WO2023010958A1 - 离心风叶、风机及空调系统 - Google Patents

离心风叶、风机及空调系统 Download PDF

Info

Publication number
WO2023010958A1
WO2023010958A1 PCT/CN2022/095174 CN2022095174W WO2023010958A1 WO 2023010958 A1 WO2023010958 A1 WO 2023010958A1 CN 2022095174 W CN2022095174 W CN 2022095174W WO 2023010958 A1 WO2023010958 A1 WO 2023010958A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
volute
centrifugal fan
fan blade
fan
Prior art date
Application number
PCT/CN2022/095174
Other languages
English (en)
French (fr)
Inventor
杜辉
刘华
朱江程
曾成
陈博强
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to EP22851675.3A priority Critical patent/EP4317702A1/en
Priority to CA3218681A priority patent/CA3218681A1/en
Publication of WO2023010958A1 publication Critical patent/WO2023010958A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/162Double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/424Double entry casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics

Definitions

  • the present disclosure relates to the technical field of air conditioning, in particular to a centrifugal blade, a fan and an air conditioning system including the same.
  • the forward-curved fan system including the centrifugal fan blade and the volute (the bending direction of the fan blade air outlet is the same as the direction of the fan rotation and work) fan system has the following problems;
  • the inner diameter of the fan blades has the same characteristics along the height direction, the air inlet angle of the fan blades is the same, and the frequency of fluid entering the fan blades is similar, resulting in greater noise when the fan blades are working;
  • the purpose of the present disclosure is to provide a centrifugal fan blade, a centrifugal volute, a fan and an air-conditioning system including the same, so as to solve the technical problems of the centrifugal fan with small air volume, high noise and low fan efficiency in the known technology of the inventor.
  • a centrifugal fan blade provided by the present disclosure includes a blade and a fixed plate, the blade is a forward-curved structure, and is fixed on the fixed plate; along the height direction of the blade, from the suction port to the fixed plate, all Or the width of some of the blades gradually increases, so that the suction port of the fan blade has a tapered trumpet-like structure.
  • the inlet sides of some or all of the vanes are arranged obliquely relative to the axial direction of the fixed disk.
  • the suction side of the vanes are arranged differently or identically with respect to the axial inclination of the fixed disk.
  • the inlet angle of the blades changes continuously from the suction port to the direction of the fixed disk.
  • the inlet angle of the vane changes continuously so as to increase continuously.
  • the value range of the second coefficient Y is 0.2°/mm ⁇ Y ⁇ 0.5°/mm.
  • the value range of the first coefficient X is 0.07 ⁇ X ⁇ 0.2.
  • the range of the outlet angle ⁇ of the blade is: 5° ⁇ 40°.
  • the outlet angle ⁇ of the vane is in a range of 13° ⁇ 24°.
  • the centrifugal fan blade is a single-side blade structure or a double-side blade structure, and when it is a double-side blade structure, the blades on both sides are arranged in a staggered position.
  • it further includes a second fan blade disposed on the fixed disk and located inside the blade.
  • it further includes a reinforcement ring located at the end of the air outlet side of the blade, and the reinforcement ring is in a ring structure.
  • a fan provided in the present disclosure includes a volute and the centrifugal vane, and the volute collects the outflow of the centrifugal vane and guides it to discharge it from the outlet.
  • the volute is a single-sided inclined structure or a double-sided inclined structure.
  • volute when the volute is a single-sided inclined structure, 0.7 ⁇ L1/L2 ⁇ 0.99, and when the volute is a double-sided inclined structure, 0.6 ⁇ L1/L2 ⁇ 0.98; wherein: L1 is The minimum distance on both sides of the volute, L2 is the maximum distance on both sides of the volute.
  • the two ends of the minimum distance L1 on both sides of the volute are located in the obtuse fan-shaped area formed by the volute tongue, the center of the volute inlet, and the end of the volute involute; the volute The two ends of the maximum distance L2 on both sides of the casing are located in the fan-shaped area formed by the end of the involute of the volute, the center of the inlet of the volute, and the distal end of the outlet on the side of the volute tongue.
  • the volute tongue of the volute is a straight volute tongue or an inclined volute tongue; when the volute tongue is a straight volute tongue, the length direction of the volute tongue is parallel to the axial direction of the centrifugal blade ; When the volute tongue is an inclined volute tongue, there is an included angle between the length direction of the volute tongue and the axial direction of the centrifugal blade.
  • the volute tongue is a unilaterally inclined or double-sidedly inclined structure.
  • the volute is an integral structure or a split structure.
  • the volute is a split structure composed of multiple volute units, adjacent volute units are locked by a limit Structural connections.
  • a partial cutout is provided on the volute.
  • An air conditioning system provided in the present disclosure includes the fan and a heat exchanger.
  • the present disclosure has the following beneficial effects:
  • the centrifugal fan blade provided by the present disclosure, by setting the suction port of the fan blade into a horn-shaped tapered structure, under the same outer diameter and height of the fan blade, increases the air intake area of the fan blade, reduces air intake resistance, and improves air volume and Fan efficiency: through the direction along the height direction of the blade, from the suction port of the blade to the fixed plate of the blade, the air inlet angle of the blade changes continuously, which effectively disperses the intake fluid and reduces noise; through the direction along the height direction of the blade , from the suction port to the direction of the fixed disk, the width of the fan blades gradually increases, and the working capacity of the fan blades gradually increases, which improves the average working capacity of the entire fan blade height direction, and improves the overall work efficiency of the fan.
  • the fan provided by the present disclosure further increases the air intake channel by adopting the inclined volute, reduces the air intake resistance, increases the air volume, and reduces the noise; at the same time, the inclined volute can also expand the air outlet fluid, so that the air flow can be blown to the heat exchanger more uniformly In order to increase the heat transfer capacity of the air conditioning unit and reduce the power of the unit.
  • Fig. 1 is a structural schematic diagram of the centrifugal fan blade viewed from the side of the suction port in the inventor's known technology
  • Fig. 2 is a structural schematic diagram of the centrifugal fan blade viewed from the air outlet side in the inventor's known technology
  • Fig. 3 is a structural schematic view of the centrifugal fan blade of the present disclosure viewed from the suction port side;
  • Fig. 4 is a partial enlarged view of A in Fig. 3;
  • Fig. 5 is a schematic view of the structure of the disclosed centrifugal fan blade viewed from the wind outlet side when the centrifugal fan blade is a single-sided fan blade;
  • Fig. 6 is a schematic view of the structure of the centrifugal blade of the present disclosure viewed from the wind outlet side when the centrifugal fan blade is a double-sided fan blade;
  • Fig. 7 is a structural schematic view of the centrifugal fan blade of the present disclosure when the blade part is cut off;
  • Fig. 8 is a schematic structural diagram of the inclined air inlet of the fan blade part of the centrifugal fan blade of the present disclosure
  • Fig. 9 is a schematic structural view of a centrifugal volute of the present disclosure.
  • Fig. 10 is a schematic structural view of the disclosed centrifugal volute when both sides are inclined;
  • Fig. 11 is a sectional view along II' among Fig. 10;
  • Fig. 12 is a schematic structural view of the centrifugal volute of the present disclosure when it is inclined on one side;
  • Fig. 13 is a sectional view along II' in Fig. 12;
  • Fig. 14 is a schematic diagram of the inclined volute tongue structure in the centrifugal volute of the present disclosure
  • Fig. 15 is a comparison chart of the air volume when the centrifugal fan blade of the present disclosure is applied to a 7.2KW air duct machine;
  • Fig. 16 is a noise comparison diagram when the centrifugal fan blade of the present disclosure is applied to a 7.2KW air duct machine;
  • Fig. 17 is a power comparison diagram when the centrifugal fan blade of the present disclosure is applied to a 7.2KW air duct machine.
  • the disclosure provides a centrifugal fan blade, including a blade 1 and a fixed disk 3, the blade 1 is a forward-curved structure (the bending direction of the air outlet of the fan blade is the same as the direction of the blade's rotation and work), and is fixed on a fixed On the disk 3, the width of all or part of the blades 1 gradually increases from the air inlet 11 to the fixed disk 3 along the height direction of the blade 1, so that the air inlet 11 of the fan blade has a tapered horn-like structure.
  • the width of the blade referred to here refers to the radial dimension along the fixed disk 3, that is, the width of the blade 1 along the air outlet direction of the airflow, in other words, refers to the width parallel to the fixed disk. Cut blade 1, and find the farthest distance between two points in the section.
  • the width of the blades is gradually increased from the suction port 11 to the direction of the fixed disk, and the working capacity of the blades is gradually enhanced, so that the average working capacity of the entire fan blades in the height direction is improved, and the overall working efficiency of the fan is improved.
  • the blade height refers to the height of the blade 1 along the axial direction, that is, the distance from the suction port 11 to the blade 1 in the direction of the fixed disk 3 .
  • the suction port 11 is a mouth structure formed by the ends of all the blades 1 away from the fixed disk 3 .
  • the air flow enters through the suction port 11, that is, enters along the axial direction of the centrifugal fan blade, then turns to 90 degrees and then flows out through the radial direction of the centrifugal fan blade, that is, the width direction of the fan blade.
  • the centrifugal fan blade provided by the present disclosure, by setting the suction port 11 of the fan blade into a horn-shaped tapered structure, under the same outer diameter and height of the fan blade, the air intake area of the fan blade is increased, the air intake resistance is reduced, and the air volume is increased. and fan efficiency.
  • the value range of the first coefficient in the range of the air inlet 11 of the fan blade is: 0.07 ⁇ X ⁇ 0.2.
  • the inlet angle of the blade 1 changes continuously from the suction port 11 to the fixed disk 3 .
  • the air intake angle of the blade 1 is continuously changed along the height direction of the blade, from the suction port 11 of the blade to the fixed plate of the blade, so as to effectively disperse the intake fluid and reduce noise.
  • the blade inlet angle is the angle between the tangent line of the blade shape line and the tangent line of the circumference at the blade inlet. When there is a rounded corner at the blade inlet, it is calculated from the non-rounded corner.
  • the optimal solution is that the value range of the second coefficient Y in the inlet angle range of the blade is 0.2 degrees/mm ⁇ Y ⁇ 0.5 degrees/mm.
  • the range of the exit angle ⁇ of the blade 1 is: 5° ⁇ 40°.
  • the blade exit angle is the angle between the blade profile tangent and the circumference tangent at the blade exit.
  • the range of the exit angle ⁇ of the blade is: 13° ⁇ 24°.
  • the air inlet side of some or all of the blades 1 is arranged obliquely relative to the axial direction of the fixed disk 3 .
  • the air inlet side of the blade 1 is also the innermost side of the blade 1 , or in other words, the side of the blade 1 closest to the axis of the fixed disk 3 along the radial direction of the fixed disk 3 .
  • the air flow enters through the suction port 11 of the centrifugal fan blade, then enters through the air inlet side of the blade 1, and then is discharged through the air outlet side of the blade 1.
  • the vanes 1 inclined on the intake side can be arranged continuously or at intervals.
  • the inclination angles of the blades 1 at the inlet side are different or the same. That is to say, the air inlet side of the blade 1 may be entirely inclined, or part of the blades may be inclined, or the degree of inclination of the blades may be different.
  • the centrifugal blades have a single-side blade structure or a double-side blade structure, and when the double-side blade structure is used, the blades on both sides are staggered to reduce noise.
  • it also includes a second fan blade 4 arranged on the fixed disk 3 and located inside the blade 1 .
  • FIG. 7 it further includes a reinforcement ring 2 located at the end of the air outlet side of the blade 1 , and the reinforcement ring 2 has a ring structure.
  • the length of the volute 5 is constant, part of the blades on the inner side of the structural reinforcement ring can be cut off, and the length of the blades can be increased to keep a suitable distance from the volute, so as to increase the working length of the blades.
  • Centrifugal fans are often used in parallel or in places where the length direction is limited, such as on ducted products. In order to achieve better air intake conditions, it can be used with an inclined volute.
  • the inclined volute means that the side of the volute is not perpendicular to the rotation axis of the centrifugal fan, and has a tendency to gradually expand from the suction side to the outlet side. In this way, the effects of greater air volume, lower noise, lower power consumption, and better heat exchange between the two devices are achieved.
  • the present disclosure provides a fan, as shown in FIG. 9 , including a volute 5 and a centrifugal vane arranged in the volute 5.
  • the volute 5 collects the outflow of the centrifugal vane and guides it to discharge from the outlet. .
  • the distance characteristics of the inlet side of the volute 5 the minimum distance L1 on both sides of the volute (except the fillet), the maximum distance L2 on both sides of the volute, and further, the volute 5 is unilaterally inclined structure or double-sided inclined structure.
  • the volute 5 is a single-sided inclined structure or a double-sided inclined structure.
  • volute 5 when the volute 5 is a one-sided inclined structure, 0.7 ⁇ L1/L2 ⁇ 0.99, preferably 0.85 ⁇ L1/L2 ⁇ 0.96;
  • volute 5 when the volute 5 is a double-sided inclined structure, 0.6 ⁇ L1/L2 ⁇ 0.98, preferably 0.8 ⁇ L1/L2 ⁇ 0.95; where: L1 is the minimum distance on both sides of the volute, L2 is the two sides of the volute side distance.
  • the two ends of the minimum distance L1 on both sides of the volute are located in the obtuse fan-shaped area formed by the volute tongue 6, the center of the volute inlet and the end of the volute involute;
  • the two ends of the maximum distance L2 on both sides of the casing are located in the fan-shaped area formed by the end of the involute of the volute, the center of the inlet of the volute and the distal end of the outlet of the volute tongue.
  • the projection interval of the narrowest distance on the inlet side of the volute 5 project the volute 5 along the middle plane II', and keep the outermost projection J-K of the non-involute section of the volute 5 Vertically upwards, the projection of the two ends of the minimum distance L1 on both sides of the volute is located in the area surrounded by A-O-C (obtuse angle), O is the rotation center of the fan blade (when the inlet of the volute is circular, it can also be the inlet of the volute Air circle center), A is the tangent point between O and the volute tongue; C is the intersection point passing through O and the J-K vertical line and the outermost side of the volute.
  • A-O-C use angle
  • O the rotation center of the fan blade (when the inlet of the volute is circular, it can also be the inlet of the volute Air circle center)
  • A is the tangent point between O and the volute tongue
  • C is the intersection point passing through O and the J-K vertical line and the outer
  • the projection of the two ends of the minimum distance L1 on both sides of the volute is located in the area where A-O-B (obtuse angle) is located; B is the intersection of the parallel line O and J-K and the outermost side of the volute, and point B is far away from the J-K side;
  • the characteristics of the volute tongue the shape of the volute tongue has an impact on the noise, and the volute tongue 6 of the volute 5 is a straight volute tongue or an inclined volute tongue; when the volute tongue 6 is a straight volute tongue, the volute tongue 6
  • the length direction is parallel to the axial direction of the blade 1; when the volute tongue 6 is an inclined volute tongue, there is an included angle between the length direction of the volute tongue 6 and the axial direction of the blade 1 .
  • the projection interval of the widest distance on the inlet side of the volute project the volute 5 along the middle plane I-I', keep the outermost projection J-K of the non-involute section of the volute 5 vertically upward, and the maximum distance between the two sides of the volute
  • the projection of the two ends of L2 is located in the area surrounded by D-O-C (right angle)
  • O is the rotation center of the fan blade (when the air inlet of the volute is circular, it can also be the center of the air intake circle of the volute)
  • D passes through O and J-K
  • the intersection of the parallel line and the outermost side of the volute, point D is close to the J-K side
  • C is the intersection of the vertical line passing through O and J-K and the outermost side of the volute.
  • the projection of the two ends of the maximum distance L2 on both sides of the volute is located in the area where E-O-J (acute angle) is located; E is the projection near the outermost contour of the volute on the volute tongue side; J is away from the volute tongue side volute The outermost projection of the outer contour.
  • volute tongue 6 is an inclined structure in which one side is inclined or both sides are inclined toward the middle.
  • volute 5 has an integral structure or a split structure.
  • the volute 5 is a split structure composed of multiple volute units, adjacent volute units are connected by a limiting locking structure.
  • the volute in order to facilitate the installation and removal of fan blades or motors, generally the volute will be split into multiple structures, as shown in Figure 9, the volute 5 can be split into a first volute 8 and a second volute 9, two
  • the volutes are provided with mutual limit buckle features, which can easily realize the assembly and separation of the volutes; further, the volute 5 can also be disassembled into two or more parts;
  • partial cutouts 10 may be formed by cutting out local features of the volute 5 .
  • the present disclosure provides an air conditioning system, including the fan and heat exchanger mentioned above.
  • the centrifugal fan blade provided by this disclosure is applied to a certain 7.2kw air duct machine as an example.
  • the air volume of the unit is large, and the air volume is increased by 10.6%-12.1% at the same speed, and the noise is reduced by 3 at the same air volume.
  • -5dB(A) the efficiency of the fan system is increased by 23%-45%.
  • inward refers to a direction toward the center of the accommodating space
  • outward refers to a direction away from the center of the accommodating space
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种离心风叶、风机及空调系统,该离心风叶包括叶片(1)和固定盘(3);叶片(1)为前弯型叶片结构,固定在固定盘(3)上;沿叶片高度方向从吸气口延伸到固定盘,全部或部分叶片(1)宽度逐步增加,风叶的吸气口(11)呈渐缩形喇叭状结构;风机包括离心风叶和蜗壳;蜗壳两侧为倾斜的;空调系统包括风机。该离心风叶的吸气口成喇叭形渐缩结构,在相同风叶外径及高度条件下,增加风叶进气面积,减少进气阻力,提高风量及风机效率;叶片的进气角的变化,有效离散进气流体,降低噪音;叶片宽度逐渐增加,叶片做功能力逐渐增强,提高风机整体做功效率。

Description

离心风叶、风机及空调系统
相关申请的交叉引用
本公开是以中国申请号为202110889437.5,申请日为2021年8月4日的申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及空调技术领域,尤其是涉及一种离心风叶、风机及包含其的空调系统。
背景技术
如图1所示,包含离心风叶和蜗壳的前弯型(风叶出气口弯曲方向与风叶旋转做功方向相同)风机系统,具有如下问题;
1、传统离心风叶,如图1和图2所示,当单个叶片1外径一定,需要提升机组的风量时,可以增加叶片1的做功高度,但此时风机吸风口面积成为制约风机的瓶颈因素,直接扩大内径,会导致风叶做功面积(每个叶片的宽度和高度相乘就是做功面积)的下降,从而导致风叶做功能力下降,无法达到提升风量的目的,传统离心风机风量低、效率低;
2、风叶内径沿高度方向呈现相等的特性,风叶进气角相同,流体进入风叶的频率相近,导致风叶工作时,噪音较大;
3、当风叶高度较大时,由于风叶做功能力相同,风叶靠近内侧位置,负压度较大,内侧难以有效吸气,导致整个风叶工作效率不高。
如上三点,导致风机系统风量小、噪音大、风机效率低。
发明内容
本公开的目的在于提供一种离心风叶、离心蜗壳、风机及包含其的空调系统,以解决发明人已知技术中存在的离心风机风量小、噪音大、风机效率低的技术问题。
为实现上述目的,本公开提供了以下技术方案:
本公开提供的一种离心风叶,包括叶片和固定盘,所述叶片为前弯型结构,固定在所 述固定盘上;沿所述叶片高度方向从吸气口到所述固定盘,全部或部分所述叶片的宽度逐步增加,使得风叶的吸气口呈渐缩形喇叭状结构。
在一些实施例中,部分或全部所述叶片的进气侧相对于固定盘的轴向倾斜地设置。
在一些实施例中,所述叶片的吸进气侧相对于固定盘的轴向倾斜不同或相同地设置。
在一些实施例中,沿所述叶片高度方向,从吸气口向所述固定盘方向,所述叶片的进气角连续变化。
在一些实施例中,所述叶片的进气角连续变化为连续变大。
在一些实施例中,所述叶片的进气角最大值φ2为:φ2=φ1+H×Y,其中:φ1为叶片进气角最小值,H为叶片高度,Y为第二系数,1度/毫米≥Y≥0.04度/毫米。
在一些实施例中,所述第二系数Y数值范围是0.2度/毫米≤Y≤0.5度/毫米。
在一些实施例中,所述离心风叶的吸气口垂直于轴线的最大内切圆直径D1为,D1=D2+H×X,其中:D2为离心风叶的吸气口垂直于轴线的最小内切圆直径,H为叶片高度,X为第一系数,0.35≥X≥0.02。
在一些实施例中,所述第一系数X数值范围是0.07≤X≤0.2。
在一些实施例中,所述叶片的出口角β的范围为:5°≤β≤40°。
在一些实施例中,所述叶片的出口角β的范围为13°≤β≤24°。
在一些实施例中,所述离心风叶为单侧叶片结构或双侧叶片结构,当为双侧叶片结构时,两侧所述叶片错位设置。
在一些实施例中,还包括设置在所述固定盘上,并位于所述叶片内侧的第二风叶。
在一些实施例中,还包括位于所述叶片出气侧端部的加强环,所述加强环呈环状结构。
本公开提供的一种风机,包括蜗壳和所述离心风叶,所述蜗壳收集所述离心风叶出流并导流后从出流口排出。
在一些实施例中,所述蜗壳为单侧倾斜结构或双侧倾斜结构。
在一些实施例中,当所述蜗壳为单侧倾斜结构时,0.7≤L1/L2≤0.99,当所述蜗壳为 双侧倾斜结构时,0.6≤L1/L2≤0.98;其中:L1为蜗壳两侧最小距离,L2为蜗壳两侧最大距离。
在一些实施例中,所述蜗壳两侧最小距离L1的两端点位于以蜗舌、蜗壳进流口圆心和蜗壳渐开线末端三者所组成的钝角形扇形区域内;所述蜗壳两侧最大距离L2的两端点位于以蜗壳渐开线末端、蜗壳进流口圆心和蜗舌侧出流口远端三者所组成的扇形区域内。
在一些实施例中,所述蜗壳的蜗舌为平直蜗舌或倾斜蜗舌;当所述蜗舌为平直蜗舌时,所述蜗舌长度方向与所述离心风叶轴向平行;当所述蜗舌为倾斜蜗舌时,所述蜗舌长度方向与所述离心风叶轴向之间具有夹角。
在一些实施例中,所述蜗舌为单侧倾斜或双侧倾斜结构。
在一些实施例中,所述蜗壳为一体结构或分体结构,当所述蜗壳为分体结构由多部分蜗壳单元组成时,相邻所述蜗壳单元之间通过限位式锁定结构连接。
在一些实施例中,所述蜗壳上设置有局部切除部。
本公开提供的一种空调系统,包括所述风机和换热器。
本公开与发明人已知技术相比具有如下有益效果:
本公开提供的离心风叶,通过将风叶的吸气口设置成喇叭形渐缩结构,在相同风叶外径及高度条件下,增加风叶进气面积,减少进气阻力,提高风量及风机效率;通过沿风叶的高度方向,从风叶吸气口往风叶固定盘的方向,风叶的进气角连续变化,有效离散进气流体,降低噪音;通过沿风叶的高度方向,从吸气口到固定盘方向,风叶宽度逐渐增加,风叶做功能力逐渐增强,提高了整个风叶高度方向平均做功能力,提高风机整体做功效率。本公开提供的风机,通过采用倾斜的蜗壳进一步增加进气通道,降低进气阻力,提高风量、降低噪音;同时倾斜的蜗壳还可以扩展出气流体,使得气流更加均匀的吹到换热器上,从而提高空调机组的换热量、降低机组功率。
附图说明
为了更清楚地说明本公开实施例或发明人已知技术中的技术方案,下面将对实施例或 发明人已知技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是发明人已知技术中离心风叶从吸气口侧看过去的结构示意图;
图2是发明人已知技术中离心风叶从出风侧看过去的结构示意图;
图3是本公开离心风叶从吸气口侧看过去的结构示意图;
图4是图3中A局部放大图;
图5是本公开离心风叶为单侧风叶时从出风侧看过去的结构示意图;
图6是本公开离心风叶为双侧风叶时从出风侧看过去的结构示意图;
图7是本公开离心风叶进行叶片部分切除时的结构示意图;
图8是本公开离心风叶部分风叶吸气口倾斜的结构示意图;
图9是本公开离心蜗壳的结构示意图;
图10本公开离心蜗壳为双侧倾斜时的结构示意图;
图11是图10中沿II’的剖面视图;
图12是本公开离心蜗壳为单侧倾斜时的结构示意图;
图13是图12中沿II’的剖面视图;
图14是本公开离心蜗壳中倾斜蜗舌结构示意图;
图15是本公开离心风叶应用于7.2KW风管机时风量对比图;
图16是本公开离心风叶应用于7.2KW风管机时噪音对比图;
图17是本公开离心风叶应用于7.2KW风管机时功率对比图。
图中:1、叶片;2、加强环;3、固定盘;4、第二风叶;5、蜗壳;6、蜗舌;7、渐开段;8、第一蜗壳;9、第二蜗壳;10、局部切除部;11,吸气口。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将对本公开的技术方案进行详细的描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其 它实施方式,都属于本公开所保护的范围。
如图3所示,本公开提供了一种离心风叶,包括叶片1和固定盘3,叶片1为前弯型(风叶出气口弯曲方向与风叶旋转做功方向相同)结构,固定在固定盘3上,沿叶片1高度方向从吸气口11到固定盘3,全部或部分叶片1的宽度逐步增加,使得风叶的吸气口11呈渐缩形喇叭状结构。
在此需要说明的是,此处所指的叶片的宽度是指沿固定盘3径向尺寸,也就是沿气流的出风方向,叶片1的宽度,换句话说,也就是指平行于固定盘对叶片1剖切,在所做截面内两点间最远距离。
本公开通过沿风叶的高度方向,从吸气口11到固定盘方向,叶片宽度逐渐增加,叶片做功能力逐渐增强,提高了整个风叶高度方向平均做功能力,提高风机整体做功效率。
在此需要说明的是,叶片高度是指叶片1沿轴向的高度也就是从吸气口11到固定盘3方向叶片1的距离。吸气口11为所有的叶片1远离固定盘3的一端围合成的口部结构。气流经吸气口11进入也就是沿离心风叶的轴向进入,然后转向90度后经离心风叶的径向也就是风叶宽度方向流出。
本公开提供的离心风叶,通过将风叶的吸气口11设置成喇叭形渐缩结构,在相同风叶外径及高度条件下,增加风叶进气面积,减少进气阻力,提高风量及风机效率。
如图3、图5、图6所示,作为本公开的一种可选实施方式,离心风叶的吸气口11垂直于轴线的最大内切圆直径D1为,D1=D2+H×X,其中:D2为离心风叶的吸气口11垂直于轴线的最小内切圆直径,H为叶片高度,X为第一系数,0.35≥X≥0.02。
最优的是,风叶吸气口11范围中第一系数数值范围在:0.07≤X≤0.2。
作为本公开的一种可选实施方式,沿叶片1高度方向,从吸气口11向固定盘3方向,叶片1的进气角连续变化。
进一步的,上述所指的叶片1的进气角连续变化为连续变大。
本公开通过沿风叶的高度方向,从风叶吸气口11往风叶固定盘的方向,叶片1的进气角连续变化,有效离散进气流体,降低噪音。
如图4、图5和图6所示,具体的,在本实施例中,叶片1的进气角最大值φ2为:φ2=φ1+H×Y,其中:φ1为叶片进气角最小值,H为叶片高度,Y为第二系数,1度/毫米≥Y≥0.04度/毫米。叶片进气角为叶片入口处,叶片型线切线与圆周切线的夹角,当叶片入口存在圆角时,从非圆角处开始计算。
最优的方案是,叶片的进气角范围中第二系数Y数值范围是0.2度/毫米≤Y≤0.5度/毫米。
如图3和图4所示,作为本公开的一种可选实施方式,叶片1的出口角β范围为:5°≤β≤40°。叶片出口角为叶片出口处,叶片型线切线与圆周切线的夹角。
最优的是,叶片的出口角β角度范围在:13°≤β≤24°。
如图8所示,作为本公开的一种可选实施方式,部分或全部叶片1的进气侧相对于固定盘3的轴线方向是倾斜设置的。
此处需要说明的是,叶片1的进气侧也就是叶片1的最内侧,或者说,是沿固定盘3径向,叶片1最靠近固定盘3轴线的一侧。气流经离心风叶的吸气口11进入,然后经叶片1的进气侧进入,然后经叶片1的出气侧排出。
如图6所示,对风叶一侧做了局部剖视图;
进气侧倾斜的叶片1可以连续设置也可以间隔设置。
如图8所示,更进一步的,叶片1的进气侧倾斜角度不同或相同。也就是说,叶片1的进气侧可以全部倾斜,也可以部分叶片倾斜,还可以叶片倾斜程度不同。
在此需要说明的是,在本实施例中,离心风叶为单侧叶片结构或双侧叶片结构,当为双侧叶片结构时,两侧叶片错位设置,以降低噪音。
进一步的,还包括设置在固定盘3上,并位于叶片1内的第二风叶4。
如图7所示,进一步的,还包括位于叶片1出气侧端部的加强环2,加强环2呈环状结构。当蜗壳5长度一定时,可以切除结构加强环内侧的部分风叶,同时增加风叶长度,保持与蜗壳的合适距离,以达到增加风叶做功长度的目的。
离心风机经常并联使用或使用在长度方向受限的场合,如风管机产品上使用。为了达 到更好的进气条件,可以配合倾斜蜗壳使用,倾斜蜗壳是指蜗壳的侧面与离心风机的转动轴不垂直,具有从吸气侧向出气侧具有逐步扩张的趋势。由此实现风量更大、噪音更低、功耗更小、两器换热效果更好的效果。
本公开提供了一种风机,如图9所示,包括蜗壳5和设置在蜗壳5内的离心风叶,蜗壳5收集所述离心风叶出流并导流后从出流口排出。
如图10和图12所示,蜗壳5进气侧距离特征:蜗壳两侧最小距离L1(除圆角外),蜗壳两侧最大距离L2,进一步的,蜗壳5为单侧倾斜结构或双侧倾斜结构。
蜗壳5为单侧倾斜结构或双侧倾斜结构。
如图13所示,当蜗壳5为单侧倾斜结构时,0.7≤L1/L2≤0.99,优选0.85≤L1/L2≤0.96;
如图11所示,当蜗壳5为双侧倾斜结构时,0.6≤L1/L2≤0.98,优选0.8≤L1/L2≤0.95;其中:L1为蜗壳两侧最小距离,L2为蜗壳两侧最大距离。
如图11和图13所示,蜗壳两侧最小距离L1的两端点位于以蜗舌6、蜗壳进流口圆心和蜗壳渐开线末端三者所组成的钝角形扇形区域内;蜗壳两侧最大距离L2的两端点位于以蜗壳渐开线末端、蜗壳进流口圆心和蜗舌出流口远端三者所组成的扇形区域内。
如图11和图13所示,具体的:蜗壳5进气侧最窄距离投影区间:将蜗壳5沿着中面I-I’投影,保持蜗壳5非渐开段最外侧投影J-K竖直向上,蜗壳两侧最小距离L1两端点投影位于A-O-C(钝角)所包围的区域内,O为风叶的旋转中心(当蜗壳进气口为圆形时,也可是蜗壳的进气圆心),A是O与蜗舌的相切点;C是经过O与J-K垂线与蜗壳最外侧的交点。
在一些实施例中,蜗壳两侧最小距离L1两端点投影位于A-O-B(钝角)所处的区域内;B是经过O与J-K平行线与蜗壳最外侧的交点,B点远离J-K侧;
如图14所示,蜗舌特征:蜗舌的形状对噪音有影响,蜗壳5的蜗舌6为平直蜗舌或倾斜蜗舌;当蜗舌6为平直蜗舌时,蜗舌6长度方向与叶片1轴向平行;当蜗舌6为倾斜蜗舌时,蜗舌6长度方向与叶片1轴向之间具有夹角。
具体的:蜗壳进气侧最宽距离投影区间:将蜗壳5沿着中面I-I’投影,保持蜗壳5非渐开段最外侧投影J-K竖直向上,蜗壳两侧最大距离L2两端点投影位于D-O-C(直角)所包围的区域内,O为风叶的旋转中心(当蜗壳进气口为圆形时,也可是蜗壳的进气圆心),D是经过O与J-K平行线与蜗壳最外侧的交点,D点靠近J-K侧;C是经过O与J-K垂线与蜗壳最外侧的交点。
在一些实施例中,蜗壳两侧最大距离L2两端点投影位于E-O-J(锐角)所处的区域内;E是靠近蜗舌侧蜗壳外轮廓最外侧的投影;J是远离蜗舌侧蜗壳外轮廓最外侧的投影。
进一步的,蜗舌6为单侧倾斜或双侧向中间倾斜的倾斜结构。
进一步的,蜗壳5为一体结构或分体结构,当蜗壳5为分体结构由多部分蜗壳单元组成时,相邻蜗壳单元之间通过限位式锁定结构连接。
具体的,为了方便安装拆卸风叶或电机,一般蜗壳会拆分成多个结构,如图9所示,蜗壳5可拆分成第一蜗壳8及第二蜗壳9,两个蜗壳之间设置相互限位的卡扣特征,可以方便的实现蜗壳拼装与分离;进一步的蜗壳5还可以拆分成两个以上的部分;
蜗壳上具有安装特征,与其固定件连接,以保证安装的可靠性。
为了进一步减少风管机的厚度方向尺寸,可以对蜗壳5进行局部特征进行切除形成局部切除部10。
本公开提供了一种空调系统,包括上述的风机和换热器。
如图15-图17所示,本公开提供的离心风叶,应用在某款7.2kw风管机上为例,机组风量大,相同转速风量提升10.6%—12.1%,相同风量下的噪音降低3-5dB(A)左右,风机系统效率提升23%-45%%。
这里首先需要说明的是,“向内”是朝向容置空间中央的方向,“向外”是远离容置空间中央的方向。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图1所示的方位或位置关系,仅是为了 便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种离心风叶,包括叶片(1)和固定盘(3),所述叶片(1)为前弯型结构,固定在所述固定盘(3)上;其中沿所述叶片(1)高度方向,从吸气口(11)到所述固定盘(3),全部或部分所述叶片(1)的宽度逐步增加。
  2. 根据权利要求1所述的离心风叶,其中部分或全部所述叶片(1)的进气侧相对于所述固定盘(3)的轴向倾斜地设置。
  3. 根据权利要求2所述的离心风叶,其中各所述叶片(1)的进气侧相对于所述固定盘(3)的轴向的倾斜被不同或相同地设置。
  4. 根据权利要求1-3中任一项所述的离心风叶,其中沿所述叶片(1)高度方向,从吸气口(11)朝着所述固定盘(3),所述叶片(1)的进气角连续变化。
  5. 根据权利要求4所述的离心风叶,其中所述叶片(1)的进气角连续变化为连续变大。
  6. 根据权利要求4所述的离心风叶,其中所述叶片(1)的进气角最大值φ2为:φ2=φ1+H×Y,其中:φ1为叶片(1)进气角最小值,H为叶片(1)高度,Y为第二系数,1度/毫米≥Y≥0.04度/毫米。
  7. 根据权利要求6所述的离心风叶,其中所述第二系数Y数值范围是0.2度/毫米≤Y≤0.5度/毫米。
  8. 根据权利要求1-7中任一项所述的离心风叶,其中所述离心风叶的吸气口(11)垂直于轴线的最大内切圆直径D1为,D1=D2+H×X,其中:D2为离心风叶的吸气口(11)垂直于轴线的最小内切圆直径,H为叶片(1)高度,X为第一系数,0.35≥X≥0.02。
  9. 根据权利要求8所述的离心风叶,其中所述第一系数X数值范围是0.07≤X≤0.2。
  10. 根据权利要求1所述的离心风叶,其中所述叶片(1)的出口角β的范围为:5°≤β≤40°。
  11. 根据权利要求10所述的离心风叶,其中所述叶片(1)的出口角β的范围为13°≤β≤24°。
  12. 根据权利要求1-11中任一项所述的离心风叶,其中所述离心风叶为单侧叶片(1)结构或双侧叶片(1)结构,当为双侧叶片(1)结构时,两侧的所述叶片(1)错位设置。
  13. 根据权利要求1-12中任一项所述的离心风叶,其中还包括设置在所述固定盘(3)上且位于所述叶片(1)内侧的第二风叶(4)。
  14. 根据权利要求1-13中任一项所述的离心风叶,还包括位于所述叶片(1)出气侧端部的加强环(2),所述加强环(2)呈环状。
  15. 一种用于空调系统的风机,包括蜗壳(5)和如权利要求1-14中任一所述的离心风叶,所述蜗壳(5)收集所述离心风叶出流并导流后从出流口排出。
  16. 根据权利要求15所述的风机,其中所述蜗壳(5)为单侧倾斜结构或双侧倾斜结构。
  17. 根据权利要求16所述的风机,其中当所述蜗壳(5)为单侧倾斜结构时,0.7≤L1/L2≤0.99,当所述蜗壳(5)为双侧倾斜结构时,0.6≤L1/L2≤0.98;其中:L1为蜗壳(5)两侧最小距离,L2为蜗壳(5)两侧最大距离。
  18. 根据权利要求17所述的风机,其中所述蜗壳(5)两侧最小距离L1的两端点位于以蜗舌(6)、蜗壳(5)进流口圆心和蜗壳(5)渐开线末端三者所组成的钝角形扇形区域内;所述蜗壳(5)两侧最大距离L2的两端点位于以蜗壳(5)渐开线末端、蜗壳(5)进流口圆心和蜗舌(6)侧出流口远端三者所组成的扇形区域内。
  19. 根据权利要求15-18中任一项所述的风机,其中所述蜗壳(5)的蜗舌(6)为平直蜗舌(6)或倾斜蜗舌(6);当所述蜗舌(6)为平直蜗舌(6)时,所述蜗舌(6)长度方向与所述离心风叶轴向平行;当所述蜗舌(6)为倾斜蜗舌(6)时,所述蜗舌(6)长度方向与所述离心风叶轴向之间成角度。
  20. 根据权利要求19所述的风机,其中所述蜗舌(6)为单侧倾斜或双侧倾斜结构。
  21. 根据权利要求15-20中任一项所述的风机,其中所述蜗壳(5)为一体结构或分体结构,当所述蜗壳(5)为分体结构由多部分蜗壳(5)单元组成时,相邻所述蜗壳(5)单元之间通过限位式锁定方式连接。
  22. 根据权利要求15-21中任一项所述的风机,其中所述蜗壳(5)上设置有局部切除部(10)。
  23. 一种空调系统,其中包括如权利要求15-22中任一所述的风机。
PCT/CN2022/095174 2021-08-04 2022-05-26 离心风叶、风机及空调系统 WO2023010958A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22851675.3A EP4317702A1 (en) 2021-08-04 2022-05-26 Centrifugal fan blade, fan and air conditioning system
CA3218681A CA3218681A1 (en) 2021-08-04 2022-05-26 Centrifugal fan impeller, fan and air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110889437.5 2021-08-04
CN202110889437.5A CN113550930A (zh) 2021-08-04 2021-08-04 一种离心风叶、风机及包含其的空调系统

Publications (1)

Publication Number Publication Date
WO2023010958A1 true WO2023010958A1 (zh) 2023-02-09

Family

ID=78105232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095174 WO2023010958A1 (zh) 2021-08-04 2022-05-26 离心风叶、风机及空调系统

Country Status (4)

Country Link
EP (1) EP4317702A1 (zh)
CN (1) CN113550930A (zh)
CA (1) CA3218681A1 (zh)
WO (1) WO2023010958A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113550930A (zh) * 2021-08-04 2021-10-26 珠海格力节能环保制冷技术研究中心有限公司 一种离心风叶、风机及包含其的空调系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB690951A (en) * 1950-04-26 1953-04-29 Carrier Engineering Co Ltd Improvements in or relating to centrifugal compressors
US4253798A (en) * 1978-08-08 1981-03-03 Eiichi Sugiura Centrifugal pump
JPH1018993A (ja) * 1996-07-04 1998-01-20 Matsushita Refrig Co Ltd シロッコファン
DE29818179U1 (de) * 1998-10-12 1999-02-11 Motoren Ventilatoren Gmbh Radialgebläse
WO2005108796A1 (fr) * 2004-05-10 2005-11-17 Zigang Jiang Pompe centrifuge a rapport de force eleve, a frottement de reduction interne et a pression augmentant par effet centripete et procede correspondant
CN104343727A (zh) * 2013-07-30 2015-02-11 三电有限公司 离心送风机及包括该离心送风机的车用空调装置
JP2015214968A (ja) * 2014-04-25 2015-12-03 サンデンホールディングス株式会社 送風機
CN105221479A (zh) * 2015-10-15 2016-01-06 珠海格力电器股份有限公司 离心风机叶轮、离心风机及空调
CN205117804U (zh) * 2015-10-15 2016-03-30 珠海格力电器股份有限公司 离心风机叶轮、离心风机及空调
CN108443226A (zh) * 2018-05-17 2018-08-24 珠海格力电器股份有限公司 一种阶梯蜗壳结构及离心风机及鼓风装置
CN113550930A (zh) * 2021-08-04 2021-10-26 珠海格力节能环保制冷技术研究中心有限公司 一种离心风叶、风机及包含其的空调系统
CN215762421U (zh) * 2021-08-04 2022-02-08 珠海格力节能环保制冷技术研究中心有限公司 一种离心风叶、风机及包含其的空调系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB690951A (en) * 1950-04-26 1953-04-29 Carrier Engineering Co Ltd Improvements in or relating to centrifugal compressors
US4253798A (en) * 1978-08-08 1981-03-03 Eiichi Sugiura Centrifugal pump
JPH1018993A (ja) * 1996-07-04 1998-01-20 Matsushita Refrig Co Ltd シロッコファン
DE29818179U1 (de) * 1998-10-12 1999-02-11 Motoren Ventilatoren Gmbh Radialgebläse
WO2005108796A1 (fr) * 2004-05-10 2005-11-17 Zigang Jiang Pompe centrifuge a rapport de force eleve, a frottement de reduction interne et a pression augmentant par effet centripete et procede correspondant
CN104343727A (zh) * 2013-07-30 2015-02-11 三电有限公司 离心送风机及包括该离心送风机的车用空调装置
JP2015214968A (ja) * 2014-04-25 2015-12-03 サンデンホールディングス株式会社 送風機
CN105221479A (zh) * 2015-10-15 2016-01-06 珠海格力电器股份有限公司 离心风机叶轮、离心风机及空调
CN205117804U (zh) * 2015-10-15 2016-03-30 珠海格力电器股份有限公司 离心风机叶轮、离心风机及空调
CN108443226A (zh) * 2018-05-17 2018-08-24 珠海格力电器股份有限公司 一种阶梯蜗壳结构及离心风机及鼓风装置
CN113550930A (zh) * 2021-08-04 2021-10-26 珠海格力节能环保制冷技术研究中心有限公司 一种离心风叶、风机及包含其的空调系统
CN215762421U (zh) * 2021-08-04 2022-02-08 珠海格力节能环保制冷技术研究中心有限公司 一种离心风叶、风机及包含其的空调系统

Also Published As

Publication number Publication date
EP4317702A1 (en) 2024-02-07
CN113550930A (zh) 2021-10-26
CA3218681A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
AU2018204570B2 (en) Blower and outdoor unit of air conditioner comprising same
US10066642B2 (en) Centrifugal air blower
WO2023010958A1 (zh) 离心风叶、风机及空调系统
JP3812537B2 (ja) 遠心式送風機
TW200540338A (en) Housing structure for an axial-blowing heat-dissipating fan
JP2009062953A (ja) 多翼羽根車および多翼送風機
WO2014034951A1 (ja) 遠心送風機
CN215762421U (zh) 一种离心风叶、风机及包含其的空调系统
EP2280176B1 (en) Cross flow fan and air conditioner equipped with same
JP2009281215A (ja) 空気調和機用室内機
WO2023050796A1 (zh) 一种贯流风道和出风装置
JPH0539930A (ja) 空気調和装置
JP2001280288A (ja) 多翼送風機の羽根車構造
JP2006125229A (ja) シロッコファン
CN215672882U (zh) 蜗壳蜗舌组件、离心风机及空调器
CN114502842B (zh) 横流风扇的叶片、横流风扇和空调室内机
JP2001221184A (ja) クロスフローファン
JP7003301B2 (ja) 遠心送風機及びそれを用いた空気調和機
CN115929666A (zh) 离心风机、气流驱动设备
JPH01118000A (ja) 斜流ファン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3218681

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022851675

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022851675

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE