WO2023097985A1 - 一种静电离子阱 - Google Patents

一种静电离子阱 Download PDF

Info

Publication number
WO2023097985A1
WO2023097985A1 PCT/CN2022/093463 CN2022093463W WO2023097985A1 WO 2023097985 A1 WO2023097985 A1 WO 2023097985A1 CN 2022093463 W CN2022093463 W CN 2022093463W WO 2023097985 A1 WO2023097985 A1 WO 2023097985A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
group
ion trap
outer electrode
central
Prior art date
Application number
PCT/CN2022/093463
Other languages
English (en)
French (fr)
Inventor
徐福兴
丁力
Original Assignee
宁波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波大学 filed Critical 宁波大学
Publication of WO2023097985A1 publication Critical patent/WO2023097985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/4245Electrostatic ion traps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • the invention relates to the technical field of ion traps, in particular to an electrostatic ion trap.
  • the Orbitrap orbital ion trap is developed on the basis of the kingdon ion trap.
  • the Orbitrap orbital ion trap includes a spindle-shaped central electrode and a pair of outer electrodes coaxially arranged with the central electrode.
  • the central electrode is placed in the outer electrode, and the ions pass through the The entrance hole on the outer electrode shoots tangentially into the space between the central electrode and the outer electrode.
  • the ions can be bound on a moving track by giving enough centripetal force to the ions.
  • the trajectory of ions includes rotational motion around the central electrode and reciprocating vibration along the central axis; the reciprocating motion of ions can form periodic image charges on the outer electrodes, and the image charges picked up by the outer electrodes are amplified by the charge amplifier and output as charge signals. Perform Fourier transform on the charge signal to form a spectrum, due to the frequency The spectrum is then converted to a mass spectrum of ions in the trap.
  • the problem solved by the invention is how to facilitate the production and assembly, improve the yield of the ion trap, and at the same time facilitate the extraction of the inside of the ion trap to achieve ultra-high vacuum under the premise of ensuring the accuracy of the ion trap.
  • the present invention provides an electrostatic ion trap.
  • the electrostatic ion trap has a central axis and a central symmetrical plane perpendicular to the central axis.
  • the electrostatic ion trap includes an inner electrode group and a pair of electrodes arranged on both sides of the central symmetrical plane along the central axis.
  • each group of outer electrode groups includes several electrode sheets, the electrode sheets are distributed around the outer circumference of the inner electrode group with the central axis as the axis, at least two electrode sheets in the same outer electrode group are electrically connected,
  • a voltage is applied to the inner electrode set and the outer electrode set respectively, a potential difference is formed between the inner electrode set and the outer electrode set, so that a space for trapping ions is formed between the inner electrode set and the outer electrode set.
  • the present invention adopts the electrostatic ion trap composed of the external electrode group composed of electrode sheets and the internal electrode, and does not need to process the external electrode with high-precision special-shaped rotating curved surface, and solves the problem of difficult processing of the external electrode in the prior art.
  • Applying a voltage to the inner electrode group and the outer electrode group so that the space between the inner electrode group and the outer electrode group forms an electric field for trapping ions, and the ions vibrate back and forth in the direction of the central axis while rotating around the inner electrodes in the trap, and
  • the shape of the electrode sheet determines the electric field in the space, so that the kinetic energy of the ions in the axial vibration period satisfies isochronous focusing.
  • the structure of the invention is transparent, which facilitates the realization of ultra-high vacuum in the trap.
  • the inner electrode group includes a central electrode, and the central electrode is arranged around the central axis.
  • the inner electrode group includes two central electrodes, and the two central electrodes are symmetrically arranged with the central axis as the axis of symmetry.
  • the electrostatic ion trap according to claim 1 is characterized in that the two outer electrode groups are arranged symmetrically on both sides of the central symmetrical plane.
  • the electrode sheets in the outer electrode groups of each group are evenly arranged circumferentially on the outer periphery of the inner electrode group, wherein the electrode sheets in one outer electrode group and the electrode sheets in the other outer electrode group are circumferentially staggered to ensure that The integrity of the electric field within the ion trap.
  • the two ends of the inner electrode group are respectively fixedly connected with insulating end caps by threaded fasteners
  • the outer periphery of the inner electrode group is provided with an insulating central ring sleeve corresponding to the central symmetrical plane
  • the electrode pieces are clamped on the Between the insulating end cover and the insulating central ring sleeve; the outer side of the electrode piece corresponding to one end of the insulating central ring sleeve is integrally formed with a clamping part, and the electrode piece is abutted and clamped with the insulating central ring sleeve through the clamping part.
  • the insulating end cover is integrally formed with a positioning step, and the inner cover surface of the insulating end cover is provided with radially extending positioning grooves on the upper circumference, and the end of the electrode sheet corresponding to the insulating end cover is integrally provided with a positioning part.
  • the insulating end cover abuts against the inner side of the electrode sheet through the positioning step to position the electrode sheet in the radial and axial directions, and the insulating end cover is clamped with the positioning part of the electrode sheet through the positioning groove to position the electrode sheet circumferentially.
  • each electrode sheet in the external electrode group includes a first external electrode unit group and a second external electrode unit group, when a voltage is respectively applied to the first external electrode unit group and the second external electrode unit group , an adjustment potential difference is formed between the first external electrode unit group and the second external electrode unit group, the electrode sheets of the first external electrode unit group and the electrode sheets of the second external electrode unit group are distributed alternately, Adjust the potential difference between the outer electrode unit group and the second outer electrode unit group to adjust the axial high-order field shape distribution in the ion trap, thereby correcting the error generated in the ion trap manufacturing process, and can also be used to overcome the space charge pair
  • the influence of the electric field in the ion trap realizes real-time adjustment and correction, and further expands the analysis dynamic range of the ion trap.
  • the side of the electrode sheet in the first outer electrode unit group corresponding to the inner electrode group has a first arc structure
  • the first arc structure of the electrode sheet includes a first arc segment and a second arc section
  • the side of the electrode sheet in the second outer electrode unit group corresponding to the inner electrode group is a second arc structure
  • the second arc structure of the electrode sheet includes a first arc segment, a third arc segment , the distance from the third arc segment to the central axis is smaller than the distance from the second arc segment to the central axis, which is used to assist in fine-tuning the field distribution
  • the insulating end cap is offset against the inner side of the electrode sheet through a positioning step, thereby realizing Uniform assembly of electrode sheets.
  • the electrode sheets in the outer electrode group on the path of ions entering the space are provided with introduction notches to facilitate the entry of ions.
  • the electrode sheet is made of a hard metal plate with a thickness of 0.5mm-2mm by electric spark cutting process.
  • Fig. 1 is the structural representation of specific embodiment 1 of the present invention.
  • Fig. 2 is a schematic structural view of an insulating end cap in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an insulating end cap in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural view of the electrode sheet in the incident path in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the distribution of electrode sheets of the first external electrode unit group and the second external electrode unit group in Embodiment 2 of the present invention.
  • FIG. 7A is a schematic diagram of the comparison between the electrode sheets of the first external electrode unit group and the electrode sheets of the second external electrode unit group in Embodiment 2 of the present invention.
  • FIG. 7B is a schematic diagram of the comparison between the electrode sheets of the first external electrode unit group and the electrode sheets of the second external electrode unit group in Embodiment 3 of the present invention.
  • Figure 8 is a schematic structural view of Embodiment 4 of the present invention.
  • Figure 9 is a schematic structural view of Embodiment 5 of the present invention.
  • FIG. 10 is a schematic diagram of the distribution of the central electrode and the electrode sheets in Embodiment 5 of the present invention.
  • Inner electrode group 1.1, center electrode; 2. Outer electrode group; 2.1, electrode sheet; 2.1A, first outer electrode unit group; 2.1B, second outer electrode unit group; 2.1.1, first arc section; 2.1.2, second arc section; 2.1.3, clamping part; 2.1.4, positioning part; 2.1.5, third arc section; 2.1.6, first compensation block; 2.1.7, The third straight line section; 2.1.8, the first straight line section; 2.1.9, the second straight line section; 3, the space; 4, the insulating end cover; 4.1, the positioning step; 4.2, the positioning groove; 5, the insulating central ring sleeve; 6. Introduce the notch.
  • a kind of electrostatic ion trap, electrostatic ion trap has a central axis and a central symmetry plane perpendicular to the central axis, the central axis of this specific embodiment is the central axis of the electrostatic ion trap, therefore, the central symmetry plane is also The position is determined along with the definition of the central axis.
  • the electrostatic ion trap includes an inner electrode group 1 and a pair of outer electrode groups 2 arranged on both sides of the central symmetrical plane along the central axis.
  • the inner electrode group 1 of this specific embodiment includes a central electrode 1.1, the central electrode 1.1 is set with the central axis as the axis, and each set of outer electrode groups 2 includes several electrode sheets 2.1, and the electrode sheets 2.1 are evenly distributed around the outer circumference of the inner electrode group 1 with the central axis as the axis , the outer electrode group 2 and the outer electrode group 2 are symmetrically arranged on both sides of the central symmetrical plane.
  • the electrode sheets 2.1 of each outer electrode group 2 are electrically connected.
  • the shape of the electrode sheet 2.1 determines the electric field in the space 3, so that the motion component of the ions along the direction of the center axis is approximately simple harmonic
  • the motion that is, the period of vibration in the direction of the central axis satisfies the isochronous focusing condition on the kinetic energy of the ions.
  • Both ends of the inner electrode group 1 are respectively fixedly connected with insulating end caps 4 by threaded fasteners.
  • the threaded fasteners in this specific embodiment are bolts.
  • the insulating central ring sleeve 5, the electrode sheet 2.1 is clamped between the insulating end cover 4 and the insulating central ring sleeve 5; specifically, the outer side of the electrode sheet 2.1 corresponding to one end of the insulating central ring sleeve 5 is integrally formed with a clamp
  • the connecting part 2.1.3, the electrode sheet 2.1 is abutted and clamped with the insulating central ring sleeve 5 through the clamping part 2.1.3, and the insulating end cover 4 is integrally formed with a positioning step 4.1, and the insulating end cover 4
  • the inner cover surface is provided with a radially extending positioning groove 4.2 in the circumferential direction, and the positioning groove 4.2 corresponds to the electrode sheet 2.1 one by one, as shown in Figure 2-3, one
  • the insulating end cover 4 abuts against the inner side of the electrode sheet 2.1 through the positioning step 4.1 to position the electrode sheet 2.1 in the radial and axial directions, and the insulating end cover 4 is clamped with the positioning part 2.1.4 of the electrode sheet 2.1 through the positioning groove 4.2 Position the electrode pads 2.1 in the circumferential direction.
  • the ions enter the space 3 along an off-axis and eccentric direction, for this reason , at least one electrode sheet 2.1 in the outer electrode group 2 is on the designed incident path, and the electrode sheet 2.1 on the incident path is provided with an introduction notch 6 to facilitate the entry of ions. As shown in Figure 5, ions travel along the incident path from The notch 6 is introduced into the space 3 .
  • the electrode sheet 2.1 is a hard metal plate with a thickness of 0.5mm-2mm, which is made by electric discharge cutting process or photolithography process. In the process of electric spark cutting, several hard metal plates are stacked together, according to Batch cutting of the busbar equation of the external electrodes, low cost; the hard metal plate in this specific embodiment is one of the following: 316 stainless steel, abrasive stainless steel inkonel, molybdenum;
  • the electrode sheet 2.1 performs EDM cutting through the equation of the external electrode busbar, there is no guarantee that each electrode sheet 2.1 meets the accuracy of 1um.
  • the electrostatic ion trap may introduce further errors during the assembly process, such as material creep , the stress is released, and the shape also changes, so that the isochronism of ion motion cannot be guaranteed; for this reason, the difference between this specific embodiment and specific embodiment 1 is:
  • each electrode sheet 2.1 of the external electrode group 2 includes a first external electrode unit group 2.1A and a second external electrode unit group 2.1B, and the first external electrode unit group 2.1A and the second external electrode unit group
  • an adjustment potential difference is formed between the first external electrode unit group 2.1A and the second external electrode unit group 2.1B, and the electrode sheets of the first external electrode unit group 2.1A 2.1 and the electrode sheets 2.1 of the second external electrode unit group 2.1B are distributed alternately; by adjusting the adjustment potential difference between the first external electrode unit group 2.1A and the second external electrode unit group 2.1B to fine-tune the field shape distribution, adjust the axis
  • the component of the high-order field in the direction makes the ions better meet the isochronous focusing conditions, thereby correcting the errors generated in the ion trap manufacturing process;
  • the electrode sheets in the first external electrode unit group 2.1A and the second external electrode unit group 2.1B are superimposed and compared to obtain FIG. 7A, the electrode sheets in the first external electrode unit group 2.1A 2.1
  • the side corresponding to the inner electrode group 1 is a first arc structure, and the first arc structure of the electrode piece 2.1 includes a first arc segment 2.1.1, a second arc segment 2.1.2, and the second arc segment 2.1.1.
  • the side of the electrode sheet 2.1 in the outer electrode unit group 2.1B corresponding to the inner electrode group 1 has a second arc structure, and the second arc structure of the electrode sheet 2.1 includes a first arc segment 2.1.1, a third arc Shape segment 2.1.5, the distance from the third arc segment 2.1.5 to the central axis is smaller than the distance from the second arc segment 2.1.2 to the central axis, which is used to assist in fine-tuning the field shape distribution; at the same time, in order to improve assembly
  • the aesthetics of the ion trap, the electrode sheet 2.1 in the first outer electrode group 2 and the electrode sheet 2.1 in the second outer electrode group 2 have the same width, and the side of the first outer electrode group 2 corresponding to the inner electrode group 1 also includes a The first straight line segment 2.1.8 butted by the two arcuate segments 2.1.2, the side of the second outer electrode group 2 corresponding to the inner electrode group 1 also includes a second straight line segment 2.1 butt joint with the third arcuate segment 2.1.5.
  • the insulating end cap 4 respectively resists the first straight section 2.1.8 or the second straight section 2.1.9 of the electrode sheet 2.1 through the positioning step 4.1 to achieve the effect of radially positioning the electrode sheet 2.1; in this specific embodiment, Because of the voltage difference between the electrode sheet 2.1 of the first external electrode unit group 2.1A and the electrode sheet 2.1 of the second external single unit group, a positive or negative high-order field is added to the quadrupole logarithmic field to work in the electrostatic ion trap At the same time, fine-tune the field shape distribution by adjusting the voltage of the electrode sheet 2.1 in the second external electrode unit group 2.1B and the first external electrode unit group 2.1A, and correct the error generated in the ion trap manufacturing process;
  • the voltage of the electrode piece 2.1 of the second outer electrode unit group 2.1B is adjusted from 0V to a positive value, at this time , the field shape in space 3 is better to highlight the positive high-order field, correcting the problem of too soft reflection;
  • this embodiment is also used to overcome the influence of the charges in the space 3 on the electric field in the ion trap. For example, when implanting high-density ions in a wide mass range, the charges in the space 3 will cause a certain negative high-order field. At this time, it can pass Adjust the voltage of the electrode sheet 2.1 of part of the second outer electrode unit group 2.1B to perform field shape correction; realize real-time adjustment and correction, and further expand the analysis dynamic range of the orbital ion trap.
  • the difference between this specific embodiment and specific embodiment 2 is: in this specific embodiment, the electrode sheets in the first external electrode unit group 2.1A and the second external electrode unit group 2.1B are superimposed and compared to obtain FIG. 7B in addition, the first external electrode unit group
  • the electrode sheet 2.1 in group 2 has the same width as the electrode sheet 2.1 in the second outer electrode group 2, and the side of the first outer electrode group 2 corresponding to the inner electrode group 1 also includes an integral body with the second arc section 2.1.2
  • the docked first compensation block 2.1.6, the side of the second outer electrode group 2 corresponding to the inner electrode group 1 also includes a third straight line segment 2.1.7 integrally connected with the third arc segment 2.1.5, the The side length of the first compensation block 2.1.6 is equal to the length of the third straight line segment 2.1.7.
  • the difference between this specific embodiment and specific embodiments 1-3 is that: since the electrostatic ion trap uses two outer electrode groups 2 to detect the image charge signal, this also requires that the two outer electrode groups 2 The capacitance between them is relatively small, but to ensure the integrity of the electric field in the ion trap, the interval between each of the outer electrode groups 2 is small, and the electrode sheets 2.1 in each group of the outer electrode groups 2 are evenly arranged on the inner electrode On the periphery of group 1, the electrode sheets 2.1 in one of the outer electrode groups 2 and the electrode sheets 2.1 in the other outer electrode group 2 are circumferentially staggered, and the backward stagger angle in this specific embodiment is 7.5 degrees.
  • the difference between this specific embodiment and specific embodiments 1-4 is that the inner electrode group 1 includes two central electrodes 1.1, and the two central electrodes 1.1 rotate around the central axis as a symmetrical axis 180-degree symmetrical arrangement, the outer ends of the plurality of electrode sheets 2.1 on the outer electrode group 2 are distributed around the outer circumference of the inner electrode group 1 with the central axis as the center, and the inner ends of the plurality of electrode sheets 2.1 in each outer electrode group 2
  • the part forms an elliptical waveguide curve, and the elliptical waveguide curve of this specific embodiment is In this way, an electric field structure close to the cassinian ion trap is formed.
  • the ions oscillate or rotate between the outer electrode group 2 and the two central electrodes 1.1, and vibrate back and forth in the direction of the central axis at the same time, and the electric field distribution can make the ions vibrate axially The period of isochronous focusing on the kinetic energies of different ions.

Abstract

本发明涉及一种静电离子阱,静电离子阱存在一个中心轴和垂直于中心轴的中央对称面,静电离子阱包括内电极组和一对外电极组,每组外电极组包括若干个电极片,所述内电极组和外电极组上分别施加有电压以形成电位差,使所述内电极组和外电极组之间形成用于囚禁离子的空间。本发明采用电极片组成的外电极组与内电极组合成的静电离子阱,无需加工高精度异形旋转曲面的外电极,解决现有技术中外电极加工难的问题,通过在内电极组和外电极组上施加电压,使得内电极组和外电极组之间的空间形成用于捕获离子的电场,离子在电场内绕内电极旋转的同时在中心轴方向来回振动,且电极片形状决定空间的电场,使离子在轴向振动的周期对离子的动能满足等时性聚焦。

Description

一种静电离子阱 技术领域
本发明涉及离子阱技术领域,具体而言,涉及一种静电离子阱。
背景技术
Orbitrap轨道离子阱是在kingdon离子阱的基础上发展起来的,Orbitrap轨道离子阱包括一个纺锤型的中心电极和一对与中心电极同轴设置的外电极,中心电极置于外电极内,离子通过外电极上的入孔沿切向射入中心电极与外电极之间的空间,通过调节中心电极的电位,给离子足够的向心力,就能将离子束缚在一个运动轨道上。离子的运动轨道包括围绕中心电极的旋转运动和沿中心轴方向的往复振动;离子的往复运动可以在外电极上形成周期性的镜像电荷,外电极拾取的镜像电荷经过电荷放大器放大成为电荷信号输出。对电荷信号做傅里叶变换形成频谱,由于频率
Figure PCTCN2022093463-appb-000001
频谱即可转换为阱内的离子质谱。采用较长时间的镜像电荷信号采集(约等于1s),就可以获得很高的频谱分辨率,但是这就要求离子阱处于很高的真空度中,避免离子在运动中和残余气体分子碰撞;还要求中心电极和外电极必须具有极高的加工精度,以及保证中心电极和外电极的电压的稳定,才能保证离子阱内的电场分布精准稳定地满足高度时间聚焦的条件,从而使得离子在运动了很长时间后在轴向保持集群一致(coherent),不至于发散,保证镜像电荷的电荷信号可以持续整个测量时间而不会逐步消失。
为了实现几十万的分辨率,要保证离子在阱中往复运动几十万次都不会发散,电极加工精度要达到亚微米水平,这对于一个异形曲面,即使用 最先进的数控机床加工也是非常困难的,成品率很低。并且一个轨道离子阱的外电极在完成加工以后是否合格也很难用常规的三坐标测量仪或光学测量仪进行鉴定,通常需要将内外电极和两端的支撑组装成离子阱后通过测试离子阱的工作性能来决定加工质量的好坏。如果质量达不到要求就只能按废弃处理,造成极大的浪费。而且目前的整体电极结构使离子囚禁空间比较封闭,不利于对内部抽气和实现超高真空。
发明(发明)内容
本发明解决的问题是如何在保证离子阱精度要求的前提下便于生产组装、提高离子阱的成品率,同时利于对离子阱内部抽气实现超高真空。
为解决上述问题,本发明提供一种静电离子阱,静电离子阱存在一个中心轴和垂直于中心轴的中央对称面,静电离子阱包括内电极组和一对沿中心轴设置在中央对称面两侧的外电极组,每组外电极组包括若干个电极片,所述电极片以中心轴为轴心周向分布在内电极组的外周,同一外电极组内至少两个电极片电连接,当在所述内电极组和外电极组上分别施加有电压时内电极组和外电极组之间形成电位差,使所述内电极组和外电极组之间形成用于囚禁离子的空间。
本发明的有益效果是:本发明采用电极片组成的外电极组与内电极组合成的静电离子阱,无需加工高精度异形旋转曲面的外电极,解决现有技术中外电极加工难的问题,通过在内电极组和外电极组上施加电压,使得内电极组和外电极组之间的空间形成用于捕获离子的电场,离子在阱内绕内电极旋转的同时在中心轴方向来回振动,且电极片形状决定空间的电场,使离子在轴向振动的周期对离子的动能满足等时性聚焦,本发明结构通透,便于阱内实现超高真空。
作为优选,所述内电极组包括一个中心电极,所述中心电极以中心轴为轴心设置。
作为优选,所述内电极组包括两个中心电极,两个所述中心电极以中心轴为对称轴中心对称设置。
作为优选,根据权利要求1所述的一种静电离子阱,其特征在于,两 个所述外电极组对称设置在中央对称面的两侧。
作为优选,每组所述外电极组中的电极片均匀周向设置在内电极组的外周,其中一个外电极组中的电极片与另一个外电极组中的电极片周向交错设置,保证离子阱内电场的完整性。
作为优选,所述内电极组的两端分别通过螺纹紧固件固定连接有绝缘端盖,所述内电极组的外周对应中央对称面处设有绝缘中央环套,所述电极片卡接在绝缘端盖与绝缘中央环套之间;所述电极片的外侧对应绝缘中央环套的一端一体成型有卡接部,所述电极片通过卡接部与绝缘中央环套相抵并卡接,所述绝缘端盖上一体成型有定位台阶,所述绝缘端盖的内侧盖面上周向布设有径向延伸的定位槽,所述电极片对应绝缘端盖的一端一体凸设有定位部,所述绝缘端盖通过定位台阶与电极片的内侧相抵以在径向和轴向上定位电极片,所述绝缘端盖通过定位槽与电极片的定位部卡接以周向定位电极片。
作为优选,每组所述外电极组中的电极片包括第一外电极单元组和第二外电极单元组,当在所述第一外电极单元组和第二外电极单元组上分别施加电压时,第一外电极单元组和第二外电极单元组之间形成调节电位差,所述第一外电极单元组的电极片与第二外电极单元组的电极片交错分布,通过调节第一外电极单元组和第二外电极单元组之间的调节电位差来调节离子阱内轴向高阶场场形分布,从而纠正离子阱制造过程中产生的误差,还可以用于克服空间电荷对离子阱内电场的影响,实现实时调节修正,进一步扩大离子阱的分析动态范围。
作为优选,所述第一外电极单元组中的电极片对应内电极组的一侧为第一弧形结构,所述电极片的第一弧形结构包括第一弧形段和第二弧形段,所述第二外电极单元组中的电极片对应内电极组的一侧为第二弧形结构,所述电极片的第二弧形结构包括第一弧形段、第三弧形段,所述第三弧形段到中心轴的距离小于第二弧形段到中心轴的距离,用于辅助微调场形分布;所述绝缘端盖通过定位台阶与电极片的内侧相抵,进而实现电极片的均匀组装。
作为优选,所述外电极组中处于离子进入空间路径上的电极片上开有便于离子进入的引入槽口。
作为优选,所述电极片为0.5mm-2mm厚度的硬质金属板采用电火花切割工艺制成。
附图说明
图1为本发明具体实施例1的结构示意图;
图2为本发明具体实施例1中绝缘端盖的结构示意图;
图3为本发明具体实施例1中绝缘端盖的截面示意图;
图4为本发明具体实施例1中离子进入阱内空间的入射路径图;
图5为本发明具体实施例1中处于入射路径中的电极片结构示意图;
图6为本发明具体实施例2中第一外电极单元组与第二外电极单元组的电极片分布示意图;
图7A为本发明具体实施例2中第一外电极单元组的电极片与第二外电极单元组的电极片的对比示意图;
图7B为本发明具体实施例3中第一外电极单元组的电极片与第二外电极单元组的电极片的对比示意图;
图8为本发明具体实施例4的结构示意图;
图9为本发明具体实施例5的结构示意图;
图10为本发明具体实施例5的中心电极以及电极片的分布示意图。
附图标记说明:
1、内电极组;1.1、中心电极;2、外电极组;2.1、电极片;2.1A、第一外电极单元组;2.1B、第二外电极单元组;2.1.1、第一弧形段;2.1.2、第二弧形段;2.1.3、卡接部;2.1.4、定位部;2.1.5、第三弧形段;2.1.6、第一补偿块;2.1.7、第三直线段;2.1.8、第一直线段;2.1.9、第二直线段;3、空间;4、绝缘端盖;4.1、定位台阶;4.2、定位槽;5、绝缘中央环套;6、引入槽口。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
具体实施例1
如图1所示,一种静电离子阱,静电离子阱存在一个中心轴和垂直于中心轴的中央对称面,本具体实施例的中心轴为静电离子阱的中心轴线,因此,中央对称面也随着中心轴线的定义而确定位置,静电离子阱包括内电极组1和一对沿中心轴设置在中央对称面两侧的外电极组2,本具体实施例的内电极组1包括一个中心电极1.1,所述中心电极1.1以中心轴为轴心设置,每组外电极组2包括若干个电极片2.1,所述电极片2.1以中心轴为轴心周向均匀分布在内电极组1的外周,所述外电极组2与外电极组2对称设置在中央对称面的两侧,本具体实施例中,每组外电极组2的电极片2.1之间电连接,当在所述内电极组1和外电极组2上分别施加有电压时,内电极组1和外电极组2之间形成电位差,使所述内电极组1和外电极组2之间形成用于囚禁离子的空间3,离子在空间3内电场的约束下绕中心电极1.1旋转的同时沿中心轴方向来回振动,电极片2.1的形状决定了空间3内的电场,使离子沿中心轴方向的运动分量近似为简谐运动,即在中心轴方向振动的周期对离子的动能满足等时性聚焦条件。
所述内电极组1的两端分别通过螺纹紧固件固定连接有绝缘端盖4,本具体实施例的螺纹紧固件为螺栓,所述内电极组1的外周对应中央对称面处设有绝缘中央环套5,所述电极片2.1卡接在绝缘端盖4与绝缘中央环套5之间;具体来说,所述电极片2.1的外侧对应绝缘中央环套5的一端一体成型有卡接部2.1.3,所述电极片2.1通过卡接部2.1.3与绝缘中央环套5相抵并卡接,所述绝缘端盖4上一体成型有定位台阶4.1,所述绝缘端盖4的内侧盖面上周向布设有径向延伸的定位槽4.2,所述定位槽4.2与电极片2.1一一对应,如图2-3所示,所述定位槽4.2对应定位台阶4.2的一端并未延伸至定位台阶4.2,并且,为了便于电极片2.1的组装,也为了便于用磨床的砂轮片加工,所述电极片2.1对应绝缘端盖4的一端一体凸设有定位部2.1.4,所述绝缘端盖4通过定位台阶4.1与电极片2.1的内侧相抵以 在径向和轴向上定位电极片2.1,所述绝缘端盖4通过定位槽4.2与电极片2.1的定位部2.1.4卡接以周向定位电极片2.1。
同时,为了便于离子进入离子阱内的空间,需要设计离子进入离子阱内的入射路径,如图4所示,本具体实施例中,离子沿一个偏轴偏心的方向入射进入空间3,为此,外电极组2中至少有1个电极片2.1处于设计的入射路径上,处于入射路径上的电极片2.1开有便于离子进入的引入槽口6,如图5所示,离子沿入射路径从引入槽口6进入空间3。
所述电极片2.1为0.5mm-2mm厚度的硬质金属板采用电火花切割工艺制成或光刻工艺制成,在电火花切割过程中,将若干片硬质金属板叠合在一起,按照外电极母线方程批量切割,成本低;本具体实施例的硬质金属板为以下其中之一:316不锈钢、磨具不锈钢inkonel、钼;
具体实施例2
虽然电极片2.1通过外电极母线方程进行电火花切割,但是也无法保证每个电极片2.1满足1um的准确度,另外,静电离子阱在组装过程中也可能引入进一步的误差,例如材料的蠕变、应力释放,形状也会有变化,致使离子运动的等时性不能保证;为此,本具体实施例与具体实施例1的区别在于:
如图6所示,每组所述外电极组2的电极片2.1包括第一外电极单元组2.1A和第二外电极单元组2.1B,在所述第一外电极单元组2.1A和第二外电极单元组2.1B上分别施加电压时,第一外电极单元组2.1A和第二外电极单元组2.1B之间形成调节电位差,所述第一外电极单元组2.1A的电极片2.1与第二外电极单元组2.1B的电极片2.1交错分布;通过调节第一外电极单元组2.1A和第二外电极单元组2.1B之间的调节电位差来微调场形分布,调节轴向的高阶场的分量,使离子更好的满足等时性聚焦条件,从而纠正离子阱制造过程中产生的误差;
为了便于解释,本具体实施例将第一外电极单元组2.1A和第二外电极单元组2.1B中的电极片叠加比较得到图7A,所述第一外电极单元组2.1A中的电极片2.1对应内电极组1的一侧为第一弧形结构,所述电极片2.1 的第一弧形结构包括第一弧形段2.1.1、第二弧形段2.1.2,所述第二外电极单元组2.1B中的电极片2.1对应内电极组1的一侧为第二弧形结构,所述电极片2.1的第二弧形结构包括第一弧形段2.1.1、第三弧形段2.1.5,所述第三弧形段2.1.5到中心轴的距离小于第二弧形段2.1.2到中心轴的距离,用于辅助微调场形分布;同时,为了提高组装的离子阱的美观度,第一外电极组2中的电极片2.1和第二外电极组2中的电极片2.1宽度相同,第一外电极组2对应内电极组1的一侧还包括与第二弧形段2.1.2对接的第一直线段2.1.8,第二外电极组2对应内电极组1的一侧还包括与第三弧形段2.1.5对接的第二直线段2.1.9,因为第三弧形段2.1.5到中心轴的距离小于第二弧形段2.1.2到中心轴的距离,第二直线段2.1.9的长度大于第一直线段2.1.8的长度,所述绝缘端盖4通过定位台阶4.1分别与电极片2.1的第一直线段2.1.8或第二直线段2.1.9相抵以达到径向定位电极片2.1的效果;本具体实施例中,因为第一外电极单元组2.1A的电极片2.1和第二外单机单元组的电极片2.1之间的电压差异,通过四极对数场加入项正高或负高阶场,在静电离子阱工作时通过调节第二外电极单元组2.1B和第一外电极单元组2.1A中电极片2.1的电压来微调场形分布,纠正离子阱制造过程中产生的误差;
例如,在实际操作中,分析正离子时,当发现实际离子阱的轴向发射过软,则将第二外电极单元组2.1B的电极片2.1的电压由0V调高到正值,此时,空间3内的场形更佳突出了正高阶场,纠正了反射过软的问题;
反之,当发现实际离子阱的轴线反射过硬,则将第二外电极单元组2.1B的电极片2.1的电压由0V调底到负值,此时,空间3内的场形更佳突出了负高阶场,纠正了反射过硬的问题;
另外,本实施例还用于克服空间3内电荷对离子阱内电场的影响,例如在宽质量范围高密度离子注入时,空间3内电荷会造成一定的负高阶场,这时就可以通过调节部分第二外电极单元组2.1B的电极片2.1的电压来进行场形修正;实现实时调节修正,进一步扩大轨道离子阱的分析动态范围。
具体实施例3
本具体实施例与具体实施例2的区别在于:本具体实施例将第一外电极单元组2.1A和第二外电极单元组2.1B中的电极片叠加比较另外得到图7B,第一外电极组2中的电极片2.1和第二外电极组2中的电极片2.1宽度相同,所述第一外电极组2对应内电极组1的一侧还包括与第二弧形段2.1.2一体对接的第一补偿块2.1.6,所述第二外电极组2对应内电极组1的一侧还包括与第三弧形段2.1.5一体对接的第三直线段2.1.7,所述第一补偿块2.1.6的边长与第三直线段2.1.7的长度相等。
具体实施例4
如图8所示,本具体实施例与具体实施例1-3的区别在于:由于静电离子阱采用两个外电极组2来检测镜像电荷信号,这也就要求了两个外电极组2之间的电容偏小,但保证离子阱内电场的完整性,每个所述外电极组2之间的间隔小,每组所述外电极组2中的电极片2.1均匀周向设置在内电极组1的外周,其中一个外电极组2中的电极片2.1与另一个外电极组2中的电极片2.1周向交错设置,本具体实施例的后向交错角度为7.5度。
具体实施例5
如图9-10所示,本具体实施例与具体实施例1-4的区别在于,所述内电极组1包括两个中心电极1.1,两个所述中心电极1.1以中心轴为对称轴旋转180度对称设置,所述外电极组2上若干电极片2.1的外端部以中心轴为圆心周向分布在内电极组1外周,且每组外电极组2中的若干电极片2.1内端部组成椭圆波导曲线,本具体实施例的椭圆波导曲线为
Figure PCTCN2022093463-appb-000002
以此形成一种接近于cassinian离子阱的电场结构。
内电极组1和外电极组2上施加电压工作时,离子在外电极组2与两个中心电极1.1之间做振荡或旋转运动,同时在中心轴方向来回振动,电场分布能使离子轴向振动的周期对不同离子的动能满足等时性聚焦。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员,在不脱离本公开的精神和范围的前提下,可进行各种变更与修改, 这些变更与修改均将落入本发明的保护范围。

Claims (10)

  1. 一种静电离子阱,其特征在于,静电离子阱存在一个中心轴和垂直于中心轴的中央对称面,静电离子阱包括内电极组(1)和一对沿中心轴设置在中央对称面两侧的外电极组(2),每组外电极组(2)包括若干个电极片(2.1),所述电极片(2.1)以中心轴为轴心周向分布在内电极组(1)的外周,同一外电极组(2)内至少两个电极片(2.1)电连接,当在所述内电极组(1)和外电极组(2)上分别施加有电压时形成电位差,使所述内电极组(1)和外电极组(2)之间形成用于囚禁离子的空间(3)。
  2. 根据权利要求1所述的一种静电离子阱,其特征在于,所述内电极组(1)包括一个中心电极(1.1),所述中心电极(1.1)以中心轴为轴心设置。
  3. 根据权利要求1所述的一种静电离子阱,其特征在于,所述内电极组(1)包括两个中心电极(1.1),两个所述中心电极(1.1)以中心轴为对称轴中心对称设置。
  4. 根据权利要求1所述的一种静电离子阱,其特征在于,两组所述外电极组(2)对称设置在中央对称面的两侧。
  5. 根据权利要求1所述的一种静电离子阱,其特征在于,每组所述外电极组(2)中的电极片(2.1)均匀周向设置在内电极组(1)的外周,其中一个外电极组(2)的电极片(2.1)与另一个外电极组(2)的电极片(2.1)周向交错设置。
  6. 根据权利要求1所述的一种静电离子阱,其特征在于,所述内电极组(1)的两端分别通过螺纹紧固件固定连接有绝缘端盖(4),所述内电极组(1)的外周对应中央对称面处设有绝缘中央环套(5),所述电极片(2.1)卡接在绝缘端盖(4)与绝缘中央环套(5)之间;所述电极片(2.1)的外侧对应绝缘中央环套(5)的一端一体成型有卡接部(2.1.3),所述电极片(2.1)通过卡接部(2.1.3)与绝缘中央环套(5)相抵并卡接,所述绝缘端盖(4)上一体成型有定位台阶(4.1),所述绝缘端盖(4)的内侧盖面上周向布设有径向延伸的定位槽(4.2),所述电极片(2.1)对应绝缘端盖(4)的一端一体凸设有定位部 (2.1.4),所述绝缘端盖(4)通过定位台阶(4.1)与电极片(2.1)的内侧相抵以在径向和轴向上定位电极片(2.1),所述绝缘端盖(4)通过定位槽(4.2)与电极片(2.1)的定位部(2.1.4)卡接以周向定位电极片(2.1)。
  7. 根据权利要求1所述的一种静电离子阱,其特征在于,每组所述外电极组(2)中的电极片(2.1)均包括第一外电极单元组(2.1A)和第二外电极单元组(2.1B),当在所述第一外电极单元组(2.1A)和第二外电极单元组(2.1B)上分别施加电压时第一外电极单元组(2.1A)和第二外电极单元组(2.1B)之间形成调节电位差,所述第一外电极单元组(2.1A)的电极片与第二外电极单元组(2.1B)的电极片交错分布。
  8. 根据权利要求7所述的一种静电离子阱,其特征在于,所述第一外电极单元组(2.1A)的电极片(2.1)对应内电极组(1)的一侧为第一弧形结构,所述电极片(2.1)的第一弧形结构包括第一弧形段(2.1.1)、第二弧形段(2.1.2),所述第二外电极单元组(2.1B)的电极片(2.1)对应内电极组(1)的一侧为第二弧形结构,所述电极片(2.1)的第二弧形结构包括第一弧形段(2.1.1)、第三弧形段(2.1.5),所述第三弧形段(2.1.5)到中心轴的距离小于第二弧形段(2.1.2)到中心轴的距离。
  9. 根据权利要求1所述的一种静电离子阱,其特征在于,所述外电极组(2)中处于离子进入空间(3)路径上的电极片(2.1)上开有便于离子进入的引入槽口(6)。
  10. 根据权利要求1所述的一种静电离子阱,其特征在于,所述电极片(2.1)为0.5mm-2mm厚度的硬质金属板采用电火花切割工艺制成。
PCT/CN2022/093463 2021-11-30 2022-05-18 一种静电离子阱 WO2023097985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111440866.0A CN114388339B (zh) 2021-11-30 2021-11-30 一种静电离子阱
CN202111440866.0 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023097985A1 true WO2023097985A1 (zh) 2023-06-08

Family

ID=81195487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093463 WO2023097985A1 (zh) 2021-11-30 2022-05-18 一种静电离子阱

Country Status (2)

Country Link
CN (1) CN114388339B (zh)
WO (1) WO2023097985A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388339B (zh) * 2021-11-30 2023-08-29 宁波大学 一种静电离子阱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799119A (zh) * 2003-05-30 2006-07-05 萨默费尼根有限公司 全部质量ms/ms方法及设备
CN101273432A (zh) * 2005-06-27 2008-09-24 萨默费尼根有限公司 多电极离子阱
CN111986981A (zh) * 2019-05-22 2020-11-24 塞莫费雪科学(不来梅)有限公司 质谱仪
CN112185798A (zh) * 2020-09-27 2021-01-05 复旦大学 一种新型静电离子阱离子切向引入轨道偏转装置
CN114388339A (zh) * 2021-11-30 2022-04-22 宁波大学 一种静电离子阱

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024858B4 (de) * 2007-04-12 2011-02-10 Bruker Daltonik Gmbh Massenspektrometer mit einer elektrostatischen Ionenfalle
CN108807133B (zh) * 2018-05-29 2019-11-26 清华大学深圳研究生院 在轨道型离子阱中进行离子反应和分析的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799119A (zh) * 2003-05-30 2006-07-05 萨默费尼根有限公司 全部质量ms/ms方法及设备
CN101273432A (zh) * 2005-06-27 2008-09-24 萨默费尼根有限公司 多电极离子阱
CN111986981A (zh) * 2019-05-22 2020-11-24 塞莫费雪科学(不来梅)有限公司 质谱仪
CN112185798A (zh) * 2020-09-27 2021-01-05 复旦大学 一种新型静电离子阱离子切向引入轨道偏转装置
CN114388339A (zh) * 2021-11-30 2022-04-22 宁波大学 一种静电离子阱

Also Published As

Publication number Publication date
CN114388339B (zh) 2023-08-29
CN114388339A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2023097985A1 (zh) 一种静电离子阱
CN106663588B (zh) 质量分析器
US20210210331A1 (en) Apparatus and method for performing charge detection mass spectrometry
US2455676A (en) Electron lens correction device
US7655903B2 (en) Measuring cell for ion cyclotron resonance mass spectrometer
WO2019058226A1 (en) MASS SPECTROMETER WITH ELECTRO-STATIC LINEAR ION TRAP
JPH0646560B2 (ja) 質量分析計
US20110016700A1 (en) Linear ion processing apparatus with improved mechanical isolation and assembly
US20150170898A1 (en) Liner ion beam bonding apparatus and array structure thereof
Andrén Performance of an energy compensator with a large acceptance angle
CN108955662B (zh) 具有频差调节结构的中心轴对称谐振陀螺仪
US10096448B2 (en) Spherical aberration corrector for electromagnetic lens for charged particle beam
JP2015146288A (ja) 質量分析装置
GB619151A (en) Improvements in electric discharge tubes
US3233099A (en) Double-focusing mass spectrometer having electrically adjustable electrostatic an alyzer and adjustable electrostatic lens
US2252508A (en) Apparatus for the spectroscopic analysis of materials
JPS6182653A (ja) 四重極質量分析装置
JPWO2017094146A1 (ja) 四重極マスフィルタ及び四重極型質量分析装置
JP4268812B2 (ja) イオンエネルギー分析器の感度補正方法
CN106229251A (zh) 一种非对称四极杆质量分析器
JPS5830056A (ja) 四重極質量分析計の柱状電極
JPH0374042A (ja) 四重極質量分析計
CN109243945B (zh) 一种瓣状电极及制造方法、产生均匀电场的方法、变像管
RU2251757C2 (ru) Способ юстировки катодно-сеточного узла
RU2276426C1 (ru) Способ разделения заряженных частиц по удельному заряду и устройство для его осуществления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899805

Country of ref document: EP

Kind code of ref document: A1