在一些实施方式中,第二本体201与风轮3之间的径向最小距离为A,1D/28≤A≤1D/10。第二本体201与风轮3之间的径向距离蜗舌2为蜗舌2与风轮3的间隙,蜗舌2与风轮3的间隙和风轮3直径的比值大小对流量及效率的影响显著,且对贯流风道压力有一定的影响,间隙较大时,风机压力降低,流量减小,间隙减小时,压力升高,流量变大,但噪音峰值及音质也会变差,且会对后续贯流风道转配及风轮3安规等方面造成影响。因此,该实施方式对第二本体201与风轮3之间的径向最小距离进行限定,既能确保具有一定的压力及流量,又不会增加噪音及影响音质。
在上述实施方式的基础上,在一些实施方式中,第一本体101与风轮3的间距最小的位置为蜗喉105,蜗喉105与风轮3的间距为B,1D/22≤B≤1D/11。风轮3与蜗壳1的距离增加会导致风量下降,且会导致蜗壳1的第一侧处涡流区域逐渐增大,导流紊流噪音增大,而蜗喉105与风轮3的间距过小会加大风轮3内部气流风速及压力的不均匀性,增加蜗壳1周围区域的脉动力,使旋转噪声增大。因此,该实施方式对蜗喉105与风轮3的间距进行限定,可以确保风轮3内部风速及压力的均匀性,减小噪音。
在上述实施方式的基础上,在一些实施方式中,出风格栅4与风轮3之间的径向距离为F,1D/6≤F≤1D/3。若出风格栅4与风轮3之间的间距过小会增大风道出口的压力脉动,从而增大流场内宽频噪声,此外,过小的出口间隙会导致流场内流体过渡不均,造成风量损失,出口风速降低。因此,该实施方式对出风格栅4与风轮3之间的径向距离进行限定,可以防止风道出口的噪声较大,减少风量损失,确保出口风速的大小。
在上述实施方式的基础上,在一些实施方式中,如图2所示,风轮3包括多节风轮段301,相邻的两个第一格栅段401,或者,相邻的两个第二格栅段402,相邻的两个第一导风板102,或者,相邻的两个第二导风板202之间的距离为N节风轮段301的长度,1≤N≤3。
相邻的两个第一格栅段401之间的距离为第二格栅段402的高度,相邻的两个第二格栅段402之间的距离为第一格栅段401的高度,该实施方式对第一格栅段401的高度、第二格栅段402的高度进行限定,也即对格栅离散错位频率作出限定,贯流风道由于蜗壳1及蜗舌2作用会在风轮3流场内部形成漩涡,当旋涡偏离叶轮旋转轴线的中心引起贯流的产生;第一格栅段401、第二格栅段402高度过低会使出口处流场离散频率增大,影响风道内部风压,使单节段偏心涡位置无法稳定,不能在叶轮内部形成稳定的贯流区,相邻节段间流场紊乱,会对整机噪音、音质、出口风速及流量造成很大的影响;第一格栅段401、第二格栅段402高度过大,则会使流场错位幅度增大,导致相邻节段风道错位送风在较远处无法汇聚,产生明显的左右偏差风感,影响用户体验。因此,该实施方式对第一格栅段401的高度、第二格栅段402的高度进行限定,可以确保在叶轮内部形成稳定的贯流区,不会对整机噪音、音质、出口风速及流量造成影响,左右风速均匀。
实施例2
本实施例提供一种出风装置,具体为风扇结构,也可以为空调、冷风机等 其他出风装置,包括上述实施例中提供的贯流风道。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本公开创造的保护范围之中。

Claims (22)

  1. 一种贯流风道,包括:
    蜗壳(1),所述蜗壳(1)包括第一本体(101),所述第一本体(101)的第一侧为进风侧,所述第一本体(101)的第二侧为出风侧;
    蜗舌(2),与所述蜗壳(1)间隔设置,所述蜗舌(2)包括第二本体(201),所述第二本体(201)的第一侧为进风侧,所述第二本体(201)的第二侧为出风侧,所述第一本体(101)及所述第二本体(201)之间构成适于安装风轮(3)的安装空间,所述第一本体(101)的第一侧与所述第二本体(201)的第一侧之间构成进风口,所述第一本体(101)的第二侧与所述第二本体(201)的第二侧之间构成出风口;
    所述出风口包括若干第一出风开口和若干第二出风开口,所述第一出风开口和所述第二出风开口沿所述蜗壳(1)的轴向间隔交错设置。
  2. 根据权利要求1所述的贯流风道,其中,
    所述第一本体(101)的第二侧设有多个沿所述蜗壳(1)的轴向间隔分布的第一导风板(102),所述第一导风板(102)与所述第二本体(201)间成型有所述第一出风开口;
    所述第二本体(201)的第二侧设有多个沿所述蜗壳(1)的轴向间隔分布的第二导风板(202),所述第二导风板(202)与所述第一本体(101)间成型有所述第二出风开口,所述第一导风板(102)与所述第二导风板(202)在所述蜗壳(1)的轴向交错设置。
  3. 根据权利要求2所述的贯流风道,其中,所述第一导风板(102)包括第一板本体(1021)及设在所述第一板本体(1021)的端部且朝向所述安装空间的外侧延伸的第一导风面(1022),所述第一板本体(1021)的第二侧还设有第 二导风面(103),所述第二导风面(103)朝向所述安装空间的外侧延伸;
    所述第二导风板(202)包括第二板本体(2021)及设在所述第二板本体(2021)的端部且朝向所述安装空间外侧延伸的第三导风面(2022),所述第二板本体(2021)的第二侧还设有第四导风面(203),所述第四导风面(203)朝向所述安装空间的外侧延伸。
  4. 根据权利要求3所述的贯流风道,其中,定义所述第一导风面(1022)与所述第二导风面(103)的中心对称面为第一面(6),定义所述第三导风面(2022)与所述第四导风面(203)的中心对称面为第二面(7),所述第一面(6)与所述第二面(7)的夹角为θ,0<θ≤40°。
  5. 根据权利要求4所述的贯流风道,其中,定义所述第一本体(101)的第二侧与所述第二本体(201)的第二侧的中心对称面为错位基准面(5),所述第一面(6)和所述第二面(7)位于所述错位基准面(5)的两侧,所述第一面(6)与所述错位基准面(5)之间的夹角为θ1,0<θ1≤20°。
  6. 根据权利要求4所述的贯流风道,其中,定义所述第一本体(101)的第二侧与所述第二本体(201)的第二侧的中心对称面为错位基准面(5),所述第一面(6)和所述第二面(7)位于所述错位基准面(5)的两侧,所述第二面(7)与所述错位基准面(5)之间的夹角为θ2,0<θ2≤20°。
  7. 根据权利要求4所述的贯流风道,其中,定义所述第一本体(101)的第二侧与所述第二本体(201)的第二侧的中心对称面为错位基准面(5),所述第一面(6)和所述第二面(7)位于所述错位基准面(5)的两侧,所述第一面(6)与所述错位基准面(5)之间的夹角为θ1,所述第二面(7)与所述错位基准面(5)之间的夹角为θ2,0<θ1≤20°,0<θ2≤20°
  8. 根据权利要求2所述的贯流风道,其中,所述第一本体(101)的第一侧设有多个沿所述蜗壳(1)的轴向间隔分布的第三导风板(104)。
  9. 根据权利要求2所述的贯流风道,其中,所述第二本体(201)的第一侧设有进风导风面(204)。
  10. 根据权利要求1-9任一项所述的贯流风道,其中,还包括:
    出风格栅(4),设置在所述出风口处,且所述出风格栅(4)包括沿所述蜗壳(1)的轴向交错设置的第一格栅段(401)和第二格栅段(402),所述第一格栅段(401)和所述第二格栅段(402)分别设有多个,所述第一格栅段(401)对应设置在所述第一出风开口上,所述第二格栅段(402)对应设置在所述第二出风开口上,且所述第一格栅段(401)的纵向中心对称面靠近所述第一本体(101)的第二侧,所述第二格栅段(402)的纵向中心对称面靠近所述第二本体(201)的第二侧。
  11. 根据权利要求10所述的贯流风道,其中,定义所述第一格栅段(401)的纵向中心对称面为第一中心对称面(4011),所述第二格栅段(402)的纵向中心对称面为第二中心对称面(4021),所述第一中心对称面(4011)与所述第二中心对称面(4021)的夹角为β,0<β≤50°。
  12. 根据权利要求11所述的贯流风道,其中,定义所述第一本体(101)的第二侧与所述第二本体(201)的第二侧的中心对称面为错位基准面(5),所述第一中心对称面(4011)与所述错位基准面(5)之间的夹角为β1,0<β1≤25°。
  13. 根据权利要求11所述的贯流风道,其中,定义所述第一本体(101)的第二侧与所述第二本体(201)的第二侧的中心对称面为错位基准面(5),所述第二中心对称面(4021)与所述错位基准面(5)之间的夹角为β2,0<β2≤25°。
  14. 根据权利要求11所述的贯流风道,其中,定义所述第一本体(101)的第二侧与所述第二本体(201)的第二侧的中心对称面为错位基准面(5),所述第一中心对称面(4011)与所述错位基准面(5)之间的夹角为β1,所述第二中心对称面(4021)与所述错位基准面(5)之间的夹角为β2,0<β1≤25°,0 <β2≤25°。
  15. 根据权利要求1-9、11-14中任一项所述的贯流风道,其中,所述贯流风道还包括设置在所述安装空间中的风轮(3),所述风轮(3)的直径为D。
  16. 根据权利要求15所述的贯流风道,其中,所述第二本体(201)4的横截面为圆弧,所述第二本体(201)的轴线与所述风轮(3)的轴线共线。
  17. 根据权利要求16所述的贯流风道,其中,所述第二本体(201)与所述风轮(3)之间的径向最小距离为A,1D/28≤A≤1D/10。
  18. 根据权利要求15所述的贯流风道,其中,所述第一本体(101)与所述风轮(3)的间距最小的位置为蜗喉(105),所述蜗喉(105)与所述风轮(3)的间距为B,1D/22≤B≤1D/11。
  19. 根据权利要求15所述的贯流风道,其中,所述第一格栅段(401)和/或所述第二格栅段(402)的长度为C,1D/9≤C≤1D/4。
  20. 根据权利要求15所述的贯流风道,其中,出风格栅(4)与所述风轮(3)之间的径向距离为F,1D/6≤F≤1D/3。
  21. 根据权利要求15所述的贯流风道,其中,所述风轮(3)包括多节风轮段(301),相邻的两个第一导风板(102),或,相邻的两个第二导风板(202),或,相邻的两个第一格栅段(401),或,相邻的两个第二格栅段(402)之间的距离为N节风轮段(301)的长度,1≤N≤3。
  22. 一种出风装置,包括权利要求1-21中任一项所述的贯流风道。
PCT/CN2022/089930 2021-09-30 2022-04-28 一种贯流风道和出风装置 WO2023050796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111168578.4 2021-09-30
CN202111168578.4A CN113738703A (zh) 2021-09-30 2021-09-30 一种贯流风道和出风装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/612,187 Continuation US20240229823A1 (en) 2021-09-30 2024-03-21 Cross-flow air duct and air outlet device

Publications (1)

Publication Number Publication Date
WO2023050796A1 true WO2023050796A1 (zh) 2023-04-06

Family

ID=78726013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089930 WO2023050796A1 (zh) 2021-09-30 2022-04-28 一种贯流风道和出风装置

Country Status (2)

Country Link
CN (1) CN113738703A (zh)
WO (1) WO2023050796A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113738703A (zh) * 2021-09-30 2021-12-03 珠海格力电器股份有限公司 一种贯流风道和出风装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278473A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 送風装置
JP2004293887A (ja) * 2003-03-26 2004-10-21 Sharp Corp 空気調和機
CN203571893U (zh) * 2013-10-24 2014-04-30 广东美的制冷设备有限公司 立式空调室内机
CN206037363U (zh) * 2016-08-25 2017-03-22 珠海格力电器股份有限公司 空调器
CN113719458A (zh) * 2021-09-30 2021-11-30 珠海格力节能环保制冷技术研究中心有限公司 贯流风道及风扇
CN113738703A (zh) * 2021-09-30 2021-12-03 珠海格力电器股份有限公司 一种贯流风道和出风装置
CN215908072U (zh) * 2021-09-30 2022-02-25 珠海格力节能环保制冷技术研究中心有限公司 贯流风道及风扇
CN215908118U (zh) * 2021-09-30 2022-02-25 珠海格力电器股份有限公司 一种贯流风道和出风装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278473A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 送風装置
JP2004293887A (ja) * 2003-03-26 2004-10-21 Sharp Corp 空気調和機
CN203571893U (zh) * 2013-10-24 2014-04-30 广东美的制冷设备有限公司 立式空调室内机
CN206037363U (zh) * 2016-08-25 2017-03-22 珠海格力电器股份有限公司 空调器
CN113719458A (zh) * 2021-09-30 2021-11-30 珠海格力节能环保制冷技术研究中心有限公司 贯流风道及风扇
CN113738703A (zh) * 2021-09-30 2021-12-03 珠海格力电器股份有限公司 一种贯流风道和出风装置
CN215908072U (zh) * 2021-09-30 2022-02-25 珠海格力节能环保制冷技术研究中心有限公司 贯流风道及风扇
CN215908118U (zh) * 2021-09-30 2022-02-25 珠海格力电器股份有限公司 一种贯流风道和出风装置

Also Published As

Publication number Publication date
CN113738703A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
AU2018204570B2 (en) Blower and outdoor unit of air conditioner comprising same
WO2019136939A1 (zh) 轴流扇叶、轴流风机扇叶组件、轴流风机风道组件
US20130101408A1 (en) Fan, molding die, and fluid feeder
WO2023050796A1 (zh) 一种贯流风道和出风装置
EP3726061B1 (en) Air duct assembly for axial fan
CN215908118U (zh) 一种贯流风道和出风装置
WO2024114768A1 (zh) 一种出风格栅和空调室外机
CN215908072U (zh) 贯流风道及风扇
WO2023010958A1 (zh) 离心风叶、风机及空调系统
CN113719458A (zh) 贯流风道及风扇
US20240229823A1 (en) Cross-flow air duct and air outlet device
WO2023103121A1 (zh) 蜗壳结构、风道组件以及空调器
CN114370428A (zh) 风机叶片及离心风机
CN215672883U (zh) 贯流风道、风扇
CN106523434A (zh) 一种离心风扇蜗壳及室内机
CN111197597A (zh) 离心风机、离心风机组件及具有其的空调器
JP2001304605A (ja) 空気調和機
CN113700673A (zh) 贯流风道、风扇
CN216767853U (zh) 风机叶片及离心风机
WO2024087274A1 (zh) 换热器及空调器
CN213811914U (zh) 换热翅片、换热器以及空调装置
CN108488902B (zh) 窗式空调设备
WO2023103123A1 (zh) 蜗壳结构、风道组件以及空调器
CN115977998A (zh) 离心风叶、离心风机及空调装置
CN113758354A (zh) 换热翅片、换热器以及空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE