WO2023096243A1 - 유전율이 낮은 산화물계 유리 조성물 - Google Patents

유전율이 낮은 산화물계 유리 조성물 Download PDF

Info

Publication number
WO2023096243A1
WO2023096243A1 PCT/KR2022/017897 KR2022017897W WO2023096243A1 WO 2023096243 A1 WO2023096243 A1 WO 2023096243A1 KR 2022017897 W KR2022017897 W KR 2022017897W WO 2023096243 A1 WO2023096243 A1 WO 2023096243A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
glass
oxide
sio
mgo
Prior art date
Application number
PCT/KR2022/017897
Other languages
English (en)
French (fr)
Inventor
김복현
한원택
린가나카다탈라
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority claimed from KR1020220151791A external-priority patent/KR102639162B1/ko
Publication of WO2023096243A1 publication Critical patent/WO2023096243A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties

Definitions

  • the present invention relates to an oxide-based glass composition having a low permittivity and low dielectric loss.
  • Printed Circuit Board is a core part required for these future IT devices.
  • CCL Copper Clad Laminate
  • PCB Printed Circuit Board
  • E-glass used for low-speed PCB, for example, SiO 2 54.3 wt%, B 2 O 3 6 wt%, Al 2 O 3 14 wt%, MgO+CaO 22.7 wt%, Li 2 O+ It is composed of 1.0 wt% of Na 2 O+K 2 O and 0.3 wt% of FeO 2 .
  • this E-glass has a high dielectric constant in the range of 6.6-6.9 at 1 MHz and a high dielectric loss in the range of 0.002-0.007, making it difficult to use it due to high energy loss in the high frequency band of 1 GHz or more.
  • the glass composition range includes SiO 2 60-68 wt%, B 2 O 3 7-12 wt%, Al 2 O 3 9-14 wt%.
  • a softening temperature may increase, which may cause difficulty in spinning glass fibers.
  • alkali ions are added to lower the softening temperature, which may cause another problem in that the dielectric constant is increased.
  • a low dielectric glass having a composition range of 50 to 60 wt% of SiO 2 , 15 to 25 wt% of B 2 O 3 , 10 to 18 wt% of Al 2 O 3 , and 5 to 12 wt% of CaO+MgO can be heard
  • a composition range of 50 to 60 wt% of SiO 2 , 15 to 25 wt% of B 2 O 3 , 10 to 18 wt% of Al 2 O 3 , and 5 to 12 wt% of CaO+MgO can be heard
  • various problems such as weakening resistance to water, generation of many bubbles, and weakening of mechanical strength may occur, so additional additives must be used or the composition must be optimized. Difficulties follow.
  • the object of the present invention is to solve the problems of the prior art and to present a glass material and glass fiber technology having low dielectric properties and excellent thermal properties, thermal expansion properties, and mechanical properties at the same time.
  • Patent Distribution US Registered Patent 8,697,590 B2 (“LOW DIELECTRIC GLASS AND FIBER GLASS FOR ELECTRONIC APPLICATIONS”)
  • the present invention is to solve various problems of the prior art, and to provide an oxide-based glass composition that does not contain an alkali component and has a low dielectric constant and dielectric loss, and a glass fiber technology using the same.
  • the present invention can provide a glass composition having a low dielectric constant and dielectric loss in a high frequency band of 1 GHz or more, particularly from 10 to 28 GHz, and a glass fiber technology using the same.
  • a low-k glass composition includes silica (SiO 2 ); boron trioxide (B 2 O 3 ); aluminum oxide (Al 2 O 3 ); and magnesium oxide (MgO).
  • the low-k glass composition according to an embodiment of the present invention includes silica (SiO 2 ) 40 to 60 wt%; 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); and 2 to 24 wt% of magnesium oxide (MgO).
  • silica SiO 2
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • the low-k glass composition according to an embodiment of the present invention includes 45 to 55 wt% of silica (SiO 2 ); 15 to 25 wt % of boron trioxide (B 2 O 3 ); 10 to 20 wt% of aluminum oxide (Al 2 O 3 ); and 5 to 17 wt% of magnesium oxide (MgO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • the low-k glass composition according to an embodiment of the present invention includes calcium oxide (CaO), zinc oxide (ZnO), lanthanum oxide (La 2 O 3 ), titanium dioxide (TiO 2 ), and zirconia (ZrO 2 ). It further includes 1 or 2 or more selected from the group consisting of.
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 15 wt% of calcium oxide (CaO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • CaO calcium oxide
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 15 wt% of zinc oxide (ZnO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • ZnO zinc oxide
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 10 wt% of lanthanum oxide (La 2 O 3 ).
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 5 wt% of titanium dioxide (TiO 2 ).
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 11 wt% of zirconia (ZrO 2 ).
  • the oxide-based glass composition according to an embodiment of the present invention has the effect of having low permittivity and dielectric loss and thermal and mechanical properties suitable for glass spinning.
  • FIG. 1 shows a dielectric constant measurement graph of a low-k glass according to an embodiment of the present invention.
  • FIG. 2 shows a dielectric loss measurement graph according to an embodiment of the present invention.
  • a low-k glass composition according to an embodiment of the present invention includes silica (SiO 2 ); boron trioxide (B 2 O 3 ); aluminum oxide (Al 2 O 3 ); and magnesium oxide (MgO).
  • the low-k glass composition according to an embodiment of the present invention includes silica (SiO 2 ) 40 to 60 wt%; 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); and 2 to 24 wt% of magnesium oxide (MgO).
  • silica SiO 2
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • the low-k glass composition according to an embodiment of the present invention includes 45 to 55 wt% of silica (SiO 2 ); 15 to 25 wt % of boron trioxide (B 2 O 3 ); 10 to 20 wt% of aluminum oxide (Al 2 O 3 ); and 5 to 17 wt% of magnesium oxide (MgO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • the low-k glass composition according to an embodiment of the present invention includes calcium oxide (CaO), zinc oxide (ZnO), lanthanum oxide (La 2 O 3 ), titanium dioxide (TiO 2 ), and zirconia (ZrO 2 ). It further includes 1 or 2 or more selected from the group consisting of.
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 15 wt% of calcium oxide (CaO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • CaO calcium oxide
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 15 wt% of zinc oxide (ZnO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • ZnO zinc oxide
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 10 wt% of lanthanum oxide (La 2 O 3 ).
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 5 wt% of titanium dioxide (TiO 2 ).
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 11 wt% of zirconia (ZrO 2 ).
  • a low-k glass composition according to an embodiment of the present invention includes silica (SiO 2 ); boron trioxide (B 2 O 3 ); aluminum oxide (Al 2 O 3 ); and magnesium oxide (MgO).
  • the low-k glass composition according to an embodiment of the present invention contains 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); And it may contain 2 to 24 wt% of magnesium oxide (MgO), more preferably, 45 to 55 wt% of silica (SiO 2 ); 15 to 25 wt % of boron trioxide (B 2 O 3 ); 10 to 20 wt% of aluminum oxide (Al 2 O 3 ); and 5 to 17 wt% of magnesium oxide (MgO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • the low-k glass composition according to an embodiment of the present invention includes calcium oxide (CaO), zinc oxide (ZnO), lanthanum oxide (La 2 O 3 ), titanium dioxide (TiO 2 ), and zirconia (ZrO 2 ). It may further include one or two or more selected from the group consisting of.
  • the silica (SiO 2 ) is an essential glass former component in forming the basic structure of glass, and SiO 2 as a glass component is to have vitrification formation, thermal stability of glass, excellent mechanical properties, and low thermal expansion characteristics. It may be to adjust the viscosity and dielectric properties of the glass.
  • the silica (SiO 2 ) content may be 40 to 60 wt%, preferably 45 to 55 wt%, and more preferably 43 to 53 wt%.
  • the silica (SiO 2 ) content may be 45 to 55 wt%.
  • the silica (SiO 2 ) content may be 43 to 53 wt%.
  • the boron trioxide (B 2 O 3 ) is used to lower the melting temperature by controlling the viscosity of the glass, and the boron trioxide (B 2 O 3 ) is one of the components of glass having a low permittivity and is low in a high-frequency band required for high-speed communication. It may play an important role in securing dielectric properties.
  • the content of boron trioxide (B 2 O 3 ) may be 10 to 30 wt%, preferably 15 to 25 wt%.
  • the content of boron trioxide (B 2 O 3 ) when the content of boron trioxide (B 2 O 3 ) is less than 10 wt%, it is difficult to secure sufficient low dielectric properties of the glass and the desired melting temperature lowering effect in the glass composition including the silica (SiO 2 ) There is a problem that is difficult to obtain.
  • the content of boron trioxide (B 2 O 3 ) exceeds 30 wt%, the resistance to moisture of the glass is weakened, bubbles are generated during the spinning process or mechanical strength is weakened, and the thermal expansion characteristics of the glass are deteriorated. There are increasing problems.
  • the content of boron trioxide (B 2 O 3 ) may be 15 to 25 wt%.
  • the aluminum oxide (Al 2 O 3 ) may be used as a glass intermediate to secure the stability of glass, facilitate the formation of vitrification, and prevent crystallization and devitrification from occurring easily in the glass melting and glass fiber spinning processes. It could be
  • the aluminum oxide (Al 2 O 3 ) may have a function of controlling the viscosity of the glass within an appropriate range, improve mechanical strength, and improve electrical insulation of the glass.
  • the content of the aluminum oxide (Al 2 O 3 ) may be 8 to 23 wt%, preferably 10 to 20 wt%.
  • the content of aluminum oxide (Al 2 O 3 ) is less than 8 w%, there are problems in that vitrification stability is poor, devitrification easily occurs, and it is difficult to secure sufficient mechanical strength.
  • the content of the aluminum oxide (Al 2 O 3 ) exceeds 23 w%, the viscosity of the molten glass becomes too high, making it difficult to spin glass fibers.
  • the content of the aluminum oxide (Al 2 O 3 ) is 10 to 20 in order to facilitate the formation of vitrification of the low-k glass fiber and to maintain mechanical strength by preventing devitrification caused by crystallization of the glass surface. may be wt%.
  • the magnesium oxide (MgO) may facilitate the formation of vitrification and improve homogeneity by lowering the viscosity of the glass.
  • the glass composition composed of the silica (SiO 2 ) and the boron trioxide (B 2 O 3 ) components
  • an additional component having the function of facilitating the formation of vitrification, lowering the viscosity of the glass, and increasing the homogeneity at the same time is required do it with
  • alkali components such as Li 2 O, Na 2 O, and K 2 O have been generally used in the prior art.
  • the polarizability is very high, so there is a problem of increasing the dielectric constant.
  • the content of magnesium oxide (MgO) may be 2 to 24 wt%, preferably 5 to 17 wt%.
  • the content of magnesium oxide (MgO) is less than 2 wt%, there is a problem in that the function of facilitating vitrification formation, lowering the viscosity of glass, and increasing homogeneity at the same time is insufficient.
  • the content of magnesium oxide (MgO) exceeds 24 wt%, there is a problem in that glass formation is hindered and low dielectric and low thermal expansion properties are prevented.
  • the content of magnesium oxide (MgO) may be 5 to 17 wt% in order to balance the glass constituents and achieve sufficient low dielectric properties.
  • the low-k glass composition according to an embodiment of the present invention may further include calcium oxide (CaO), and more specifically, the low-k glass composition according to an embodiment of the present invention may include silica (SiO 2 ); boron trioxide (B 2 O 3 ); aluminum oxide (Al 2 O 3 ); magnesium oxide (MgO); and calcium oxide (CaO).
  • silica SiO 2
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • CaO calcium oxide
  • the calcium oxide (CaO) may be used together with the magnesium oxide (MgO) to facilitate the formation of vitrification and to increase homogeneity by lowering the viscosity of the glass.
  • the content of calcium oxide (CaO) may be 0.1 to 15 wt%, preferably 0.1 to 11 wt%.
  • the low-k glass composition according to an embodiment of the present invention includes 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 15 wt% of calcium oxide (CaO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • CaO calcium oxide
  • the low-k glass composition according to an embodiment of the present invention contains 45 to 55 wt% of silica (SiO 2 ); 15 to 25 wt % of boron trioxide (B 2 O 3 ); 10 to 20 wt% of aluminum oxide (Al 2 O 3 ); 5 to 17 wt% of magnesium oxide (MgO); and 0.1 to 11 wt% of calcium oxide (CaO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • CaO calcium oxide
  • the content of the calcium oxide (CaO) exceeds 15 wt%, there is a problem that the dielectric constant may be increased. Also, more preferably, the content of the calcium oxide (CaO) may be 0.1 to 11 wt% in order to balance the glass constituents and achieve sufficient low dielectric properties when used together with the magnesium oxide (MgO).
  • the low-k glass composition according to an embodiment of the present invention may further include zinc oxide (ZnO), and more specifically, the low-k glass composition according to an embodiment of the present invention may include silica (SiO 2 ); boron trioxide (B 2 O 3 ); aluminum oxide (Al 2 O 3 ); magnesium oxide (MgO); and zinc oxide (ZnO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • ZnO zinc oxide
  • the zinc oxide (ZnO) controls the viscosity of the glass within an appropriate range, promotes glass formation and improves stability of the glass to prevent devitrification.
  • the content of the zinc oxide (ZnO) may be 0.1 to 15 wt%.
  • the low-k glass composition according to an embodiment of the present invention includes 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 15 wt% of zinc oxide (ZnO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • ZnO zinc oxide
  • the low-k glass composition according to an embodiment of the present invention contains 45 to 55 wt% of silica (SiO 2 ); 15 to 25 wt % of boron trioxide (B 2 O 3 ); 10 to 20 wt% of aluminum oxide (Al 2 O 3 ); 5 to 17 wt% of magnesium oxide (MgO); and 0.1 to 15 wt% of zinc oxide (ZnO).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • ZnO zinc oxide
  • the dielectric constant increases and rather hinders the formation of vitrification.
  • the low-k glass composition according to an embodiment of the present invention may further include lanthanum oxide (La 2 O 3 ), and more specifically, the low-k glass composition according to an embodiment of the present invention may include silica ( SiO 2 ); boron trioxide (B 2 O 3 ); aluminum oxide (Al 2 O 3 ); magnesium oxide (MgO); and lanthanum oxide (La 2 O 3 ).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • La 2 O 3 lanthanum oxide
  • the lanthanum oxide (La 2 O 3 ) may help form vitrification, control the viscosity of the glass, and suppress devitrification during spinning.
  • the content of the lanthanum oxide (La 2 O 3 ) may be 0.1 to 10 wt%, preferably 0.1 to 5 wt%.
  • the low-k glass composition according to an embodiment of the present invention includes 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 10 wt% of lanthanum oxide (La 2 O 3 ).
  • the low-k glass composition according to an embodiment of the present invention contains 45 to 55 wt% of silica (SiO 2 ); 15 to 25 wt % of boron trioxide (B 2 O 3 ); 10 to 20 wt% of aluminum oxide (Al 2 O 3 ); 5 to 17 wt% of magnesium oxide (MgO); and 0.1 to 5 wt% of lanthanum oxide (La 2 O 3 ).
  • the content of the lanthanum oxide (La 2 O 3 ) exceeds 10 wt%, there is a problem in that the glass structure is extensively deformed. Also, more preferably, since the lanthanum oxide (La 2 O 3 ) has a problem of increasing the dielectric constant, the content of the lanthanum oxide (La 2 O 3 ) may be 0.1 to 5 wt%.
  • the low-k glass composition according to an embodiment of the present invention may further include titanium dioxide (TiO 2 ), and more specifically, the low-k glass composition according to an embodiment of the present invention may include silica (SiO 2 ). ; boron trioxide (B 2 O 3 ); aluminum oxide (Al 2 O 3 ); magnesium oxide (MgO); and titanium dioxide (TiO 2 ).
  • the titanium dioxide (TiO 2 ) may have a function of lowering the viscosity of glass and a function of calculating mechanical strength of the glass.
  • the content of the titanium dioxide (TiO 2 ) may be 0.1 to 5 wt%.
  • the low-k glass composition according to an embodiment of the present invention includes 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); And titanium dioxide (TiO 2 ) It may be one containing 0.1 to 5 wt%.
  • the low-k glass composition according to an embodiment of the present invention contains 45 to 55 wt% of silica (SiO 2 ); 15 to 25 wt % of boron trioxide (B 2 O 3 ); 10 to 20 wt% of aluminum oxide (Al 2 O 3 ); 5 to 17 wt% of magnesium oxide (MgO); And titanium dioxide (TiO 2 ) It may be one containing 0.1 to 5 wt%.
  • the low-k glass composition according to an embodiment of the present invention may further include zirconia (ZrO 2 ), and more specifically, the low-k glass composition according to an embodiment of the present invention may include silica (SiO 2 ); boron trioxide (B 2 O 3 ); aluminum oxide (Al 2 O 3 ); magnesium oxide (MgO); and zirconia (ZrO 2 ).
  • SiO 2 silica
  • B 2 O 3 boron trioxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • ZrO 2 zirconia
  • the zirconia (ZrO 2 ) may improve alkali resistance of glass.
  • the content of the zirconia (ZrO 2 ) may be 0.1 to 11 wt%.
  • the low-k glass composition according to an embodiment of the present invention includes 40 to 60 wt% of silica (SiO 2 ); 10 to 30 wt % of boron trioxide (B 2 O 3 ); 8 to 23 wt% of aluminum oxide (Al 2 O 3 ); 2 to 24 wt% of magnesium oxide (MgO); and 0.1 to 11 wt% of zirconia (ZrO 2 ).
  • the low-k glass composition according to an embodiment of the present invention contains 45 to 55 wt% of silica (SiO 2 ); 15 to 25 wt % of boron trioxide (B 2 O 3 ); 10 to 20 wt% of aluminum oxide (Al 2 O 3 ); 5 to 17 wt% of magnesium oxide (MgO); and 0.1 to 11 wt% of zirconia (ZrO 2 ).
  • the prepared raw materials were mixed and pulverized by performing a ballmill process at 100 to 200 rpm for 4 hours (hr) to prepare a mixture.
  • the prepared mixture was heated in an electric furnace to a melting temperature of 1650 ° C for 2 hours (hr) to vitrify, and then the melt was cast in a brass mold preheated to 650 ° C and the glass transition temperature (711 ° C) It was maintained for 2 hours (hr) in an electric furnace set at a nearby temperature of 691 ° C to relieve residual stress, and then cooled to room temperature (25 ° C) to prepare low-k glass.
  • the prepared raw materials were mixed and pulverized by performing a ballmill process at 100 to 200 rpm for 4 hours (hr) to prepare a mixture.
  • the prepared mixture is maintained at 1000 ° C for 3 hours (hr) using an electric furnace to induce decomposition of carbonate materials and emission of CO and CO 2 gas, and then heated to a melting temperature of 1650 ° C for 2 hours (hr)
  • the melt is cast in a brass mold preheated to 650 ° C and maintained for 2 hours (hr) in an electric furnace set at a temperature 10 to 20 ° C lower than the glass transition temperature (see Table 7). After the residual stress was relieved, the glass was cooled to room temperature (25 ° C) to prepare a low-k glass.
  • the prepared raw materials were mixed and pulverized by performing a ballmill process at 100 to 200 rpm for 4 hours (hr) to prepare a mixture.
  • the prepared mixture was heated to a melting temperature of 1650 ° C. for 2 hours (hr) using an electric furnace to vitrify to prepare a melted product, and then cast the melted product in a brass mold preheated to 650 ° C.
  • the glass transition temperature (Table 7) to Table 11) was maintained for 2 hours (hr) in an electric furnace set at a temperature lower than 10 to 20 ° C. to relieve residual stress, and then cooled to room temperature (25 ° C.) to prepare low-k glass.
  • Example 6 Example 7
  • Example 8 Example 9 SiO 2 55.7 58.9 55.4 57.0 B 2 O 3 15.0 11.8 11.1 11.0 Al 2 O 3 21.4 21.4 22.2 21.9 MgO 3.1 3.1 6.3 5.2 CaO 4.8 4.8 5.0 4.9
  • Comparative Example 4 a low-k glass was manufactured in the manner of Example 2 with reference to the glass transition temperature (Tg) of Table 12 below, with the raw material composition shown in Table 6 below.
  • Tg glass transition temperature
  • Tg glass transition ion
  • Tx crystallization onset temperature
  • Ts softening temperature
  • the Tg and CTE of the glass be 860 °C and 5.4 ppm/ °C or less, respectively. This is to facilitate spinning of glass fibers and to compensate for the high thermal expansion characteristics of polymer materials for printed circuit boards. Considering this, referring to Tables 7 to 11 below, it can be confirmed that the low-k glass according to the above embodiment is suitable for use in a printed circuit board for high-speed communication.
  • the dielectric constant ( ⁇ r ) and dielectric loss (tan ⁇ ) of the low-k glasses prepared according to the above Examples and Comparative Examples were measured at 100 MHz, 1 GHz, 10 GHz, and 28 GHz, and are summarized in Tables 7 to 11 below.
  • . 1 shows a dielectric constant measurement graph of low-k glass according to Example 3
  • FIG. 2 shows a dielectric loss measurement graph according to Example 3.
  • the permittivity of glass is measured using a parallel plate capacitor method using an impedance analyzer or a resonator method using a vector network analyzer.
  • the parallel plate method is a measurement method used in a low frequency band of 1 MHz to 1 GHz
  • the resonator method is a method mainly used in a high frequency band of 1 GHz or more.
  • the dielectric constant ( ⁇ r ) is 5.0 or less and the dielectric loss (tan ⁇ ) is 5.0x10 -3 or less.
  • Example 1 Example 2
  • Example 3 Example 4 Density (g/cm 3 ) 2.30 2.36 2.33 2.37 Tg(°C) 711 661 679 696 Tx(°C) 844 1049 922 904 dT(°C) 133 388 243 208 Ts(°C) 827 772 853 823 CTE (ppm/°C) 3.29 3.83 4.43 4.34 ⁇ r @ 100 MHz 4.47 4.80 4.81 4.97 tan ⁇ , x10 -3 @ 100 MHz - - 3.57 4.22 ⁇ r @ 1 GHz 4.65 4.98 4.78 4.94 tan ⁇ , x10 -3 @ 1 GHz - - 3.86 6.62 ⁇ r @ 10 GHz 4.46 4.80 4.72 4.89 tan ⁇ , x10 -3 @ 10 GHz 3.27 3.69 2.97 3.31 ⁇ r @ 28 GHz - - 4.79 4.88 tan ⁇ , x10 -3 @ 28 GHz - - 4.10 4.
  • Example 5 Example 6
  • Example 7 Example 8 Density (g/cm 3 ) 2.35 2.33 2.31 2.47 Tg(°C) 686 692 681 748 Tx(°C) 910 922 908 992 dT(°C) 224 230 227 244 Ts(°C) 833 883 854 834 CTE (ppm/°C) 3.57 4.51 4.65 2.12 ⁇ r @ 100 MHz 4.92 4.85 4.62 5.19 tan ⁇ , x10 -3 @ 100 MHz 4.95 4.41 3.59 6.73 ⁇ r @ 1 GHz 4.88 4.83 4.60 5.16 tan ⁇ , x10 -3 @ 1 GHz 6.33 7.75 4.45 10.80 ⁇ r @ 10 GHz 4.73 4.79 4.50 - tan ⁇ , x10 -3 @ 10 GHz 3.68 3.04 2.86 - ⁇ r @ 28 GHz 4.70 4.75 4.58 - tan ⁇ , x10 -3 @ 28 GHz 4.40 4.26 3.48
  • Example 10 Example 11
  • Example 12 Density (g/cm 3 ) 2.44 2.39 2.39 2.39 Tg(°C) 755 674 671 677 Tx(°C) 998 919 949 994 dT(°C) 243 245 278 317 Ts(°C) 840 800 775 766 CTE (ppm/°C) 3.96 4.49 4.19 4.25 ⁇ r @ 100 MHz 5.31 - - - tan ⁇ , x10 -3 @ 100 MHz 6.95 - - - ⁇ r @ 1 GHz 5.27 - - - tan ⁇ , x10 -3 @ 1 GHz 11.20 - - - ⁇ r @ 10 GHz - - - - tan ⁇ , x10 -3 @ 10 GHz - - - - ⁇ r @ 28 GHz - - - - tan ⁇ , x10 -3 @ 28 GHz - - - - -
  • Example 14 Example 15 Example 16 Density (g/cm 3 ) 2.34 2.37 2.35 2.36 Tg(°C) 676 674 688 690 Tx(°C) 934 940 889 918 dT(°C) 258 266 201 228 Ts(°C) 789 789 775 841 CTE (ppm/°C) 2.98 3.17 5.25 4.48 ⁇ r @ 100 MHz - - 4.69 4.74 tan ⁇ , x10 -3 @ 100 MHz - - 2.49 2.11 ⁇ r @ 1 GHz - - 4.66 4.71 tan ⁇ , x10 -3 @ 1 GHz - - 3.51 3.45 ⁇ r @ 10 GHz - - 4.75 4.80 tan ⁇ , x10 -3 @ 10 GHz - - 3.18 3.14 ⁇ r @ 28 GHz - - 4.95 4.81 tan ⁇ , x10 -3 @ 28 GHz - - 4.47 4.56
  • Example 18 Density (g/cm 3 ) 2.37 2.41 2.45 Tg(°C) 687 684 681 Tx(°C) 922 920 931 dT(°C) 235 236 250 Ts(°C) 851 872 826 CTE (ppm/°C) 4.55 4.67 4.59 ⁇ r @ 100 MHz 4.80 4.85 4.95 tan ⁇ , x10 -3 @ 100 MHz 3.17 2.68 3.37 ⁇ r @ 1 GHz 4.78 4.83 4.93 tan ⁇ , x10 -3 @ 1 GHz 4.07 3.57 4.36 ⁇ r @ 10 GHz 4.83 4.86 4.98 tan ⁇ , x10 -3 @ 10 GHz 3.17 3.01 3.57 ⁇ r @ 28 GHz 5.00 5.07 4.77 tan ⁇ , x10 -3 @ 28 GHz 4.73 5.12 5.11
  • the low-k glasses according to Examples 1 to 3 have excellent thermal properties and excellent low-k properties.
  • the low-k glass according to Example 3 exhibits excellent low-k characteristics of dielectric constant ( ⁇ r ) of 4.81 and dielectric loss (tan ⁇ ) of 3.57 x 10 -3 at 100 MHz, and at 10 GHz and 28 GHz, respectively, It can be seen that dielectric constants are 4.72 and 4.79, and dielectric losses are 2.97 x 10 -3 and 4.10 x 10 -3 , respectively, showing very excellent characteristics.
  • Examples 4 to 7 and Example 3 show very low permittivity and dielectric loss characteristics at 28 GHz.
  • the dielectric constant increases to 5 or more when the contents of SiO 2 and B 2 O 3 are decreased and the contents of MgO and CaO are relatively increased. Therefore, in the case of glass made of SiO 2 , B 2 O 3 , Al 2 O 3 , MgO, and CaO, it is preferable to maintain the content of SiO 2 + B 2 O 3 at 70 to 75 wt% or more in order to secure low dielectric properties. do. In order to secure low dielectric properties, it is preferable to maintain the Al 2 O 3 + MgO + CaO content to 20 to 29 wt% or less.
  • thermal characteristics such as Tg, Tx, dT, and CTE are controlled by the addition of TiO 2 , ZnO, and La 2 O 3 . It can be seen that the dielectric glass has a sufficiently low coefficient of thermal expansion (CTE) of 4.49 ppm/°C or less.
  • the low-k glasses according to Examples 15 to 19 and Comparative Example 4 have a content of La 2 O 3 in the range of 0.54 to 8.45 wt%. It can be seen that the low-k glasses according to Examples 15 to 17 have a low dielectric constant of 5.0 or less and excellent dielectric loss characteristics of 4.73 x 10 -3 or less at 10 GHz and 28 GHz, and also have a softening temperature (Ts) of 851 It can be confirmed that it has excellent characteristics as less than °C and thermal expansion characteristics (CTE) are also less than 5.25 ppm / °C.
  • the dielectric constant and dielectric loss at 10 GHz are 4.98 or less and 3.57x10 -3 or less, respectively, while the dielectric constant and It can be seen that there are cases where the dielectric loss exceeds 5.01 and exceeds 5.11 x 10 -3 .
  • the present invention relates to oxide-based glass compositions having low permittivity and dielectric loss.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

본 발명은 낮은 유전율 및 유전손실을 갖는 산화물계 유리 조성물게 관한 것이다. 본 발명에 따른 산화물계 유리 조성물은 1GHz 이상의 고주파 대역 특히 10 내지 28 GHz 에서 낮은 유전율 및 낮은 유전손실을 갖는 PCB 용 유리소재 및 유리섬유를 제공할 수 있다. 본 발명에 따른 산화물계 유리 조성물은 낮은 연화온도 및 낮은 열팽창 특성을 가지고 있어서 기존의 기술이 가지고 있는 여러 문제점을 해결할 수 있다.

Description

유전율이 낮은 산화물계 유리 조성물
본 발명은 낮은 유전율 및 낮은 유전손실을 갖는 산화물계 유리 조성물에 대한 것이다.
클라우드 컴퓨팅, 5G 통신, OTT 서비스, 인공지능 관련 시장의 성장에 따라 모바일 기기 및 기지국, 최신 데이터 센터 구축에 필요한 서버용 초고다층 PCB의 수요가 급속도로 증대하고 있다, 초고속 통신용 고다층 전자회로기판(PCB: Printed Circuit Board)는 이러한 미래 IT 기기에 필요한 핵심부품이다.
인쇄회로기판(Printed Circuit Board, PCB) 개발에 사용되는 CCL(Copper Clad Laminate, 동박적층판)은 크게 무기소재인 유리섬유, 유기소재인 수지(필러), 그리고 동박으로 구성되고, 유리섬유는 CCL을 구성하는 프리프레그(Prepreg, 절연층)의 기본 골격을 이루어 전기적 절연 특성과 함께 절연층의 기계적 및 열적 변형을 최소화하는 기능을 담당하는 핵심 소재이다.
특히, 5G 이상의 통신에서 고속·대용량화, 또 밀리미터파대의 이용 확대에 따라서 통신장비, 기지국 레이더, 안테나, 서버보드 등에 들어가는 기판소재(CCL)의 경우 1GHz 이상의 고주파 신호 대역에서 낮은 유전 손실 특성을 갖는 소재 확보가 중요하고, 이를 위해서는 CCL을 구성하고 있는 낮은 유전상수(dielectric constant, εr)와 유전계수(dielectric dissipation factor, tanδ)를 갖는 유리섬유 소재 기술의 확보가 필수적이다.
저속의 PCB에 사용되는 기존의 E-glass의 경우, 예를 들어 SiO2 54.3 wt%, B2O3 6 wt%, Al2O3 14 wt%, MgO+CaO 22.7 wt%, Li2O+Na2O+K2O 1.0 wt%, FeO2 0.3 wt%로 구성된다. 이러한 E-glass의 경우 1 MHz에서 6.6-6.9 범위의 높은 유전율 그리고 0.002-0.007 범위의 높은 유전손실 특성을 가지고 있어 1GHz 이상의 고주파 대역에서는 높은 에너지 손실로 인하여 사용이 어렵다.
따라서, 5G 이상의 초고속 통신에서 요구되는 CCL의 유전 특성 확보를 위해서는 기존의 일반적인 전자소자용 유리섬유(E-glass)로는 한계가 있으며, 기계적 및 열적 특성은 기존 소재와 유사하면서 보다 낮은 유전율 및 유전손실 특성을 갖는 유리소재 기술 확보가 필요하다. 5G 이상의 초고속 통신에서 요구되는 CCL의 유전 특성 확보를 위해서는, 10 GHz 이상의 고주파 대역에서 충분히 낮은 유전율 및 유전손실 특성을 갖는 유리소재 기술 확보가 바람직하다. 또한, 데이터 전송속도를 높이기 위해서는 그보다도 더욱 높은 28 GHz 용 통신기술이 상용화되고 있다. 기존의 일반적인 고주파대역인 1~10 GHz 범위에서 물성이 확보된 유리가 28 GHz 에 적용될 경우 충분한 특성을 제공하지 못할 수도 있다. 따라서, 1~10 GHz 나아가 28 GHz 이상의 초고주파 대역에서 충분한 유전특성 및 물성을 갖는 인쇄회로기판에 사용되는 유리섬유용 저유전 유리 기술을 검증 및 확보하는 것이 매우 중요하다.
이를 위하여 최근까지 낮은 유전 특성을 갖는 유리 조성에 대한 연구가 많이 진행되고 있으며 여러 가지 종류의 저유전 유리조성이 제시되었다. 일례로 저유전 유리의 경우 유리조성 범위는 SiO2 60~68 wt%, B2O3 7~12 wt%, Al2O3 9~14 wt%를 포함하고 있다. 이러한 유리조성의 경우 고농도의 SiO2가 함유되어 있어서 연화온도가 상승하여 유리섬유 방사가 어렵게 되는 문제가 생길 수 있다. 이러한 경우 연화온도를 낮추기 위하여 알칼리 이온을 첨가하게 되고 그에 따라 유전율이 상승하게 되는 다른 문제가 발생할 수 있다.
또 다른 경우로 SiO2 50~60 wt%, B2O3 15~25 wt%, Al2O3 10~18 wt%, CaO+MgO 5~12 wt%의 조성범위를 가진 저유전 유리를 예로 들 수 있다. 이러한 조성의 경우 B2O3가 다량 함유되어 있어서 물에 대한 내성이 약해지며, 기포가 많이 발생하거나, 기계적 강도가 약해지는 등 여러 가지 문제가 발생할 수 있어서 부가적인 첨가물을 사용하거나 조성을 최적화해야 하는 어려움이 따른다.
본 발명은 이러한 종래 기술의 문제점을 해결하여 낮은 유전특성과 동시에 우수한 열특성, 열팽창특성, 기계적특성을 갖는 유리소재 및 유리섬유 기술을 제시하는 것을 내용으로 한다.
선행기술문헌.
특허분헌: 미국 등록특허 8,697,590 B2(“LOW DIELECTRIC GLASS AND FIBER GLASS FOR ELECTRONIC APPLICATIONS”)
본 발명은 종래 기술이 가지는 여러 가지 문제를 해결하기 위한 것으로, 알칼리 성분을 함유하지 않고 동시에 유전율 및 유전손실이 낮은 산화물계 유리 조성물 및 이를 이용한 유리섬유 기술을 제공하는 것이다. 본발명은 1GHz 이상의 고주파 대역 특히 10 내지 28 GHz 에서 낮은 유전율 및 유전손실을 갖는 유리 조성물 및 이를 이용한 유리섬유 기술을 제공할 수 있다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 명확하게 이해될 수 있을 것이다.
상기한 목적들을 달성하기 위하여, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2); 삼산화붕소(B2O3); 산화알루미늄(Al2O3); 및 산화마그네슘(MgO)를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 상기 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 및 산화마그네슘(MgO) 2 내지 24 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 상기 저유전 유리 조성물은 실리카(SiO2) 45 내지 55 wt%; 삼산화붕소(B2O3) 15 내지 25 wt%; 산화알루미늄(Al2O3) 10 내지 20 wt%; 및 산화마그네슘(MgO) 5 내지 17 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 산화칼슘(CaO), 산화아연(ZnO), 산화란타넘(La2O3), 이산화티타늄(TiO2) 및 지르코니아(ZrO2)로 이루어진 군에서 선택되는 1 또는 2 이상을 더 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화칼슘(CaO) 0.1 내지 15 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화아연(ZnO) 0.1 내지 15 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화란타넘(La2O3) 0.1 내지 10 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 이산화티타늄(TiO2) 0.1 내지 5 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 지르코니아(ZrO2) 0.1 내지 11 wt%를 포함한다.
본 발명의 일 실시예에 따른 산화물계 유리 조성물은 낮은 유전율 및 유전손실을 그리고 유리 방사에 적합한 열특성 및 기계적 특성을 갖는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 저유전 유리의 유전율 측정 그래프를 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 유전손실 측정 그래프를 도시한 것이다.
본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2); 삼산화붕소(B2O3); 산화알루미늄(Al2O3); 및 산화마그네슘(MgO)를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 상기 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 및 산화마그네슘(MgO) 2 내지 24 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 상기 저유전 유리 조성물은 실리카(SiO2) 45 내지 55 wt%; 삼산화붕소(B2O3) 15 내지 25 wt%; 산화알루미늄(Al2O3) 10 내지 20 wt%; 및 산화마그네슘(MgO) 5 내지 17 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 산화칼슘(CaO), 산화아연(ZnO), 산화란타넘(La2O3), 이산화티타늄(TiO2) 및 지르코니아(ZrO2)로 이루어진 군에서 선택되는 1 또는 2 이상을 더 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화칼슘(CaO) 0.1 내지 15 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화아연(ZnO) 0.1 내지 15 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화란타넘(La2O3) 0.1 내지 10 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 이산화티타늄(TiO2) 0.1 내지 5 wt%를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 지르코니아(ZrO2) 0.1 내지 11 wt%를 포함한다.
본 발명은 다양한 변경을 가할 수 있고, 여러 가지 실시예들을 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 이를 상세히 설명하고자 한다.
청구범위에 개시된 발명의 다양한 특징들은 도면 및 상세한 설명을 고려하여 더 잘 이해될 수 있을 것이다. 명세서에 개시된 장치, 방법, 제법 및 다양한 실시예들은 예시를 위해서 제공되는 것이다. 개시된 구조 및 기능상의 특징들은 통상의 기술자로 하여금 다양한 실시예들을 구체적으로 실시할 수 있도록 하기 위한 것이고, 발명의 범위를 제한하기 위한 것이 아니다. 개시된 용어 및 문장들은 개시된 발명의 다양한 특징들을 이해하기 쉽게 설명하기 위한 것이고, 발명의 범위를 제한하기 위한 것이 아니다.
본 발명을 설명함에 있어서, 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다.
본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2); 삼산화붕소(B2O3); 산화알루미늄(Al2O3); 및 산화마그네슘(MgO)를 포함한다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 및 산화마그네슘(MgO) 2 내지 24 wt%를 포함하는 것일 수 있으며, 보다 바람직하게는, 실리카(SiO2) 45 내지 55 wt%; 삼산화붕소(B2O3) 15 내지 25 wt%; 산화알루미늄(Al2O3) 10 내지 20 wt%; 및 산화마그네슘(MgO) 5 내지 17 wt%를 포함하는 것일 수 있다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 산화칼슘(CaO), 산화아연(ZnO), 산화란타넘(La2O3), 이산화티타늄(TiO2) 및 지르코니아(ZrO2)로 이루어진 군에서 선택되는 1 또는 2 이상을 더 포함하는 것일 수 있다.
상기 실리카(SiO2)는 유리의 기본 구조를 형성하는데 있어 필수적인 유리형성(glass former) 성분이며, 유리 구성성분으로서 SiO2는 유리화 형성, 유리의 열적 안정성, 우수한 기계적 특성, 그리고 낮은 열팽창 특성 갖도록 하는 것일 수 있으며, 유리의 점성(viscosity) 및 유전특성을 조절하는 것일 수 있다.
상기 실리카(SiO2)의 함량은 40 내지 60 wt%일 수 있으며, 바람직하게는 45 내지 55 wt%일 수 있으며, 보다 더 바람직하게는 43 내지 53 wt%일 수 있다.
보다 구체적으로, 상기 실리카(SiO2)의 함량이 40 wt% 미만인 경우, 유리의 저유전 특성이 상승하고 유리의 기계적 강도가 현저히 감소하기 때문에 바람직하지 않다. 또한, 상기 실리카(SiO2)의 함량이 60 wt%를 초과하면 용융공정 및 섬유화를 위한 방사공정 시 유리의 점도가 높아져 유리섬유를 만들기 어려워지게 되므로 바람직하지 않다. 또한, 바람직하게는 저유전 특성을 확보하고 동시에 유리섬유 방사를 용이하기 하기 위하여, 상기 실리카(SiO2) 함량은 45 내지 55 wt%일 수 있다. 또한, 보다 더 바람직하게는, 상기 삼산화붕소(B2O3) 및 상기 산화마그네슘(MgO)이 함유된 저유전 유리조성물에 있어 유리전이온도(Tg), 연화온도(Ts), 열팽창계수(CTE)와 같은 물성을 최적화하기 위하여, 상기 실리카(SiO2) 함량은 43 내지 53 wt%일 수 있다.
상기 삼산화붕소(B2O3)는 유리의 점성을 제어하여 용융온도를 낮추기 위한 것이며, 상기 삼산화붕소(B2O3)는 낮은 유전율을 갖는 유리의 성분의 하나로 초고속 통신에 필요한 고주파 대역에서 저유전 특성 확보에 있어서 중요한 역할을 하는 것일 수 있다.
상기 삼산화붕소(B2O3)의 함량은 10 내지 30 wt%일 수 있으며, 바람직하게는 15 내지 25 wt%일 수 있다.
보다 구체적으로, 상기 삼산화붕소(B2O3)의 함량이 10 wt% 미만인 경우, 유리의 충분한 저유전 특성을 확보하기 어렵고 상기 실리카(SiO2)를 포함하는 유리 조성물에 있어서 원하는 용융온도 저하 효과를 얻기가 어려운 문제점이 있다. 상기 삼산화붕소(B2O3)의 함량이 30 wt%를 초과하는 경우, 유리의 수분에 대한 내성이 약해지며 방사공정 중 기포가 발생하거나 기계적 강도가 약해지는 문제점이 있으며, 유리의 열팽창 특성이 증가하는 문제점이 있다. 또한, 바람직하게하는, 저유전 특성을 확보하고 동시에 유리섬유 방사를 용이하게 하고 유리의 열팽창 특성을 제어하기 위해서, 상기 삼산화붕소(B2O3) 함량은 15 내지 25 wt%일 수 있다.
상기 산화알루미늄(Al2O3)은 유리중간제(glass intermediate)로서 유리의 안정성을 확보하는 것일 수 있으며, 유리화 형성을 용이하게 하고 유리용융 및 유리섬유 방사공정에서 결정화 및 실투가 쉽게 일어나지 않도록 하는 것일 수 있다. 상기 산화알루미늄(Al2O3)은 유리의 점성을 적정한 범위에서 제어하는 기능을 가지고 기계적 강도를 개선하며, 유리의 전기절연성을 개선하는 것일 수 있다.
상기 산화알루미늄(Al2O3)의 함량은 8 내지 23 wt%일 수 있으며, 바람직하게는 10 내지 20 wt%일 수 있다.
보다 구체적으로, 상기 산화알루미늄(Al2O3)의 함량이 8 w% 미만인 경우, 유리화 안정성이 떨어지고 실투 현상이 쉽게 발생하고 충분한 기계적 강도를 확보하기가 어려운 문제점이 있다. 상기 산화알루미늄(Al2O3)의 함량이 23 w%를 초과하는 경우, 용융유리의 점도가 너무 높아져 유리섬유 방사가 어렵운 문제점이 있다. 또한, 바람직하게는, 저유전 유리섬유의 유리화 형성을 용이하게 하고 유리 표면의 결정화에 의한 실투현상을 막아 기계적 강도를 유지하기 위해서, 상기 상기 산화알루미늄(Al2O3)의 함량은 10 내지 20 wt%일 수 있다.
상기 산화마그네슘(MgO)은 유리화 형성을 용이하게 하고 유리의 점성을 낮추어 균질도를 개선하는 것일 수 있다. 상기 실리카(SiO2)와 상기 삼산화붕소(B2O3) 성분으로 구성되는 유리 조성에 있어서 유리화 형성을 용이하게 하고 유리의 점성을 낮추며 동시에 균질도를 높일 수 있는 기능을 가진 성분을 추가로 필요로 한다. 이를 위하여 종래 기술에서는 일반적으로 Li2O, Na2O, K2O와 같은 알칼리 성분을 사용해왔다. 하지만 이러한 알칼리 성분의 경우 분극율이 매우 높아 유전율이 높이는 문제를 가지고 있다. 또한 이러한 알칼리 성분의 경우 유리의 안정성을 저하시키고 기계적 강도를 낮추거나 열팽창계수를 높이는 문제점이 있다.
상기 산화마그네슘(MgO)의 함량은 2 내지 24 wt%일 수 있으며, 바람직하게는 5 내지 17 wt%일 수 있다.
보다 구체적으로, 상기 산화마그네슘(MgO)의 함량이 2 wt% 미만인 경우, 유리화 형성을 용이하게 하고 유리의 점성을 낮추며 동시에 균질도를 높일 수 있는 기능에 있어서 충분하지 않는 문제점이 있다. 상기 산화마그네슘(MgO)의 함량이 24 wt%를 초과하는 경우, 유리화 형성을 방해하고 저유전 특성 및 낮은 열팽창 특성을 확보하는데 방해하는 문제점이 있다. 또한, 보다 바람직하게는, 유리 구성 성분의 균형을 맞추고 충분한 저유전 특성을 맞추기 위해서 상기 산화마그네슘(MgO)의 함량이 5 내지 17 wt%일 수 있다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 산화칼슘(CaO)을 더 포함할 수 있으며, 보다 구체적으로, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2); 삼산화붕소(B2O3); 산화알루미늄(Al2O3); 산화마그네슘(MgO); 및 산화칼슘(CaO)를 포함한다.
상기 산화칼슘(CaO)은 상기 산화마그네슘(MgO)과 함께 사용되어 유리화 형성을 용이하게 하고 유리의 점성을 낮추어 균질도를 높이는 것일 수 있다.
상기 산화칼슘(CaO)의 함량은 0.1 내지 15 wt%일 수 있으며, 바람직하게는 0.1 내지 11 wt%일 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화칼슘(CaO) 0.1 내지 15 wt%를 포함하는 것일 수 있다. 또한, 보다 바람직하게는, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 45 내지 55 wt%; 삼산화붕소(B2O3) 15 내지 25 wt%; 산화알루미늄(Al2O3) 10 내지 20 wt%; 산화마그네슘(MgO) 5 내지 17 wt%; 및 산화칼슘(CaO) 0.1 내지 11 wt%를 포함하는 것일 수 있다.
보다 구체적으로, 상기 산화칼슘(CaO)의 함량이 15 wt%를 초과하는 경우, 유전율이 높아질 수 있는 문제점이 있다. 또한, 보다 바람직하게는, 상기 산화마그네슘(MgO)과 함께 사용하여 유리 구성 성분의 균형을 맞추고 충분한 저유전 특성을 맞추기 위해서 상기 산화칼슘(CaO)의 함량은 0.1 내지 11 wt%일 수 있다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 산화아연(ZnO)을 더 포함할 수 있으며, 보다 구체적으로, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2); 삼산화붕소(B2O3); 산화알루미늄(Al2O3); 산화마그네슘(MgO); 및 산화아연(ZnO)을 포함한다.
상기 산화아연(ZnO)은 유리의 점도를 적당한 범위에서 제어하는 것이며, 유리화 형성을 촉진하고 유리의 안정성을 개선하여 실투를 방지하는 것일 수 있다.
상기 산화아연(ZnO)의 함량은 0.1 내지 15 wt%일 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화아연(ZnO) 0.1 내지 15 wt%를 포함하는 것일 수 있다. 또한, 보다 바람직하게는, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 45 내지 55 wt%; 삼산화붕소(B2O3) 15 내지 25 wt%; 산화알루미늄(Al2O3) 10 내지 20 wt%; 산화마그네슘(MgO) 5 내지 17 wt%; 및 산화아연(ZnO) 0.1 내지 15 wt%를 포함하는 것일 수 있다.
보다 구체적으로, 상기 산화아연(ZnO)의 함량이 15 wt%를 초과하는 경우, 유전율이 높아지고 오히려 유리화 형성을 오히려 방해하는 문제점이 있다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 산화란타넘(La2O3)을 더 포함할 수 있으며, 보다 구체적으로, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2); 삼산화붕소(B2O3); 산화알루미늄(Al2O3); 산화마그네슘(MgO); 및 산화란타넘(La2O3)을 포함한다.
상기 산화란타넘(La2O3)은 유리화 형성을 돕고 유리의 점성을 제어하고 방사 중 실투를 억제하는 것일 수 있다.
상기 산화란타넘(La2O3)의 함량은 0.1 내지 10 wt%일 수 있으며, 바람직하게는 0.1 내지 5 wt%일 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화란타넘(La2O3) 0.1 내지 10 wt%를 포함하는 것일 수 있다. 또한, 보다 바람직하게는, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 45 내지 55 wt%; 삼산화붕소(B2O3) 15 내지 25 wt%; 산화알루미늄(Al2O3) 10 내지 20 wt%; 산화마그네슘(MgO) 5 내지 17 wt%; 및 산화란타넘(La2O3) 0.1 내지 5 wt%를 포함하는 것일 수 있다.
보다 구체적으로, 상기 산화란타넘(La2O3)의 함량이 10 wt%를 초과하는 경우, 유리 구조를 광범위하게 변형시키는 문제점이 있다. 또한, 보다 바람직하게는, 상기 산화란타넘(La2O3)은 유전율을 높이는 문제점이 존재하므로, 상기 산화란타넘(La2O3)의 함량이 0.1 내지 5 wt%일 수 있다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 이산화티타늄(TiO2)을 더 포함할 수 있으며, 보다 구체적으로, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2); 삼산화붕소(B2O3); 산화알루미늄(Al2O3); 산화마그네슘(MgO); 및 이산화티타늄(TiO2)을 포함한다.
상기 이산화티타늄(TiO2)은 유리의 점도를 낮추는 기능을 가지는 것이며, 유리의 기계적 강도를 계산하는 기능을 갖는 것일 수 있다.
상기 이산화티타늄(TiO2)의 함량은 0.1 내지 5 wt%일 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 이산화티타늄(TiO2) 0.1 내지 5 wt%를 포함하는 것일 수 있다. 또한, 보다 바람직하게는, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 45 내지 55 wt%; 삼산화붕소(B2O3) 15 내지 25 wt%; 산화알루미늄(Al2O3) 10 내지 20 wt%; 산화마그네슘(MgO) 5 내지 17 wt%; 및 이산화티타늄(TiO2) 0.1 내지 5 wt%를 포함하는 것일 수 있다.
보다 구체적으로, 상기 이산화티타늄(TiO2)의 함량이 5 wt%를 초과하는 경우, 유전율이 높아지고 실투 경향이 증가하는 문제점이 있다.
또한, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 지르코니아(ZrO2)를 더 포함할 수 있으며, 보다 구체적으로, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2); 삼산화붕소(B2O3); 산화알루미늄(Al2O3); 산화마그네슘(MgO); 및 지르코니아(ZrO2)를 포함한다.
상기 지르코니아(ZrO2)는 유리의 내알칼리성 향상하는 것일 수 있다.
상기 지르코니아(ZrO2)의 함량은 0.1 내지 11 wt%일 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 지르코니아(ZrO2) 0.1 내지 11 wt%를 포함하는 것일 수 있다. 또한, 보다 바람직하게는, 본 발명의 일 실시예에 따른 저유전 유리 조성물은 실리카(SiO2) 45 내지 55 wt%; 삼산화붕소(B2O3) 15 내지 25 wt%; 산화알루미늄(Al2O3) 10 내지 20 wt%; 산화마그네슘(MgO) 5 내지 17 wt%; 및 지르코니아(ZrO2) 0.1 내지 11 wt%를 포함하는 것일 수 있다.
보다 구체적으로, 상기 지르코니아(ZrO2)의 함량이 11 wt%를 초과하는 경우, 유리의 점도, 섬유화 온도 및 실투 경향을 증가시키는 문제점이 있다.
이하, 실시예를 통하여 본 발명을 상세히 설명한다.
실시예 1.
하기 표 1에서의 조성을 갖는 원료물질을 준비한 후, 준비된 원료물질들은 100 내지 200 rpm에서 4 시간(hr) 동안 볼밀(ballmill)공정을 수행하여 혼합 및 분쇄하여 혼합물을 제조하였다. 제조된 혼합물을 전기로에서 용융온도 1650 ℃로 2 시간(hr) 동안 가열하여 유리화하여 용율물을 제조한 후, 용융물을 650 oC 로 예열된 황동몰드에 캐스팅한 후 유리전이온도(711 oC) 부근의 온도인 691 oC로 설정된 전기로 안에서 2 시간(hr) 동안 유지하여 잔류응력을 해소한 후 상온(25 ℃)까지 냉각시켜 저유전 유리를 제조하였다.
원료조성
(wt%)
실시예 1
SiO2 54.9
B2O3 21.1
Al2O3 19.0
MgO 5.0
실시예 2.
하기 표 2에서의 조성을 갖는 원료물질을 준비한 후, 준비된 원료물질들은 100 내지 200 rpm에서 4 시간(hr) 동안 볼밀(ballmill)공정을 수행하여 혼합 및 분쇄하여 혼합물을 제조하였다. 제조된 혼합물을 전기로를 사용하여 1000 oC에서 3 시간(hr) 동안 유지하여 탄산염 물질의 분해 및 CO 및 CO2 가스의 배출을 유도하고, 이후 용융온도 1650 ℃로 2 시간(hr) 동안 가열하여 유리화하여 용율물을 제조한 후, 용융물을 650 oC로 예열된 황동몰드에 캐스팅한 후 유리전이온도(표 7 참조) 보다 10 내지 20 ℃ 낮은 온도로 설정된 전기로 안에서 2 시간(hr) 동안 유지하여 잔류응력을 해소한 후 상온(25 ℃)까지 냉각시켜 저유전 유리를 제조하였다.
실시예 3 내지 19.
하기 표 2 내지 표 5에서의 조성을 갖는 원료물질을 준비한 후, 준비된 원료물질들은 100 내지 200 rpm에서 4 시간(hr) 동안 볼밀(ballmill)공정을 수행하여 혼합 및 분쇄하여 혼합물을 제조하였다. 제조된 혼합물을 전기로를 사용하여 용융온도 1650 ℃로 2 시간(hr) 동안 가열하여 유리화하여 용율물을 제조한 후, 용융물을 650 oC로 예열된 황동몰드에 캐스팅한 후 유리전이온도(표 7 내지 표 11 참조) 보다 10 내지 20 ℃ 낮은 온도로 설정된 전기로 안에서 2 시간(hr) 동안 유지하여 잔류응력을 해소한 후 상온(25 ℃)까지 냉각시켜 저유전 유리를 제조하였다.
원료조성
(wt%)
실시예 2 실시예 3 실시예 4 실시예 5
SiO2 53.0 56.8 53.6 54.6
B2O3 22.1 13.9 17.1 16.1
Al2O3 13.3 21.4 21.4 21.4
MgO 4.2 3.1 3.1 3.1
CaO 7.4 4.8 4.8 4.8
원료조성
(wt%)
실시예 6 실시예 7 실시예 8 실시예 9
SiO2 55.7 58.9 55.4 57.0
B2O3 15.0 11.8 11.1 11.0
Al2O3 21.4 21.4 22.2 21.9
MgO 3.1 3.1 6.3 5.2
CaO 4.8 4.8 5.0 4.9
원료조성
(wt%)
실시예 10 실시예 11 실시예 12 실시예 13 실시예 14
SiO2 53.2 52.9 52.9 54.1 54.1
B2O3 21.1 22.0 20.9 21.2 21.2
Al2O3 13.3 13.2 13.2 15.9 14.8
MgO 6.3 5.8 5.8 2.5 2.5
CaO 5.0 5.0 5.0 4.1 4.1
La2O3 - - - 1.1 1.1
TiO2 1.1 - 1.1 1.1 1.1
ZnO2 - 1.1 1.1 - 1.1
원료조성
(wt%)
실시예 15 실시예 16 실시예 17 실시예 18 실시예 19
SiO2 54.6 54.5 54.4 54.2 54.0
B2O3 15.7 15.3 14.6 13.1 21.2
Al2O3 21.4 21.4 21.4 21.3 11.6
MgO 3.0 2.9 2.7 2.4 2.0
CaO 4.8 4.8 4.8 4.8 4.8
La2O3 0.5 1.1 2.1 4.2 6.4
비교예.
비교예 1 내지 3은 하기 표 6의 원료조성으로, 하기 표 12의 유리전이온도(Tg)를 참고하여, 상기 실시예 1의 방식으로 저유전 유리를 제조하였다.
비교예 4는 하기 표 6의 원료조성으로, 하기 표 12의 유리전이온도(Tg)를 참고하여, 상기 실시예 2의 방식으로 저유전 유리를 제조하였다.
원료조성
(wt%)
비교예 1 비교예 2 비교예 3 비교예 4
SiO2 35.7 39.5 48.5 53.8
B2O3 20.7 16.6 19.1 21.1
Al2O3 24.2 24.4 27.9 10.2
MgO - - - 1.7
CaO - - - 4.7
La2O3 19.4 19.5 4.5 8.5
TiO2 - - - -
ZnO2 - - - -
측정예 1. 물성 분석
상기 실시예 및 비교예에 따라 제조된 저유전 유리에 대하여 밀도(Density), 유리전이전이온(Tg), 결정화개시온도(Tx), 열적 안정성(dT= Tx-Tg), 연화온도(Ts), 열팽창계수(CTE)를 측정하여 하기 표 7 내지 11에 정리하였다. 물성은 TMA(Thermo-mechanical Analysis) 측정을 이용하였으며, 실시예 및 비교예의 저유전 유리 시료를 소형 전기로에 넣어 온도에 따른 유리의 변형(dL/L0) 특성을 측정하고 이로부터 물성을 산출하였다.
초고속 통신용 인쇄회로기판에 사용되는 저유전 유리섬유에 적용하기 위해서는 유리의 Tg 및 CTE는 각각 860 ℃ 및 5.4 ppm/℃ 이하가 되는 것이 바람직하다. 이는 유리섬유 방사에 용이하고 인쇄회로기판용 고분자 소재의 높은 열팽창 특성을 보완하기 위함이다. 이를 고려하였을 때, 하기 표 7 내지 표 11을 참조하면, 상기 실시예에 따른 저유전 유리는 초고속 통신용 인쇄회로기판에 사용함에 있어서 적합함을 확인할 수 있다.
측정예 2. 유전특성 분석
상기 실시예 및 비교예에 따라 제조된 저유전 유리에 대하여 100 MHz, 1 GHz, 10GHz, 28 GHz에서의 유전율(εr) 및 유전손실(tanδ)을 측정하여 하기 표 7 내지 표 11에 정리하였다. 도 1은 실시예 3에 따른 저유전 유리의 유전율 측정 그래프를 도시한 것이며, 도 2는 실시예 3에 따른 유전손실 측정 그래프를 도시한 것이다.
유전율은 유리의 유전율은 임피던스 분석기를 이용한 평행판 방식(Parallel plate capacitor method) 또는 벡터 네트워크 분석기를 공진기 방식(Resonance cavity method)을 사용하여 측정한다. 평행판 방식은 1 MHz에서 1 GHz의 저주파수 대역에서 사용하는 측정 방식이고 공진기 방식은 1GHz 이상의 고주파 대역에서 주로 사용하는 방식이다. 인쇄회로기판에 사용하기 위해서는 유전율(εr)은 5.0 이하 그리고 유전손실(tanδ)은 5.0x10-3 이하의 값을 갖는 것이 바람직하다.
구분 실시예 1 실시예 2 실시예 3 실시예 4
Density(g/cm3) 2.30 2.36 2.33 2.37
Tg(℃) 711 661 679 696
Tx(℃) 844 1049 922 904
dT(℃) 133 388 243 208
Ts(℃) 827 772 853 823
CTE(ppm/℃) 3.29 3.83 4.43 4.34
εr @ 100 MHz 4.47 4.80 4.81 4.97
tanδ, x10-3
@ 100 MHz
- - 3.57 4.22
εr @ 1 GHz 4.65 4.98 4.78 4.94
tanδ, x10-3
@ 1 GHz
- - 3.86 6.62
εr @ 10 GHz 4.46 4.80 4.72 4.89
tanδ, x10-3
@ 10 GHz
3.27 3.69 2.97 3.31
εr @ 28 GHz - - 4.79 4.88
tanδ, x10-3
@ 28 GHz
- - 4.10 4.63
구분 실시예 5 실시예 6 실시예 7 실시예 8
Density(g/cm3) 2.35 2.33 2.31 2.47
Tg(℃) 686 692 681 748
Tx(℃) 910 922 908 992
dT(℃) 224 230 227 244
Ts(℃) 833 883 854 834
CTE(ppm/℃) 3.57 4.51 4.65 2.12
εr @ 100 MHz 4.92 4.85 4.62 5.19
tanδ, x10-3
@ 100 MHz
4.95 4.41 3.59 6.73
εr @ 1 GHz 4.88 4.83 4.60 5.16
tanδ, x10-3
@ 1 GHz
6.33 7.75 4.45 10.80
εr @ 10 GHz 4.73 4.79 4.50 -
tanδ, x10-3
@ 10 GHz
3.68 3.04 2.86 -
εr @ 28 GHz 4.70 4.75 4.58 -
tanδ, x10-3
@ 28 GHz
4.40 4.26 3.48 -
구분 실시예 9 실시예 10 실시예 11 실시예 12
Density(g/cm3) 2.44 2.39 2.39 2.39
Tg(℃) 755 674 671 677
Tx(℃) 998 919 949 994
dT(℃) 243 245 278 317
Ts(℃) 840 800 775 766
CTE(ppm/℃) 3.96 4.49 4.19 4.25
εr @ 100 MHz 5.31 - - -
tanδ, x10-3
@ 100 MHz
6.95 - - -
εr @ 1 GHz 5.27 - - -
tanδ, x10-3
@ 1 GHz
11.20 - - -
εr @ 10 GHz - - - -
tanδ, x10-3
@ 10 GHz
- - - -
εr @ 28 GHz - - - -
tanδ, x10-3
@ 28 GHz
- - - -
물성 실시예 13 실시예 14 실시예 15 실시예 16
Density(g/cm3) 2.34 2.37 2.35 2.36
Tg(℃) 676 674 688 690
Tx(℃) 934 940 889 918
dT(℃) 258 266 201 228
Ts(℃) 789 789 775 841
CTE(ppm/℃) 2.98 3.17 5.25 4.48
εr @ 100 MHz - - 4.69 4.74
tanδ, x10-3
@ 100 MHz
- - 2.49 2.11
εr @ 1 GHz - - 4.66 4.71
tanδ, x10-3
@ 1 GHz
- - 3.51 3.45
εr @ 10 GHz - - 4.75 4.80
tanδ, x10-3
@ 10 GHz
- - 3.18 3.14
εr @ 28 GHz - - 4.95 4.81
tanδ, x10-3
@ 28 GHz
- - 4.47 4.56
물성 실시예 17 실시예 18 실시예 19
Density(g/cm3) 2.37 2.41 2.45
Tg(℃) 687 684 681
Tx(℃) 922 920 931
dT(℃) 235 236 250
Ts(℃) 851 872 826
CTE(ppm/℃) 4.55 4.67 4.59
εr @ 100 MHz 4.80 4.85 4.95
tanδ, x10-3
@ 100 MHz
3.17 2.68 3.37
εr @ 1 GHz 4.78 4.83 4.93
tanδ, x10-3
@ 1 GHz
4.07 3.57 4.36
εr @ 10 GHz 4.83 4.86 4.98
tanδ, x10-3
@ 10 GHz
3.17 3.01 3.57
εr @ 28 GHz 5.00 5.07 4.77
tanδ, x10-3
@ 28 GHz
4.73 5.12 5.11
물성 비교예 1 비교예 2 비교예 3 비교예 4
Density(g/cm3) 2.73 2.74 2.56 2.48
Tg(℃) 724 741 753 684
Tx(℃) 898 958 862 -
dT(℃) 174 217 109 -
Ts(℃) 817 825 848 689
CTE(ppm/℃) 3.71 3.40 3.15 4.90
εr @ 100 MHz - 5.62 - 5.00
tanδ, x10-3
@ 100 MHz
- - - 4.95
εr @ 1 GHz - 5.89 - 5.04
tanδ, x10-3
@ 1 GHz
- - - 3.48
εr @ 10 GHz - 5.55 - 4.93
tanδ, x10-3
@ 10 GHz
- 3.61 - 2.78
εr @ 28 GHz - - - 5.01
tanδ, x10-3
@ 28 GHz
- - - 4.25
표 7 내지 표 12를 참조하면,
실시예 1 내지 실시예 3에 따른 저유전 유리의 경우 우수한 열특성 및 우수한 저유전 특성을 갖는 것임을 확인할 수 있다. 특히, 실시예 3에 따른 저유전 유리는 100 MHz에서 유전율(εr) 4.81 및 유전손실(tanδ) 3.57 x 10-3의 우수한 저유전 특성 보이는 것을 확인할 수 있으며, 10 GHz 및 28 GHz 에서 각각, 유전율이 4.72 및 4.79이고, 유전손실이 2.97 x 10-3 및 4.10 x 10-3 로서 매우 우수한 특성을 보이는 것을 확인할 수 있다.
실시예 4 내지 7 및 실시예 3에 따른 저유전 유리의 경우, 실리카(SiO2)의 함량을 증가할수록 유전율이 감소하고 유전손실 또한 점차 감소하는 것을 확인할 수 있다. 특히 실시예 4 내지 7 및 실시예 3은 28 GHz에서 매우 낮은 유전율 및 유전손실 특성을 보여주고 있다.
한편, 실시예 8 및 9에 따른 저유전 유리는 경우 SiO2 및 B2O3 함량이 감소하고 상대적으로 MgO 및 CaO 함량이 증가할 경우 유전율이 5 이상으로 상승하는 것을 확인할 수 있다. 따라서, SiO2, B2O3, Al2O3, MgO, CaO로 이루어진 유리의 경우 저유전 특성을 확보하기 위해서는 SiO2 + B2O3 함량이 70 내지 75 wt% 이상으로 유지하는 것이 바람직하다. 저유전 특성을 확보하기 위해서는 Al2O3 + MgO + CaO 함량을 20 내지 29 wt% 이하로 유지하는 것이 바람직하다.
실시예 10 내지 14에 따른 저유전 유리의 경우 TiO2, ZnO, La2O3 첨가에 의하여 Tg, Tx, dT, CTE와 같은 열특성이 제어됨을 확인할 수 있으며, 실시예 10 내지 14에 따른 저유전 유리는 열팽창계수(CTE)가 4.49 ppm/℃ 이하로서 충분히 낮은 특성을 보이는 것을 확인할 수 있다.
실시예 15 내지 19, 비교예 4에 따른 저유전 유리는 La2O3 0.54 내지 8.45 wt% 범위의 함량을 갖는 것이다. 실시예 15 내지 17에 따른 저유전 유리는 10 GHz 및 28 GHz에서 5.0 이하의 낮은 유전율 및 4.73 x 10-3 이하의 우수한 유전손실 특성을 갖는 것을 확인할 수 있으며, 또한, 연화온도(Ts)가 851 ℃ 이하이고, 열팽창특성(CTE) 또한 5.25 ppm/℃이하로서 우수한 특성을 갖는 것임을 확인할 수 있다. 반면, La2O3 함량이 4.25 wt% 이상(실시예 18 및 19, 비교예 4)일 경우 10 GHz에서의 유전율 및 유전손실은 각각 4.98 이하 3.57x10-3 이하인 반면, 28 GHz에서의 유전율 및 유전손실은 각각 5.01을 초과하고 5.11 x 10-3을 초과하는 경우가 존재하는 것을 확인할 수 있다.
한편, 비교예로서, 비교예 1 내지 3에 따른 저유전 유리의 Al2O3 함량이 23 wt%를 초과하고, 비교예 4에 따른 저유전 유리의 MgO 함량이 2 wt% 미만인 경우에, 유전율이 5를 초과하는 것을 확인할 수 있다.
본 명세서에 개시된 실시예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라, 설명하기 위한 것이고, 이러한 실시예들에 의하여 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 보호범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 이해되어야 한다.
본 발명은 낮은 유전율 및 유전손실을 갖는 산화물계 유리 조성물게 관한 것이다.

Claims (9)

  1. 실리카(SiO2); 삼산화붕소(B2O3); 산화알루미늄(Al2O3); 및 산화마그네슘(MgO)를 포함하는,
    저유전 유리 조성물.
  2. 제1항에 있어서,
    실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 및 산화마그네슘(MgO) 2 내지 24 wt%를 포함하는,
    저유전 유리 조성물.
  3. 제1항에 있어서,
    실리카(SiO2) 45 내지 55 wt%; 삼산화붕소(B2O3) 15 내지 25 wt%; 산화알루미늄(Al2O3) 10 내지 20 wt%; 및 산화마그네슘(MgO) 5 내지 17 wt%를 포함하는,
    저유전 유리 조성물.
  4. 제1항에 있어서,
    산화칼슘(CaO), 산화아연(ZnO), 산화란타넘(La2O3), 이산화티타늄(TiO2) 및 지르코니아(ZrO2)로 이루어진 군에서 선택되는 1 또는 2 이상을 더 포함하는 것인,
    저유전 유리 조성물.
  5. 제1항에 있어서,
    실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화칼슘(CaO) 0.1 내지 15 wt%를 포함하는 것인,
    저유전 유리 조성물.
  6. 제1항에 있어서,
    실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화아연(ZnO) 0.1 내지 15 wt%를 포함하는 것인,
    저유전 유리 조성물.
  7. 제1항에 있어서,
    실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 산화란타넘(La2O3) 0.1 내지 10 wt%를 포함하는 것인,
    저유전 유리 조성물.
  8. 제1항에 있어서,
    실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 이산화티타늄(TiO2) 0.1 내지 5 wt%를 포함하는 것인,
    저유전 유리 조성물.
  9. 제1항에 있어서,
    실리카(SiO2) 40 내지 60 wt%; 삼산화붕소(B2O3) 10 내지 30 wt%; 산화알루미늄(Al2O3) 8 내지 23 wt%; 산화마그네슘(MgO) 2 내지 24 wt%; 및 지르코니아(ZrO2) 0.1 내지 11 wt%를 포함하는 것인,
    저유전 유리 조성물.
PCT/KR2022/017897 2021-11-25 2022-11-14 유전율이 낮은 산화물계 유리 조성물 WO2023096243A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210164941 2021-11-25
KR10-2021-0164941 2021-11-25
KR10-2022-0151791 2022-11-14
KR1020220151791A KR102639162B1 (ko) 2021-11-25 2022-11-14 유전율이 낮은 산화물계 유리 조성물

Publications (1)

Publication Number Publication Date
WO2023096243A1 true WO2023096243A1 (ko) 2023-06-01

Family

ID=86539887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017897 WO2023096243A1 (ko) 2021-11-25 2022-11-14 유전율이 낮은 산화물계 유리 조성물

Country Status (1)

Country Link
WO (1) WO2023096243A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543270A (ja) * 1991-06-03 1993-02-23 Office Natl Etud Rech Aerospat <Onera> ガラス−セラミツクLi−Al−Si−O組成物及びその製造方法
KR20080064144A (ko) * 2005-11-04 2008-07-08 오웬스 코닝 고성능 유리 섬유용 조성물, 고성능 유리 섬유 및 그 제품
KR20090121044A (ko) * 2008-05-21 2009-11-25 삼성전기주식회사 낮은 열팽창계수를 가지는 유리조성물, 유리섬유,인쇄회로기판의 절연층 및 인쇄회로기판
KR20140032365A (ko) * 2011-01-11 2014-03-14 에이지와이 홀딩 코포레이션 낮은 열팽창 계수를 갖는 유리 조성물 및 이로부터 제조된 유리 섬유
KR20190103249A (ko) * 2016-12-28 2019-09-04 에이지와이 홀딩 코포레이션 저 유전성 유리 조성물, 섬유 및 물품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543270A (ja) * 1991-06-03 1993-02-23 Office Natl Etud Rech Aerospat <Onera> ガラス−セラミツクLi−Al−Si−O組成物及びその製造方法
KR20080064144A (ko) * 2005-11-04 2008-07-08 오웬스 코닝 고성능 유리 섬유용 조성물, 고성능 유리 섬유 및 그 제품
KR20090121044A (ko) * 2008-05-21 2009-11-25 삼성전기주식회사 낮은 열팽창계수를 가지는 유리조성물, 유리섬유,인쇄회로기판의 절연층 및 인쇄회로기판
KR20140032365A (ko) * 2011-01-11 2014-03-14 에이지와이 홀딩 코포레이션 낮은 열팽창 계수를 갖는 유리 조성물 및 이로부터 제조된 유리 섬유
KR20190103249A (ko) * 2016-12-28 2019-09-04 에이지와이 홀딩 코포레이션 저 유전성 유리 조성물, 섬유 및 물품

Similar Documents

Publication Publication Date Title
KR100364890B1 (ko) 저유전율유리섬유
US9171657B2 (en) Glass for insulating composition
US5024975A (en) Crystallizable, low dielectric constant, low dielectric loss composition
TWI694976B (zh) 一種低氣泡數之低介電常數玻璃組成物及玻璃纖維
KR20090121044A (ko) 낮은 열팽창계수를 가지는 유리조성물, 유리섬유,인쇄회로기판의 절연층 및 인쇄회로기판
WO2021095975A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2021091014A1 (ko) 유전특성이 개선된 폴리이미드 필름 및 그 제조방법
WO2021091011A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
JP2004107112A (ja) 低誘電率低誘電正接ガラス繊維
WO2023096243A1 (ko) 유전율이 낮은 산화물계 유리 조성물
KR20210035828A (ko) 마그네슘 알루미노실리케이트 유리 세라믹
EP0262974A2 (en) Dielectric inks and frits for multilayer circuits
WO2020096402A1 (ko) 무연계 저온 소성 글라스 프릿, 페이스트 및 이를 이용한 진공 유리 조립체
WO2023096244A1 (ko) 미세기포를 포함하는 저유전성 유리섬유 및 이의 제조방법
KR102639162B1 (ko) 유전율이 낮은 산화물계 유리 조성물
JPS62278145A (ja) ガラスセラミツク焼結体
JP7386945B2 (ja) ガラス組成物、ガラス繊維及びそれを含む製品
TWI725930B (zh) 低介電玻璃組成物、低介電玻璃及低介電玻璃纖維
WO2021006687A1 (en) Coating composition having high light transmittance, coating glass and method for preparation thereof, and cooking appliance using same
JPH092839A (ja) 低誘電正接ガラス繊維
WO2022065804A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2016171323A1 (ko) 칩 부품용 전극 페이스트 조성물
JPS63307141A (ja) 絶縁層用ガラス組成物
CN104761149A (zh) 低拉丝温度低介电常数的玻璃纤维
WO2020158982A1 (ko) 무연계 저온 소성 글라스 프릿, 페이스트 및 이를 이용한 진공 유리 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898925

Country of ref document: EP

Kind code of ref document: A1