WO2023098146A1 - 一种直流转直流dcdc变换器及其控制方法 - Google Patents

一种直流转直流dcdc变换器及其控制方法 Download PDF

Info

Publication number
WO2023098146A1
WO2023098146A1 PCT/CN2022/113394 CN2022113394W WO2023098146A1 WO 2023098146 A1 WO2023098146 A1 WO 2023098146A1 CN 2022113394 W CN2022113394 W CN 2022113394W WO 2023098146 A1 WO2023098146 A1 WO 2023098146A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
transformer
tube
capacitor
inductor
Prior art date
Application number
PCT/CN2022/113394
Other languages
English (en)
French (fr)
Inventor
王越天
Original Assignee
上海安世博能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海安世博能源科技有限公司 filed Critical 上海安世博能源科技有限公司
Publication of WO2023098146A1 publication Critical patent/WO2023098146A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field of power electronic equipment, in particular to a direct current to direct current DCDC converter and a control method thereof.
  • a bidirectional converter can be configured in the charging pile. Through the bidirectional converter, not only can the electric vehicle be charged, but the power battery of the electric vehicle can also be used as an emergency power supply. Electric vehicles can be charged when grid electricity is relatively cheap. When power outages occur due to earthquakes, typhoons, etc., the power batteries of electric vehicles can be used as emergency power to supply household appliances. As a key link in bidirectional charging equipment, the bidirectional converter has a great impact on the performance of the overall equipment.
  • embodiments of the present application provide a bidirectional isolated DCDC converter and a control method thereof, which can at least partly solve the above problems.
  • the present application proposes a DC-to-DC DCDC converter, including at least one DCDC conversion module and a controller, wherein:
  • Each of the DCDC conversion modules includes two parallel bidirectional isolated DCDC units, and each of the bidirectional isolated DCDC units includes a resonant circuit and a non-isolated buck/boost circuit, and the resonant circuit and the non-isolated buck/boost circuit Step-up circuits are cascaded; wherein, the operating frequency of each of the resonant circuits is fixed; if the number of the DCDC conversion modules is greater than or equal to 2, each DCDC conversion module is connected in parallel;
  • the controller is electrically connected to each of the bidirectional isolated DCDC units, and the controller is used for controlling the current sharing of each of the non-isolated buck/boost circuits.
  • the resonant circuit includes a three-phase LLC circuit or an LLC extension circuit.
  • the three-phase LLC circuit includes a first three-phase circuit, a second three-phase circuit and three transformers, wherein:
  • the first three-phase circuit is connected to primary sides of the three transformers, and the second three-phase circuit is connected to secondary sides of the three transformers.
  • the first three-phase circuit includes a first switching tube, a second switching tube, a third switching tube, a fourth switching tube, a fifth switching tube, a sixth switching tube, a first inductor, a second inductor, a Three inductors, a first capacitor, a second capacitor, and a third capacitor;
  • the first switch tube is connected in series with the second switch tube, the third switch tube is connected in series with the fourth switch tube, and the fifth switch tube tube and the sixth switch tube in series;
  • the first end of the first inductor is connected between the first switch tube and the second switch tube, and the first end of the second inductor is connected to the Between the third switch tube and the fourth switch tube, the first end of the third inductor is connected between the fifth switch tube and the sixth switch tube;
  • the second end of the first inductor Connected to the first terminal of the primary side of the first transformer, the second terminal of the primary side of the first transformer is connected to the first terminal of the first capacitor, and the second terminal of the second inductor
  • the first three-phase circuit includes a first switch tube, a second switch tube, a third switch tube, a fourth switch tube, a fifth switch tube, a sixth switch tube, a first capacitor, a second capacitor and a third capacitor;
  • the first switch tube is connected in series with the second switch tube, the third switch tube is connected in series with the fourth switch tube, the fifth switch tube is connected in series with the sixth switch tube;
  • the original transformer of the first transformer The first end of the side is connected between the first switch tube and the second switch tube, and the first end of the primary side of the second transformer is connected between the third switch tube and the fourth switch tube , the first terminal of the primary side of the third transformer is connected between the fifth switching tube and the sixth switching tube;
  • the second terminal of the primary side of the first transformer is connected to the first terminal of the first capacitor
  • the second end of the primary side of the second transformer is connected to the first end of the second capacitor, and the second end of the primary side of the third transformer is connected to the first end of the third capacitor , the second end
  • the first three-phase circuit includes a first switch tube, a second switch tube, a third switch tube, a fourth switch tube, a fifth switch tube, a sixth switch tube, a first inductor, a second inductor, and a third inductor;
  • the first switch tube is connected in series with the second switch tube, the third switch tube is connected in series with the fourth switch tube, the fifth switch tube is connected in series with the sixth switch tube;
  • the first inductor The first end of the inductor is connected between the first switch tube and the second switch tube, the first end of the second inductor is connected between the third switch tube and the fourth switch tube, so The first end of the third inductor is connected between the fifth switch tube and the sixth switch tube;
  • the second end of the first inductor is connected to the first end of the primary side of the first transformer, and the The second end of the second inductance is connected to the first end of the primary side of the second transformer, and the second end of the third inductance is connected to the first end of the primary side
  • the first three-phase circuit includes a first switch tube, a second switch tube, a third switch tube, a fourth switch tube, a fifth switch tube and a sixth switch tube; the first switch tube and the second switch tube
  • the tubes are connected in series, the third switch tube is connected in series with the fourth switch tube, the fifth switch tube is connected in series with the sixth switch tube;
  • the first end of the primary side of the first transformer is connected to the first switch tube tube and the second switch tube, the first end of the primary side of the second transformer is connected between the third switch tube and the fourth switch tube, the first end of the third transformer is connected to the Between the fifth switch tube and the sixth switch tube; the second end of the primary side of the first transformer, the second end of the primary side of the second transformer, and the first end of the primary side of the third transformer The two ends are connected.
  • the second three-phase circuit includes a seventh switch tube, an eighth switch tube, a ninth switch tube, a tenth switch tube, an eleventh switch tube, a twelfth switch tube, a fourth inductor, and a fifth inductor , a sixth inductor, a fourth capacitor, a fifth capacitor, and a sixth capacitor;
  • the seventh switch tube is connected in series with the eighth switch tube
  • the ninth switch tube is connected in series with the tenth switch tube
  • the first switch tube is connected in series with the tenth switch tube.
  • the eleventh switching tube is connected in series with the twelfth switching tube; the first end of the secondary side of the first transformer is connected to the first end of the fourth inductance, and the second end of the fourth inductance is connected to the first between the seventh switching tube and the eighth switching tube; the first end of the secondary side of the second transformer is connected to the first end of the fifth inductance, and the second end of the fifth inductance is connected to the ninth between the switching tube and the tenth switching tube; the first end of the secondary side of the third transformer is connected to the first end of the sixth inductance, and the second end of the sixth inductance is connected to the eleventh between the switching tube and the twelfth switching tube; the second terminal of the secondary side of the first transformer is connected to the first terminal of the fourth capacitor, and the second terminal of the secondary side of the second transformer is connected to the The first end of the fifth capacitor is connected, the second end of the secondary side of the third transformer is connected to the first end of the sixth capacitor, the second end of the fourth capacitor, the fifth
  • the second three-phase circuit includes a seventh switching tube, an eighth switching tube, a ninth switching tube, a tenth switching tube, an eleventh switching tube, a twelfth switching tube, a fourth capacitor, a fifth capacitor and a sixth capacitor;
  • the seventh switch tube is connected in series with the eighth switch tube
  • the ninth switch tube is connected in series with the tenth switch tube
  • the eleventh switch tube is connected in series with the twelfth switch tube;
  • the first end of the secondary side of a transformer is connected between the seventh switching tube and the eighth switching tube;
  • the first end of the secondary side of the second transformer is connected between the ninth switching tube and the tenth switching tube between the switching tubes;
  • the first end of the secondary side of the third transformer is connected between the eleventh switching tube and the twelfth switching tube;
  • the second three-phase circuit includes a seventh switching tube, an eighth switching tube, a ninth switching tube, a tenth switching tube, an eleventh switching tube, a twelfth switching tube, a fourth inductance, a fifth inductance and a sixth Inductance;
  • the seventh switch tube is connected in series with the eighth switch tube, the ninth switch tube is connected in series with the tenth switch tube, and the eleventh switch tube is connected in series with the twelfth switch tube;
  • the first end of the secondary side of a transformer is connected to the first end of the fourth inductance, and the second end of the fourth inductance is connected between the seventh switch tube and the eighth switch tube;
  • the second The first end of the secondary side of the transformer is connected to the first end of the fifth inductance, and the second end of the fifth inductance is connected between the ninth switching tube and the tenth switching tube;
  • the third transformer The first end of the secondary side is connected to the first end of the sixth inductance, and the second end of the sixth
  • the second three-phase circuit includes a seventh switch tube, an eighth switch tube, a ninth switch tube, a tenth switch tube, an eleventh switch tube, and a twelfth switch tube, and the seventh switch tube and the first switch tube Eight switching tubes are connected in series, the ninth switching tube is connected in series with the tenth switching tube, the eleventh switching tube is connected in series with the twelfth switching tube; the first end of the secondary side of the first transformer is connected to Between the seventh switch tube and the eighth switch tube, the first end of the secondary side of the second transformer is connected between the ninth switch tube and the tenth switch tube, the first switch tube The first end of the secondary side of the third transformer is connected between the eleventh switch tube and the twelfth switch tube, the second end of the secondary side of the first transformer, the secondary side of the second transformer The second terminal of the second transformer is connected to the second terminal of the secondary side of the third transformer.
  • non-isolated step-down/boost circuit adopts an interleaved step-up/step-down circuit or a single-stage step-up/step-down circuit.
  • non-isolated buck/boost circuit includes a first branch, a second branch, a seventh inductor and an eighth inductor, wherein:
  • the first branch is connected in parallel with the second branch, the first branch includes a thirteenth switch tube and a fourteenth switch tube connected in series, and the second branch includes a fifteenth switch tube connected in series and the sixteenth switching tube; the first end of the seventh inductance is connected to the second end of the fifteenth switching tube and the first end of the sixteenth switching tube, and the first end of the eighth inductance The second end of the thirteenth switching transistor is connected to the first end of the fourteenth switching transistor, and the second end of the seventh inductor is connected to the second end of the eighth inductor.
  • the present application provides a bidirectional charging and discharging device, including the direct current to direct current DCDC converter described in any one of the above embodiments.
  • the present application provides a control method using the DC-to-DC DCDC converter described in any one of the above embodiments, including:
  • each non-isolated buck/boost circuit When operating in the first direction, control the driving of the corresponding positions of the two resonant circuits included in each DCDC conversion module to be reversed, and control each non-isolated buck/boost circuit to work in a buck state and make each non-isolated buck / The output current of the boost circuit is equal;
  • controlling each non-isolated buck/boost circuit to work in a buck state and making the output currents of each non-isolated buck/boost circuit equal includes:
  • controlling each non-isolated buck/boost circuit to work in a DC boost state and making the output currents of each non-isolated buck/boost circuit equal includes:
  • each non-isolated step-down/boost circuit controlling each non-isolated step-down/boost circuit to generate an intermediate bus voltage of each bidirectional isolated DCDC unit, and obtaining a second current reference value according to the intermediate bus voltage reference value and the intermediate bus voltage sampling value of each bidirectional isolated DCDC unit;
  • each non-isolated buck/boost circuit is adjusted according to the second current reference value and the input current sampling value of each non-isolated buck/boost circuit, so that each non-isolated buck/boost circuit The input currents to the circuit are equal.
  • the DC-to-DC DCDC converter and its control method provided in the embodiments of the present application include at least one DCDC conversion module and a controller, each DCDC conversion module includes two parallel bidirectional isolated DCDC units, and each bidirectional isolated DCDC unit includes a resonant circuit and non-isolated buck/boost circuit, resonant circuit and non-isolated buck/boost circuit are cascaded, the controller is electrically connected with each bidirectional isolated DCDC unit, and the controller is used to control each non-isolated buck/boost circuit
  • the current sharing of the direct current to direct current DCDC converter meets the power requirements of the direct current to direct current DCDC converter through at least one DCDC conversion module, which reduces the manufacturing cost of the direct current to direct current DCDC converter.
  • FIG. 1 is a schematic structural diagram of a DC-to-DC DCDC converter provided in a first embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a direct current to direct current DCDC converter provided in a second embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a direct current to direct current DCDC converter provided in a third embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a first three-phase circuit provided by a fourth embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a first three-phase circuit provided by a fifth embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a first three-phase circuit provided by a sixth embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a first three-phase circuit provided by a seventh embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a second three-phase circuit provided by an eighth embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a second three-phase circuit provided by a ninth embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a second three-phase circuit provided by the tenth embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a second three-phase circuit provided by the eleventh embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a non-isolated buck/boost circuit provided by a twelfth embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a direct current to direct current DCDC converter provided by a thirteenth embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a control method for a DC-to-DC DCDC converter provided in the fourth embodiment of the present application.
  • Fig. 15 is a schematic diagram of the control of running in the first direction provided by the fifteenth embodiment of the present application.
  • Fig. 16 is a schematic diagram of the control of running in the second direction provided by the sixteenth embodiment of the present application.
  • the first three-phase circuit 320.
  • the second three-phase circuit 320.
  • the relevant content of the technical solution of the present application will be described below first.
  • at least two temperature sensors or at least two filtering algorithms are required to collect the temperature of the target object, and the at least two filtering algorithms correspond to the same temperature sensor.
  • one channel corresponds to one temperature sensor or one filtering algorithm.
  • the temperature processing method provided by the embodiment of the present invention can be used in a temperature detection system of an electric vehicle, and can also be applied to other scenarios requiring temperature collection, which is not limited by the embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a DC-to-DC DCDC converter provided in the first embodiment of the present application.
  • the DC-to-DC DCDC converter provided in the embodiment of the present application includes at least one DCDC conversion module 1 and a controller ,in:
  • Each DCDC conversion module 1 includes two bidirectional isolated DCDC units 11, and the two bidirectional isolated DCDC units 11 included in each DCDC conversion module 1 are connected in parallel, and each bidirectional isolated DCDC unit includes a resonant circuit 111 and a non-isolated buck/boost Circuit 112, the resonant circuit 111 included in each bidirectional isolated DCDC unit and the non-isolated step-down/boost circuit 112 are cascaded; wherein, the operating frequency of each resonant circuit 111 is fixed; if the number of DCDC conversion modules 1 is greater than or equal to 2, Then each DCDC conversion module 1 is connected in parallel;
  • the controller is electrically connected to each bidirectional isolated DCDC unit 11 , and the controller is used to control the current sharing of each non-isolated buck/boost circuit 112 .
  • the DC-to-DC DCDC converter provided by the embodiment of the present application can realize the bidirectional flow of power, that is, the DC-to-DC DCDC converter can charge the connected charging object, work in the charging mode, and can store the charging object The power output to the outside, work in the power supply mode.
  • the external current flows from the resonant circuit 111 to the non-isolated buck/boost circuit 112 to charge the charging object, the resonant circuit 111 is used for boosting, and the non-isolated buck/boost circuit 112 is used for stepping down , the DC-to-DC DCDC converter operates in the first direction; when working in the power supply mode, the current provided by the charging object flows from the non-isolated buck/boost circuit 112 to the resonant circuit 111, and then outputs it to the outside.
  • the isolated buck/boost circuit 112 is used for boosting the voltage, the resonant circuit 111 is used for bucking the voltage, and the DC-to-DC DCDC converter operates in the second direction.
  • the resonant circuit 111 can be connected to a power factor correction (Power Factor Correction, PFC for short) circuit, and the non-isolated buck/boost circuit 112 can be connected to a rechargeable battery.
  • PFC Power Factor Correction
  • the controller is used to drive each bidirectional isolated DCDC unit and each non-isolated buck/boost circuit 112 .
  • the controller reduces the Electromagnetic Interference (EMI) noise of the DC-to-DC DCDC converter by controlling the opposite driving of the corresponding positions of the two resonant circuits included in each DCDC conversion module.
  • the controller controls the output currents of each non-isolated buck/boost circuit to be equal, so as to realize the current sharing of each non-isolated buck/boost circuit 112 .
  • the voltage isolation of each resonant circuit 111 is realized by fixing the working frequency of each resonant circuit 111 .
  • the controller may adopt a Microcontroller Unit (MCU for short) or a Digital Signal Processing (DSP for short) chip.
  • MCU Microcontroller Unit
  • DSP Digital Signal Processing
  • the expansion of the power of the DC-to-DC DCDC converter is realized by increasing the number of DCDC conversion modules 1 , the more the number of DCDC conversion modules 1 is, the greater the power that can be supported.
  • the number of DCDC conversion modules 1 is set according to actual power requirements, for example, 2-10 DCDC conversion modules 1 are set, and this is only an example, and the embodiment of the present application does not limit the number of DCDC conversion modules 1 too much.
  • the DC-to-DC DCDC converter provided by the present application includes two DCDC conversion modules 1, and the two DCDC conversion modules are connected in parallel. Compared with the structure including one DCDC conversion module 1 shown in FIG. The power of the DC-to-DC DCDC converter.
  • the DC-to-DC DCDC converter provided in the embodiment of the present application includes at least one DCDC conversion module and a controller, each DCDC conversion module includes two parallel bidirectional isolated DCDC units, and each bidirectional isolated DCDC unit includes a resonant circuit and a non-isolated DCDC unit.
  • the step-down/boost circuit, the resonant circuit and the non-isolated step-down/boost circuit are cascaded, the controller is electrically connected to each bidirectional isolated DCDC unit, and the controller is used to control the current sharing of each non-isolated step-down/boost circuit, At least one DCDC conversion module satisfies the power requirements of the DC-to-DC DCDC converter, avoids the use of complex transformer structures, and reduces the manufacturing cost of the DC-to-DC DCDC converter.
  • the resonant circuit 111 includes a three-phase LLC circuit or an LLC extension circuit.
  • the input and output ripple of the three-phase LLC circuit is relatively small.
  • the LLC extension circuit is a three-phase resonant circuit modified or improved on the basis of the above-mentioned three-phase LLC circuit.
  • Fig. 3 is a schematic structural diagram of a DC-to-DC DCDC converter provided in the third embodiment of the present application.
  • the three-phase LLC circuit includes a first three-phase Circuit 310, second three-phase circuit 320 and three transformers, wherein:
  • the first three-phase circuit 310 is connected to the primary sides of the three transformers, and the second three-phase circuit 320 is connected to the secondary sides of the three transformers.
  • the second three-phase circuit 320 is connected to the non-isolated buck/boost circuit 112 .
  • the first three-phase circuit 310 can adopt the circuit structure shown in Fig. 3, Fig. 4, Fig. 5 or Fig. 6, or other electronic components such as inductance, capacitance, resistance, switch tube, etc.
  • the three-phase circuit of the device does not make too many restrictions here.
  • the second three-phase circuit 320 can adopt the circuit structure shown in Fig. 7, Fig. 8, Fig. 9 or Fig. 10, or other on the basis of the second three-phase circuit in the above-mentioned drawings to increase or decrease the inductance capacitance resistance switch
  • FIG. 4 is a schematic structural diagram of the first three-phase circuit provided by the fourth embodiment of the present application.
  • the first three-phase circuit 310 includes a first switching tube M1 , the second switching tube M2, the third switching tube M3, the fourth switching tube M4, the fifth switching tube M5, the sixth switching tube M6, the first inductor L1, the second inductor L2, the third inductor L3, and the first capacitor C1 , the second capacitor C2 and the third capacitor C3;
  • the first switching tube M1 and the second switching tube M2 are connected in series, the third switching tube M3 and the fourth switching tube M4 are connected in series, and the fifth switching tube M5 and the sixth switching tube M6 are connected in series;
  • the first end of the first inductance L1 is connected between the first switch M1 and the second switch M2, the first end of the second inductance L2 is connected between the third switch M3 and the fourth switch M4, and the third The first end of the inductor
  • the first end of the second capacitor C2 is connected, the second end of the third inductor L3 is connected to the first end of the primary side of the third transformer T3, and the second end of the primary side of the third transformer T3 is connected to the first end of the third capacitor C3.
  • One end is connected, the second end of the first capacitor C1, the second end of the second capacitor C2 and the second end of the third capacitor C3 are connected; the first end of the first switch M1, the first end of the third switch M3 connected to the first end of the fifth switch M5, the second end of the second switch M2, the second end of the fourth switch M4 and the second end of the sixth switch M6
  • Fig. 5 is a schematic structural diagram of the first three-phase circuit provided by the fifth embodiment of the present application.
  • the first three-phase 210 circuit includes a first switching tube M1 , the second switching tube M2, the third switching tube M3, the fourth switching tube M4, the fifth switching tube M5, the sixth switching tube M6, the first capacitor C1, the second capacitor C2 and the third capacitor C3;
  • the first switching tube M1 and the second switching tube M2 are connected in series, the third switching tube M3 and the fourth switching tube M4 are connected in series, the fifth switching tube M5 and the sixth switching tube M6 are connected in series;
  • the first end of the primary side of the first transformer T1 is connected to the first Between the switching tube M1 and the second switching tube M2, the first end of the primary side of the second transformer T2 is connected between the third switching tube M3 and the fourth switching tube M4, and the first end of the primary side of the third transformer T3 terminal is connected between the fifth switching tube M5 and the
  • Fig. 6 is a schematic structural diagram of the first three-phase circuit provided by the sixth embodiment of the present application.
  • the first three-phase circuit 310 includes a first switching tube M1 , the second switching tube M2, the third switching tube M3, the fourth switching tube M4, the fifth switching tube M5, the sixth switching tube M6, the first inductance L1, the second inductance L2, the third inductance L3;
  • the first switching tube M1 and the second switching tube M2 are connected in series, the third switching tube M3 and the fourth switching tube M4 are connected in series, the fifth switching tube M5 and the sixth switching tube M6 are connected in series;
  • the first end of the first inductor L1 is connected to the first switching tube M1 and the second switching tube M2
  • the first end of the second inductor L2 is connected between the third switching tube M3 and the fourth switching tube M4, and the first end of the third inductor L3 is connected to the fifth switching tube M5 and the fourth switching tube M
  • the second end of the first inductance L1 is connected to the first end of the primary side of the first transformer T1
  • the second end of the second inductance L2 is connected to the first end of the primary side of the second transformer T2
  • the second end of the third inductor L3 is connected to the first end of the primary side of the third transformer T3; the second end of the primary side of the first transformer T1, the second end of the primary side of the second transformer T2 and the third transformer The second end of the primary side of T3 is connected.
  • Fig. 7 is a schematic structural diagram of the first three-phase circuit provided by the seventh embodiment of the present application.
  • the first three-phase circuit includes a first switching tube M1, the second switching tube M2, the third switching tube M3, the fourth switching tube M4, the fifth switching tube M5, the sixth switching tube M6; the first switching tube M1 and the second switching tube M2 are connected in series, and the third switching tube M3 connected in series with the fourth switching tube M4, the fifth switching tube M5 and the sixth switching tube M6 in series;
  • the first end of the primary side of the first transformer T1 is connected between the first switching tube M1 and the second switching tube M2, and the second
  • the first end of the primary side of the transformer T2 is connected between the third switching tube M3 and the fourth switching tube M4, and the first end of the third transformer T3 is connected between the fifth switching tube M5 and the sixth switching tube M6;
  • the second terminal of the primary side of a transformer T1 the second terminal of the primary side of the primary side of the
  • Fig. 8 is a schematic structural diagram of the second three-phase circuit provided by the eighth embodiment of the present application.
  • the second three-phase circuit 320 includes a seventh switching tube M7 , the eighth switching tube M8, the ninth switching tube M9, the tenth switching tube M10, the eleventh switching tube M11, the twelfth switching tube M12, the fourth inductor L4, the fifth inductor L5, the sixth inductor L6, the fourth Capacitor C4, fifth capacitor C5 and sixth capacitor C6;
  • the seventh switch tube M7 and the eighth switch tube M8 are connected in series
  • the ninth switch tube M9 and the tenth switch tube M10 are connected in series, the eleventh switch tube M11 and the twelfth switch tube
  • the tube M12 is connected in series; the first end of the secondary side of the first transformer T1 is connected to the first end of the fourth inductance L4, and the second end of the fourth inductance L4 is connected between the seventh switching tube M7 , the eighth switching tube M8, the ninth switching
  • Fig. 9 is a schematic structural diagram of the second three-phase circuit provided by the ninth embodiment of the present application.
  • the second three-phase circuit 320 includes a seventh switching tube M7 , the eighth switch tube M8, the ninth switch tube M9, the tenth switch tube M10, the eleventh switch tube M11, the twelfth switch tube M12, the fourth capacitor C4, the fifth capacitor C5 and the sixth capacitor C6; the seventh The switching tube M7 is connected in series with the eighth switching tube M8, the ninth switching tube M9 is connected in series with the tenth switching tube M10, the eleventh switching tube M11 is connected in series with the twelfth switching tube M12; the first end of the secondary side of the first transformer T1 Connected between the seventh switching tube M7 and the eighth switching tube M8; the first end of the secondary side of the second transformer T2 is connected between the ninth switching tube M9 and the tenth switching tube M10; the secondary side of the
  • Fig. 10 is a schematic structural diagram of the second three-phase circuit provided by the tenth embodiment of the present application.
  • the second three-phase circuit 320 includes a seventh switching tube M7 , the eighth switch tube M8, the ninth switch tube M9, the tenth switch tube M10, the eleventh switch tube M11, the twelfth switch tube M12, the fourth inductance L4, the fifth inductance L5 and the sixth inductance L6; the seventh The switching tube M7 is connected in series with the eighth switching tube M8, the ninth switching tube M9 is connected in series with the tenth switching tube M10, the eleventh switching tube M11 is connected in series with the twelfth switching tube M12; the first end of the secondary side of the first transformer T1 Connected to the first end of the fourth inductance L4, the second end of the fourth inductance L4 is connected between the seventh switching tube M7 and the eighth switching tube M8; the first terminal of
  • Fig. 11 is a schematic structural diagram of the second three-phase circuit provided by the eleventh embodiment of the present application.
  • the second three-phase circuit 320 includes a seventh switching tube M7, the eighth switch tube M8, the ninth switch tube M9, the tenth switch tube M10, the eleventh switch tube M11 and the twelfth switch tube M12, the seventh switch tube M7 and the eighth switch tube M8 are connected in series, and the ninth switch tube
  • the tube M9 and the tenth switching tube M10 are connected in series, the eleventh switching tube M11 and the twelfth switching tube M12 are connected in series; the first end of the secondary side of the first transformer T1 is connected to the seventh switching tube M7 and the eighth switching tube M8
  • the first end of the secondary side of the second transformer T2 is connected between the ninth switching tube M9 and the tenth switching tube M10, and the first end of the secondary side of the third transformer T3 is connected between the eleven
  • the non-isolated buck/boost circuit 112 adopts an interleaved boost/buck circuit or a single-stage boost/buck circuit.
  • the non-isolated buck/boost circuit 112 includes a first branch 330, a second branch 340, a seventh inductor L7 and an eighth inductor L8, in:
  • the first branch 330 is connected in parallel with the second branch 340, the first branch 330 includes the thirteenth switching tube M13 and the fourteenth switching tube M14 in series, and the second branch 340 includes the fifteenth switching tube M15 and the The sixteenth switching tube M16; the first end of the seventh inductance L7 is connected to the second end of the fifteenth switching tube M15 and the first end of the sixteenth switching tube M16, and the first end of the eighth inductance L8 is connected to the thirteenth switching tube M16.
  • the second end of the switching tube M13 is connected to the first end of the fourteenth switching tube M14, and the second end of the seventh inductor L7 is connected to the second end of the eighth inductor.
  • the first branch 330 and the second branch 340 are respectively connected to the resonant circuit 111 .
  • the first three-phase circuit 310 adopts the circuit structure shown in Figure 3
  • the second three-phase circuit 320 adopts the circuit structure shown in Figure 11
  • the non-isolated buck/boost circuit 112 adopts the circuit structure shown in Figure 12 circuit structure.
  • the first filter capacitor C7 and the second filter capacitor C8 can be set at the external port of the first three-phase circuit 310, the first filter capacitor C7 and the second filter capacitor C8 are connected in series, and the first end of the first filter capacitor C7 is connected to The first end of the external port of the first three-phase circuit 310, the second end of the first filter capacitor C7 is connected to the first end of the second filter capacitor C8, and the second end of the second filter capacitor C8 is connected to the first three-phase circuit 310 the second end of the external port.
  • the first end of the first switching tube M1, the first end of the third switching tube M3 and the first end of the fifth switching tube M5 are connected to the first end of the external port of the first three-phase circuit 310, and the second switching tube M2
  • the second end of the fourth switch M4 and the second end of the sixth switch M6 are connected to the external port of the first three-phase circuit 310 .
  • the driving of the first switching tube M1 and the second switching tube M2 are complementary, the driving of the third switching tube M3 and the fourth switching tube M4 are complementary, the driving of the fifth switching tube M5 and the sixth switching tube M6 are complementary, and the driving of the first switching tube M1
  • the first bridge arm to which the second switch tube M2 belongs the second bridge arm to which the third switch tube M3 and the fourth switch tube M4 belong, and the third bridge arm to which the fifth switch tube M5 and the sixth switch tube M6 belong
  • the positions are driven 120 degrees apart.
  • the drive of the seventh switch M7 and the eighth switch M8 are complementary, the drive of the ninth switch M9 and the tenth switch M10 are complementary, the drive of the eleventh switch M11 and the twelfth switch M12 are complementary, and the seventh switch
  • the actuation of the same position of the bridge arm differs by 120 degrees.
  • the external port of the non-isolated buck/boost circuit 112 can be provided with a third filter capacitor C9, the first end of the third filter capacitor C9 is connected to the second end of the seventh inductance L7 and the second end of the eighth inductance L8 respectively.
  • the second end of the third filter capacitor C9 is connected to the second end of the fourteenth switch M14 and the second end of the sixteenth switch M16 respectively.
  • the first end of the external port of the non-isolated buck/boost circuit 112 is respectively connected to the first end of the third filter capacitor C9, the second end of the seventh inductor L7, and the second end of the eighth inductor L8.
  • the second end of the external port of the non-isolated buck/boost circuit 112 is respectively connected to the second end of the third filter capacitor C9, the second end of the fourteenth switching tube M14, and the second end of the sixteenth switching tube M16 .
  • the non-isolated step-down/boost circuit 112 in FIG. 3 is an interleaved step-up/step-down circuit.
  • a first bus capacitor C10 is set between the second three-phase circuit 320 and the non-isolated buck/boost circuit 112, and the voltage at both ends of the first bus capacitor can be called the intermediate bus voltage.
  • the intermediate bus The voltage is the output terminal voltage of the resonant circuit 111
  • the intermediate bus voltage is the output terminal voltage of the non-isolated buck/boost circuit 112 when running in the second direction.
  • the first bus capacitor C10 is connected in parallel with the second three-phase circuit 320, and the first end of the first bus capacitor C10 is respectively connected to the first end of the seventh switch M7, the first end of the ninth switch M9, and the eleventh switch.
  • the first end of the M11 The second end of the first bus capacitor C10 is respectively connected to the second end of the eighth switch M8 , the second end of the tenth switch M10 and the second end of the twelfth switch M12 .
  • the first three-phase circuit 310 adopts the circuit structure shown in FIG. 5
  • the second three-phase circuit 320 adopts the circuit structure shown in FIG. 11 .
  • the non-isolated buck/boost circuit 112 includes a seventeenth switch tube M17, an eighteenth switch tube M18 and a ninth inductor L9, wherein:
  • the seventeenth switching tube M17 is connected in series with the eighteenth switching tube M18, the second end of the seventeenth switching tube M17 is connected to the first end of the eighteenth switching tube M18, and the first end of the ninth inductance L9 is respectively connected to the seventeenth switching tube M18.
  • a first end of the seventeenth switch M17 and a second end of the eighteenth switch M18 are connected to the second three-phase circuit 320 .
  • a fourth filter capacitor C10 can be set at the external port of the non-isolated buck/boost circuit 112, the first end of the fourth filter capacitor C10 is connected to the second end of the ninth inductor L9, and the second end of the fourth filter capacitor C10 is connected to The second end of the eighteenth switch tube M18.
  • the first end of the external port of the non-isolated buck/boost circuit 112 is connected to the second end of the ninth inductance L9 and the first end of the fourth filter capacitor C10 respectively, and the external port of the non-isolated buck/boost circuit 112
  • the second end of the second end is respectively connected with the second end of the fourth filter capacitor C10 and the second end of the eighteenth switching transistor M18.
  • the non-isolated buck/boost circuit 112 in FIG. 13 is a single-stage boost/buck circuit.
  • a second bus capacitor C11 is provided between the second three-phase circuit 320 and the non-isolated buck/boost circuit 112 , and the voltage across the second bus capacitor C11 may be referred to as an intermediate bus voltage.
  • the second bus capacitor C11 is connected in parallel with the second three-phase circuit 320, and the first end of the second bus capacitor C11 is connected to the first end of the seventh switch M7, the first end of the ninth switch M9, and the eleventh switch respectively.
  • the first end of the M11 is respectively connected to the second end of the eighth switch M8 , the second end of the tenth switch M10 and the second end of the twelfth switch M12 .
  • a bidirectional charging and discharging device provided in an embodiment of the present application includes the direct current to direct current DCDC converter described in any one of the foregoing embodiments.
  • the bidirectional charging and discharging device can be applied to charging piles.
  • Fig. 14 is a schematic flow chart of the control method of the DC-to-DC DCDC converter provided in the fourteenth embodiment of the present application. As shown in Fig. 14, the control method of the DC-to-DC DCDC converter provided in the embodiment of the present application can be applied to the above-mentioned
  • the direct current to direct current DCDC converter described in any embodiment includes:
  • the DC-to-DC DCDC converter when the DC-to-DC DCDC converter operates in the charging mode, that is, when operating in the first direction, the current flows from each resonant circuit to the cascaded non-isolated buck/boost circuit, and the controller drives each The resonant circuit steps down the input voltage to obtain the intermediate bus voltage, and at the same time controls the opposite driving of the corresponding positions of the two resonant circuits included in each DCDC conversion module, so as to reduce the EMI noise of the DC-to-DC DCDC converter.
  • the controller will drive each non-isolated buck/boost circuit to work in a buck state, step down the intermediate bus voltage and output it, and control the output currents of each non-isolated buck/boost circuit to be equal, so as to realize the Non-isolated buck/boost circuit current sharing.
  • each non-isolated buck/boost circuit works in a buck state, and converts the voltage input at the input terminal to obtain an intermediate bus voltage, and at the same time controls the output current of each non-isolated buck/boost circuit to be equal to achieve Each non-isolated buck/boost circuit shares current.
  • the controller will drive each resonant circuit to step down and output the intermediate bus voltage, and at the same time control the opposite driving of the corresponding positions of the two resonant circuits included in each DCDC conversion module, so as to reduce the EMI of the DC-to-DC DCDC converter noise.
  • the first direction is opposite to the second direction. It can be understood that there is no sequence relationship between step S401 and step S402.
  • control the opposite driving of the corresponding positions of the two resonant circuits included in each DCDC conversion module when running in the first direction, control the opposite driving of the corresponding positions of the two resonant circuits included in each DCDC conversion module, and control each non-isolated step-down
  • the /boost circuit works in the step-down state and makes the output currents of each non-isolated step-down/boost circuit equal.
  • the drive to control the corresponding positions of the two resonant circuits included in each DCDC conversion module is reversed.
  • each non-isolated buck/boost circuit control each non-isolated buck/boost circuit to work in a DC boost state and make the output currents of each non-isolated buck/boost circuit equal to realize current sharing of each non-isolated buck/boost circuit, and Capacitance ripple between the resonant circuit and the non-isolated step-down/boost circuit can be reduced, and the reliability of the direct current to direct current DCDC converter is improved.
  • controlling each non-isolated buck/boost circuit to work in a buck state and making the output currents of each non-isolated buck/boost circuit equal includes:
  • the controller compares the preset voltage reference value with the sampled output voltage value to generate a first current reference.
  • the controller uses the first current reference value as each non-isolated A common current reference for the buck/boost circuits, adjusting the duty cycle of each non-isolated buck/boost circuit by comparing the first current reference value with the sampled output current value of each non-isolated buck/boost circuit Duty ratio to equalize the output current of each non-isolated buck/boost circuit.
  • the preset voltage reference value is set according to actual needs, which is not limited in this embodiment of the present application.
  • Fig. 15 is a control schematic diagram of the first direction operation provided by the fifteenth embodiment of the present application.
  • the preset voltage reference value is compared with the output voltage sampling value, and the output voltage regulator The result is a first current reference value.
  • Output current regulation for each non-isolated buck-boost circuit Regulates each non-isolated buck-boost circuit based on a comparison of a first current reference value with a sampled output current value for each non-isolated buck-boost circuit The duty cycle of the circuit to adjust the output current of each non-isolated buck/boost circuit so that the output currents of each non-isolated buck/boost circuit are equal.
  • controlling each non-isolated buck/boost circuit to work in a DC boost state and making the output currents of each non-isolated buck/boost circuit equal includes:
  • each non-isolated step-down/boost circuit controlling each non-isolated step-down/boost circuit to generate an intermediate bus voltage of each bidirectional isolated DCDC unit, and obtaining a second current reference value according to the intermediate bus voltage reference value and the intermediate bus voltage sampling value of each bidirectional isolated DCDC unit;
  • each non-isolated buck/boost circuit is adjusted according to the second current reference value and the input current sampling value of each non-isolated buck/boost circuit, so that each non-isolated buck/boost circuit The input currents to the circuit are equal.
  • the controller when running in the second direction, the controller will control each non-isolated buck/boost circuit to boost the external input voltage to generate the intermediate bus voltage of each bidirectional isolated DCDC unit, that is, each bidirectional isolated DCDC unit The output voltage of the DCDC unit.
  • Sampling the intermediate bus voltage of each bidirectional isolated DCDC unit can obtain the intermediate bus voltage sampling value of each bidirectional isolated DCDC unit, and the controller can average the intermediate bus voltage sampling values of each bidirectional isolated DCDC unit, The calculated average value is used as the intermediate bus voltage comparison value, or the maximum value of the intermediate bus voltage sampling values of each bidirectional isolated DCDC unit is obtained as the intermediate bus voltage comparison value.
  • the controller compares the intermediate bus voltage reference value with the intermediate bus voltage comparison value to generate a second current reference value, which serves as a common current reference for each non-isolated buck/boost circuit.
  • the input current sampling value of each non-isolated buck/boost circuit can be obtained by sampling the input current of each non-isolated buck/boost circuit.
  • the controller adjusts the duty ratio of each non-isolated buck/boost circuit by comparing the second current reference value with the input current sampling value of each non-isolated buck/boost circuit, so that each non-isolated buck/boost circuit The output current of the buck/boost circuit is equal.
  • the intermediate bus voltage reference value is set according to actual needs, which is not limited in this embodiment of the present application.
  • Fig. 16 is a control schematic diagram of the second direction operation provided by the sixteenth embodiment of the present application.
  • the intermediate bus voltage sampling values of each bidirectional isolated DCDC unit are obtained, and then averaged to obtain the intermediate bus voltage comparison value, and then compares the intermediate bus voltage reference value with the intermediate bus voltage comparison value, and the intermediate bus voltage regulator generates a second current reference value according to the result of the comparison.
  • Input current regulation for each non-isolated buck-boost circuit Regulates each non-isolated buck-boost circuit based on a comparison of a second current reference value with a sampled value of the input current The duty cycle of the circuit to adjust the output current of each non-isolated buck/boost circuit so that the output currents of each non-isolated buck/boost circuit are equal.
  • circuit or electronic component When a circuit or electronic component is referred to as being "connected” or “connected to” another circuit or electronic component, it should be understood that the circuit or electronic component is not only directly connected to or connected to the other circuit or electronic component , and there may be another circuit or electronic component between the circuit or electronic component and other circuits or electronic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供一种直流转直流DCDC变换器及其控制方法,直流转直流DCDC变换器包括:至少一个DCDC变换模块(1)和控制器,每个DCDC变换模块(1)包括两个并联的双向隔离DCDC单元(11),每个双向隔离DCDC单元(11)包括谐振电路(111)和非隔离降压/升压电路(112),谐振电路(111)和非隔离降压/升压电路(112)级联;各个谐振电路(111)的工作频率固定;若DCDC变换模块(1)的数量大于或等于2,则各个DCDC变换模块(1)之间并联;控制器与每个双向隔离DCDC单元(11)电连接,控制器用于控制各个非隔离降压/升压电路(112)的均流。所述方法用于上述直流转直流DCDC变换器。本申请实施例提供的直流转直流DCDC变换器及其控制方法,降低了直流转直流DCDC变换器的制造成本。

Description

一种直流转直流DCDC变换器及其控制方法 技术领域
本申请涉及电力电子设备技术领域,具体涉及一种直流转直流DCDC变换器及其控制方法。
背景技术
随着新能源汽车的普及,家用直流充电桩的需求越来越多,充电桩功率的要求越来越大。
在充电桩中可以配置双向变换器,通过双向变换器,不仅可以为电动汽车充电,还可以将电动汽车的动力电池用作应急电源。在电网电费比较便宜的时候,可以给电动车充电,因地震,台风等原因造成停电的时候可以将电动汽车的动力电池作为应急电源供给家用电器,同时在电价比较高的时段能够并网发电。双向变换器作为双向充电设备中关键的一个环节,对整体设备的性能影响非常大。
发明内容
为了提高双向变换器的功率,将多个变压器绕组串联,导致变压器的制作比较复杂,实现困难,制造成本高。针对较高功率的双向变换器会导致变压器的制造成本高的问题,本申请实施例提供一种双向隔离DCDC变换器及其控制方法,能够至少部分地解决上述问题。
一方面,本申请提出一种直流转直流DCDC变换器,包括至少一个DCDC变换模块和控制器,其中:
每个所述DCDC变换模块包括两个并联的双向隔离DCDC单元,每个所述双向隔离DCDC单元包括谐振电路和非隔离降压/升压电路,所述谐振电路和所述非隔离降压/升压电路级联;其中,各个所述谐振电路的工作频率固定;若所述DCDC变换模块的数量大于或等于2,则各个DCDC变换模块之间并联;
所述控制器与每个所述双向隔离DCDC单元电连接,所述控制器用于控制各个所述非隔离降压/升压电路的均流。
进一步地,所述谐振电路包括三相LLC电路或LLC延伸电路。
进一步地,所述三相LLC电路包括第一三相电路、第二三相电路和三个变压器,其中:
所述第一三相电路连接于所述三个变压器的原边侧,所述第二三相电路连接于所述三个变压器的副边侧。
进一步地,所述第一三相电路包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管、第六开关管、第一电感、第二电感、第三电感、第一电容、第二电容和第三电容;所述第一开关管和所述第二开关管串联,所述第三开关管和所述第四开关管串联,所述第五开关管和所述第六开关管串联;所述第一电感的第一端连接于所述第一开关管和所述第二开关管之间,所述第二电感的第一端连接于所述第三开关管和所述第四开关管之间,所述第三电感的第一端连接于所述第五开关管和所述第六开关管之间;所述第一电感的第二端与第一变压器的原边的第一端相连,所述第一变压器的原边的第二端与所述第一电容的第一端相连,所述第二电感的第二端与第二变压器的原边的第一端相连,所述第二变压器的原边的第二端与所述第二电容的第一端相连,所述第三电感的第二端与第三变压器的原边的第一端相连,所述第三变压器的原边的第二端与所述第三电容的第一端相连,所述第一电容的第二端、所述第二电容的第二端和所述第三电容的第二端相连;或,
所述第一三相电路包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管、第六开关管、第一电容、第二电容和第三电容;所述第一开关管和所述第二开关管串联,所述第三开关管和所述第四开关管串联,所述第五开关管和所述第六开关管串联;第一变压器的原边的第一端连接于所述第一开关管和所述第二开关管之间,第二变压器的原边的第一端连接于所述第三开关管和所述第四开关管之间,第三变压器的原边的第一端连接于所述第五开关管和所述第六开关管之间;所述第一变压器的原边的第二端与所述第一电容的第一端相连,所述第二变压器的原边的第二端与所述第二电容的第一端相连,所述第三变压器的原边的第二端与所述第三电容的第一端相连,所述第一电容的第二端、所述第二电容的第二端和所述第三电容的第二端相连;或,
所述第一三相电路包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管、第六开关管、第一电感、第二电感和第三电感;所述第一开关管和所述第二开关管串联,所述第三开关管和所述第四开关管串联,所述第五开关管和所述第六开关管串联;所述第一电感的第一端连接于所述第一开关管和所述第二开关管之间,所述第二电感的第一端连接于所述第三开关管和所述第四开关管之间,所述第三电感的第一端连 接于所述第五开关管和所述第六开关管之间;所述第一电感的第二端与第一变压器的原边的第一端相连,所述第二电感的第二端与第二变压器的原边的第一端相连,所述第三电感的第二端与第三变压器的原边的第一端相连;所述第一变压器的原边的第二端、所述第二变压器的原边的第二端和所述第三变压器的原边的第二端相连;或,
所述第一三相电路包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管;所述第一开关管和所述第二开关管串联,所述第三开关管和所述第四开关管串联,所述第五开关管和所述第六开关管串联;第一变压器的原边的第一端连接于所述第一开关管和所述第二开关管之间,第二变压器的原边的第一端连接于所述第三开关管和所述第四开关管之间,第三变压器的第一端连接于所述第五开关管和所述第六开关管之间;所述第一变压器的原边的第二端、所述第二变压器的原边的第二端和所述第三变压器的原边的第二端相连。
进一步地,所述第二三相电路包括第七开关管、第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第四电感、第五电感、第六电感、第四电容、第五电容和第六电容;所述第七开关管和所述第八开关管串联,所述第九开关管和所述第十开关管串联,所述第十一开关管和所述第十二开关管串联;第一变压器的副边的第一端与所述第四电感的第一端相连,所述第四电感的第二端连接于所述第七开关管和所述第八开关管之间;第二变压器的副边的第一端与所述第五电感的第一端相连,所述第五电感的第二端连接于所述第九开关管和所述第十开关管之间;第三变压器的副边的第一端与所述第六电感的第一端相连,所述第六电感的第二端连接于所述第十一开关管和所述第十二开关管之间;所述第一变压器的副边的第二端与所述第四电容的第一端相连,所述第二变压器的副边的第二端与所述第五电容的第一端相连,所述第三变压器的副边的第二端与所述第六电容的第一端相连,所述第四电容的第二端、所述第五电容的第二端和所述第六电容的第二端相连;或,
所述第二三相电路包括第七开关管、第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第四电容、第五电容和第六电容;所述第七开关管和所述第八开关管串联,所述第九开关管和所述第十开关管串联,所述第十一开关管和所述第十二开关管串联;第一变压器的副边的第一端连接于所述第七开关管和所述第八开关管之间;第二变压器的副边的第一端连接于所述第九开关管和所述第十开关管之间;第三变压器的副边的第一端连接于所述第十一开关管和所述第十二开关管之间;所述第一变压器的副边的第二端与所述第四电容的第一端相连,所述第二变压器的副边的第二端与所 述第五电容的第一端相连,所述第三变压器的副边的第二端与所述第六电容的第一端相连,所述第四电容的第二端、所述第五电容的第二端和所述第六电容的第二端相连;或,
所述第二三相电路包括第七开关管、第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第四电感、第五电感和第六电感;所述第七开关管和所述第八开关管串联,所述第九开关管和所述第十开关管串联,所述第十一开关管和所述第十二开关管串联;第一变压器的副边的第一端与所述第四电感的第一端相连,所述第四电感的第二端连接于所述第七开关管和所述第八开关管之间;第二变压器的副边的第一端与所述第五电感的第一端相连,所述第五电感的第二端连接于所述第九开关管和所述第十开关管之间;第三变压器的副边的第一端与所述第六电感的第一端相连,所述第六电感的第二端连接于所述第十一开关管和所述第十二开关管之间;所述第一变压器的副边的第二端、所述第二变压器的副边的第二端和所述第三变压器的副边的第二端相连;或,
所述第二三相电路包括第七开关管、第八开关管、第九开关管、第十开关管、第十一开关管和第十二开关管,所述第七开关管和所述第八开关管串联,所述第九开关管和所述第十开关管串联,所述第十一开关管和所述第十二开关管串联;所述第一变压器的副边的第一端连接于所述第七开关管和所述第八开关管之间,所述第二变压器的副边的第一端连接于所述第九开关管和所述第十开关管之间,所述第三变压器的副边的第一端连接于所述第十一开关管和所述第十二开关管之间,所述第一变压器的副边的第二端、所述第二变压器的副边的第二端和所述第三变压器的副边的第二端相连。
进一步地,所述非隔离降压/升压电路采用交错升压/降压电路或者单级升压/降压电路。
进一步地,所述非隔离降压/升压电路包括第一支路、第二支路、第七电感和第八电感,其中:
所述第一支路与所述第二支路并联,所述第一支路包括串联的第十三开关管和第十四开关管,所述第二支路包括串联的第十五开关管和第十六开关管;所述第七电感的第一端连接所述第十五开关管的第二端和所述第十六开关管的第一端,所述第八电感的第一端连接所述第十三开关管的第二端和所述第十四开关管的第一端,所述第七电感的第二端和所述第八电感的第二端连接。
另一方面,本申请提供一种双向充放电设备,包括上述任一实施例所述的直流转直流DCDC变换器。
再一方面,本申请提供一种采用上述任一实施例所述的直流转直流DCDC变换器的控制方法,包括:
在第一方向运行时,控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,并控制每个非隔离降压/升压电路工作于降压状态并使各个非隔离降压/升压电路的输出电流相等;
在第二方向运行时,控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,以及控制每个非隔离降压/升压电路工作于直流升压状态并使各个非隔离降压/升压电路的输出电流相等;所述第一方向运行与所述第二方向运行相反。
进一步地,所述控制每个非隔离降压/升压电路工作于降压状态并使各个非隔离降压/升压电路的输出电流相等包括:
根据预设电压参考值和输出电压采样值产生第一电流参考值,并根据所述第一电流参考值和每个非隔离降压/升压电路的输出电流采样值调节每个非隔离降压/升压电路的占空比,以使得各个非隔离降压/升压电路的输出电流相等。
进一步地,所述控制每个非隔离降压/升压电路工作于直流升压状态并使各个非隔离降压/升压电路的输出电流相等包括:
控制每个非隔离降压/升压电路产生每个双向隔离DCDC单元的中间母线电压,并根据中间母线电压参考值和各个双向隔离DCDC单元的中间母线电压采样值获得第二电流参考值;
根据所述第二电流参考值和每个非隔离降压/升压电路的输入电流采样值调节每个非隔离降压/升压电路的占空比,以使得各个非隔离降压/升压电路的输入电流相等。
本申请实施例提供的直流转直流DCDC变换器及其控制方法,包括至少一个DCDC变换模块和控制器,每个DCDC变换模块包括两个并联的双向隔离DCDC单元,每个双向隔离DCDC单元包括谐振电路和非隔离降压/升压电路,谐振电路和非隔离降压/升压电路级联,控制器与每个双向隔离DCDC单元电连接,控制器用于控制各个非隔离降压/升压电路的均流,通过至少一个DCDC变换模块满足直流转直流DCDC变换器对功率的要求,降低了直流转直流DCDC变换器的制造成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请第一实施例提供的直流转直流DCDC变换器的结构示意图。
图2是本申请第二实施例提供的直流转直流DCDC变换器的结构示意图。
图3是本申请第三实施例提供的直流转直流DCDC变换器的结构示意图。
图4是本申请第四实施例提供的第一三相电路的结构示意图。
图5是本申请第五实施例提供的第一三相电路的结构示意图。
图6是本申请第六实施例提供的第一三相电路的结构示意图。
图7是本申请第七实施例提供的第一三相电路的结构示意图。
图8是本申请第八实施例提供的第二三相电路的结构示意图。
图9是本申请第九实施例提供的第二三相电路的结构示意图。
图10是本申请第十实施例提供的第二三相电路的结构示意图。
图11是本申请第十一实施例提供的第二三相电路的结构示意图。
图12是本申请第十二实施例提供的非隔离降压/升压电路的结构示意图。
图13是本申请第十三实施例提供的直流转直流DCDC变换器的结构示意图。
图14是本申请第四实施例提供的直流转直流DCDC变换器的控制方法的流程示意图。
图15是本申请第十五实施例提供的第一方向运行的控制示意图。
图16是本申请第十六实施例提供的第二方向运行的控制示意图。
附图标记说明:
1、DCDC变换模块;          11、双向隔离DCDC单元;
111、谐振电路;            112、非隔离降压/升压电路;
310、第一三相电路;        320、第二三相电路;
330、第一支路;            340、第二支路。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但 并不作为对本发明的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
为了便于理解本申请提供的技术方案,下面先对本申请技术方案的相关内容进行说明。在本发明实施例中,对目标对象进行温度采集需要用到至少两个温度传感器或者至少两种滤波算法,所述至少两种滤波算法对应同一个温度传感器。在本发明人实施例中,为了方便进行说明,一个通道对应一个温度传感器或者一种滤波算法。本发明实施例提供的温度处理方法可以用于电动汽车的温度检测系统,也可以应用于其他需要进行温度采集的场景,本发明实施例不做限定。
图1是本申请第一实施例提供的直流转直流DCDC变换器的结构示意图,如图1所示,本申请实施例提供的直流转直流DCDC变换器,包括至少一个DCDC变换模块1和控制器,其中:
每个DCDC变换模块1包括两个双向隔离DCDC单元11,每个DCDC变换模块1包括的两个双向隔离DCDC单元11并联,每个双向隔离DCDC单元包括谐振电路111和非隔离降压/升压电路112,每个双向隔离DCDC单元包括的谐振电路111和非隔离降压/升压电路112级联;其中,各个谐振电路111的工作频率固定;若DCDC变换模块1的数量大于或等于2,则各个DCDC变换模块1之间并联;
所述控制器与每个双向隔离DCDC单元11电连接,所述控制器用于控制各个非隔离降压/升压电路112的均流。
具体地,本申请实施例提供的直流转直流DCDC变换器能够实现功率的双向流动,即所述直流转直流DCDC变换器能够对相连的充电对象进行充电,工作在充电模式,可以将充电对象存储的电能向外部输出,工作在供电模式。当工作在充电模式时,外部电流由谐振电路111流向非隔离降压/升压电路112,向充电对象充电,谐振电路111用于升压,非隔离降压/升压电路112用于降压,所述直流转直流DCDC变换器在第一方向运行;当工作在供电模式时,充电对象提供的电流由非隔离降压/升压电路112流向谐振电路111,再向外输出,此时非隔离降压/升压电路112用于升压,谐振电路111用于降压,所述直流转直流DCDC变换器在第二方向运行。在实际使用中,电流由谐振电路111可以接功率因数校正(Power Factor Correction,简称PFC)电路,非隔离降压/升压电路112可以接充电电池。
所述控制器用于驱动每个双向隔离DCDC单元和每个非隔离降压/升压电路112。所述控制器通过控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,减 少直流转直流DCDC变换器的电磁干扰(Electromagnetic Interference,简称EMI)噪声。所述控制器控制各个非隔离降压/升压电路的输出电流相等,实现各个非隔离降压/升压电路112的均流。通过各个谐振电路111的工作频率固定实现各个谐振电路111的电压隔离。其中,所述控制器可以采用微控制单元(Microcontroller Unit,简称MCU)或者数字信号处理(Digital Signal Processing,简称DSP)芯片。
通过增加DCDC变换模块1的数量实现所述直流转直流DCDC变换器功率的扩展,DCDC变换模块1的数量越多,能够支持的功率越大。DCDC变换模块1的数量根据实际功率的需要进行设置,比如设置2-10个DCDC变换模块1,此处仅是举例说明,本申请实施例对DCDC变换模块1的数量不做过多的限定。
如图2所示,本申请提供的直流转直流DCDC变换器包括2个DCDC变换模块1,2个DCDC变换模块并联,相对于图1所示的包括1个DCDC变换模块1的结构,提高了所述直流转直流DCDC变换器的功率。
本申请实施例提供的直流转直流DCDC变换器,包括至少一个DCDC变换模块和控制器,每个DCDC变换模块包括两个并联的双向隔离DCDC单元,每个双向隔离DCDC单元包括谐振电路和非隔离降压/升压电路,谐振电路和非隔离降压/升压电路级联,控制器与每个双向隔离DCDC单元电连接,控制器用于控制各个非隔离降压/升压电路的均流,通过至少一个DCDC变换模块满足直流转直流DCDC变换器对功率的要求,避免采用复杂的变压器结构,降低了直流转直流DCDC变换器的制造成本。
在上述各实施例的基础上,进一步地,谐振电路111包括三相LLC电路或LLC延伸电路。三相LLC电路的输入输出纹波比较小。LLC延伸电路为在上述三相LLC电路基础上进行变形或改进的三相谐振电路。
图3是本申请第三实施例提供的直流转直流DCDC变换器的结构示意图,如图3所示,在上述各实施例的基础上,进一步地,所述三相LLC电路包括第一三相电路310、第二三相电路320和三个变压器,其中:
第一三相电路310连接于所述三个变压器的原边侧,第二三相电路320连接于所述三个变压器的副边侧。第二三相电路320与非隔离降压/升压电路112相连。
第一三相电路310可以采用图3、图4、图5或者图6所示的电路结构,或是其他的在上述第一三相电路的基础上增加或减少电感电容电阻开关管等电子元器件的三相电路,此处不做过多的限制。第二三相电路320可以采用图7、图8、图9或者图10所示 的电路结构,或是其他的在上述附图中的第二三相电路的基础上增加或减少电感电容电阻开关管等电子元器件的三相电路,此处不做过多的限制。
图4是本申请第四实施例提供的第一三相电路的结构示意图,如图4所示,在上述各实施例的基础上,进一步地,第一三相电路310包括第一开关管M1、第二开关管M2、第三开关管M3、第四开关管M4、第五开关管M5、第六开关管M6、第一电感L1、第二电感L2、第三电感L3、第一电容C1、第二电容C2和第三电容C3;第一开关管M1和第二开关管M2串联,第三开关管M3和第四开关管M4串联,第五开关管M5和第六开关管M6串联;第一电感L1的第一端连接于第一开关管M1和第二开关管M2之间,第二电感L2的第一端连接于第三开关管M3和第四开关管M4之间,第三电感L3的第一端连接于第五开关管M5和第六开关管M6之间;第一电感L1的第二端与第一变压器T1的原边的第一端相连,第一变压器T1的原边的第二端与第一电容C1的第一端相连,第二电感L2的第二端与第二变压器T2的原边的第一端相连,第二变压器T2的原边的第二端与第二电容C2的第一端相连,第三电感L3的第二端与第三变压器T3的原边的第一端相连,第三变压器T3的原边的第二端与第三电容C3的第一端相连,第一电容C1的第二端、第二电容C2的第二端和第三电容C3的第二端相连;第一开关管M1的第一端、第三开关管M3的第一端和第五开关管M5的第一端相连,第二开关管M2的第二端、第四开关管M4的第二端和第六开关管M6的第二端相连
图5是本申请第五实施例提供的第一三相电路的结构示意图,如图5所示,在上述各实施例的基础上,进一步地,第一三相210电路包括第一开关管M1、第二开关管M2、第三开关管M3、第四开关管M4、第五开关管M5、第六开关管M6、第一电容C1、第二电容C2和第三电容C3;第一开关管M1和第二开关管M2串联,第三开关管M3和第四开关管M4串联,第五开关管M5和第六开关管M6串联;第一变压器T1的原边的第一端连接于第一开关管M1和第二开关管M 2之间,第二变压器T2的原边的第一端连接于第三开关管M3和第四开关管M4之间,第三变压器T3的原边的第一端连接于第五开关管M5和第六开关管M6之间;第一变压器T1的原边的第二端与第一电容C1的第一端相连,第二变压器T2的原边的第二端与第二电容C2的第一端相连,第三变压器T3的原边的第二端与第三电容C3的第一端相连,第一电容C1的第二端、第二电容C2的第二端和第三电容C3的第二端相连。
图6是本申请第六实施例提供的第一三相电路的结构示意图,如图6所示,在上述各实施例的基础上,进一步地,第一三相电路310包括第一开关管M1、第二开关管 M2、第三开关管M3、第四开关管M4、第五开关管M5、第六开关管M6、第一电感L1、第二电感L2、第三电感L3;第一开关管M1和第二开关管M2串联,第三开关管M3和第四开关管M4串联,第五开关管M5和第六开关管M6串联;第一电感L1的第一端连接于第一开关管M1和第二开关管M2之间,第二电感L2的第一端连接于第三开关管M3和第四开关管M4之间,第三电感L3的第一端连接于第五开关管M5和第六开关管M6之间;第一电感L1的第二端与第一变压器T1的原边的第一端相连,第二电感L2的第二端与第二变压器T2的原边的第一端相连,第三电感L3的第二端与第三变压器T3的原边的第一端相连;第一变压器T1的原边的第二端、第二变压器T2的原边的第二端和第三变压器T3的原边的第二端相连。
图7是本申请第七实施例提供的第一三相电路的结构示意图,如图7所示,在上述各实施例的基础上,进一步地,所述第一三相电路包括第一开关管M1、第二开关管M2、第三开关管M3、第四开关管M4、第五开关管M5、第六开关管M6;第一开关管M1和第二开关管M2串联,第三开关管M3和第四开关管M4串联,第五开关管M5和第六开关管M6串联;第一变压器T1的原边的第一端连接于第一开关管M1和第二开关管M2之间,第二变压器T2的原边的第一端连接于第三开关管M3和第四开关管M4之间,第三变压器T3的第一端连接于第五开关管M5和第六开关管M6之间;第一变压器T1的原边的第二端、第二变压器T2的原边的第二端和第三变压器T3的原边的第二端相连。
图8是本申请第八实施例提供的第二三相电路的结构示意图,如图8所示,在上述各实施例的基础上,进一步地,第二三相电路320包括第七开关管M7、第八开关管M8、第九开关管M9、第十开关管M10、第十一开关管M11、第十二开关管M12、第四电感L4、第五电感L5、第六电感L6、第四电容C4、第五电容C5和第六电容C6;第七开关管M7和第八开关管M8串联,第九开关管M9和第十开关管M10串联,第十一开关管M11和第十二开关管M12串联;第一变压器T1的副边的第一端与第四电感L4的第一端相连,第四电感L4的第二端连接于第七开关管M7和第八开关管M8之间;第二变压器T2的副边的第一端与第五电感L5的第一端相连,第五电感L5的第一端连接于第九开关管M9和第十开关管M10之间;第三变压器T3的副边的第一端与第六电感L6的第一端相连,第六电感L6的第二端连接于第十一开关管M11和第十二开关管M12之间;第一变压器T1的副边的第二端与第四电容C4的第一端相连,第二变压器T2的副边的第二端与第五电容C5的第一端相连,第三变压器T3的副边的第二端与第六电容 C6的第一端相连,第四电容C4的第二端、第五电容C5的第二端和第六电容C6的第二端相连。
图9是本申请第九实施例提供的第二三相电路的结构示意图,如图9所示,在上述各实施例的基础上,进一步地,第二三相电路320包括第七开关管M7、第八开关管M8、第九开关管M9、第十开关管M10、第十一开关管M11、第十二开关管M12、第四电容C4、第五电容C5和第六电容C6;第七开关管M7和第八开关管M8串联,第九开关管M9和第十开关管M10串联,第十一开关管M11和第十二开关管M12串联;第一变压器T1的副边的第一端连接于第七开关管M7和第八开关管M8之间;第二变压器T2的副边的第一端连接于第九开关管M9和第十开关管M10之间;第三变压器T3的副边的第一端连接于第十一开关管M11和第十二开关管M12之间;第一变压器T1的副边的第二端与第四电容C4的第一端相连,第二变压器T2的副边的第二端与第五电容C5的第一端相连,第三变压器T3的副边的第二端与第六电容C6的第一端相连,第四电容C4的第二端、第五电容C5的第二端和第六电容C6的第二端相连。
图10是本申请第十实施例提供的第二三相电路的结构示意图,如图10所示,在上述各实施例的基础上,进一步地,第二三相电路320包括第七开关管M7、第八开关管M8、第九开关管M9、第十开关管M10、第十一开关管M11、第十二开关管M12、第四电感L4、第五电感L5和第六电感L6;第七开关管M7和第八开关管M8串联,第九开关管M9和第十开关管M10串联,第十一开关管M11和第十二开关管M12串联;第一变压器T1的副边的第一端与第四电感L4的第一端相连,第四电感L4的第二端连接于第七开关管M7和第八开关管M8之间;第二变压器T2的副边的第一端与第五电感L5的第一端相连,第五电感L5的第一端连接于第九开关管M9和第十开关管M10之间;第三变压器T3的副边的第一端与第六电感L6的第一端相连,第六电感L6的第二端连接于第十一开关管M11和第十二开关管M12之间;第一变压器T1的副边的第二端、第二变压器T1的副边的第二端和第三变压器T3的副边的第二端相连。
图11是本申请第十一实施例提供的第二三相电路的结构示意图,如图11所示,在上述各实施例的基础上,进一步地,第二三相电路320包括第七开关管M7、第八开关管M8、第九开关管M9、第十开关管M10、第十一开关管M11和第十二开关管M12,第七开关管M7和第八开关管M8串联,第九开关管M9和第十开关管M10串联,第十一开关管M11和第十二开关管M12串联;第一变压器T1的副边的第一端连接于第七开关管M7和第八开关管M8之间,第二变压器T2的副边的第一端连接于第九开关管M9 和第十开关管M10之间,第三变压器T3的副边的第一端连接于第十一开关管M11和第十二开关管M12之间,第一变压器T1的副边的第二端、第二变压器T2的副边的第二端和第三变压器T3的副边的第二端相连。
在上述各实施例的基础上,进一步地,非隔离降压/升压电路112采用交错升压/降压电路或者单级升压/降压电路。
在上述各实施例的基础上,进一步地,如图12所示,非隔离降压/升压电路112包括第一支路330、第二支路340、第七电感L7和第八电感L8,其中:
第一支路330与第二支路340并联,第一支路330包括串联的第十三开关管M13和第十四开关管M14,第二支路340包括串联的第十五开关管M15和第十六开关管M16;第七电感L7的第一端连接第十五开关管M15的第二端和第十六开关管M16的第一端,第八电感L8的第一端连接第十三开关管M13的第二端和所述第十四开关管M14的第一端,第七电感L7的第二端和第八电感的第二端连接。第一支路330与第二支路340分别连接谐振电路111。
如图3所示,第一三相电路310采用图3所示的电路结构,第二三相电路320采用图11所示的电路结构,非隔离降压/升压电路112采用图12所示的电路结构。
其中,在第一三相电路310的外接端口处可以设置第一滤波电容C7和第二滤波电容C8,第一滤波电容C7和第二滤波电容C8串联,第一滤波电容C7的第一端连接第一三相电路310的外接端口的第一端,第一滤波电容C7的第二端连接第二滤波电容C8的第一端,第二滤波电容C8的第二端连接第一三相电路310的外接端口的第二端。第一开关管M1的第一端、第三开关管M3的第一端和第五开关管M5的第一端与第一三相电路310的外接端口的第一端相连,第二开关管M2的第二端、第四开关管M4的第二端和第六开关管M6的第二端与第一三相电路310的外接端口相连。
第一开关管M1与第二开关管M2的驱动互补,第三开关管M3和第四开关管M4的驱动互补,第五开关管M5和第六开关管M6的驱动互补,第一开关管M1与第二开关管M2所属的第一桥臂,第三开关管M3和第四开关管M4所属的第二桥臂以及第五开关管M5和第六开关管M6所属的第三桥臂的同一位置的驱动相差120度。
第七开关管M7与第八开关管M8的驱动互补,第九开关管M9与第十开关管M10的驱动互补,第十一开关管M11与第十二开关管M12的驱动互补,第七开关管M7与第八开关管M8所属的第四桥臂,第九开关管M9与第十开关管M10所属的第五桥臂以 及第十一开关管M11与第十二开关管M12所属的第六桥臂的同一位置的驱动相差120度。
其中,非隔离降压/升压电路112的外接端口处可以设置第三滤波电容C9,第三滤波电容C9的第一端分别与第七电感L7的第二端和第八电感L8的第二端相连,第三滤波电容C9的第二端分别连接第十四开关管M14的第二端和第十六开关管M16的第二端相连。非隔离降压/升压电路112的外接端口的第一端分别与第三滤波电容C9的第一端、第七电感L7的第二端和第八电感L8的第二端相连。非隔离降压/升压电路112的外接端口的第二端分别与第三滤波电容C9的第二端、第十四开关管M14的第二端和第十六开关管M16的第二端相连。图3中非隔离降压/升压电路112为交错升压/降压电路。
其中,第二三相电路320与非隔离降压/升压电路112之间设置第一母线电容C10,第一母线电容两端的电压可以称为中间母线电压,在第一方向运行时,中间母线电压为谐振电路111的输出端电压,在第二方向运行时,中间母线电压为非隔离降压/升压电路112的输出端电压。第一母线电容C10与第二三相电路320并联,第一母线电容C10的第一端分别连接第七开关管M7的第一端、第九开关管M9的第一端和第十一开关管M11的第一端。第一母线电容C10的第二端分别连接第八开关管M8的第二端、第十开关管M10的第二端和第十二开关管M12的第二端。
如图13所示,第一三相电路310采用图5所示的电路结构,第二三相电路320采用图11所示的电路结构。
非隔离降压/升压电路112包括第十七开关管M17、第十八开关管M18和第九电感L9,其中:
第十七开关管M17与第十八开关管M18串联,第十七开关管M17的第二端连接第十八开关管M18的第一端,第九电感L9的第一端分别连接第十七开关管M17的第二端和第十八开关管M18的第一端。第十七开关管M17的第一端和第十八开关管M18的第二端连接第二三相电路320。
非隔离降压/升压电路112的外接端口处可以设置第四滤波电容C10,第四滤波电容C10的第一端连接第九电感L9的第二端,第四滤波电容C10的第二端连接第十八开关管M18的第二端。非隔离降压/升压电路112的外接端口的第一端分别与第九电感L9的第二端和第四滤波电容C10的第一端相连,非隔离降压/升压电路112的外接端口的第二端分别与第四滤波电容C10的第二端和第十八开关管M18的第二端相连。图13中非隔离降压/升压电路112为单级升压/降压电路。
如图13所示,第二三相电路320与非隔离降压/升压电路112之间设置第二母线电容C11,第二母线电容C11两端的电压可以称为中间母线电压。第二母线电容C11与第二三相电路320并联,第二母线电容C11的第一端分别连接第七开关管M7的第一端、第九开关管M9的第一端和第十一开关管M11的第一端。第二母线电容C11的第二端分别连接第八开关管M8的第二端、第十开关管M10的第二端和第十二开关管M12的第二端。
本申请实施例提供的一种双向充放电设备,包括上述任一实施例所述的直流转直流DCDC变换器。所述双向充放电设备可以应用于充电桩。
图14是本申请第十四实施例提供的直流转直流DCDC变换器的控制方法的流程示意图,如图14所示,本申请实施例提供的直流转直流DCDC变换器的控制方法可以应用于上述任一实施例所述的直流转直流DCDC变换器,包括:
S1401、在第一方向运行时,控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,并控制每个非隔离降压/升压电路工作于降压状态并使各个非隔离降压/升压电路的输出电流相等;
具体地,所述直流转直流DCDC变换器工作在充电模式时,即在第一方向运行时,电流由每个谐振电路流向级联的非隔离降压/升压电路,控制器会驱动每个谐振电路对输入电压进行降压获得中间母线电压,同时控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,以减少所述直流转直流DCDC变换器的EMI噪声。所述控制器会驱动每个非隔离降压/升压电路工作于降压状态,将中间母线电压降压输出,同时会控制各个非隔离降压/升压电路的输出电流相等,以实现各个非隔离降压/升压电路均流。
S1402、在第二方向运行时,控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,以及控制每个非隔离降压/升压电路工作于直流升压状态并使各个非隔离降压/升压电路的输出电流相等;其中,所述第一方向与所述第二方向相反。
具体地,所述直流转直流DCDC变换器工作在供电模式时,即在第二方向运行时,电流由每个非隔离降压/升压电路流向级联的谐振电路,所述控制器会驱动每个非隔离降压/升压电路工作于降压状态,将输入端输入的电压降压转换为获得中间母线电压,同时会控制各个非隔离降压/升压电路的输出电流相等,以实现各个非隔离降压/升压电路均流。所述控制器会驱动每个谐振电路将中间母线电压降压输出,同时控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,以减少所述直流转直流DCDC变换 器的EMI噪声。其中,所述第一方向与所述第二方向相反。可理解的是,步骤S401和步骤S402没有先后顺序关系。
本申请实施例提供的直流转直流DCDC变换器的控制方法,在第一方向运行时,控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,并控制每个非隔离降压/升压电路工作于降压状态并使各个非隔离降压/升压电路的输出电流相等,在第二方向运行时,控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,以及控制每个非隔离降压/升压电路工作于直流升压状态并使各个非隔离降压/升压电路的输出电流相等,实现各个非隔离降压/升压电路的均流,并能够减少谐振电路和非隔离降压/升压电路之间的电容波纹,提高了直流转直流DCDC变换器的可靠性。
在上述各实施例的基础上,进一步地,所述控制每个非隔离降压/升压电路工作于降压状态并使各个非隔离降压/升压电路的输出电流相等包括:
根据预设电压参考值和输出电压采样值产生第一电流参考值,并根据所述第一电流参考值和每个非隔离降压/升压电路的输出电流采样值调节每个非隔离降压/升压电路的占空比,以使得各个非隔离降压/升压电路的输出电流相等。
具体地,在第一方向运行时,对所述直流转直流DCDC变换器的输出端的输出电压进行采样获得输出电压采样值,所述控制器比较预设电压参考值和输出电压采样值产生第一电流参考值。对每个非隔离降压/升压电路的输出电流进行采样,获得每个非隔离降压/升压电路的输出电流采样值,所述控制器将所述第一电流参考值作为各个非隔离降压/升压电路的共同电流基准,通过比较所述第一电流参考值和每个非隔离降压/升压电路的输出电流采样值,调节每个非隔离降压/升压电路的占空比,使各个非隔离降压/升压电路的输出电流相等。其中,预设电压参考值根据实际需要进行设置,本申请实施例不做限定。
例如,图15是本申请第十五实施例提供的第一方向运行的控制示意图,如图15所示,将预设电压参考值与输出电压采样值进行比较,输出电压调节器根据上述比较的结果产生第一电流参考值。每个非隔离降压/升压电路的输出电流调节根据第一电流参考值与每个非隔离降压/升压电路的输出电流采样值的比较结果,调节每个非隔离降压/升压电路的占空比,以调整每个非隔离降压/升压电路的输出电流,使各个非隔离降压/升压电路的输出电流相等。
在上述各实施例的基础上,进一步地,所述控制每个非隔离降压/升压电路工作于直流升压状态并使各个非隔离降压/升压电路的输出电流相等包括:
控制每个非隔离降压/升压电路产生每个双向隔离DCDC单元的中间母线电压,并根据中间母线电压参考值和各个双向隔离DCDC单元的中间母线电压采样值获得第二电流参考值;
根据所述第二电流参考值和每个非隔离降压/升压电路的输入电流采样值调节每个非隔离降压/升压电路的占空比,以使得各个非隔离降压/升压电路的输入电流相等。
具体地,在第二方向运行时,所述控制器会控制每个非隔离降压/升压电路对外部输入电压进行升压产生每个双向隔离DCDC单元的中间母线电压,即每个双向隔离DCDC单元的输出电压。对每个双向隔离DCDC单元的中间母线电压进行采样,可以获得每个双向隔离DCDC单元的中间母线电压采样值,所述控制器可以对各个双向隔离DCDC单元的中间母线电压采样值求平均值,将计算获得的平均值作为中间母线电压比较值,或者获取各个双向隔离DCDC单元的中间母线电压采样值的最大值作为中间母线电压比较值。所述控制器将中间母线电压参考值与中间母线电压比较值进行比较,产生第二电流参考值,第二电流参考值作为各个非隔离降压/升压电路的共同电流基准。
对每个非隔离降压/升压电路的输入电流进行采样,可以获得每个非隔离降压/升压电路的输入电流采样值。所述控制器通过比较所述第二电流参考值和每个非隔离降压/升压电路的输入电流采样值,调节每个非隔离降压/升压电路的占空比,使各个非隔离降压/升压电路的输出电流相等。其中,所述中间母线电压参考值根据实际需要进行设置,本申请实施例不做限定。
例如,图16是本申请第十六实施例提供的第二方向运行的控制示意图,如图16所示,获取各个双向隔离DCDC单元的中间母线电压采样值,然后求平均值获得中间母线电压比较值,然后将中间母线电压参考值与中间母线电压比较值进行比较,中间母线电压调节器根据上述比较的结果产生第二电流参考值。每个非隔离降压/升压电路的输入电流调节根据第二电流参考值与每个非隔离降压/升压电路的输入电流采样值的比较结果,调节每个非隔离降压/升压电路的占空比,以调整每个非隔离降压/升压电路的输出电流,使各个非隔离降压/升压电路的输出电流相等。
在本说明书的描述中,参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而 且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
当电路或电子元器件被称作“连接”或“接入”其他电路或电子元器件时,应当理解的是:该电路或电子元器件不仅直接连接到或接入到其他电路或电子元器件,而且在该电路或电子元器件和其它电路或电子元器件之间还可以存在另一电路或电子元器件。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种直流转直流DCDC变换器,其特征在于,包括至少一个DCDC变换模块和控制器,其中:
    每个所述DCDC变换模块包括两个并联的双向隔离DCDC单元,每个所述双向隔离DCDC单元包括谐振电路和非隔离降压/升压电路,所述谐振电路和所述非隔离降压/升压电路级联;其中,各个所述谐振电路的工作频率固定;若所述DCDC变换模块的数量大于或等于2,则各个所述DCDC变换模块之间并联;
    所述控制器与每个所述双向隔离DCDC单元电连接,所述控制器用于控制各个所述非隔离降压/升压电路的均流。
  2. 根据权利要求1所述的直流转直流DCDC变换器,其特征在于,所述谐振电路包括三相LLC电路或LLC延伸电路。
  3. 根据权利要求2所述的直流转直流DCDC变换器,其特征在于,所述三相LLC电路包括第一三相电路、第二三相电路和三个变压器,其中:
    所述第一三相电路连接于所述三个变压器的原边侧,所述第二三相电路连接于所述三个变压器的副边侧。
  4. 根据权利要求3所述的直流转直流DCDC变换器,其特征在于,所述第一三相电路包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管、第六开关管、第一电感、第二电感、第三电感、第一电容、第二电容和第三电容;所述第一开关管和所述第二开关管串联,所述第三开关管和所述第四开关管串联,所述第五开关管和所述第六开关管串联;所述第一电感的第一端连接于所述第一开关管和所述第二开关管之间,所述第二电感的第一端连接于所述第三开关管和所述第四开关管之间,所述第三电感的第一端连接于所述第五开关管和所述第六开关管之间;所述第一电感的第二端与第一变压器的原边的第一端相连,所述第一变压器的原边的第二端与所述第一电容的第一端相连,所述第二电感的第二端与第二变压器的原边的第一端相连,所述第二变压器的原边的第二端与所述第二电容的第一端相连,所述第三电感的第二端与第三变压器的原边的第一端相连,所述第三变压器的原边的第二端与所述第三电容的第一端相连,所述第一电容的第二端、所述第二电容的第二端和所述第三电容的第二端相连;或,
    所述第一三相电路包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管、第六开关管、第一电容、第二电容和第三电容;所述第一开关管和所述第二开关管串联,所述第三开关管和所述第四开关管串联,所述第五开关管和所述第六开关管 串联;第一变压器的原边的第一端连接于所述第一开关管和所述第二开关管之间,第二变压器的原边的第一端连接于所述第三开关管和所述第四开关管之间,第三变压器的原边的第一端连接于所述第五开关管和所述第六开关管之间;所述第一变压器的原边的第二端与所述第一电容的第一端相连,所述第二变压器的原边的第二端与所述第二电容的第一端相连,所述第三变压器的原边的第二端与所述第三电容的第一端相连,所述第一电容的第二端、所述第二电容的第二端和所述第三电容的第二端相连;或,
    所述第一三相电路包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管、第六开关管、第一电感、第二电感和第三电感;所述第一开关管和所述第二开关管串联,所述第三开关管和所述第四开关管串联,所述第五开关管和所述第六开关管串联;所述第一电感的第一端连接于所述第一开关管和所述第二开关管之间,所述第二电感的第一端连接于所述第三开关管和所述第四开关管之间,所述第三电感的第一端连接于所述第五开关管和所述第六开关管之间;所述第一电感的第二端与第一变压器的原边的第一端相连,所述第二电感的第二端与第二变压器的原边的第一端相连,所述第三电感的第二端与第三变压器的原边的第一端相连;所述第一变压器的原边的第二端、所述第二变压器的原边的第二端和所述第三变压器的原边的第二端相连;或,
    所述第一三相电路包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管;所述第一开关管和所述第二开关管串联,所述第三开关管和所述第四开关管串联,所述第五开关管和所述第六开关管串联;第一变压器的原边的第一端连接于所述第一开关管和所述第二开关管之间,第二变压器的原边的第一端连接于所述第三开关管和所述第四开关管之间,第三变压器的第一端连接于所述第五开关管和所述第六开关管之间;所述第一变压器的原边的第二端、所述第二变压器的原边的第二端和所述第三变压器的原边的第二端相连。
  5. 根据权利要求3所述的直流转直流DCDC变换器,其特征在于,所述第二三相电路包括第七开关管、第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第四电感、第五电感、第六电感、第四电容、第五电容和第六电容;所述第七开关管和所述第八开关管串联,所述第九开关管和所述第十开关管串联,所述第十一开关管和所述第十二开关管串联;第一变压器的副边的第一端与所述第四电感的第一端相连,所述第四电感的第二端连接于所述第七开关管和所述第八开关管之间;第二变压器的副边的第一端与所述第五电感的第一端相连,所述第五电感的第二端连接于所述第九开关管和所述第十开关管之间;第三变压器的副边的第一端与所述第六电感的第一端相 连,所述第六电感的第二端连接于所述第十一开关管和所述第十二开关管之间;所述第一变压器的副边的第二端与所述第四电容的第一端相连,所述第二变压器的副边的第二端与所述第五电容的第一端相连,所述第三变压器的副边的第二端与所述第六电容的第一端相连,所述第四电容的第二端、所述第五电容的第二端和所述第六电容的第二端相连;或,
    所述第二三相电路包括第七开关管、第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第四电容、第五电容和第六电容;所述第七开关管和所述第八开关管串联,所述第九开关管和所述第十开关管串联,所述第十一开关管和所述第十二开关管串联;第一变压器的副边的第一端连接于所述第七开关管和所述第八开关管之间;第二变压器的副边的第一端连接于所述第九开关管和所述第十开关管之间;第三变压器的副边的第一端连接于所述第十一开关管和所述第十二开关管之间;所述第一变压器的副边的第二端与所述第四电容的第一端相连,所述第二变压器的副边的第二端与所述第五电容的第一端相连,所述第三变压器的副边的第二端与所述第六电容的第一端相连,所述第四电容的第二端、所述第五电容的第二端和所述第六电容的第二端相连;或,
    所述第二三相电路包括第七开关管、第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第四电感、第五电感和第六电感;所述第七开关管和所述第八开关管串联,所述第九开关管和所述第十开关管串联,所述第十一开关管和所述第十二开关管串联;第一变压器的副边的第一端与所述第四电感的第一端相连,所述第四电感的第二端连接于所述第七开关管和所述第八开关管之间;第二变压器的副边的第一端与所述第五电感的第一端相连,所述第五电感的第二端连接于所述第九开关管和所述第十开关管之间;第三变压器的副边的第一端与所述第六电感的第一端相连,所述第六电感的第二端连接于所述第十一开关管和所述第十二开关管之间;所述第一变压器的副边的第二端、所述第二变压器的副边的第二端和所述第三变压器的副边的第二端相连;或,
    所述第二三相电路包括第七开关管、第八开关管、第九开关管、第十开关管、第十一开关管和第十二开关管,所述第七开关管和所述第八开关管串联,所述第九开关管和所述第十开关管串联,所述第十一开关管和所述第十二开关管串联;所述第一变压器的副边的第一端连接于所述第七开关管和所述第八开关管之间,所述第二变压器的副边的第一端连接于所述第九开关管和所述第十开关管之间,所述第三变压器的副边的第一端 连接于所述第十一开关管和所述第十二开关管之间,所述第一变压器的副边的第二端、所述第二变压器的副边的第二端和所述第三变压器的副边的第二端相连。
  6. 根据权利要求1所述的直流转直流DCDC变换器,其特征在于,所述非隔离降压/升压电路采用交错升压/降压电路或者单级升压/降压电路。
  7. 根据权利要求6所述的直流转直流DCDC变换器,其特征在于,所述非隔离降压/升压电路包括第一支路、第二支路、第七电感和第八电感,其中:
    所述第一支路与所述第二支路并联,所述第一支路包括串联的第十三开关管和第十四开关管,所述第二支路包括串联的第十五开关管和第十六开关管;所述第七电感的第一端连接所述第十五开关管的第二端和所述第十六开关管的第一端,所述第八电感的第一端连接所述第十三开关管的第二端和所述第十四开关管的第一端,所述第七电感的第二端和所述第八电感的第二端连接。
  8. 一种双向充放电设备,其特征在于,包括权利要求1至7任一项权利要求所述的直流转直流DCDC变换器。
  9. 一种采用权利要求1至7任一项权利要求所述的直流转直流DCDC变换器的控制方法,其特征在于,包括:
    在第一方向运行时,控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,并控制每个非隔离降压/升压电路工作于降压状态并使各个非隔离降压/升压电路的输出电流相等;
    在第二方向运行时,控制每个DCDC变换模块包括的两个谐振电路的对应位置的驱动相反,以及控制每个非隔离降压/升压电路工作于直流升压状态并使各个非隔离降压/升压电路的输出电流相等;所述第一方向运行与所述第二方向运行相反。
  10. 根据权利要求9所述的方法,其特征在于,所述控制每个非隔离降压/升压电路工作于降压状态并使各个非隔离降压/升压电路的输出电流相等包括:
    根据预设电压参考值和输出电压采样值产生第一电流参考值,并根据所述第一电流参考值和每个非隔离降压/升压电路的输出电流采样值调节每个非隔离降压/升压电路的占空比,以使得各个非隔离降压/升压电路的输出电流相等。
  11. 根据权利要求9所述的方法,其特征在于,所述控制每个非隔离降压/升压电路工作于直流升压状态并使各个非隔离降压/升压电路的输出电流相等包括:
    控制每个非隔离降压/升压电路产生每个双向隔离DCDC单元的中间母线电压,并根据中间母线电压参考值和各个双向隔离DCDC单元的中间母线电压采样值获得第二电流参考值;
    根据所述第二电流参考值和每个非隔离降压/升压电路的输入电流采样值调节每个非隔离降压/升压电路的占空比,以使得各个非隔离降压/升压电路的输入电流相等。
PCT/CN2022/113394 2021-12-03 2022-08-18 一种直流转直流dcdc变换器及其控制方法 WO2023098146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111470872.0A CN114157159A (zh) 2021-12-03 2021-12-03 一种直流转直流dcdc变换器及其控制方法
CN202111470872.0 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023098146A1 true WO2023098146A1 (zh) 2023-06-08

Family

ID=80452949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113394 WO2023098146A1 (zh) 2021-12-03 2022-08-18 一种直流转直流dcdc变换器及其控制方法

Country Status (2)

Country Link
CN (1) CN114157159A (zh)
WO (1) WO2023098146A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157159A (zh) * 2021-12-03 2022-03-08 上海安世博能源科技有限公司 一种直流转直流dcdc变换器及其控制方法
CN115189587B (zh) * 2022-09-07 2022-12-13 深圳市恒运昌真空技术有限公司 一种三相谐振整流器及其控制方法
CN115995966B (zh) * 2023-03-23 2023-07-18 深圳市永联科技股份有限公司 双向非隔离dcdc拓扑控制电路及相关装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110090717A1 (en) * 2009-10-21 2011-04-21 Myongji University Industry And Academia Cooperation Foundation Two-stage insulated bidirectional DC/DC power converter using a constant duty ratio LLC resonant converter
CN103683964A (zh) * 2013-12-20 2014-03-26 华为技术有限公司 谐振式双向变换器及不间断电源装置、及控制方法
CN110138223A (zh) * 2019-05-13 2019-08-16 上海交通大学 一种双向dc/dc变换器及其控制方法
CN110289766A (zh) * 2019-06-21 2019-09-27 南京工程学院 一种双向三相llc谐振变换器
CN110719046A (zh) * 2019-09-27 2020-01-21 中南大学 一种用于老化电源装置的控制方法
CN111446858A (zh) * 2020-04-13 2020-07-24 威睿电动汽车技术(宁波)有限公司 Cllc双向直流-直流变换器及低增益控制方法
CN111600499A (zh) * 2020-05-28 2020-08-28 深圳市瑞能实业股份有限公司 交直流双向变换装置及其控制方法
CN114157159A (zh) * 2021-12-03 2022-03-08 上海安世博能源科技有限公司 一种直流转直流dcdc变换器及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110090717A1 (en) * 2009-10-21 2011-04-21 Myongji University Industry And Academia Cooperation Foundation Two-stage insulated bidirectional DC/DC power converter using a constant duty ratio LLC resonant converter
CN103683964A (zh) * 2013-12-20 2014-03-26 华为技术有限公司 谐振式双向变换器及不间断电源装置、及控制方法
CN110138223A (zh) * 2019-05-13 2019-08-16 上海交通大学 一种双向dc/dc变换器及其控制方法
CN110289766A (zh) * 2019-06-21 2019-09-27 南京工程学院 一种双向三相llc谐振变换器
CN110719046A (zh) * 2019-09-27 2020-01-21 中南大学 一种用于老化电源装置的控制方法
CN111446858A (zh) * 2020-04-13 2020-07-24 威睿电动汽车技术(宁波)有限公司 Cllc双向直流-直流变换器及低增益控制方法
CN111600499A (zh) * 2020-05-28 2020-08-28 深圳市瑞能实业股份有限公司 交直流双向变换装置及其控制方法
CN114157159A (zh) * 2021-12-03 2022-03-08 上海安世博能源科技有限公司 一种直流转直流dcdc变换器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAO, HONGTAO ET AL.: "Input-parallel-output-parallel Wide-range Bidirectional Isolated DC/DC Converter", JOURNAL OF POWER SUPPLY, vol. 18, no. 3, 31 May 2020 (2020-05-31), pages 13 - 20, XP009546792 *

Also Published As

Publication number Publication date
CN114157159A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN110120752B (zh) 功率变换器及其控制方法
WO2023098146A1 (zh) 一种直流转直流dcdc变换器及其控制方法
WO2020125625A1 (zh) 动力电池的充电方法、电机控制电路及车辆
CN106936319B (zh) 一种隔离型三端口双向dc-dc变换器
US11396241B2 (en) Power converter controlled capacitor circuits and methods
CN109842299B (zh) 组合式直流变换系统及其控制方法
CN111431297B (zh) 具有强抗偏移性能的多中继多负载双向无线电能传输系统
TW202007064A (zh) 雙向dc-dc轉換器
CN111342665A (zh) 一种隔离型双向dc-dc变换器及其控制方法
CN114884318A (zh) 一种基于占空比补偿的双向升降压直流变换器控制方法
CN112737308B (zh) 宽电压混合式pfc变换器及开关电源
CN113992010A (zh) 一种宽增益dc-dc变换器及其控制方法
CN110365232B (zh) 一种宽输出电压范围的单输入双输出变换器及其控制方法
CN115664169A (zh) 一种针对双向四开关Buck-Boost的准峰值电流控制方法
Kumar et al. A novel buck-boost derived pfc converter for ev charging
CN211830581U (zh) 一种高变比双向直流变换电路
CN114825936A (zh) 一种基于耦合电感的两相交错飞跨电容双向直流变换器
CN110729913B (zh) 一种单级式高增益五开关Boost型逆变器
CN114312382A (zh) 一种适用于电动汽车有线无线一体化充电桩的系统拓扑
CN109802572B (zh) 一种功率路由器及其控制方法
Chen et al. A isolated bidirectional interleaved flyback converter for battery backup system application
CN220785473U (zh) 充电控制系统及车辆
CN219247707U (zh) 一种连续模式控制整合式pfc变换器装置
CN109494976B (zh) 一种开关电源及其驱动电路
US20240007005A1 (en) Three-Phase Rectifier with Reconfigurable Modules for Wide Output Voltage Range

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899966

Country of ref document: EP

Kind code of ref document: A1