WO2023095620A1 - 積層セラミック電子部品 - Google Patents

積層セラミック電子部品 Download PDF

Info

Publication number
WO2023095620A1
WO2023095620A1 PCT/JP2022/041769 JP2022041769W WO2023095620A1 WO 2023095620 A1 WO2023095620 A1 WO 2023095620A1 JP 2022041769 W JP2022041769 W JP 2022041769W WO 2023095620 A1 WO2023095620 A1 WO 2023095620A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive resin
resin layer
layer portion
component
face
Prior art date
Application number
PCT/JP2022/041769
Other languages
English (en)
French (fr)
Inventor
泰弘 三嶋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023095620A1 publication Critical patent/WO2023095620A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to laminated ceramic electronic components.
  • multilayer ceramic electronic components typified by multilayer ceramic capacitors
  • electronic components used in mobile devices such as mobile phones and portable music players are required to withstand impact when dropped.
  • ECUs Electronic Control Units
  • thermal cycles it is necessary to prevent cracks from occurring in the multilayer ceramic electronic component even when subjected to bending stress generated by thermal expansion and contraction of the mounting substrate due to thermal cycles.
  • thermosetting conductive resin paste for the external electrodes of multilayer ceramic electronic components.
  • an epoxy-based thermosetting resin layer is formed between a conventional electrode layer and Ni plating to prevent cracks in the capacitor body even under harsh environments (flexure increased resistance).
  • the metal component contained in the epoxy thermosetting resin layer increases the hardness and elastic modulus of the resin electrode, it is disadvantageous for improving the mechanical strength. Since the resin component that is used does not have conductivity, it is disadvantageous for ESR (equivalent series resistance) characteristics. Therefore, in a laminated ceramic electronic component having an epoxy-based thermosetting resin layer, there is a trade-off relationship between the improvement in mechanical strength and the ESR characteristics, so it is difficult to effectively exhibit both characteristics. It can be difficult.
  • the main object of the present invention is to provide a laminated ceramic electronic component that can have desired ESR characteristics while having mechanical strength relative to the laminated ceramic electronic component.
  • a laminated ceramic electronic component includes a plurality of laminated ceramic layers, and has first and second main surfaces facing each other in a height direction and a width direction perpendicular to the height direction.
  • a laminate having a first side surface and a second side surface, and a first end surface and a second end surface facing each other in a length direction orthogonal to the height direction and the width direction, and arranged on a plurality of ceramic layers a first internal electrode layer exposed on the first end surface; a second internal electrode layer disposed on the plurality of ceramic layers and exposed on the second end surface; connected to and disposed on the first end surface, a portion of the first major surface, a portion of the second major surface, a portion of the first side surface and a portion of the second side surface; It is electrically connected to the external electrode and the second internal electrode layer, and on the second end face, part of the first main surface, part of the second main surface, part of the first side surface and the first side surface.
  • the first external electrode and the second external electrode are composed of a base electrode layer containing a metal component and a glass component, and a base electrode layer. It has a conductive resin layer containing a metal component and a resin component disposed on the electrode layer, and a plating layer disposed on the conductive resin layer, the conductive resin layer being disposed on the first end face and the second end face. and an end face side conductive resin layer portion located on the end face of the end face side conductive resin layer portion extending from the end portion of the end face side conductive resin layer portion on the first main surface, the second main surface, the first side surface and the second side surface.
  • the adjacent conductive resin layer portion located on the side surface of the adjacent conductive resin layer portion, and when the total of the resin component and the metal component in the end surface side conductive resin layer portion and the adjacent conductive resin layer portion is 100%, the adjacent The content ratio of the resin component contained in the conductive resin layer portion is higher than the content ratio of the resin component contained in the end surface side conductive resin layer portion, and the content ratio of the resin component in the end surface side conductive resin layer portion.
  • the first external electrode and the second external electrode each include a base electrode layer containing a metal component and a glass component, and a metal component and a resin component disposed on the base electrode layer. It has a conductive resin layer and a plated layer disposed on the conductive resin layer, the conductive resin layer forming the end face side conductive resin layer portions located on the first end face and the second end face.
  • an adjacent conductive resin layer portion extending from the end of the end face side conductive resin layer portion and positioned on the first main surface, the second main surface, the first side surface and the second side surface; and the content ratio of the resin component contained in the adjacent conductive resin layer portion is , the content ratio of the resin component contained in the end face side conductive resin layer portion is larger than that of the resin component contained in the end face side conductive resin layer portion, and the content ratio of the resin component in the end face side conductive resin layer portion is 10% or more and 60% or less.
  • the mounting substrate since it is possible to give sufficient elasticity to the adjacent conductive resin layer portion where the content ratio of the resin component is high, the mounting substrate will not undergo thermal expansion and contraction due to stress and thermal cycles caused by impact when dropped.
  • the deflection stress generated by the It is possible to cause separation between the layer and the adjacent conductive resin layer portion, or to cause cohesive failure inside the adjacent conductive resin layer portion.
  • FIG. 1 is an external perspective view showing an example of a laminated ceramic capacitor as a laminated ceramic electronic component according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1
  • FIG. Figure 2 is a cross-sectional view along line III-III of Figure 1
  • 4 is a schematic cross-sectional view showing the structure of an external electrode
  • FIG. (a) is a cross-sectional view taken along line II-II in FIG. 1 showing a structure in which counter electrode portions of internal electrode layers of a multilayer ceramic capacitor according to an embodiment of the present invention are divided into two
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 1 showing a structure in which the counter electrode portion of the internal electrode layer of the laminated ceramic capacitor is divided into three, (c) the internal electrode layer of the laminated ceramic capacitor according to the present invention
  • 2 is a cross-sectional view taken along line II-II in FIG. 1 showing a structure in which the counter electrode portion of is divided into four;
  • Laminated Ceramic Capacitor A laminated ceramic capacitor will be described as an example of a laminated ceramic electronic component according to an embodiment of the present invention.
  • FIG. 1 is an external perspective view showing an example of a laminated ceramic capacitor as a laminated ceramic electronic component according to an embodiment of the invention.
  • FIG. 2 is a cross-sectional view along line II-II of FIG.
  • FIG. 3 is a cross-sectional view along line III--III of FIG.
  • FIG. 4 is a schematic cross-sectional view showing the structure of an external electrode.
  • the multilayer ceramic capacitor 10 includes a rectangular parallelepiped laminate 12 and external electrodes 30 arranged at both ends of the laminate 12 .
  • the laminate 12 has a plurality of laminated ceramic layers 14 and a plurality of internal electrode layers 16 laminated on the ceramic layers 14 . Furthermore, the laminate 12 has a first main surface 12a and a second main surface 12b facing in the height direction x, and a first side surface 12c and a second main surface 12c facing in the width direction y orthogonal to the height direction x. and a first end face 12e and a second end face 12f facing each other in a length direction z orthogonal to the height direction x and width direction y.
  • the laminate 12 has rounded corners and ridges. A corner portion is a portion where three adjacent surfaces of the laminate intersect, and a ridge portion is a portion where two adjacent surfaces of the laminate intersect.
  • first main surface 12a and the second main surface 12b, the first side surface 12c and the second side surface 12d, and the first end surface 12e and the second end surface 12f. may have been
  • the ceramic layers 14 and the internal electrode layers 16 are laminated in the height direction x.
  • the laminate 12 includes an effective layer portion 18 in which a plurality of internal electrode layers 16 face each other in the lamination direction connecting the first main surface 12a and the second main surface 12b; A first outer layer portion 20a formed from a plurality of ceramic layers 14 positioned between the internal electrode layer 16 positioned closest to the first main surface 12a and the first main surface 12a; and a second outer layer portion 20b formed of a plurality of ceramic layers 14 positioned between the internal electrode layers 16 positioned on the surface 12b side and the second main surface 12b.
  • the first outer layer portions 20a are located on the first main surface 12a side of the laminate 12, and are located between the first main surface 12a and the internal electrode layer 16 closest to the first main surface 12a. is an aggregate of a plurality of ceramic layers 14 positioned between the ceramic layers 14 of the .
  • the second outer layer portions 20b are positioned on the second main surface 12b side of the laminate 12, and are positioned between the second main surface 12b and the internal electrode layer 16 closest to the second main surface 12b. is an aggregate of a plurality of ceramic layers 14 positioned between the ceramic layers 14 of the .
  • the effective layer portion 18 is a region sandwiched between the first outer layer portion 20a and the second outer layer portion 20b.
  • the number of laminated ceramic layers 14 is not particularly limited, but is preferably 10 or more and 700 or less including the first outer layer portion 20a and the second outer layer portion 20b. Also, the thickness of the ceramic layer 14 is preferably 0.5 ⁇ m or more and 15.0 ⁇ m or less.
  • the dimensions of the laminate 12 are not particularly limited, it is preferable that the dimensions, including the thickness of the external electrodes 30, do not exceed the dimensions of the multilayer ceramic capacitor 10.
  • the ceramic layer 14 can be formed of a dielectric material, for example, as a ceramic material.
  • Dielectric ceramics containing components such as BaTiO 3 , CaTiO 3 , SrTiO 3 , or CaZrO 3 can be used as such dielectric materials.
  • the dielectric material described above is included as a main component, depending on the desired properties of the laminate 12, for example, a Mn compound, an Fe compound, a Cr compound, a Co compound, a Ni compound, or other secondary component having a smaller content than the main component. You may use what added the component.
  • the laminated ceramic electronic component functions as a piezoelectric component.
  • piezoelectric ceramic materials include PZT (lead zirconate titanate) ceramic materials.
  • semiconductor ceramic materials include, for example, spinel-based ceramic materials.
  • magnetic ceramic materials include ferrite ceramic materials.
  • the thickness of the ceramic layer 14 after firing is preferably 0.5 ⁇ m or more and 15 ⁇ m or less.
  • the number of laminated ceramic layers 14 is preferably 10 or more and 700 or less.
  • the number of ceramic layers 14 is the sum of the number of ceramic layers 14 of the effective layer portion 18 and the number of ceramic layers 14 of the first outer layer portion 20a and the second outer layer portion 20b.
  • the laminate 12 has, as the plurality of internal electrode layers 16, a plurality of substantially rectangular first internal electrode layers 16a and a plurality of second internal electrode layers 16b, for example.
  • the plurality of first internal electrode layers 16a and the plurality of second internal electrode layers 16b are embedded so as to be alternately arranged at equal intervals along the height direction x of the laminate 12 with the ceramic layers 14 interposed therebetween. ing.
  • the first internal electrode layers 16 a are arranged on the plurality of ceramic layers 14 and located inside the laminate 12 .
  • the first internal electrode layer 16a is positioned on one end side of the first internal electrode layer 16a and the first counter electrode portion 22a facing the second internal electrode layer 16b. and a first extraction electrode portion 24 a extending to the first end surface 12 e of the laminate 12 .
  • the first extraction electrode portion 24 a has its end extracted to the surface of the first end face 12 e and exposed from the laminate 12 .
  • the shape of the first counter electrode portion 22a of the first internal electrode layer 16a is not particularly limited, it is preferably rectangular in plan view. However, the corners in plan view may be rounded or may be obliquely formed in plan view (tapered shape). Moreover, it may have a tapered shape in a plan view that is slanted toward either side.
  • the shape of the first extraction electrode portion 24a of the first internal electrode layer 16a is not particularly limited, it is preferably rectangular in plan view. However, the corners in plan view may be rounded or may be obliquely formed in plan view (tapered shape). Moreover, it may have a tapered shape in a plan view that is slanted toward either side.
  • the width of the first counter electrode portion 22a of the first internal electrode layer 16a and the width of the first extraction electrode portion 24a of the first internal electrode layer 16a may be the same, or One width may be formed narrower.
  • the second internal electrode layers 16 b are arranged on the plurality of ceramic layers 14 and located inside the laminate 12 .
  • the second internal electrode layer 16b is located on a second counter electrode portion 22b facing the first internal electrode layer 16a, and on one end side of the second internal electrode layer 16b. It has a second extraction electrode portion 24b extending to the second end surface 12f of the laminate 12 .
  • the second extraction electrode portion 24b is exposed from the laminated body 12 with its end being extracted to the surface of the second end surface 12f.
  • the shape of the second counter electrode portion 22b of the second internal electrode layer 16b is not particularly limited, it is preferably rectangular in plan view. However, the corners in plan view may be rounded or may be obliquely formed in plan view (tapered shape). Moreover, it may have a tapered shape in a plan view that is slanted toward either side.
  • the shape of the second extraction electrode portion 24b of the second internal electrode layer 16b is not particularly limited, it is preferably rectangular in plan view. However, the corners in plan view may be rounded or may be obliquely formed in plan view (tapered shape). Moreover, it may have a tapered shape in a plan view that is slanted toward either side.
  • the width of the second counter electrode portion 22b of the second internal electrode layer 16b and the width of the second lead electrode portion 24b of the second internal electrode layer 16b may be the same width.
  • One width may be formed narrower.
  • the laminated body 12 is formed between the end portion of the first internal electrode layer 16a opposite to the first extraction electrode portion 24a and the second end face 12f and the second end face 12f.
  • An end portion (hereinafter referred to as “L gap”) 28 of the laminate 12 formed between the end portion of the internal electrode layer 16b opposite to the second extraction electrode portion 24b and the first end surface 12e is include.
  • the laminate 12 is formed between one end of the first counter electrode portion 22a and the second counter electrode portion 22b in the width direction y and the first side surface 12c and between the first counter electrode portion 22c and the first counter electrode portion 22c. 22a and a side portion (hereinafter referred to as “W gap”) 26 of the laminate 12 formed between the other end in the width direction y of the second counter electrode portion 22b and the second side surface 12d.
  • the first internal electrode layers 16a and the second internal electrode layers 16b are made of, for example, metals such as Ni, Cu, Ag, Pd, and Au, and alloys containing at least one of these metals, such as Ag—Pd alloys. suitable conductive material.
  • each of the internal electrode layers 16, that is, the first internal electrode layers 16a and the second internal electrode layers 16b is preferably 0.2 ⁇ m or more and 2.0 ⁇ m or less. Further, the total number of first internal electrode layers 16a and second internal electrode layers 16b is preferably 10 or more and 700 or less.
  • External electrodes 30 are arranged on the first end surface 12e side and the second end surface 12f side of the laminate 12, as shown in FIGS.
  • the external electrode 30 has a first external electrode 30a and a second external electrode 30b.
  • the first external electrode 30a is connected to the first internal electrode layer 16a and arranged at least on the surface of the first end surface 12e.
  • the first external electrode 30a extends from the first end surface 12e of the laminate 12 to extend from a portion of the first main surface 12a, a portion of the second main surface 12b, and a portion of the first side surface 12c. It is also arranged on a portion and a portion of the second side 12d.
  • the first external electrode 30a is electrically connected to the first extraction electrode portion 24a of the first internal electrode layer 16a.
  • the second external electrode 30b is connected to the second internal electrode layer 16b and arranged at least on the surface of the second end surface 12f.
  • the second external electrode 30b extends from the second end surface 12f to extend a portion of the first main surface 12a, a portion of the second main surface 12b, a portion of the first side surface 12c and a portion of the second main surface 12b. 2 is also arranged on a part of the side surface 12d.
  • the second external electrode 30b is electrically connected to the second extraction electrode portion 24b of the second internal electrode layer 16b.
  • the first counter electrode portion 22a of the first internal electrode layer 16a and the second counter electrode portion 22b of the second internal electrode layer 16b face each other with the ceramic layer 14 interposed therebetween. , a capacitance is formed. Therefore, a capacitance can be obtained between the first external electrode 30a to which the first internal electrode layer 16a is connected and the second external electrode 30b to which the second internal electrode layer 16b is connected. , the characteristics of the capacitor appear.
  • the laminate 12 shown in FIG. A floating internal electrode layer 16c that is not pulled out to either side may be provided, and the counter electrode portion 22c may be divided into a plurality of parts by the floating internal electrode layer 16c.
  • the counter electrode portion 22c may be divided into a plurality of parts by the floating internal electrode layer 16c.
  • it may be a double structure as shown in FIG. 5(a), a triple structure as shown in FIG. 5(b), or a quadruple structure as shown in FIG. 5(c). stomach.
  • a plurality of capacitor components are formed between the opposing internal electrode layers 16a, 16b, and 16c, and these capacitor components are connected in series. Configuration. Therefore, the voltage applied to each capacitor component is lowered, and the multilayer ceramic capacitor 10 can have a high breakdown voltage.
  • the external electrode 30 includes a base electrode layer 32 containing a metal component and a glass component, a conductive resin layer 34 containing a metal component and a resin component disposed on the base electrode layer 32 , and a conductive resin layer 34 disposed on the conductive resin layer 34 . and a plated layer 36 .
  • the first external electrode 30a includes a first base electrode layer 32a containing a metal component and a glass component, and a first conductive resin layer containing a metal component and a resin component disposed on the first base electrode layer 32a. 34a, and a first plating layer 36a disposed on the first conductive resin layer 34a.
  • the second external electrode 30b is composed of a second base electrode layer 32b containing a metal component and a glass component, and a second conductive resin layer containing a metal component and a resin component disposed on the second base electrode layer 32b. 34b and a second plating layer 36b disposed on the second conductive resin layer 34b.
  • the base electrode layer 32 has a first base electrode layer 32a and a second base electrode layer 32b.
  • the first base electrode layer 32a is connected to the first internal electrode layer 16a and arranged on the surface of the first end surface 12e.
  • the first base electrode layer 32a extends from the first end surface 12e to part of the first main surface 12a, part of the second main surface 12b, and part of the first side surface 12c. It is also arranged on part of the second side surface 12d.
  • the first base electrode layer 32a is electrically connected to the first extraction electrode portion 24a of the first internal electrode layer 16a.
  • the second base electrode layer 32b is connected to the second internal electrode layer 16b and arranged on the surface of the second end surface 12f.
  • the second base electrode layer 32b extends from the second end surface 12f to part of the first principal surface 12a, part of the second principal surface 12b, part of the first side surface 12c, and part of the second principal surface 12b. It is also arranged on part of the second side surface 12d.
  • the second base electrode layer 32b is electrically connected to the second extraction electrode portion 24b of the second internal electrode layer 16b.
  • the base electrode layer 32 includes at least one selected from a baked layer, a thin film layer, and the like. Hereinafter, each configuration in the case where the base electrode layer 32 is the above baked layer or thin film layer will be described.
  • the baking layer contains a glass component and a metal component.
  • the glass component of the baking layer contains at least one selected from B, Si, Ba, Mg, Al, Li and the like.
  • the metal component of the baking layer includes, for example, at least one selected from Cu, Ni, Ag, Pd, Ag—Pd alloy, Au, and the like.
  • the baking layer is obtained by applying a conductive paste containing a glass component and a metal component to the laminate 12 and baking the paste.
  • the baked layer may be obtained by simultaneously firing the laminated chip having the internal electrode layers 16 and the ceramic layers 14 and the conductive paste applied to the laminated chip. After the laminated body is obtained, the laminated body may be baked with a conductive paste.
  • the baked layer contains a ceramic component instead of the glass component. is preferably formed by baking.
  • the baking layer may be multiple layers.
  • the base electrode layer 32 contains a ceramic component instead of the glass component, the adhesion between the laminate 12 and the base electrode layer 32 can be improved.
  • the base electrode layer 32 may contain both a glass component and a ceramic component.
  • the ceramic component contained in the underlying electrode layer 32 may be the same type of ceramic material as that of the ceramic layer 14, or may be a different type of ceramic material.
  • the ceramic component includes, for example, at least one selected from BaTiO 3 , CaTiO 3 , (Ba, Ca)TiO 3 , SrTiO 3 , CaZrO 3 and the like.
  • the thickness in the length direction z connecting the first end face 12e and the second end face 12f at the center in the height direction x of the first base electrode layer 32a located on the first end face 12e is, for example, 2 ⁇ m or more and 220 ⁇ m. It is preferable that the degree is as follows.
  • the thickness in the length direction z connecting the first end face 12e and the second end face 12f at the center in the height direction x of the second base electrode layer 32b located on the second end face 12f is, for example, 2 ⁇ m or more and 220 ⁇ m. It is preferable that the degree is as follows.
  • the first base electrode layer 32a located on a part of the first main surface 12a and the second main surface 12b is located at a central portion in the length direction z connecting the first end surface 12e and the second end surface 12f of the first base electrode layer 32a. It is preferable that the thickness in the height direction x connecting the main surface 12a and the second main surface 12b is, for example, about 3 ⁇ m or more and 40 ⁇ m or less.
  • the first base electrode layer 32b located on a part of the first main surface 12a and the second main surface 12b is located at a central portion in the length direction z connecting the first end surface 12e and the second end surface 12f of the second base electrode layer 32b. It is preferable that the thickness in the height direction x connecting the main surface 12a and the second main surface 12b is, for example, about 3 ⁇ m or more and 40 ⁇ m or less.
  • a thin film layer is a layer of 1 ⁇ m or less formed by a thin film forming method such as a sputtering method or a vapor deposition method, on which metal particles are deposited.
  • the conductive resin layer 34 is arranged on the underlying electrode layer 32 and contains a resin component and a metal component.
  • the conductive resin layer 34 is arranged so as to completely cover the base electrode layer 32 .
  • the conductive resin layer 34 has a first conductive resin layer 34a and a second conductive resin layer 34b.
  • the first conductive resin layer 34a is arranged on the first base electrode layer 32a.
  • the first conductive resin layer 34a is arranged so as to completely cover the first base electrode layer 32a.
  • the end of the first conductive resin layer 34 a is in contact with the laminate 12 .
  • the second conductive resin layer 34b is arranged on the second base electrode layer 32b.
  • the second conductive resin layer 34b is arranged so as to completely cover the second base electrode layer 32b.
  • the end of the second conductive resin layer 34b is in contact with the laminate 12. As shown in FIG.
  • the conductive resin layer 34 contains a thermosetting resin as a resin component, it is more flexible than the base electrode layer 32 made of, for example, a plated film or a baked product of a metal component and a glass component. Therefore, even if the mounting substrate is subjected to bending stress and the multilayer ceramic capacitor 10 is subjected to physical impact or impact due to thermal cycles, the conductive resin layer 34 functions as a buffer layer, 10 can be prevented from cracking.
  • thermosetting resin for the conductive resin layer 34 for example, various known thermosetting resins such as epoxy resin, phenoxy resin, phenol resin, urethane resin, silicone resin, and polyimide resin can be used.
  • epoxy resin is one of the most suitable resins because of its excellent heat resistance, moisture resistance, adhesion, and the like.
  • the conductive resin layer 34 contains a curing agent together with the thermosetting resin.
  • a curing agent when using an epoxy resin as a base resin, as a curing agent for the epoxy resin, various known compounds such as phenol, amine, acid anhydride, imidazole, active ester, and amide imide are used. can do.
  • the metal component contained in the conductive resin layer 34 is a metal filler.
  • Ag, Cu, Ni, Sn, Bi or an alloy containing them can be used as the metal filler.
  • metal powder whose surface is coated with Ag can be used. When using a metal powder whose surface is coated with Ag, it is preferable to use Cu, Ni, Sn, Bi or an alloy powder thereof as the metal powder.
  • Ag has the lowest specific resistance among metals and is therefore suitable as an electrode material, and since Ag is a noble metal, it does not oxidize and has high weather resistance. Also, it is possible to make the metal of the base material inexpensive while maintaining the above characteristics of Ag.
  • the metal filler contained in the conductive resin layer 34 it is also possible to use Cu or Ni subjected to anti-oxidation treatment.
  • metal powder obtained by coating the surface of metal powder with Sn, Ni, or Cu.
  • metal powder coated with Sn, Ni, or Cu it is preferable to use Ag, Cu, Ni, Sn, Bi, or an alloy powder thereof as the metal powder.
  • the shape of the metal filler contained in the conductive resin layer 34 is not particularly limited.
  • the metal filler may be spherical, flattened, or the like. Also, spherical metal powder and flat metal powder may be mixed.
  • the average particle size of the metal filler contained in the conductive resin layer 34 is not particularly limited.
  • the average particle size of the metal filler may be, for example, about 0.3 ⁇ m or more and 10.0 ⁇ m or less.
  • the method of measuring the average particle diameter of the metal filler contained in the conductive resin layer 34 can be calculated by using the laser diffraction particle size measurement method based on ISO13320 regardless of the shape of the filler.
  • the metal filler contained in the conductive resin layer 34 is mainly responsible for the electrical conductivity of the conductive resin layer 34. Specifically, an electric path is formed inside the conductive resin layer 34 by the metal fillers coming into contact with each other.
  • the first conductive resin layer 34a is formed from the first end-side conductive resin layer portion 34a- 1 located on the first end surface 12e and the end portion of the first end-side conductive resin layer portion 34a -1 .
  • a first adjacency extending over a portion of the first major surface 12a, a portion of the second major surface 12b, a portion of the first side surface 12c and a portion of the second side surface 12d and a conductive resin layer portion 34a2 .
  • the second conductive resin layer 34b is formed from the second end face side conductive resin layer portion 34b1 located on the second end face 12f and the end portion of the first end face side conductive resin layer portion 34a1 .
  • a second adjacency extending over a portion of the first major surface 12a, a portion of the second major surface 12b, a portion of the first side surface 12c and a portion of the second side surface 12d and a conductive resin layer portion 34b2 .
  • the amount of resin contained in the first adjacent conductive resin layer portion 34a2 is greater than the amount of resin contained in the first end face side conductive resin layer portion 34a1 , and the amount of resin contained in the second adjacent conductive resin layer portion 34b2 The amount of resin contained in is greater than the amount of resin contained in the second end face side conductive resin layer portion 34b1 .
  • the first adjacent conductive resin layer portion 34a2 when the total of the resin component and the metal component in the first end face side conductive resin layer portion 34a1 and the first adjacent conductive resin layer portion 34a2 is 100%, the first adjacent conductive resin layer portion 34a2
  • the content ratio of the resin component contained in the resin layer portion 34a2 is higher than the content ratio of the resin component contained in the first end-side conductive resin layer portion 34a1 , and the content ratio of the resin component contained in the second end-side conductive resin layer portion 34b
  • the content ratio of the resin component contained in the second adjacent conductive resin layer portion 34b2 is , the content ratio of the resin component contained in the second end face side conductive resin layer portion 34b1 .
  • the conductivity of the first end-face-side conductive resin layer portion 34a1 and the second end-face-side conductive resin layer portion 34b1 having a large amount of metal filler, which is a metal component contained in the conductive resin layer 34, is improved.
  • the ESR of the multilayer ceramic capacitor can be lowered.
  • the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 which contain a large amount of resin, can be given sufficient elasticity, they will not be affected by impact when dropped.
  • the stress transmitted to the mounting board (distortion of the mounting board) is transferred to the first adjacent conductive resin layer portion 34a 2 . between the first base electrode layer 32a and the first adjacent conductive resin layer portion 34a2 , and between the first plating layer 36a and the first adjacent conductive resin layer portion 34a2 .
  • the second adjacent conductive resin layer portion 34b2 between the second base electrode layer 32b and the second adjacent conductive resin layer portion 34b2 , and between the second plating layer 36b and the second adjacent conductive resin layer portion 34b2 .
  • the inside of the second adjacent conductive resin layer portion 34b2 can be cohesively broken. As a result, it is possible to release the stress and prevent the laminate 12 from cracking, thereby improving the mechanical strength of the multilayer ceramic capacitor 10 . As described above, in the present invention, it is possible to effectively exhibit both characteristics in the trade-off relationship between the improvement of the mechanical strength of the multilayer ceramic capacitor 10 and the ESR characteristics.
  • the content ratio of the resin component in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is 10% when the total of the resin component and the metal component is 100%. % or more and 60% or less.
  • the content ratio of the resin component in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is 10% when the total of the resin component and the metal component is 100%. %, the ratio of the metal component in the first end-side conductive resin layer 34 a 1 and the second end-side conductive resin layer 34 b 1 increases, and the metal component constitutes The amount of resin that should exist around the metal filler is reduced.
  • the conductive resin layer 34 generally contacts the metal fillers by pulling the metal fillers due to shrinkage of the resin when the conductive resin layer 34 is cured.
  • the content ratio of the resin component in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is , 60% or more, the content ratio of the resin component in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 increases, so that the metal component is The contact between the constituent metal fillers is hindered, and the distance between the metal fillers increases, resulting in deterioration of ESR.
  • the content ratio of the resin component in the first end-face-side conductive resin layer portion 34a1 and the second end-face-side conductive resin layer portion 34b1 can be measured by cross section as described below. That is, first, polishing is started from the first side surface 12c or the second side surface 12d of the multilayer ceramic capacitor 10, and the polishing is performed until the position becomes 1/2W in the width direction y connecting the first side surface 12c and the second side surface 12d.
  • the height direction x of the first end face side conductive resin layer portion 34a1 on the first end face 12e side or the second end face side conductive resin layer portion 34b1 on the second end face 12f side Check the center of the Alternatively, polishing is started from the first main surface 12a or the second main surface 12b of the multilayer ceramic capacitor 10, and the height direction x connecting the first main surface 12a and the second main surface 12b is 1/2T and Width of the first end face side conductive resin layer portion 34a1 on the first end face 12e side or the second end face side conductive resin layer portion 34b1 on the second end face 12f side on the LW surface polished to the position where Check the center in direction y.
  • thermosetting resin and other parts metal components (metal filler), voids) can be distinguished. and shoot.
  • the photographed image is binarized into the thermosetting resin and the rest by image analysis software, and the resin in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is The content ratio of the components can be obtained.
  • the content ratio of the metal component in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is 40% when the total of the resin component and the metal component is 100%. % or more and 90% or less.
  • the conductivity can be improved in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 , which have a large amount of metal filler constituting the metal component, and as a result, , the ESR of the multilayer ceramic capacitor 10 decreases.
  • the content ratio of the metal component in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is 40% when the total of the resin component and the metal component is 100%. %, the content ratio of the resin component in the first end-face-side conductive resin layer portion 34a1 and the second end-face-side conductive resin layer portion 34b1 is increased, so that the metal component is formed. Since contact between the metal fillers is prevented and the distance between the metal fillers increases, the ESR may deteriorate.
  • the content ratio of the metal component in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is 90% when the total of the resin component and the metal component is 100%. %, the ratio of the metal component in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 increases, and the metal component constituting the metal component increases. The amount of resin that should be present around the filler is reduced.
  • the conductive resin layer 34 generally contacts the metal fillers by pulling the metal fillers due to shrinkage of the resin when the conductive resin layer 34 is cured.
  • the content ratio of the metal component in the first end-face-side conductive resin layer portion 34a1 and the second end-face-side conductive resin layer portion 34b1 can be measured by cross section as described below. That is, first, polishing is started from the first side surface 12c or the second side surface 12d of the multilayer ceramic capacitor 10, and the polishing is performed until the position becomes 1/2W in the width direction y connecting the first side surface 12c and the second side surface 12d.
  • the height direction x of the first end face side conductive resin layer portion 34a1 on the first end face 12e side or the second end face side conductive resin layer portion 34b1 on the second end face 12f side Check the center of the Alternatively, polishing is started from the first main surface 12a or the second main surface 12b of the multilayer ceramic capacitor 10, and the height direction x connecting the first main surface 12a and the second main surface 12b is 1/2T and Width of the first end face side conductive resin layer portion 34a1 on the first end face 12e side or the second end face side conductive resin layer portion 34b1 on the second end face 12f side on the LW surface polished to the position where Check the center in direction y.
  • thermosetting resin and other parts metal components (metal filler), voids) can be distinguished. and shoot.
  • the photographed image is binarized into the thermosetting resin and the rest by image analysis software, and the metal in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is analyzed. The content ratio of the components can be obtained.
  • the content ratio of the resin component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is 40% or more when the total of the resin component and the metal component is 100%. It is preferably 60% or less. As a result, sufficient elasticity can be imparted to the portions where the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 , to which stress is likely to be applied, are arranged. Stress transmitted to the mounting board (mounting board distortion) when the stress due to the impact at the time of dropping or the bending stress generated by the thermal expansion of the mounting board due to the thermal cycle occurs is transferred to the first adjacent conductive resin layer.
  • the second base electrode layer 32b and the second base electrode layer 32b can be separated from each other. It can be peeled off between the adjacent conductive resin layer portion 34b2 and between the second plating layer 36b and the second adjacent conductive resin layer portion 34b2 . As a result, it is possible to release the stress and prevent the laminate 12 from cracking, thereby improving the mechanical strength of the multilayer ceramic capacitor 10 .
  • the content ratio of the resin component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is more than 40% when the total of the resin component and the metal component is 100%.
  • the content ratio of the metal component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 increases.
  • the elastic modulus and hardness of the metal filler constituting the metal component and the resin are compared, the values of the metal filler are higher. Therefore, by increasing the ratio of the metal filler contained in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 , the entire portion of the conductive resin layer 34 has high hardness.
  • the stress transmitted to the mounting board is Starting from the tip of the portion where the first adjacent conductive resin layer portion 34a2 is arranged, the first base electrode layer 32a and the first adjacent conductive resin layer portion 34a2 and the first plating layer are formed. 36a and the first adjacent conductive resin layer portion 34a2 cannot be separated . between the underlying electrode layer 32b and the second adjacent conductive resin layer portion 34b2 , and between the second plating layer 36b and the second adjacent conductive resin layer portion 34b2 . Therefore, cracks may occur in the laminated body 12 .
  • the content ratio of the resin component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is more than 90% when the total of the resin component and the metal component is 100%. If the amount of resin is too large, the amount of resin in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 will increase.
  • the metal filler exposed on the surface of the second adjacent conductive resin layer portion 34b2 is reduced. When the metal filler exposed on the surface of the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is reduced, the first adjacent conductive resin layer portion 34a 2 and the second adjacent conductive resin layer portion 34b .
  • the content ratio of the resin component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 can be measured by cross section as described below. That is, first, polishing is started from the first side surface 12c or the second side surface 12d of the multilayer ceramic capacitor 10, and the polishing is performed until the position becomes 1/2W in the width direction y connecting the first side surface 12c and the second side surface 12d. On the polished LT surface, the first adjacent conductive resin layer portion 34a2 on the first main surface 12a side or the second main surface 12b side or the first main surface 12a side or the second main surface 12b side The central portion of the second adjacent conductive resin layer portion 34b2 in the length direction z is confirmed.
  • polishing is started from the first main surface 12a or the second main surface 12b of the multilayer ceramic capacitor 10, and the height direction x connecting the first main surface 12a and the second main surface 12b is 1/2T and The first adjacent conductive resin layer portion 34a2 on the first side surface 12c side or the second side surface 12d side or the first adjacent conductive resin layer portion 34a2 on the first side surface 12c side or the second side surface 12d side. 2, the central portion of the adjacent conductive resin layer portion 34b 2 in the length direction z is confirmed.
  • thermosetting resin and other parts metal components (metal filler), voids) can be distinguished. and shoot.
  • the photographed image is binarized into the thermosetting resin and the rest by image analysis software, and the resin component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is determined.
  • the content ratio can be calculated.
  • the content ratio of the metal component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is 10% or more when the total of the resin component and the metal component is 100%. It is preferably 60% or less. As a result, it is possible to ensure conductivity, and stress transmitted to the mounting board (mounting The distortion of the substrate) is measured between the first base electrode layer 32a and the first adjacent conductive resin layer portion 34a2 , starting from the tip of the portion where the first adjacent conductive resin layer portion 34a2 is arranged, and , can be peeled off between the first plating layer 36a and the first adjacent conductive resin layer portion 34a2 ; starting from the second base electrode layer 32b and the second adjacent conductive resin layer portion 34b2 , and between the second plating layer 36b and the second adjacent conductive resin layer portion 34b2 .
  • the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 are formed, so that the stress acting on the laminate 12 can be
  • the content ratio of the metal component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is more than 10% when the total of the resin component and the metal component is 100%. , the amount of resin in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 increases.
  • the metal filler exposed on the surface of the second adjacent conductive resin layer portion 34b2 is reduced. When the metal filler exposed on the surface of the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is reduced, the first adjacent conductive resin layer portion 34a 2 and the second adjacent conductive resin layer portion 34b .
  • the content ratio of the metal component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is more than 60% when the total of the resin component and the metal component is 100%.
  • the content ratio of the metal component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 increases.
  • the elastic modulus and hardness of the metal filler constituting the metal component and the resin are compared, the values of the metal filler are higher. Therefore, by increasing the ratio of the metal filler contained in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 , the entire portion of the conductive resin layer 34 has high hardness.
  • the stress transmitted to the mounting board is Starting from the tip of the portion where the first adjacent conductive resin layer portion 34a2 is arranged, the first base electrode layer 32a and the first adjacent conductive resin layer portion 34a2 and the first plating layer are formed. 36a and the first adjacent conductive resin layer portion 34a2 cannot be separated . between the underlying electrode layer 32b and the second adjacent conductive resin layer portion 34b2 , and between the second plating layer 36b and the second adjacent conductive resin layer portion 34b2 . Therefore, cracks may occur in the laminated body 12 .
  • the content ratio of the metal component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 can be measured by cross section as described below. That is, first, polishing is started from the first side surface 12c or the second side surface 12d of the multilayer ceramic capacitor 10, and the polishing is performed until the position becomes 1/2W in the width direction y connecting the first side surface 12c and the second side surface 12d. On the polished LT surface, the first adjacent conductive resin layer portion 34a2 on the first main surface 12a side or the second main surface 12b side or the first main surface 12a side or the second main surface 12b side The central portion of the second adjacent conductive resin layer portion 34b2 in the height direction x is checked.
  • polishing is started from the first main surface 12a or the second main surface 12b of the multilayer ceramic capacitor 10, and the height direction x connecting the first main surface 12a and the second main surface 12b is 1/2T and The first adjacent conductive resin layer portion 34a2 on the first side surface 12c side or the second side surface 12d side or the first adjacent conductive resin layer portion 34a2 on the first side surface 12c side or the second side surface 12d side. 2, the central portion of the adjacent conductive resin layer portion 34b 2 in the length direction z is confirmed.
  • thermosetting resin and other parts metal components (metal filler), voids) can be distinguished. and shoot.
  • the photographed image is binarized into the thermosetting resin and the rest by image analysis software, and the metal component in the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is determined.
  • the content ratio can be calculated.
  • the thickness of the conductive resin layer 34 located at the center in the height direction x of the laminate 12 located on the first end surface 12e and the second end surface 12f is, for example, about 20.0 ⁇ m or more and 150.0 ⁇ m or less. is preferred.
  • the conductive resin layer is provided also on the first main surface 12a and the second main surface 12b, the first side surface 12c and the second side surface 12d, the first main surface 12a and the second main surface 12a
  • the thickness of the conductive resin layer 34 at the central portion in the length direction z of the conductive resin layer located on the main surface 12b, the first side surface 12c and the second side surface 12d is, for example, 5.0 ⁇ m or more and 40.0 ⁇ m or less. It is preferable that it is a degree.
  • the conductivity (resistance) of the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is 5 ⁇ cm or more and 25 ⁇ cm or less, and the first adjacent conductivity is
  • the conductivity (resistance) of the resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is preferably 20 ⁇ cm or more and 150 ⁇ cm or less. Thereby, the ESR of the multilayer ceramic capacitor 10 can be lowered.
  • the indentation elastic modulus of the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is 15 GPa or more and 21 GPa or less, and the first adjacent conductive resin layer portion 34a2 and The indentation elastic modulus of the second adjacent conductive resin layer portion 34b2 is preferably 12 GPa or more and 15 GPa or less.
  • the storage modulus of the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is 6 GPa or more and 8 GPa or less .
  • the storage elastic modulus of the second end surface side conductive resin layer portion 34b1 is preferably 8 GPa or more and 10 GPa or less.
  • the loss elastic modulus of the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is 0.2 GPa or more and 0.4 GPa or less.
  • the loss elastic modulus of 34a1 and the second end face side conductive resin layer portion 34b1 is preferably 0.4 GPa or more and 0.5 GPa or less.
  • the hardness of the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 is 0.1 GPa or more and 0.3 GPa or less . and the hardness of the second end face side conductive resin layer portion 34b1 is preferably 0.2 GPa or more and 0.7 GPa or less.
  • the first plating layer 36a and the second plating layer 36b contain, for example, at least one selected from Cu, Ni, Sn, Ag, Pd, Ag—Pd alloy, Au, and the like.
  • the first plating layer 36a is arranged so as to completely cover the first conductive resin layer 34a.
  • the second plating layer 36b is arranged so as to completely cover the second conductive resin layer 34b.
  • the first plating layer 36a and the second plating layer 36b may be formed of multiple layers.
  • the plating layer 36 includes a lower plating layer (Ni plating layer) formed on the conductive resin layer 34 by Ni plating and an upper plating layer (Sn plating layer) by Sn plating formed on the lower plating layer.
  • Ni plating layer Ni plating layer
  • Sn plating layer an upper plating layer
  • the first plating layer 36a has a first lower plating layer and a first upper plating layer located on the surface of the first lower plating layer.
  • the second plating layer 36b has a second lower plating layer and a second upper plating layer located on the surface of the second lower plating layer.
  • the Ni-plated lower layer plating layer is used to prevent the base electrode layer 32 and the conductive resin layer 34 from being eroded by solder when mounting the multilayer ceramic capacitor 10.
  • the Sn-plated upper layer plating layer is It is used to improve the wettability of solder when mounting the multilayer ceramic capacitor 10 so that the mounting can be facilitated.
  • the thickness of each plating layer is preferably 1.0 ⁇ m or more and 15.0 ⁇ m or less.
  • the dimension in the length direction z of the multilayer ceramic capacitor 10 including the multilayer body 12, the first external electrode 30a and the second external electrode 30b is defined as the L dimension, and the multilayer body 12, the first external electrode 30a and the second external electrode
  • the dimension in the height direction x of the multilayer ceramic capacitor 10 including the electrode 30b is defined as the dimension T, and the dimension in the width direction y of the multilayer ceramic capacitor 10 including the laminate 12, the first external electrode 30a and the second external electrode 30b is defined as T. W dimension.
  • the dimensions of the multilayer ceramic capacitor 10 are such that the L dimension in the length direction z is 0.2 mm or more and 10.0 mm or less, the W dimension in the width direction y is 0.1 mm or more and 10.0 mm or less, and the T dimension in the height direction x is 0. .1 mm or more and 10.0 mm or less. Also, the dimensions of the laminated ceramic capacitor 10 can be measured with a microscope.
  • the multilayer ceramic capacitor 10 shown in FIG. 1 has a , the content ratio of the resin component contained in the first adjacent conductive resin layer portion 34a2 is higher than the content ratio of the resin component contained in the first end face side conductive resin layer portion 34a1 , and the second end face
  • the second adjacent conductive resin layer portion 34b2 contains is higher than the content ratio of the resin component contained in the second end face side conductive resin layer portion 34b1 .
  • the content ratio of the resin component in the first end-side conductive resin layer portion 34a1 and the second end-side conductive resin layer portion 34b1 is , from 10% to 60%.
  • the content ratio of the resin component in the first end-face-side conductive resin layer portion 34a1 and the second end-face-side conductive resin layer portion 34b1 having a large amount of metal filler, which is the metal component contained in the conductive resin layer 34 is
  • the total of the resin component and the metal component is 100%, it is 10% or more and 60% or less, so it is possible to improve the conductivity, and as a result, the ESR of the multilayer ceramic capacitor can be reduced. can be done.
  • the first adjacent conductive resin layer portion 34a2 and the second adjacent conductive resin layer portion 34b2 which contain a large amount of resin, can be given sufficient elasticity, they will not be affected by impact when dropped.
  • the stress transmitted to the mounting board (distortion of the mounting board) is transferred to the first adjacent conductive resin layer portion 34a 2 . between the first base electrode layer 32a and the first adjacent conductive resin layer portion 34a2 , and between the first plating layer 36a and the first adjacent conductive resin layer portion 34a2 .
  • the second adjacent conductive resin layer portion 34b2 between the second base electrode layer 32b and the second adjacent conductive resin layer portion 34b2 , and between the second plating layer 36b and the second adjacent conductive resin layer portion 34b2 .
  • the inside of the second adjacent conductive resin layer portion 34b2 can be cohesively broken. As a result, it is possible to release the stress and prevent the laminate 12 from cracking, thereby improving the mechanical strength of the multilayer ceramic capacitor 10 . As described above, in the present invention, it is possible to effectively exhibit both characteristics in the trade-off relationship between the improvement of the mechanical strength of the multilayer ceramic capacitor 10 and the ESR characteristics.
  • a dielectric sheet for the ceramic layers and a conductive paste for the internal electrode layers are prepared.
  • the conductive paste for dielectric sheets and internal electrode layers contains a binder and a solvent. Binders and solvents may be known in the art.
  • a conductive paste for internal electrode layers is printed in a predetermined pattern on the dielectric sheet by, for example, screen printing or gravure printing.
  • a dielectric sheet on which the pattern of the first internal electrode layer is formed and a dielectric sheet on which the pattern of the second internal electrode layer is formed are prepared.
  • an outer layer dielectric sheet on which the pattern of the internal electrode layer is not printed is also prepared.
  • a predetermined number of outer layer dielectric sheets on which the patterns of the internal electrode layers are not printed are laminated to form a portion to be the second outer layer portion on the second main surface side.
  • the dielectric sheet printed with the pattern of the first internal electrode layer and the dielectric sheet printed with the pattern of the second internal electrode layer on the portion to be the second outer layer portion are combined into the structure of the present invention.
  • a portion to be an effective layer portion is formed by sequentially laminating layers so as to form a layer.
  • a predetermined number of outer layer dielectric sheets on which the pattern of the internal electrode layer is not printed are laminated on the portion to be the effective layer portion, thereby forming the first outer layer portion on the first main surface side. part is formed.
  • a laminated block is produced by pressing the laminated sheet in the lamination direction by a means such as hydrostatic pressing.
  • a laminated chip is cut out by cutting the laminated block into a predetermined size.
  • the corners and ridges of the laminated chip may be rounded by barrel polishing or the like.
  • the laminate 12 is produced by firing the laminated chip.
  • the firing temperature is preferably 900° C. or higher and 1400° C. or lower, although it depends on the materials of the dielectric ceramic layers and the internal electrode layers.
  • a conductive paste that will form a base electrode layer is applied to the first end face and the second end face of the laminate to form a base electrode layer.
  • a conductive paste containing a glass component and a metal is applied by, for example, dipping, and then baked to form the base electrode layer.
  • the temperature of the baking treatment at this time is preferably 700° C. or higher and 950° C. or lower.
  • the baked layer may contain a ceramic component.
  • a ceramic component may be contained instead of the glass component, or both of them may be contained.
  • the ceramic component is preferably, for example, the same kind of ceramic material as the laminate.
  • the baking layer contains a ceramic component
  • the conductive paste is applied to the laminated chip before firing, and the conductive paste applied to the laminated chip before firing and the laminated chip before firing are applied at the same time.
  • the baking temperature is preferably 900° C. or higher and 1400° C. or lower.
  • a conductive resin layer is formed on the base electrode layer. At this time, the end face side conductive resin layer portion and the adjacent conductive resin layer portion are separately formed.
  • Formation of the end surface side conductive resin layer portion is performed by the following method. First, the laminated body is arranged on the back plate with the first end surface side or the second end surface side facing upward, and the first end surface side conductive resin layer portion for the end surface side conductive resin layer portion is formed only in the portion where the end surface side conductive resin layer portion is desired to be formed. of conductive resin paste.
  • the amount of the metal filler contained in the first conductive resin paste is preferably 35 vol % or more and 95 vol % or less with respect to the resin component. Moreover, the amount of the resin component contained in the first conductive resin paste is preferably 5 vol % or more and 65 vol % or less with respect to the metal filler. After that, heat treatment is performed at a temperature of 200° C.
  • the atmosphere during the heat treatment at this time is preferably an N2 atmosphere.
  • the adjacent conductive resin layer portion is formed by the following method. First, the first main surface side, the second main surface side, the first side surface side, and the second side surface side of the laminate are arranged on an alignment plate with the first main surface side, the second main surface side, the first side surface side, and the second side surface side facing upward, and the second laminate for the adjacent conductive resin layer portion is arranged. Masking is performed so that the second conductive resin paste for the adjacent conductive resin layer portion can be applied only to the portion where the conductive resin paste is to be formed, and a screen printing method is used to apply the second conductive resin paste for the adjacent conductive resin layer portion. A second conductive resin paste is applied.
  • the amount of the metal filler contained in the second conductive resin paste is preferably 5 vol % or more and 65 vol % or less with respect to the resin component. Moreover, the amount of the resin component contained in the second conductive resin paste is preferably 50 vol % or more and 95 vol % or less with respect to the metal filler.
  • heat treatment is performed at a temperature of 200° C. or more and 550° C. or less to cure the second conductive resin paste.
  • the atmosphere during the heat treatment at this time is preferably an N2 atmosphere.
  • the temperature of the heat treatment of the end surface side conductive resin layer portion and the adjacent conductive resin layer portion, and the first conductive resin layer portion used when forming the end surface side conductive resin layer portion and the adjacent conductive resin layer portion is controlled. can do.
  • a plating layer is formed on the surface of the base electrode layer. More specifically, a Ni-plated layer and a Sn-plated layer are formed on the Ni-plated layer on the base electrode layer. Electroless plating is employed for plating. Since the conductive resin layer has a small content of metal components, it is difficult to conduct. Therefore, a plated layer is formed by electrolytic plating. As the plating method, barrel plating is preferably used.
  • the multilayer ceramic capacitor 10 according to the present embodiment is manufactured as described above.
  • the content ratio of the metal filler that constitutes the metal component in the end face side conductive resin layer is measured as follows. , was measured in cross section. That is, first, polishing was started from the first side surface or the second side surface of the multilayer ceramic capacitor as a sample, and the polishing was performed to a position of 1/2W in the width direction y connecting the first side surface and the second side surface. On the LT surface, the central portion in the height direction x of the end face side conductive resin layer portion on the first end face side or the second end face side was confirmed.
  • the central portion in the width direction y of the end-face-side conductive resin layer portion on the first end-face side or the second end-face side was confirmed on the LW surface that had been polished up to the 1st end-face side.
  • SEM scanning electron microscope
  • the photographed image was binarized into the thermosetting resin and the rest by image analysis software, and the content ratio of the metal component in the end surface side conductive resin layer portion was obtained.
  • the number n of observations was 100, and the average value thereof was taken as the content ratio of the metal component in the end face side conductive resin layer portion.
  • the central portion in the length direction z of the adjacent conductive resin layer portion on the first side surface side or the second side surface side was confirmed.
  • SEM scanning electron microscope
  • the photographed image was binarized for the thermosetting resin and the rest using image analysis software, and the content ratio of the resin component in the adjacent conductive resin layer portion was obtained.
  • the number n of observations was set to 100, and the average value thereof was taken as the content ratio of the resin component in the end face side conductive resin layer portion.
  • the central portion in the length direction z of the adjacent conductive resin layer portion on the first side surface side or the second side surface side was confirmed.
  • SEM scanning electron microscope
  • the photographed image was binarized for the thermosetting resin and the rest using image analysis software, and the content ratio of the metal component in the adjacent conductive resin layer portion was determined.
  • the number n of observations was set to 100, and the average value thereof was taken as the content ratio of the metal component in the adjacent conductive resin layer portion.
  • the central portion in the length direction z of the adjacent conductive resin layer portion on the first side surface side or the second side surface side was confirmed.
  • SEM scanning electron microscope
  • the photographed image was binarized for the thermosetting resin and the rest using image analysis software, and the content ratio of the resin component in the adjacent conductive resin layer portion was obtained.
  • the number n of observations was set to 100, and the average value thereof was taken as the content ratio of the resin component in the adjacent conductive resin layer portion.
  • the cross section was polished so that the LT surface of the laminated ceramic capacitor was exposed to a position corresponding to 1/2W in the width direction y connecting the first side surface and the second side surface of the laminated ceramic capacitor.
  • 100 samples were prepared for each of Examples and Comparative Examples 1 to 3. In addition, in the case of 20 or less, it was determined to be effective.
  • ESR measurement method was measured by the following method. That is, first, before measurement, the multilayer ceramic capacitor as a sample was heat-treated in an air atmosphere at 150° C. for 1 hour, then mounted on a measurement substrate, and 24 ⁇ 2 hours after the heat treatment was completed, the measurement frequency was set to 1 MHz and measured using a network analyzer. 100 samples were prepared for each of Examples and Comparative Examples 1 to 3, and 100 samples were measured. was taken as the measured value. A resistance of 100 m ⁇ or less was judged to be acceptable.
  • Comparative Example 2 since the content ratio of the metal component in the end face side conductive resin layer portion was 40%, the ESR measurement result was 90 m ⁇ , but the content of the resin component in the adjacent conductive resin layer portion was Since the ratio is relatively low at 30%, the presence or absence of cracks was checked, and as a result, 50 cracks were generated out of 100 pieces. Furthermore, in Comparative Example 3, since the conductive resin layer itself was not formed, the ESR measurement result was 20 m ⁇ .
  • the content ratio of the resin component contained in the adjacent conductive resin layer portion was 60%, and the content ratio of the resin component contained in the end face side conductive resin layer portion was 30%. Since the content ratio of the resin component contained in the adjacent conductive resin layer portion is higher than the content ratio of the resin component contained in the end face side conductive resin layer portion, the ESR measurement result is good at 25 m ⁇ . As a result of confirming the presence or absence of cracks, a good result of 0 out of 100 was obtained.
  • the laminated ceramic capacitor according to the present invention can have the desired ESR characteristics while having mechanical strength relative to the laminated ceramic capacitor.
  • the samples with sample numbers 23 to 26 have a resin component content ratio of 40% in the end surface side conductive resin layer portion, and the resin component content ratio in the adjacent conductive resin layer portion is changed.
  • sample numbers 27 to 31 the content ratio of the resin component in the end face side conductive resin layer portion is 60%
  • the content ratio of the resin component in the adjacent conductive resin layer portion is changed
  • sample number 32 Samples No. 35 to Sample No. 35 had a resin component content ratio of 65% in the end face side conductive resin layer portion, and samples were prepared in which the resin component content ratio of the adjacent conductive resin layer portion was varied.
  • Each of samples Nos. 1 to 7 had an ESR value of 110 m ⁇ because the content ratio of the resin component in the end face side conductive resin layer portion was 5%, which was less than 10%. This indicates that there is a necessary content ratio of the resin component in the end face side conductive resin layer portion, in addition to the content ratio of the resin component in the adjacent conductive resin layer portion.
  • the content ratio of the resin component in the end face side conductive resin layer portion is equal to or higher than the content ratio of the resin component in the adjacent conductive resin layer portion, and the end face side conductive resin layer Since the content ratio of the resin component in the portion and the content ratio of the resin component in the adjacent conductive resin layer portion are both relatively low, in the sample of sample number 1, 100 out of 100 samples had cracks inside the laminate. In 90 out of 100 samples of Sample No. 2, cracks occurred inside the laminate. Although the ESR was 110 m ⁇ in each sample of sample numbers 3 to 7, the content ratio of the resin component in the adjacent conductive resin layer was 10% or more. Also, the number of samples in which cracks occurred inside the laminate was 20 or less out of 100, which was a relatively small number of samples.
  • Each sample of sample numbers 8 to 15 has a resin component content ratio of 10% in the end face side conductive resin layer portion. is equal to or higher than the content ratio of the resin component in the adjacent conductive resin layer portion, in the samples of sample number 8, 90 out of 100 samples had cracks inside the laminate, In 80 out of 100 samples of sample No. 9, cracks occurred inside the laminate.
  • the samples of sample numbers 10 to 15 had an ESR of 20 m ⁇ and 100 m ⁇ or less, and among the samples of any sample number, cracks occurred inside the laminate in 15 or less samples out of 100. It was a relatively small number of samples. In particular, in Sample Nos. 11 to 14, since the content ratio of the resin component in the adjacent conductive resin layer portion was 40% or more and 90% or less, the number of samples with cracks was 0 out of 100 samples.
  • the content ratio of the resin component in the end face side conductive resin layer portion is 30%. is equal to or higher than the content ratio of the resin component in the adjacent conductive resin layer portion. Therefore, in the sample of sample number 16, 80 out of 100 samples had cracks inside the laminate. In 50 out of 100 samples of sample No. 17, cracks occurred inside the laminate.
  • the samples of sample numbers 18 to 22 had an ESR of 25 m ⁇ and 100 m ⁇ or less, and among the samples of any sample number, cracks occurred inside the laminate in 10 or less samples out of 100 samples. It was a relatively small number of samples. In particular, in Sample Nos. 18 to 21, since the content ratio of the resin component in the adjacent conductive resin layer portion was 40% or more and 90% or less, the number of samples with cracks was 0 out of 100 samples.
  • the content ratio of the resin component in the end face side conductive resin layer portion is 40%. Since the content ratio was equal to or higher than the content ratio of the resin component in the adjacent conductive resin layer portion, cracks occurred inside the laminate in 50 out of 100 samples of sample No. 23.
  • the samples of sample numbers 24 to 26 had an ESR of 45 m ⁇ and 100 m ⁇ or less, and among the samples of any sample number, cracks occurred inside the laminate in 15 or less samples out of 100. It was a relatively small number of samples. In particular, in Sample Nos. 24 and 25, since the content ratio of the resin component in the adjacent conductive resin layer portion was 40% or more and 90% or less, the number of cracks was 0 out of 100 samples.
  • each sample of sample numbers 27 to 31 the content ratio of the resin component in the end face side conductive resin layer portion is 60%, but in the samples of sample numbers 27 and 28, the end face side conductive resin layer portion is is equal to or higher than the content ratio of the resin component in the adjacent conductive resin layer portion. Therefore, in the sample of sample number 27, 50 out of 100 samples had cracks inside the laminate, and the sample In sample No. 28, cracks occurred inside the laminate in 20 out of 100 samples.
  • the samples of sample numbers 29 to 31 had an ESR of 90 m ⁇ and 100 m ⁇ or less, and among the samples of any sample number, 15 samples or less out of 100 had cracks inside the laminate. It was a relatively small number of samples. In particular, in sample Nos. 29 and 30, since the content ratio of the resin component in the adjacent conductive resin layer portion was 40% or more and 90% or less, the number of samples with cracks was 0 out of 100 samples.
  • each sample of sample numbers 32 to 35 the content ratio of the resin component in the end face side conductive resin layer portion was 65%, so the ESR value was 120 m ⁇ . In each sample of sample numbers 32 to 35, since the content ratio of the resin component in the end face side conductive resin layer portion is 65%, cracks occur inside the laminate in any of the samples of sample numbers. The number of samples produced was relatively small, less than 15 out of 100 samples.
  • the content ratio of the resin component in the end surface side conductive resin layer portion is set to 10% or more and 60% or less.
  • the total of the resin component and the metal component in the adjacent conductive resin layer portion is 100%
  • the content ratio of the resin component in the adjacent conductive resin layer portion is 40% or more and 90% or less
  • the content ratio of the metal component in the end surface side conductive resin layer portion is 40% or more and 90% or less
  • the total of the resin component and the metal component in the adjacent conductive resin layer portion is 100%, and the content ratio of the metal component in the adjacent conductive resin layer portion is 10% or more and 60% or less, the desired ESR It has been confirmed that a multilayer ceramic capacitor having a crack-free structure can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

積層セラミック電子部品に対する機械強度を有しつつ、所望のESR特性を有しうる積層セラミック電子部品を提供する。 本発明に係る積層セラミック電子部品の一例である積層セラミックコンデンサは、複数のセラミック層および複数の内部電極層が積層された積層体と、内部電極層と電気的に接続され、積層体の両端面に形成される一対の外部電極を備える。一対の外部電極は、下地電極層と、下地電極層上に配置される導電性樹脂層と、めっき層とを有する。導電性樹脂層は、両端面上に位置する端面側導電性樹脂層部と、端面側導電性樹脂層部の端部から延びて両主面上および両側面上に位置する隣接導電性樹脂層部と、を有する。隣接導電性樹脂層部に含まれる樹脂成分の含有比率は、端面側導電性樹脂層部に含まれる樹脂成分の含有比率よりも多く、かつ、端面側導電性樹脂層部における樹脂成分の含有比率は、10%以上60%以下である。

Description

積層セラミック電子部品
 この発明は、積層セラミック電子部品に関する。
 近年、積層セラミックコンデンサに代表される積層セラミック電子部品は、従来に比べてより過酷な環境下で使用されるようになってきている。例えば、携帯電話、携帯音楽プレーヤーなどのモバイル機器に用いられる電子部品については、落下時の衝撃に耐えることが求められている。具体的には、落下による衝撃を受けても、実装基板から積層セラミック電子部品が脱落しない、または積層セラミック電子部品にクラックが生じないようにする必要がある。
 また、ECU(Electronic Control Unit)などの車載機器に用いられる電子部品については、熱サイクルの衝撃に耐えることが求められている。具体的には、熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力を受けても、積層セラミック電子部品にクラックが生じないようにする必要がある。
 これを受けて、積層セラミック電子部品の外部電極に熱硬化性導電樹脂ペーストを用いることが提案されている。例えば、特許文献1では、従来の電極層とNiめっきとの間に、エポキシ系熱硬化性樹脂層を形成し、厳しい環境下でもコンデンサ本体にクラックが入らないような対策を行っている(たわみ耐性の向上)。
 このような構成においては、落下時の衝撃による応力や、熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力が発生した際、実装基板に伝わる応力(実装基板のゆがみ)を、エポキシ系熱硬化性樹脂層の先端を起点として電極層とエポキシ系熱硬化性樹脂層との間で剥離させることで応力を逃がし、コンデンサ本体にクラックが入ることを抑制している。
特開平11-162771号公報
 しかしながら、エポキシ系熱硬化性樹脂層に含まれる金属成分は、樹脂電極の硬度や弾性率を増加させてしまうため、機械強度の改善に対して不利になり、エポキシ系熱硬化性樹脂層に含まれる樹脂成分は、導電性を有していないため、ESR(等価直列抵抗)特性に対して不利になる。そのため、エポキシ系熱硬化性樹脂層を有するような積層セラミック電子部品では、上記の機械強度の改善と、ESR特性がトレードオフの関係となるため、この両方の特性を効果的に発揮することが難しい場合がある。
 それゆえに、この発明の主たる目的は、積層セラミック電子部品に対する機械強度を有しつつ、所望のESR特性を有しうる積層セラミック電子部品を提供することである。
 この発明に係る積層セラミック電子部品は、積層された複数のセラミック層を含み、高さ方向に相対する第1の主面および第2の主面と、高さ方向に直交する幅方向に相対する第1の側面および第2の側面と、高さ方向および幅方向に直交する長さ方向に相対する第1の端面および第2の端面と、を有する積層体と、複数のセラミック層上に配置され、第1の端面に露出する第1の内部電極層と、複数のセラミック層上に配置され、第2の端面に露出する第2の内部電極層と、第1の内部電極層と電気的に接続され、第1の端面上、第1の主面の一部、第2の主面の一部、第1の側面の一部および第2の側面の一部に配置される第1の外部電極と、第2の内部電極層と電気的に接続され、第2の端面上、第1の主面の一部、第2の主面の一部、第1の側面の一部および第2の側面の一部に配置される第2の外部電極と、を有する積層セラミックコンデンサにおいて、第1の外部電極および第2の外部電極は、金属成分およびガラス成分を含む下地電極層と、下地電極層上に配置される金属成分および樹脂成分を含む導電性樹脂層と、導電性樹脂層上に配置されるめっき層とを有し、導電性樹脂層は、第1の端面上および第2の端面上に位置する端面側導電性樹脂層部と、端面側導電性樹脂層部の端部から延びて第1の主面上、第2の主面上、第1の側面上および第2の側面上に位置する隣接導電性樹脂層部と、を有し、端面側導電性樹脂層部および隣接導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、隣接導電性樹脂層部に含まれる樹脂成分の含有比率が、端面側導電性樹脂層部に含まれる樹脂成分の含有比率よりも多く、かつ、前記端面側導電性樹脂層部における樹脂成分の含有比率は、10%以上60%以下である、積層セラミック電子部品である。
 この発明に係る積層セラミック電子部品では、第1の外部電極および第2の外部電極は、金属成分およびガラス成分を含む下地電極層と、下地電極層上に配置される金属成分および樹脂成分を含む導電性樹脂層と、導電性樹脂層上に配置されるめっき層とを有し、導電性樹脂層は、第1の端面上および第2の端面上に位置する端面側導電性樹脂層部と、端面側導電性樹脂層部の端部から延びて第1の主面上、第2の主面上、第1の側面上および第2の側面上に位置する隣接導電性樹脂層部と、を有し、端面側導電性樹脂層部および隣接導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、隣接導電性樹脂層部に含まれる樹脂成分の含有比率が、端面側導電性樹脂層部に含まれる樹脂成分の含有比率よりも多く、かつ、前記端面側導電性樹脂層部における樹脂成分の含有比率は、10%以上60%以下である構造となっている。そのため、金属成分の含有比率が多い端面側導電性樹脂層部では導通性を向上させることが可能となり、その結果、積層セラミック電子部品のESRを低下させることができる。また、樹脂成分の含有比率が多い隣接導電性樹脂層部では、十分な弾性を持たせることが可能となるため、落下時の衝撃による応力や熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力が発生した際、実装基板に伝わる応力(実装基板のゆがみ)を、隣接導電性樹脂層部の先端を起点として、下地電極層と隣接導電性樹脂層との間や、めっき層と隣接導電性樹脂層部との間で剥離させることや、隣接導電性樹脂層部の内部を凝集破壊させることができる。これにより、応力を逃がし、積層体にクラックが入ることを抑制することが可能となり積層セラミック電子部品の機械強度を向上させることができる。
 この発明によれば、積層セラミック電子部品に対する機械強度を有しつつ、所望のESR特性を有しうる積層セラミック電子部品を提供することができる。
 この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。
この発明の実施の形態に係る積層セラミック電子部品としての積層セラミックコンデンサの一例を示す外観斜視図である。 図1の線II-IIにおける断面図である。 図1の線III-IIIにおける断面図である。 外部電極の構造を示す模式断面図である。 (a)この発明の実施の形態に係る積層セラミックコンデンサの内部電極層の対向電極部が2つに分割された構造を示す図1の線II-IIにおける断面図であり、(b)この発明に係る積層セラミックコンデンサの内部電極層の対向電極部が3つに分割された構造を示す図1の線II-IIにおける断面図であり、(c)この発明に係る積層セラミックコンデンサの内部電極層の対向電極部が4つに分割された構造を示す図1の線II-IIにおける断面図である。
1.積層セラミックコンデンサ
 この発明の実施の形態に係る積層セラミック電子部品の例として、積層セラミックコンデンサについて説明する。
 図1は、この発明の実施の形態に係る積層セラミック電子部品としての積層セラミックコンデンサの一例を示す外観斜視図である。図2は、図1の線II-IIにおける断面図である。図3は、図1の線III-IIIにおける断面図である。図4は、外部電極の構造を示す模式断面図である。
 図1ないし図3に示すように、積層セラミックコンデンサ10は、直方体状の積層体12と、積層体12の両端部に配置される外部電極30を含む。
 積層体12は、積層された複数のセラミック層14と、セラミック層14上に積層された複数の内部電極層16とを有する。さらに、積層体12は、高さ方向xに相対する第1の主面12aおよび第2の主面12bと、高さ方向xに直交する幅方向yに相対する第1の側面12cおよび第2の側面12dと、高さ方向xおよび幅方向yに直交する長さ方向zに相対する第1の端面12eおよび第2の端面12fとを有する。この積層体12には、角部および稜線部に丸みがつけられている。なお、角部とは、積層体の隣接する3面が交わる部分のことであり、稜線部とは、積層体の隣接する2面が交わる部分のことである。また、第1の主面12aおよび第2の主面12b、第1の側面12cおよび第2の側面12d、ならびに第1の端面12eおよび第2の端面12fの一部または全部に凹凸などが形成されていてもよい。セラミック層14と内部電極層16は、高さ方向xに積層される。
 積層体12は、図2および図3に示すように、第1の主面12aおよび第2の主面12b同士を結ぶ積層方向において、複数の内部電極層16が対向する有効層部18と、最も第1の主面12a側に位置する内部電極層16と第1の主面12aとの間に位置する複数のセラミック層14から形成される第1の外層部20aと、最も第2の主面12b側に位置する内部電極層16と第2の主面12bとの間に位置する複数のセラミック層14から形成される第2の外層部20bと、を有する。
 第1の外層部20aは、積層体12の第1の主面12a側に位置し、第1の主面12aと最も第1の主面12aに近い内部電極層16との間に位置する複数のセラミック層14との間に位置する複数のセラミック層14との集合体である。
 第2の外層部20bは、積層体12の第2の主面12b側に位置し、第2の主面12bと最も第2の主面12bに近い内部電極層16との間に位置する複数のセラミック層14との間に位置する複数のセラミック層14との集合体である。
 そして、第1の外層部20aと第2の外層部20bとに挟まれた領域が有効層部18である。積層されるセラミック層14の枚数は、特に限定されないが、第1の外層部20aおよび第2の外層部20bを含み、10枚以上700枚以下であることが好ましい。また、セラミック層14の厚みは、0.5μm以上15.0μm以下であることが好ましい。
 積層体12の寸法は、特に限定されないが、外部電極30の厚みを含めた、積層セラミックコンデンサ10の寸法を超えない寸法であることが好ましい。
 セラミック層14は、例えば、セラミック材料として、誘電体材料により形成することができる。このような誘電体材料としては、例えば、BaTiO、CaTiO、SrTiO、またはCaZrOなどの成分を含む誘電体セラミックを用いることができる。上記の誘電体材料を主成分として含む場合、所望する積層体12の特性に応じて、例えば、Mn化合物、Fe化合物、Cr化合物、Co化合物、Ni化合物などの主成分よりも含有量の少ない副成分を添加したものを用いてもよい。
 なお、セラミック層14に、圧電体セラミック材料を用いた場合、積層セラミック電子部品は圧電部品として機能する。圧電体セラミック材料の具体例としては、例えば、PZT(チタン酸ジルコン酸鉛)系セラミック材料などが挙げられる。また、セラミック層14に、半導体セラミック材料を用いた場合、積層セラミック電子部品は、サーミスタとして機能する。半導体セラミック材料の具体例としては、例えば、スピネル系セラミック材料などが挙げられる。また、セラミック層14に、磁性体セラミック材料を用いた場合、積層セラミック電子部品は、インダクタとして機能する。また、インダクタとして機能する場合は、内部電極層16は、コイル状の導体となる。磁性体セラミック材料の具体例としては、例えば、フェライトセラミック材料などが挙げられる。
 焼成後のセラミック層14の厚みは、0.5μm以上15μm以下であることが好ましい。積層されるセラミック層14の枚数は、10枚以上700枚以下であることが好ましい。なお、このセラミック層14の枚数は、有効層部18のセラミック層14の枚数と、第1の外層部20aおよび第2の外層部20bのセラミック層14の枚数との総数である。
 積層体12は、複数の内部電極層16として、例えば略矩形状の複数の第1の内部電極層16aおよび複数の第2の内部電極層16bを有する。複数の第1の内部電極層16aおよび複数の第2の内部電極層16bは、積層体12の高さ方向xに沿ってセラミック層14を挟んで等間隔に交互に配置されるように埋設されている。
 第1の内部電極層16aは、複数のセラミック層14上に配置され、積層体12の内部に位置している。第1の内部電極層16aは、第2の内部電極層16bと対向する第1の対向電極部22aと、第1の内部電極層16aの一端側に位置し、第1の対向電極部22aから積層体12の第1の端面12eまでの第1の引出電極部24aとを有する。第1の引出電極部24aは、その端部が第1の端面12eの表面に引き出され、積層体12から露出している。
 第1の内部電極層16aの第1の対向電極部22aの形状は、特に限定されないが平面視矩形状であることが好ましい。もっとも、平面視コーナー部を丸められていたり、コーナー部を平面視斜めに形成したりしてよい(テーパー状)。また、どちらかに向かうにつれて傾斜がついている平面視テーパー状であってもよい。
 第1の内部電極層16aの第1の引出電極部24aの形状は、特に限定されないが平面視矩形状であることが好ましい。もっとも、平面視コーナー部を丸められていたり、コーナー部を平面視斜めに形成したりしてよい(テーパー状)。また、どちらかに向かうにつれて傾斜がついている平面視テーパー状であってもよい。
 第1の内部電極層16aの第1の対向電極部22aの幅と、第1の内部電極層16aの第1の引出電極部24aの幅は、同じ幅で形成されていてもよく、どちらか一方の幅が狭く形成されていてもよい。
 第2の内部電極層16bは、複数のセラミック層14上に配置され、積層体12の内部に位置している。第2の内部電極層16bは、第1の内部電極層16aと対向する第2の対向電極部22bと、第2の内部電極層16bの一端側に位置し、第2の対向電極部22bから積層体12の第2の端面12fまでの第2の引出電極部24bを有する。第2の引出電極部24bは、その端部が第2の端面12fの表面に引き出され、積層体12から露出している。
 第2の内部電極層16bの第2の対向電極部22bの形状は、特に限定されないが平面視矩形状であることが好ましい。もっとも、平面視コーナー部を丸められていたり、コーナー部を平面視斜めに形成したりしてよい(テーパー状)。また、どちらかに向かうにつれて傾斜がついている平面視テーパー状であってもよい。
 第2の内部電極層16bの第2の引出電極部24bの形状は、特に限定されないが平面視矩形状であることが好ましい。もっとも、平面視コーナー部を丸められていたり、コーナー部を平面視斜めに形成したりしてよい(テーパー状)。また、どちらかに向かうにつれて傾斜がついている平面視テーパー状であってもよい。
 第2の内部電極層16bの第2の対向電極部22bの幅と、第2の内部電極層16bの第2の引出電極部24bの幅は、同じ幅で形成されていてもよく、どちらか一方の幅が狭く形成されていてもよい。
 さらに、積層体12は、図2に示されるように、第1の内部電極層16aの第1の引出電極部24aとは反対側の端部と第2の端面12fとの間および第2の内部電極層16bの第2の引出電極部24bとは反対側の端部と第1の端面12eとの間に形成される積層体12の端部(以下、「Lギャップ」という。)28を含む。
 積層体12は、図3に示されるように、第1の対向電極部22aおよび第2の対向電極部22bの幅方向yの一端と第1の側面12cとの間および第1の対向電極部22aおよび第2の対向電極部22bの幅方向yの他端と第2の側面12dとの間に形成される積層体12の側部(以下、「Wギャップ」という。)26を含む。
 第1の内部電極層16aおよび第2の内部電極層16bは、例えば、Ni、Cu、Ag、Pd、Auなどの金属や、Ag-Pd合金等の、それらの金属の少なくとも一種を含む合金などの適宜の導電材料により構成することができる。
 内部電極層16、すなわち第1の内部電極層16aおよび第2の内部電極層16bのそれぞれの厚みは、0.2μm以上2.0μm以下であることが好ましい。また、第1の内部電極層16aおよび第2の内部電極層16bの枚数は、合わせて10枚以上700枚以下であることが好ましい。
 積層体12の第1の端面12e側および第2の端面12f側には、図1ないし図3に示されるように、外部電極30が配置される。
 外部電極30は、第1の外部電極30aおよび第2の外部電極30bを有する。
 第1の外部電極30aは、第1の内部電極層16aに接続され、少なくとも第1の端面12eの表面に配置されている。また、第1の外部電極30aは、積層体12の第1の端面12eから延伸して第1の主面12aの一部および第2の主面12bの一部、ならびに第1の側面12cの一部および第2の側面12dの一部にも配置される。この場合、第1の外部電極30aは、第1の内部電極層16aの第1の引出電極部24aと電気的に接続される。
 第2の外部電極30bは、第2の内部電極層16bに接続され、少なくとも第2の端面12fの表面に配置されている。また、第2の外部電極30bは、第2の端面12fから延伸して第1の主面12aの一部および第2の主面12bの一部、ならびに第1の側面12cの一部および第2の側面12dの一部にも配置される。この場合、第2の外部電極30bは、第2の内部電極層16bの第2の引出電極部24bと電気的に接続される。
 積層体12内においては、第1の内部電極層16aの第1の対向電極部22aと第2の内部電極層16bの第2の対向電極部22bとがセラミック層14を介して対向することにより、静電容量が形成されている。そのため、第1の内部電極層16aが接続された第1の外部電極30aと第2の内部電極層16bが接続された第2の外部電極30bとの間に、静電容量を得ることができ、コンデンサの特性が発現する。
 また、図1に示す積層体12は、図5に示されるように、第1の内部電極層16aおよび第2の内部電極層16bに加えて、第1の端面12eおよび第2の端面12fのどちらにも引き出されない浮き内部電極層16cが設けられており、浮き内部電極層16cによって、対向電極部22cが複数に分割された構造としてもよい。例えば、図5(a)に示される2連、図5(b)に示される3連、図5(c)に示されるような4連構造であり、4連以上の構造でもよいことは言うまでもない。このように、対向電極部22cを複数個に分割した構造とすることによって、対向する内部電極層16a、16b、16c間において複数のコンデンサ成分が形成され、これらのコンデンサ成分が直列に接続された構成となる。そのため、それぞれのコンデンサ成分に印加される電圧が低くなり、積層セラミックコンデンサ10の高耐圧化を図ることができる。
 外部電極30は、金属成分およびガラス成分を含む下地電極層32と、下地電極層32上に配置される金属成分および樹脂成分を含む導電性樹脂層34と、導電性樹脂層34上に配置されるめっき層36とを含む。第1の外部電極30aは、金属成分およびガラス成分を含む第1の下地電極層32aと、第1の下地電極層32a上に配置される金属成分および樹脂成分を含む第1の導電性樹脂層34aと、第1の導電性樹脂層34a上に配置される第1のめっき層36aとを含む。第2の外部電極30bは、金属成分およびガラス成分を含む第2の下地電極層32bと、第2の下地電極層32b上に配置される金属成分および樹脂成分を含む第2の導電性樹脂層34bと、第2の導電性樹脂層34b上に配置される第2のめっき層36bとを含む。
 下地電極層32は、第1の下地電極層32aおよび第2の下地電極層32bを有する。
 第1の下地電極層32aは、第1の内部電極層16aに接続され、第1の端面12eの表面に配置されている。また、第1の下地電極層32aは、第1の端面12eから延伸して第1の主面12aの一部および第2の主面12bの一部、ならびに第1の側面12cの一部および第2の側面12dの一部にも配置される。この場合、第1の下地電極層32aは、第1の内部電極層16aの第1の引出電極部24aと電気的に接続される。
 第2の下地電極層32bは、第2の内部電極層16bに接続され、第2の端面12fの表面に配置されている。また、第2の下地電極層32bは、第2の端面12fから延伸して第1の主面12aの一部および第2の主面12bの一部、ならびに第1の側面12cの一部および第2の側面12dの一部にも配置される。この場合、第2の下地電極層32bは、第2の内部電極層16bの第2の引出電極部24bと電気的に接続される。
 下地電極層32は、焼付け層、薄膜層等から選ばれる少なくとも1つを含む。以下、下地電極層32を上記の焼付け層、薄膜層とした場合の各構成について説明する。
 焼付け層は、ガラス成分と金属成分とを含む。焼付け層のガラス成分は、B、Si、Ba、Mg、Al、Li等から選ばれる少なくとも1つを含む。焼付け層の金属成分としては、例えば、Cu、Ni、Ag、Pd、Ag-Pd合金、Au等から選ばれる少なくとも1つを含む。焼付け層は、ガラス成分および金属成分を含む導電性ペーストを積層体12に塗布して焼付けたものである。焼付け層は、内部電極層16およびセラミック層14を有する積層チップと積層チップに塗布した導電性ペーストとを同時焼成したものでもよく、内部電極層16およびセラミック層14を有する積層チップを焼成して積層体を得た後に、積層体に導電性ペーストを焼付けたものでもよい。なお、焼付け層を内部電極層16およびセラミック層14を有する積層チップと積層チップに塗布した導電性ペーストとを同時に焼成する場合には、焼付け層は、ガラス成分の代わりにセラミック成分を添加したものを焼付けて形成することが好ましい。焼付け層は、複数層であってもよい。
 なお、下地電極層32にガラス成分の代わりにセラミック成分を含有させた場合、積層体12と下地電極層32との密着性を向上させることができる。なお、下地電極層32は、ガラス成分とセラミック成分の両方を含んでいてもよい。
 下地電極層32に含まれるセラミック成分は、セラミック層14と同種のセラミック材料を用いてもよく、異なる種のセラミック材料を用いてもよい。セラミック成分は、例えば、BaTiO、CaTiO、(Ba,Ca)TiO、SrTiO、CaZrO等から選ばれる少なくとも1つを含む。
 第1の端面12eに位置する第1の下地電極層32aの高さ方向xの中央部における第1の端面12eおよび第2の端面12fを結ぶ長さ方向zの厚みは、例えば、2μm以上220μm以下程度であることが好ましい。第2の端面12fに位置する第2の下地電極層32bの高さ方向xの中央部における第1の端面12eおよび第2の端面12fを結ぶ長さ方向zの厚みは、例えば、2μm以上220μm以下程度であることが好ましい。
 第1の主面12aおよび第2の主面12bの一部に位置する第1の下地電極層32aの第1の端面12eおよび第2の端面12fを結ぶ長さ方向zの中央部における第1の主面12aおよび第2の主面12bを結ぶ高さ方向xの厚みは、例えば、3μm以上40μm以下程度であることが好ましい。第1の主面12aおよび第2の主面12bの一部に位置する第2の下地電極層32bの第1の端面12eおよび第2の端面12fを結ぶ長さ方向zの中央部における第1の主面12aおよび第2の主面12bを結ぶ高さ方向xの厚みは、例えば、3μm以上40μm以下程度であることが好ましい。
 第1の側面12cおよび第2の側面12dの一部に位置する第1の下地電極層32aの第1の端面12eおよび第2の端面12fを結ぶ長さ方向zの中央部における第1の側面12cおよび第2の側面12dを結ぶ幅方向yの厚みは、例えば、3μm以上40μm以下程度であることが好ましい。第1の側面12cおよび第2の側面12dの一部に位置する第2の下地電極層32bの第1の端面12eおよび第2の端面12fを結ぶ長さ方向zの中央部における第1の側面12cおよび第2の側面12dを結ぶ幅方向yの厚みは、例えば、3μm以上40μm以下程度であることが好ましい。
 薄膜層は、スパッタリング法または蒸着法等の薄膜形成法により形成され、金属粒子が堆積された1μm以下の層である。
 導電性樹脂層34は、下地電極層32上に配置され、樹脂成分および金属成分を含む。導電性樹脂層34は、下地電極層32を完全に覆うように配置される。
 導電性樹脂層34は、第1の導電性樹脂層34aと第2の導電性樹脂層34bとを有している。第1の導電性樹脂層34aは、第1の下地電極層32a上に配置されている、なお、第1の導電性樹脂層34aは、第1の下地電極層32aを完全に覆うように配置されており、第1の導電性樹脂層34aの端部は積層体12に接触している。第2の導電性樹脂層34bは、第2の下地電極層32b上に配置されている、なお、第2の導電性樹脂層34bは、第2の下地電極層32bを完全に覆うように配置されており、第2の導電性樹脂層34bの端部は積層体12に接触している。
 導電性樹脂層34は、樹脂成分である熱硬化性樹脂を含むため、例えば、めっき膜や金属成分とガラス成分の焼成物からなる下地電極層32よりも柔軟性に富んでいる。このため、実装基板にたわみ応力が加わり積層セラミックコンデンサ10に物理的な衝撃や熱サイクルに起因する衝撃が加わった場合であっても、導電性樹脂層34が緩衝層として機能し、積層セラミックコンデンサ10に対してクラックが発生することを防止することができる。
 導電性樹脂層34の熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂などの公知の種々の熱硬化性樹脂を使用することができる。その中でも、耐熱性、耐湿性、密着性などに優れたエポキシ樹脂は最も適切な樹脂の1つである。また、導電性樹脂層34には、熱硬化性樹脂とともに、硬化剤を含むことが好ましい。硬化剤としては、ベース樹脂としてエポキシ樹脂を用いる場合、エポキシ樹脂の硬化剤としては、フェノール系、アミン系、酸無水物系、イミダゾール系、活性エステル系、アミドイミド系など公知の種々の化合物を使用することができる。
 導電性樹脂層34に含まれる金属成分としては、金属フィラーである。金属フィラーは、Ag、Cu、Ni、Sn、Biまたは、それらを含む合金を使用することができる。また、金属粉の表面にAgコーティングされた金属粉を使用することもできる。金属粉の表面にAgコーティングされたものを使用する際には金属粉としてCu、Ni、Sn、Biまたはそれらの合金粉を用いることが好ましい。金属フィラーにAgを用いる理由としては、Agは金属の中でもっとも比抵抗が低いため電極材料に適しており、Agは貴金属であるため酸化せず耐候性が高いためである。また、上記のAgの特性は保ちつつ、母材の金属を安価なものにすることが可能になるためである。
 導電性樹脂層34に含まれる金属フィラーとしては、Cu、Niに酸化防止処理を施したものを使用することもできる。
 なお、導電性樹脂層34に含まれる金属フィラーとしては、金属粉の表面にSn、Ni、Cuをコーティングした金属粉を使用することもできる。金属粉の表面にSn、Ni、Cuをコーティングされたものを使用する際には金属粉として、Ag、Cu、Ni、Sn、Biまたはそれらの合金粉を用いることが好ましい。
 導電性樹脂層34に含まれる金属フィラーの形状は、特に限定されない。金属フィラーは、球状、扁平状等であってもよい。また、球形状金属粉と扁平状金属粉とを混合されていてもよい。
 導電性樹脂層34に含まれる金属フィラーの平均粒径は、特に限定されない。金属フィラーの平均粒径は、例えば、0.3μm以上10.0μm以下程度であってもよい。
 導電性樹脂層34に含まれる金属フィラーの平均粒径の測定方法は、フィラーの形状によらず、ISO13320に基づくレザー回折粒度測定法を用いることで算出することができる。
 導電性樹脂層34に含まれる金属フィラーは、主に導電性樹脂層34の通電性を担う。具体的には、金属フィラー同士が接触することにより、導電性樹脂層34の内部に通電経路が形成される。
 第1の導電性樹脂層34aは、第1の端面12e上に位置する第1の端面側導電性樹脂層部34aと、第1の端面側導電性樹脂層部34a部分の端部から第1の主面12a上の一部、第2の主面12b上の一部、第1の側面12c上の一部および第2の側面12d上の一部に延びて位置する第1の隣接導電性樹脂層部34aと、を有する。第2の導電性樹脂層34bは、第2の端面12f上に位置する第2の端面側導電性樹脂層部34bと、第1の端面側導電性樹脂層部34a部分の端部から第1の主面12a上の一部、第2の主面12b上の一部、第1の側面12c上の一部および第2の側面12d上の一部に延びて位置する第2の隣接導電性樹脂層部34bと、を有する。
 第1の隣接導電性樹脂層部34aに含まれる樹脂量は、第1の端面側導電性樹脂層部34aに含まれる樹脂量よりも多く、第2の隣接導電性樹脂層部34bに含まれる樹脂量は、第2の端面側導電性樹脂層部34bに含まれる樹脂量よりも多い。換言すると、第1の端面側導電性樹脂層部34aおよび第1の隣接導電性樹脂層部34aにおける樹脂成分と金属成分との合計を100%とした際に、第1の隣接導電性樹脂層部34aに含まれる樹脂成分の含有比率が、第1の端面側導電性樹脂層部34aに含まれる樹脂成分の含有比率よりも多く、第2の端面側導電性樹脂層部34bおよび第2の隣接導電性樹脂層部34bにおける樹脂成分と金属成分との合計を100%とした際に、第2の隣接導電性樹脂層部34bに含まれる樹脂成分の含有比率が、第2の端面側導電性樹脂層部34bに含まれる樹脂成分の含有比率よりも多い。これにより、導電性樹脂層34に含まれる金属成分である金属フィラーが多い第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bでは導電性を向上させることが可能となり、その結果、積層セラミックコンデンサのESRを低下させることができる。一方、樹脂の量が多い第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bでは、十分な弾性を持たせることが可能となるため、落下時の衝撃による応力や、熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力が発生した際、実装基板に伝わる応力(実装基板のゆがみ)を、第1の隣接導電性樹脂層部34aの先端を起点として、第1の下地電極層32aと第1の隣接導電性樹脂層部34aとの間や、第1のめっき層36aと第1の隣接導電性樹脂層部34aとの間で剥離させることができ、第1の隣接導電性樹脂層部34aの内部を凝集破壊させることができ、同様に、第2の隣接導電性樹脂層部34bの先端を起点として、第2の下地電極層32bと第2の隣接導電性樹脂層部34bとの間や、第2のめっき層36bと第2の隣接導電性樹脂層部34bとの間で剥離させることができ、第2の隣接導電性樹脂層部34bの内部を凝集破壊させることができる。その結果、応力を逃がし、積層体12にクラックが入ることを抑制することが可能となり、積層セラミックコンデンサ10の機械強度を向上させることができる。以上のことから、本発明では、積層セラミックコンデンサ10に対する機械強度の改善と、ESR特性のトレードオフの関係において、この両方の特性を効果的に発揮することが可能となる。
 第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける樹脂成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、10%以上60%以下である。これにより、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおいて、導電性を確保してESRを低下させつつも、落下時の衝撃による応力や、熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力が発生した際、実装基板に伝わる応力(実装基板のゆがみ)を、第1の隣接導電性樹脂層部34aの先端を起点として、第1の下地電極層32aと第1の隣接導電性樹脂層部34aとの間や、第1のめっき層36aと第1の隣接導電性樹脂層部34aとの間で剥離させることができ、同様に、第2の隣接導電性樹脂層部34bの先端を起点として、第2の下地電極層32bと第2の隣接導電性樹脂層部34bとの間や、第2のめっき層36bと第2の隣接導電性樹脂層部34bとの間で剥離させることができる。これにより、応力を逃がし、積層体12にクラックが入ることを抑制することが可能となる。
 第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける樹脂成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、10%よりも少ない場合には、第1の端面側導電性樹脂層34部aおよび第2の端面側導電性樹脂層部34bにおける金属成分の比率が増えることになり、金属成分を構成する金属フィラーの周りに存在するはずの樹脂量が減少する。ここで、導電性樹脂層34は、一般的に、導電性樹脂層34の硬化時に樹脂が収縮することで金属フィラーを引っ張ろうとすることで、金属フィラー同士を接触させている。しかし、上記のように、樹脂成分の含有比率が減少してしまった場合には、その収縮が小さくなり、十分に金属フィラー同士を接触させることができず、金属フィラー間に空隙が発生する状態となってしまう。そのため、ESRが悪化する。
 また、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける樹脂成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、60%よりも多い場合には、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける樹脂成分の含有比率が高くなることで、金属成分を構成する金属フィラー同士の接触が妨げられ、金属フィラー同士の距離が長くなるため、ESRが悪化する。
 第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける樹脂成分の含有比率の測定方法は、以下に示すように、断面で測定することができる。すなわち、まず、積層セラミックコンデンサ10の第1の側面12cもしくは第2の側面12dから研磨を開始し、第1の側面12cおよび第2の側面12dを結ぶ幅方向yの1/2Wとなる位置まで研磨したLT面で、第1の端面12e側の第1の端面側導電性樹脂層部34aもしくは第2の端面12f側の第2の端面側導電性樹脂層部34bの高さ方向xの中央部を確認する。あるいは、積層セラミックコンデンサ10の第1の主面12aまたは第2の主面12bから研磨を開始し、第1の主面12aおよび第2の主面12bを結ぶ高さ方向xの1/2Tとなる位置まで研磨したLW面で、第1の端面12e側の第1の端面側導電性樹脂層部34aもしくは第2の端面12f側の第2の端面側導電性樹脂層部34bの幅方向yの中央部を確認する。次に、走査電子顕微鏡(SEM)を用いて、熱硬化性樹脂とその他の部分(金属成分(金属フィラー)、空隙)に区別できるように、反射電子像、加速電圧5kV、倍率1000倍で観察し、撮影する。その後、撮影した画像を画像解析ソフトで熱硬化性樹脂とそれ以外とを2値化し、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける樹脂成分の含有比率を求めることができる。
 第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける金属成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、40%以上90%以下であることが好ましい。これにより、金属成分を構成する金属フィラーが多い第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bでは導電性を向上させることが可能となり、その結果、積層セラミックコンデンサ10のESRが低下する。
 第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける金属成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、40%よりも少ない場合には、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける樹脂成分の含有比率が高くなることで、金属成分を構成する金属フィラー同士の接触が妨げられ、金属フィラー同士の距離が長くなるため、ESRが悪化する場合がある。
 第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける金属成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、90%よりも多い場合には、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける金属成分の比率が増えることになり、金属成分を構成する金属フィラーの周りに存在するはずの樹脂量が減少する。ここで、導電性樹脂層34は、一般的に、導電性樹脂層34の硬化時に樹脂が収縮することで金属フィラーを引っ張ろうとすることで、金属フィラー同士を接触させている。しかし、上記のように、樹脂成分の含有比率が減少してしまった場合には、その収縮が小さくなり、十分に金属フィラー同士を接触させることができず、金属フィラー間に空隙が発生する状態となってしまう。そのため、ESRが悪化する場合がある。
 第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける金属成分の含有比率の測定方法は、以下に示すように、断面で測定することができる。すなわち、まず、積層セラミックコンデンサ10の第1の側面12cもしくは第2の側面12dから研磨を開始し、第1の側面12cおよび第2の側面12dを結ぶ幅方向yの1/2Wとなる位置まで研磨したLT面で、第1の端面12e側の第1の端面側導電性樹脂層部34aもしくは第2の端面12f側の第2の端面側導電性樹脂層部34bの高さ方向xの中央部を確認する。あるいは、積層セラミックコンデンサ10の第1の主面12aまたは第2の主面12bから研磨を開始し、第1の主面12aおよび第2の主面12bを結ぶ高さ方向xの1/2Tとなる位置まで研磨したLW面で、第1の端面12e側の第1の端面側導電性樹脂層部34aもしくは第2の端面12f側の第2の端面側導電性樹脂層部34bの幅方向yの中央部を確認する。次に、走査電子顕微鏡(SEM)を用いて、熱硬化性樹脂とその他の部分(金属成分(金属フィラー)、空隙)に区別できるように、反射電子像、加速電圧5kV、倍率1000倍で観察し、撮影する。その後、撮影した画像を画像解析ソフトで熱硬化性樹脂とそれ以外とを2値化し、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける金属成分の含有比率を求めることができる。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける樹脂成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、40%以上60%以下であることが好ましい。これにより、応力がかかりやすい第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bの配置される部分において、十分な弾性を持たせることが可能となるため、落下時の衝撃による応力や、熱サイクルを受けて実装基板が熱膨張することにより発生するたわみ応力が発生した際、実装基板に伝わる応力(実装基板ゆがみ)を、第1の隣接導電性樹脂層部34aの配置される部分の先端を起点として第1の下地電極層32aと第1の隣接導電性樹脂層部34aとの間や、第1のめっき層36aと第1の隣接導電性樹脂層部34aとの間で剥離させることができ、同様に、第2の隣接導電性樹脂層部34bの配置される部分の先端を起点として第2の下地電極層32bと第2の隣接導電性樹脂層部34bとの間や、第2のめっき層36bと第2の隣接導電性樹脂層部34bとの間で剥離させることができる。これにより、応力を逃がし、積層体12にクラックが入ることを抑制することが可能となり、積層セラミックコンデンサ10の機械強度を向上させることができる。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける樹脂成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、40%よりも少ない場合には、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける金属成分の含有比率が高くなる。ここで、金属成分を構成する金属フィラーと樹脂とでその弾性率や硬度を比較すると、金属フィラーの方が高い値となる。そのため、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bに含有される金属フィラーの比率が高くなることで、導電性樹脂層34の部分全体が強硬度化し、落下時の衝撃による応力や、熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力が発生した際であっても、実装基板に伝わる応力(実装基板のゆがみ)を、第1の隣接導電性樹脂層部34aの配置される部分の先端を起点として第1の下地電極層32aと第1の隣接導電性樹脂層部34aとの間や、第1のめっき層36aと第1の隣接導電性樹脂層部34aとの間で剥離させることができず、同様に、第2の隣接導電性樹脂層部34bの配置される部分の先端を起点として第2の下地電極層32bと第2の隣接導電性樹脂層部34bとの間や、第2のめっき層36bと第2の隣接導電性樹脂層部34bとの間で剥離させることができない。従って、積層体12にクラックが入ってしまう場合がある。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける樹脂成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、90%よりも多い場合には、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける樹脂量が多くなるため、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bの表面に露出する金属フィラーが減少する。第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bの表面に露出する金属フィラーが減少してしまった場合には、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bの表面に形成するめっき層36のめっきの成長の起点が減少するため、めっき形成が妨げられる。めっき形成が妨げられてしまうと、めっき形成されない部分が生じ、不連続で複数の欠損部が存在するめっき層となってしまう。複数の欠損部には応力が集中しやすくなってしまうため、落下時の衝撃による応力や、熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力が発生した際、欠損部での応力も加わることとなり、十分に、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bの先端を起点として第1の下地電極層32aと第1の隣接導電性樹脂層部34aとの間や、第1のめっき層36aと第1の隣接導電性樹脂層部34aとの間で剥離させることができず、同様に、第2の隣接導電性樹脂層部34bの配置される部分の先端を起点として第2の下地電極層32bと第2の隣接導電性樹脂層部34bとの間や、第2のめっき層36bと第2の隣接導電性樹脂層部34bとの間で剥離させることができない。従って、積層体12にクラックが入ってしまう場合がある。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける樹脂成分の含有比率の測定方法は、以下に示すように、断面で測定することができる。すなわち、まず、積層セラミックコンデンサ10の第1の側面12cもしくは第2の側面12dから研磨を開始し、第1の側面12cおよび第2の側面12dを結ぶ幅方向yの1/2Wとなる位置まで研磨したLT面で、第1の主面12a側または第2の主面12b側の第1の隣接導電性樹脂層部34aもしくは第1の主面12a側または第2の主面12b側の第2の隣接導電性樹脂層部34bの長さ方向zの中央部を確認する。あるいは、積層セラミックコンデンサ10の第1の主面12aまたは第2の主面12bから研磨を開始し、第1の主面12aおよび第2の主面12bを結ぶ高さ方向xの1/2Tとなる位置まで研磨したLW面で、第1の側面12c側または第2の側面12d側の第1の隣接導電性樹脂層部34aもしくは第1の側面12c側または第2の側面12d側の第2の隣接導電性樹脂層部34bの長さ方向zの中央部を確認する。次に、走査電子顕微鏡(SEM)を用いて、熱硬化性樹脂とその他の部分(金属成分(金属フィラー)、空隙)に区別できるように、反射電子像、加速電圧5kV、倍率1000倍で観察し、撮影する。その後、撮影した画像を画像解析ソフトで熱硬化性樹脂とそれ以外とを2値化し、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける樹脂成分の含有比率を求めることができる。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける金属成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、10%以上60%以下であることが好ましい。これにより、導通性を確保することができ、落下時の衝撃による応力や、熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力が発生した際、実装基板に伝わる応力(実装基板のゆがみ)を、第1の隣接導電性樹脂層部34aの配置される部分の先端を起点として第1の下地電極層32aと第1の隣接導電性樹脂層部34aとの間や、第1のめっき層36aと第1の隣接導電性樹脂層部34aとの間で剥離させることができ、同様に、第2の隣接導電性樹脂層部34bの配置される部分の先端を起点として第2の下地電極層32bと第2の隣接導電性樹脂層部34bとの間や、第2のめっき層36bと第2の隣接導電性樹脂層部34bとの間で剥離させることができる。その結果、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bが形成されることで、積層体12に対して作用する応力を逃がすことができる。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける金属成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、10%よりも少ない場合には、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける樹脂量が多くなるため、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bの表面に露出する金属フィラーが減少する。第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bの表面に露出する金属フィラーが減少してしまった場合には、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bの表面に形成するめっき層36のめっきの成長の起点が減少するため、めっき形成が妨げられる。めっき形成が妨げられてしまうと、めっき形成されない部分が生じ、不連続で複数の欠損部が存在するめっき層となってしまう。複数の欠損部には応力が集中しやすくなってしまうため、落下時の衝撃による応力や、熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力が発生した際、欠損部での応力も加わることとなり、十分に、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bの先端を起点として第1の下地電極層32aと第1の隣接導電性樹脂層部34aとの間や、第1のめっき層36aと第1の隣接導電性樹脂層部34aとの間で剥離させることができず、同様に、第2の隣接導電性樹脂層部34bの配置される部分の先端を起点として第2の下地電極層32bと第2の隣接導電性樹脂層部34bとの間や、第2のめっき層36bと第2の隣接導電性樹脂層部34bとの間で剥離させることができない。従って、積層体12にクラックが入ってしまう場合がある。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける金属成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、60%よりも多い場合には、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける金属成分の含有比率が高くなる。ここで、金属成分を構成する金属フィラーと樹脂とでその弾性率や硬度を比較すると、金属フィラーの方が高い値となる。そのため、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bに含有される金属フィラーの比率が高くなることで、導電性樹脂層34の部分全体が強硬度化し、落下時の衝撃による応力や、熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力が発生した際であっても、実装基板に伝わる応力(実装基板のゆがみ)を、第1の隣接導電性樹脂層部34aの配置される部分の先端を起点として第1の下地電極層32aと第1の隣接導電性樹脂層部34aとの間や、第1のめっき層36aと第1の隣接導電性樹脂層部34aとの間で剥離させることができず、同様に、第2の隣接導電性樹脂層部34bの配置される部分の先端を起点として第2の下地電極層32bと第2の隣接導電性樹脂層部34bとの間や、第2のめっき層36bと第2の隣接導電性樹脂層部34bとの間で剥離させることができない。従って、積層体12にクラックが入ってしまう場合がある。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける金属成分の含有比率の測定方法は、以下に示すように、断面で測定することができる。すなわち、まず、積層セラミックコンデンサ10の第1の側面12cもしくは第2の側面12dから研磨を開始し、第1の側面12cおよび第2の側面12dを結ぶ幅方向yの1/2Wとなる位置まで研磨したLT面で、第1の主面12a側または第2の主面12b側の第1の隣接導電性樹脂層部34aもしくは第1の主面12a側または第2の主面12b側の第2の隣接導電性樹脂層部34bの高さ方向xの中央部を確認する。あるいは、積層セラミックコンデンサ10の第1の主面12aまたは第2の主面12bから研磨を開始し、第1の主面12aおよび第2の主面12bを結ぶ高さ方向xの1/2Tとなる位置まで研磨したLW面で、第1の側面12c側または第2の側面12d側の第1の隣接導電性樹脂層部34aもしくは第1の側面12c側または第2の側面12d側の第2の隣接導電性樹脂層部34bの長さ方向zの中央部を確認する。次に、走査電子顕微鏡(SEM)を用いて、熱硬化性樹脂とその他の部分(金属成分(金属フィラー)、空隙)に区別できるように、反射電子像、加速電圧5kV、倍率1000倍で観察し、撮影する。その後、撮影した画像を画像解析ソフトで熱硬化性樹脂とそれ以外とを2値化し、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける金属成分の含有比率を求めることができる。
 第1の端面12eおよび第2の端面12fに位置する積層体12の高さ方向x中央部に位置する導電性樹脂層34の厚みは、例えば、20.0μm以上150.0μm以下程度であることが好ましい。
 また、第1の主面12aおよび第2の主面12b、第1の側面12cおよび第2の側面12d上にも導電性樹脂層を設ける場合には、第1の主面12aおよび第2の主面12b、第1の側面12cおよび第2の側面12dに位置する導電性樹脂層の長さ方向zの中央部における導電性樹脂層34の厚みは、例えば、5.0μm以上40.0μm以下程度であることが好ましい。
 第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける導電性(抵抗)は、5Ω・cm以上25Ω・cm以下であり、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける導電性(抵抗)は、20Ω・cm以上150Ω・cm以下であることが好ましい。これにより、積層セラミックコンデンサ10のESRを低下させることができる。
 第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける押し込み弾性率は、15GPa以上21GPa以下であり、第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける押し込み弾性率は、12GPa以上15GPa以下であることが好ましい。これにより、積層体12に対する応力を逃がすことができ、積層体12に対するクラックが入ることを抑制することが可能となり、積層セラミックコンデンサ10の機械強度を向上させることができる。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける貯蔵弾性率は、6GPa以上8GPa以下であり、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける貯蔵弾性率は、8GPa以上10GPa以下であることが好ましい。これにより、積層体12に対する応力を逃がすことができ、積層体12に対するクラックが入ることを抑制することが可能となり、積層セラミックコンデンサ10の機械強度を向上させることができる。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける損失弾性率は、0.2GPa以上0.4GPa以下であり、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける損失弾性率は、0.4GPa以上0.5GPa以下であることが好ましい。これにより、積層体12に対する応力を逃がすことができ、積層体12に対するクラックが入ることを抑制することが可能となり、積層セラミックコンデンサ10の機械強度を向上させることができる。
 第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bにおける硬度は、0.1GPa以上0.3GPa以下であり、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける硬度は、0.2GPa以上0.7GPa以下であることが好ましい。これにより、積層体12に対する応力を逃がすことができ、積層体12に対するクラックが入ることを抑制することが可能となり、積層セラミックコンデンサ10の機械強度を向上させることができる。
 続いて、下地電極層32の上に配置されるめっき層36である第1のめっき層36aおよび第2のめっき層36bについて、図2および図3を参照して説明する。第1のめっき層36aおよび第2のめっき層36bとしては、例えば、Cu、Ni、Sn、Ag、Pd、Ag-Pd合金、Au等から選ばれる少なくとも1つを含む。
 第1のめっき層36aは、第1の導電性樹脂層34aを完全に覆うように配置されている。第2のめっき層36bは、第2の導電性樹脂層34bを完全に覆うように配置されている。
 第1のめっき層36aおよび第2のめっき層36bは、複数層により形成されていてもよい。この場合、めっき層36は、導電性樹脂層34上に形成されるNiめっきによる下層めっき層(Niめっき層)と、下層めっき層上に形成されるSnめっきによる上層めっき層(Snめっき層)の2層構造であることが好ましい。すなわち、第1のめっき層36aは、第1の下層めっき層と、第1の下層めっき層の表面に位置する第1の上層めっき層とを有する。また、第2のめっき層36bは、第2の下層めっき層と、第2の下層めっき層の表面に位置する第2の上層めっき層とを有する。
 Niめっきによる下層めっき層は、下地電極層32や導電性樹脂層34が積層セラミックコンデンサ10を実装する際のはんだによって侵食されることを防止するために用いられ、Snめっきによる上層めっき層は、積層セラミックコンデンサ10を実装する際の半田の濡れ性を向上させて、容易に実装することができるようにするために用いられる。めっき層一層あたりの厚みは、1.0μm以上、15.0μm以下であることが好ましい。
 積層体12、第1の外部電極30aおよび第2の外部電極30bを含む積層セラミックコンデンサ10の長さ方向zの寸法をL寸法とし、積層体12、第1の外部電極30aおよび第2の外部電極30bを含む積層セラミックコンデンサ10の高さ方向xの寸法をT寸法とし、積層体12、第1の外部電極30aおよび第2の外部電極30bを含む積層セラミックコンデンサ10の幅方向yの寸法をW寸法とする。積層セラミックコンデンサ10の寸法は、長さ方向zのL寸法が0.2mm以上10.0mm以下、幅方向yのW寸法が0.1mm以上10.0mm以下、高さ方向xのT寸法が0.1mm以上10.0mm以下である。また、積層セラミックコンデンサ10の寸法は、マイクロスコープにより測定することができる。
 図1に示す積層セラミックコンデンサ10は、第1の端面側導電性樹脂層部34aおよび第1の隣接導電性樹脂層部34aにおける樹脂成分と金属成分との合計を100%とした際に、第1の隣接導電性樹脂層部34aに含まれる樹脂成分の含有比率が、第1の端面側導電性樹脂層部34aに含まれる樹脂成分の含有比率よりも多く、第2の端面側導電性樹脂層部34bおよび第2の隣接導電性樹脂層部34bにおける樹脂成分と金属成分との合計を100%とした際に、第2の隣接導電性樹脂層部34bに含まれる樹脂成分の含有比率が、第2の端面側導電性樹脂層部34bに含まれる樹脂成分の含有比率よりも多い。また、第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける樹脂成分の含有比率は、樹脂成分と金属成分との合計を100%とした際に、10%以上60%以下である。これにより、導電性樹脂層34に含まれる金属成分である金属フィラーが多い第1の端面側導電性樹脂層部34aおよび第2の端面側導電性樹脂層部34bにおける樹脂成分の含有比率が、樹脂成分と金属成分との合計を100%とした際に、10%以上60%以下であるので、導電性を向上させることが可能となり、その結果、積層セラミックコンデンサのESRを低下させることができる。一方、樹脂の量が多い第1の隣接導電性樹脂層部34aおよび第2の隣接導電性樹脂層部34bでは、十分な弾性を持たせることが可能となるため、落下時の衝撃による応力や、熱サイクルを受けて実装基板が熱膨張収縮することにより発生するたわみ応力が発生した際、実装基板に伝わる応力(実装基板のゆがみ)を、第1の隣接導電性樹脂層部34aの先端を起点として、第1の下地電極層32aと第1の隣接導電性樹脂層部34aとの間や、第1のめっき層36aと第1の隣接導電性樹脂層部34aとの間で剥離させることができ、第1の隣接導電性樹脂層部34aの内部を凝集破壊させることができ、同様に、第2の隣接導電性樹脂層部34bの先端を起点として、第2の下地電極層32bと第2の隣接導電性樹脂層部34bとの間や、第2のめっき層36bと第2の隣接導電性樹脂層部34bとの間で剥離させることができ、第2の隣接導電性樹脂層部34bの内部を凝集破壊させることができる。その結果、応力を逃がし、積層体12にクラックが入ることを抑制することが可能となり、積層セラミックコンデンサ10の機械強度を向上させることができる。以上のことから、本発明では、積層セラミックコンデンサ10に対する機械強度の改善と、ESR特性のトレードオフの関係において、この両方の特性を効果的に発揮することが可能となる。
2.積層セラミックコンデンサの製造方法
 次に、積層セラミックコンデンサの製造方法について説明する。
 まず、セラミック層用の誘電体シートおよび内部電極層用の導電性ペーストが準備される。誘電体シートおよび内部電極層用の導電性ペーストは、バインダおよび溶剤を含む。バインダおよび溶剤は、公知のものであってよい。
 そして、誘電体シート上に、内部電極層用の導電性ペーストが、例えば、スクリーン印刷やグラビア印刷などにより所定のパターンで印刷される。これにより、第1の内部電極層のパターンが形成された誘電体シート、および第2の内部電極層のパターンが形成された誘電体シートが準備される。
 また、誘電体シートに関しては、内部電極層のパターンが印刷されていない外層用の誘電体シートも準備される。
 続いて、内部電極層のパターンが印刷されていない外層用の誘電体シートが所定枚数積層されることにより、第2の主面側の第2の外層部となる部分が形成される。そして、第2の外層部となる部分の上に第1の内部電極層のパターンが印刷された誘電体シート、および第2の内部電極層のパターンが印刷された誘電体シートを本発明の構造となるように順次積層されることにより、有効層部となる部分が形成される。この有効層部となる部分の上に、内部電極層のパターンが印刷されてない外層用の誘電体シートが所定枚数積層されることにより、第1の主面側の第1の外層部となる部分が形成される。
 次に、積層シートが静水圧プレスなどの手段により積層方向にプレスされることにより、積層ブロックが作製される。
 そして、積層ブロックを所定のサイズにカットされることにより、積層チップが切り出される。このとき、バレル研磨などにより積層チップの角部および稜線部に丸みをつけてもよい。
 次に、積層チップが焼成されることにより、積層体12が作製される。焼成温度は、誘電体であるセラミック層や内部電極層の材料にもよるが、900℃以上1400℃以下であることが好ましい。
 つづけて、積層体の第1の端面および第2の端面に下地電極層となる導電性ペーストを塗布し、下地電極層を形成する。下地電極層として焼付け層を形成する場合には、ガラス成分と金属とを含む導電性ペーストを例えばディッピングなどの方法により、塗布し、その後、焼付け処理を行い、下地電極層が形成される。この時の焼付け処理の温度は、700℃以上950℃以下であることが好ましい。
 また、下地電極層を焼付け層で形成する場合は、焼き付け層はセラミック成分を含有させてもよい。この場合、ガラス成分の代わりにセラミック成分を含有させてもよいし、その両方を含有させてもよい。
 セラミック成分は、例えば、積層体と同種のセラミック材料であることが好ましい。なお、焼付け層にセラミック成分を含ませる場合には、焼成前の積層チップに対して、導電性ペーストを塗布し、焼成前の積層チップと焼成前の積層チップに塗布された導電性ペーストを同時に焼付けて(焼成して)、焼付け層が形成された積層体を形成することが好ましい。この時の焼付け処理の温度(焼成温度)は、900℃以上1400℃以下であることが好ましい。
 次に、導電性樹脂層が、下地電極層上に形成される。このとき、端面側導電性樹脂層部と隣接導電性樹脂層部とは、塗り分けて形成される。
 端面側導電性樹脂層部の形成は、以下の方法により行われる。まず、積層体を第1の端面側または第2の端面側を上向きにして背列プレートに並べ、端面側導電性樹脂層部を形成したい部分のみに端面側導電性樹脂層部用の第1の導電性樹脂ペーストを塗布する。第1の導電性樹脂ペーストに含まれる金属フィラーの量は、樹脂成分に対して35vol%以上95vol%以下で含まれることが好ましい。また、第1の導電性樹脂ペーストに含まれる樹脂成分の量は、金属フィラーに対して、5vol%以上65vol%以下で含まれることが好ましい。その後、200℃以上550℃以下の温度で熱処理を行い、第1の導電性樹脂ペーストを硬化させる。このときの熱処理時の雰囲気は、N雰囲気であることが好ましい。また、樹脂の飛散を防ぎ、かつ、各種金属成分の酸化を防ぐため、酸素濃度は100ppm以下に抑えることが好ましい。
 次に、隣接導電性樹脂層部の形成は、以下の方法により行われる。まず、積層体の第1の主面側、第2の主面側、第1の側面側および第2の側面側をそれぞれ上向きにして整列プレートに並べ、隣接導電性樹脂層部用の第2の導電性樹脂ペーストを形成したい部分のみに隣接導電性樹脂層部用の第2の導電性樹脂ペーストが塗布できるようにマスキングを行い、スクリーン印刷法を用いて、隣接導電性樹脂層部用の第2の導電性樹脂ペーストを塗布する。第2の導電性樹脂ペーストに含まれる金属フィラーの量は、樹脂成分に対して5vol%以上65vol%以下で含まれることが好ましい。また、第2の導電性樹脂ペーストに含まれる樹脂成分の量は、金属フィラーに対して、50vol%以上95vol%以下で含まれることが好ましい。その後、200℃以上550℃以下の温度で熱処理を行い、第2の導電性樹脂ペーストを硬化させる。このときの熱処理時の雰囲気は、N雰囲気であることが好ましい。また、樹脂の飛散を防ぎ、かつ、各種金属成分の酸化を防ぐため、酸素濃度は100ppm以下に抑えることが好ましい。
 なお、本発明では、端面側導電性樹脂層部や隣接導電性樹脂層部の熱処理の温度や、端面側導電性樹脂層部および隣接導電性樹脂層部を形成する際に用いる第1の導電性樹脂ペーストおよび第2の導電性樹脂ペーストに含まれる金属フィラーの量や樹脂量を調整することにより、端面側導電性樹脂層部および隣接導電性樹脂層部の金属フィラーと樹脂量とをコントロールすることができる。
 次に、下地電極層の表面にめっき層が形成される。より詳細には、下地電極層上に、Niめっき層およびNiめっき層上にSnめっき層が形成される。めっき処理を行うにあたっては、無電解めっきが採用される。導電性樹脂層は、金属成分の含有量が少ないため、導通が困難である。そのため、電解めっきによりめっき層が形成される。めっき工法としては、バレルめっきを用いることが好ましい。
 上述のようにして、本実施の形態に係る積層セラミックコンデンサ10が製造される。
3.実験例1
 上述した製造方法にしたがって、積層セラミック電子部品として、試料である積層セラミックコンデンサを作製し、ESRの測定および基板曲げ試験による積層体内へのクラックの有無を確認することにより評価を行った。
(a)実施例の試料の仕様
 実施例として、図1ないし図4に示す構造とし、以下の仕様の積層セラミックコンデンサを準備した。
・積層セラミックコンデンサの寸法(設計値):L×W×T=3.2mm×2.5mm×2.5mm
・セラミック層の主成分の材料:BaTiO
・容量:1nF
・定格電圧:50V
・内部電極層の材料:Ni
・外部電極層の仕様
 ・下地電極層の仕様
  ・下地電極層:金属成分とガラス成分を含む焼付け層
  ・金属成分:Cu
  ・下地電極層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置する下地電極層の高さ方向xの中央部における長さ方向zの厚み:30μm
  ・1/2W位置の積層体の断面における第1の主面および第2の主面に位置する下地電極層の長さ方向zの中央部における第1の主面および第2の主面を結ぶ高さ方向xの厚み(e寸中央部部分の下地電極層の厚み):5μm
  ・1/2T位置の積層体の断面における第1の側面および第2の側面に位置する下地電極層の長さ方向zの中央部における第1の側面および第2の側面を結ぶ幅方向yの厚み(e寸中央部部分の下地電極層の厚み):5μm
 ・導電性樹脂層の仕様
  ・端面側導電性樹脂層部:金属フィラー:Ag
              樹脂成分  :エポキシ系
              熱硬化温度 :230℃
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置する端面側導電性樹脂層部の高さ方向xの中央部における長さ方向zの厚み:30μm
  ・金属フィラーと樹脂量のそれぞれの含有量の比率:金属フィラー:樹脂=70:30
  ・隣接導電性樹脂層部::金属フィラー:Ag
              樹脂成分  :エポキシ系
              熱硬化温度 :230℃
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置する端面側導電性樹脂層部の高さ方向xの中央部における長さ方向zの厚み:10μm
  ・金属フィラーと樹脂量のそれぞれの含有量の比率:金属フィラー:樹脂=40:60
 ・めっき層の仕様:2層で形成し、下地電極層上にNiめっき層、Niめっき層上にSnめっき層を形成した。
  ・Niめっき層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置するNiめっき層の高さ方向xの中央部における長さ方向zの厚み:3μm
  ・第1の主面および第2の主面、ならびに第1の側面および第2の側面上に位置するNiめっき層の長さ方向zの中央部における厚み:3μm
  ・Snめっき層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置するNiめっき層の高さ方向xの中央部における長さ方向zの厚み:4μm
  ・第1の主面および第2の主面、ならびに第1の側面および第2の側面上に位置するNiめっき層の長さ方向zの中央部における厚み:4μm
(b)比較例1の試料の仕様
 比較例1として、以下の仕様の積層セラミックコンデンサを準備した。すなわち、比較例1の積層セラミックコンデンサは、端面側導電性樹脂層部に含まれる樹脂量を60vol%とし、隣接導電性樹脂層部に含まれる樹脂量を60vol%としたものである。その他の仕様は、以下のとおりである。
・積層セラミックコンデンサの寸法(設計値):L×W×T=3.2mm×2.5mm×2.5mm
・セラミック層の主成分の材料:BaTiO
・容量:1nF
・定格電圧:50V
・内部電極層の材料:Ni
・外部電極層の仕様
 ・下地電極層の仕様
  ・下地電極層:金属成分とガラス成分を含む焼付け層
  ・金属成分:Cu
  ・下地電極層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置する下地電極層の高さ方向xの中央部における長さ方向zの厚み:30μm
  ・1/2W位置の積層体の断面における第1の主面および第2の主面に位置する下地電極層の長さ方向zの中央部における第1の主面および第2の主面を結ぶ高さ方向xの厚み(e寸中央部部分の下地電極層の厚み):5μm
  ・1/2T位置の積層体の断面における第1の側面および第2の側面に位置する下地電極層の長さ方向zの中央部における第1の側面および第2の側面を結ぶ幅方向yの厚み(e寸中央部部分の下地電極層の厚み):5μm
 ・導電性樹脂層の仕様
  ・端面側導電性樹脂層部:金属フィラー:Ag
              樹脂成分  :エポキシ系
              熱硬化温度 :230℃
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置する端面側導電性樹脂層部の高さ方向xの中央部における長さ方向zの厚み:30μm
  ・金属フィラーと樹脂量のそれぞれの含有量の比率:金属フィラー:樹脂=40:60
  ・隣接導電性樹脂層部::金属フィラー:Ag
              樹脂成分  :エポキシ系
              熱硬化温度 :230℃
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置する端面側導電性樹脂層部の高さ方向xの中央部における長さ方向zの厚み:10μm
  ・金属フィラーと樹脂量のそれぞれの含有量の比率:金属ファイラー:樹脂=40:60
 ・めっき層の仕様:2層で形成し、下地電極層上にNiめっき層、Niめっき層上にSnめっき層を形成した。
  ・Niめっき層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置するNiめっき層の高さ方向xの中央部における長さ方向zの厚み:3μm
  ・第1の主面および第2の主面、ならびに第1の側面および第2の側面上に位置するNiめっき層の長さ方向zの中央部における厚み:3μm
  ・Snめっき層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置するNiめっき層の高さ方向xの中央部における長さ方向zの厚み:4μm
  ・第1の主面および第2の主面、ならびに第1の側面および第2の側面上に位置するNiめっき層の長さ方向zの中央部における厚み:4μm
(c)比較例2の試料の仕様
 比較例2として、以下の仕様の積層セラミックコンデンサを準備した。比較例2として、以下の仕様の積層セラミックコンデンサを準備した。すなわち、比較例1の積層セラミックコンデンサは、端面側導電性樹脂層部に含まれる樹脂量を60vol%とし、隣接導電性樹脂層部に含まれる樹脂量を30vol%としたものである。その他の仕様は、以下のとおりである。
・積層セラミックコンデンサの寸法(設計値):L×W×T=3.2mm×2.5mm×2.5mm
・セラミック層の主成分の材料:BaTiO
・容量:1nF
・定格電圧:50V
・内部電極層の材料:Ni
・外部電極層の仕様
 ・下地電極層の仕様
  ・下地電極層:金属成分とガラス成分を含む焼付け層
  ・金属成分:Cu
  ・下地電極層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置する下地電極層の高さ方向xの中央部における長さ方向zの厚み:30μm
  ・1/2W位置の積層体の断面における第1の主面および第2の主面に位置する下地電極層の長さ方向zの中央部における第1の主面および第2の主面を結ぶ高さ方向xの厚み(e寸中央部部分の下地電極層の厚み):5μm
  ・1/2T位置の積層体の断面における第1の側面および第2の側面に位置する下地電極層の長さ方向zの中央部における第1の側面および第2の側面を結ぶ幅方向yの厚み(e寸中央部部分の下地電極層の厚み):5μm
 ・導電性樹脂層の仕様
  ・端面側導電性樹脂層部:金属フィラー:Ag
              樹脂成分  :エポキシ系
              熱硬化温度 :230℃
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置する端面側導電性樹脂層部の高さ方向xの中央部における長さ方向zの厚み:30μm
  ・金属フィラーと樹脂量のそれぞれの含有量の比率:金属フィラー:樹脂=40:60
  ・隣接導電性樹脂層部::金属フィラー:Ag
              樹脂成分  :エポキシ系
              熱硬化温度 :230℃
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置する端面側導電性樹脂層部の高さ方向xの中央部における長さ方向zの厚み:10μm
  ・金属フィラーと樹脂量のそれぞれの含有量の比率:金属ファイラー:樹脂=70:30
 ・めっき層の仕様:2層で形成し、下地電極層上にNiめっき層、Niめっき層上にSnめっき層を形成した。
  ・Niめっき層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置するNiめっき層の高さ方向xの中央部における長さ方向zの厚み:3μm
  ・第1の主面および第2の主面、ならびに第1の側面および第2の側面上に位置するNiめっき層の長さ方向zの中央部における厚み:3μm
  ・Snめっき層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置するNiめっき層の高さ方向xの中央部における長さ方向zの厚み:4μm
  ・第1の主面および第2の主面、ならびに第1の側面および第2の側面上に位置するNiめっき層の長さ方向zの中央部における厚み:4μm
(d)比較例3の試料の仕様
 比較例3として、以下の仕様の積層セラミックコンデンサを準備した。すなわち、外部電極に、導電性樹脂層自体を設けない積層セラミックコンデンサを準備した。その他の仕様は、以下のとおりである。
・積層セラミックコンデンサの寸法(設計値):L×W×T=3.2mm×2.5mm×2.5mm
・セラミック層の主成分の材料:BaTiO
・容量:1nF
・定格電圧:50V
・内部電極層の材料:Ni
・外部電極層の仕様
 ・下地電極層の仕様
  ・下地電極層:金属成分とガラス成分を含む焼付け層
  ・金属成分:Cu
  ・下地電極層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置する下地電極層の高さ方向xの中央部における長さ方向zの厚み:80μm
  ・1/2W位置の積層体の断面における第1の主面および第2の主面に位置する下地電極層の長さ方向zの中央部における第1の主面および第2の主面を結ぶ高さ方向xの厚み(e寸中央部部分の下地電極層の厚み):5μm
  ・1/2T位置の積層体の断面における第1の側面および第2の側面に位置する下地電極層の長さ方向zの中央部における第1の側面および第2の側面を結ぶ幅方向yの厚み(e寸中央部部分の下地電極層の厚み):5μm
 ・めっき層の仕様:2層で形成し、下地電極層上にNiめっき層、Niめっき層上にSnめっき層を形成した。
  ・Niめっき層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置するNiめっき層の高さ方向xの中央部における長さ方向zの厚み:3μm
  ・第1の主面および第2の主面、ならびに第1の側面および第2の側面上に位置するNiめっき層の長さ方向zの中央部における厚み:3μm
  ・Snめっき層の厚み
  ・1/2W位置の積層体の断面における第1の端面および第2の端面に位置するNiめっき層の高さ方向xの中央部における長さ方向zの厚み:4μm
  ・第1の主面および第2の主面、ならびに第1の側面および第2の側面上に位置するNiめっき層の長さ方向zの中央部における厚み:4μm
(e)端面側導電性樹脂層部における金属成分を構成する金属フィラーの含有比率の測定方法
 端面側導電性樹脂層部における金属成分を構成する金属フィラーの含有比率の測定は、以下に示すように、断面で測定した。すなわち、まず、試料である積層セラミックコンデンサの第1の側面もしくは第2の側面から研磨を開始し、第1の側面および第2の側面を結ぶ幅方向yの1/2Wとなる位置まで研磨したLT面で、第1の端面側または第2の端面側の端面側導電性樹脂層部の高さ方向xの中央部を確認した。あるいは、試料である積層セラミックコンデンサの第1の主面または第2の主面から研磨を開始し、第1の主面および第2の主面を結ぶ高さ方向xの1/2Tとなる位置まで研磨したLW面で、第1の端面側または第2の端面側の端面側導電性樹脂層部の幅方向yの中央部を確認した。次に、走査電子顕微鏡(SEM)を用いて、熱硬化性樹脂とその他の部分(金属成分(金属フィラー)、空隙)に区別できるように、反射電子像、加速電圧5kV、倍率1000倍で観察し、撮影した。その後、撮影した画像を画像解析ソフトで熱硬化性樹脂とそれ以外とを2値化し、端面側導電性樹脂層部における金属成分の含有比率を求めた。観察した数であるn数は100箇所とし、それらの平均値を端面側導電性樹脂層部における金属成分の含有比率とした。
(f)端面側導電性樹脂層部における樹脂成分の含有比率の測定方法
 隣接導電性樹脂層部における樹脂成分の含有比率の測定方法は、以下に示すように、断面で測定した。すなわち、まず、試料である積層セラミックコンデンサの第1の側面もしくは第2の側面から研磨を開始し、第1の側面および第2の側面を結ぶ幅方向yの1/2Wとなる位置まで研磨したLT面で、第1の主面側または第2の主面側の隣接導電性樹脂層部の長さ方向zの中央部を確認した。あるいは、試料である積層セラミックコンデンサの第1の主面または第2の主面から研磨を開始し、第1の主面および第2の主面を結ぶ高さ方向xの1/2Tとなる位置まで研磨したLW面で、第1の側面側または第2の側面側の隣接導電性樹脂層部の長さ方向zの中央部を確認した。次に、走査電子顕微鏡(SEM)を用いて、熱硬化性樹脂とその他の部分(金属成分(金属フィラー)、空隙)に区別できるように、反射電子像、加速電圧5kV、倍率1000倍で観察し、撮影した。その後、撮影した画像を画像解析ソフトで熱硬化性樹脂とそれ以外とを2値化し、隣接導電性樹脂層部における樹脂成分の含有比率を求めた。観察した数であるn数は100箇所とし、それらの平均値を端面側導電性樹脂層部における樹脂成分の含有比率とした。
(g)隣接導電性樹脂層部における金属成分を構成する金属フィラーの含有比率の測定方法
 隣接導電性樹脂層部における金属成分の含有比率の測定方法は、以下に示すように、断面で測定した。すなわち、まず、試料である積層セラミックコンデンサの第1の側面もしくは第2の側面から研磨を開始し、第1の側面および第2の側面を結ぶ幅方向yの1/2Wとなる位置まで研磨したLT面で、第1の主面側または第2の主面側の隣接導電性樹脂層部の高さ方向xの中央部を確認した。あるいは、試料である積層セラミックコンデンサの第1の主面または第2の主面から研磨を開始し、第1の主面および第2の主面を結ぶ高さ方向xの1/2Tとなる位置まで研磨したLW面で、第1の側面側または第2の側面側の隣接導電性樹脂層部の長さ方向zの中央部を確認した。次に、走査電子顕微鏡(SEM)を用いて、熱硬化性樹脂とその他の部分(金属成分(金属フィラー)、空隙)に区別できるように、反射電子像、加速電圧5kV、倍率1000倍で観察し、撮影した。その後、撮影した画像を画像解析ソフトで熱硬化性樹脂とそれ以外とを2値化し、隣接導電性樹脂層部における金属成分の含有比率を求めた。観察した数であるn数は100箇所とし、それらの平均値を隣接導電性樹脂層部における金属成分の含有比率とした。
(h)隣接導電性樹脂層部における樹脂成分の含有比率の測定方法
 隣接導電性樹脂層部における樹脂成分の含有比率の測定方法は、以下に示すように、断面で測定した。すなわち、まず、試料である積層セラミックコンデンサの第1の側面もしくは第2の側面から研磨を開始し、第1の側面および第2の側面を結ぶ幅方向yの1/2Wとなる位置まで研磨したLT面で、第1の主面側または第2の主面側の隣接導電性樹脂層部の長さ方向zの中央部を確認した。あるいは、試料である積層セラミックコンデンサの第1の主面または第2の主面から研磨を開始し、第1の主面および第2の主面を結ぶ高さ方向xの1/2Tとなる位置まで研磨したLW面で、第1の側面側または第2の側面側の隣接導電性樹脂層部の長さ方向zの中央部を確認した。次に、走査電子顕微鏡(SEM)を用いて、熱硬化性樹脂とその他の部分(金属成分(金属フィラー)、空隙)に区別できるように、反射電子像、加速電圧5kV、倍率1000倍で観察し、撮影した。その後、撮影した画像を画像解析ソフトで熱硬化性樹脂とそれ以外とを2値化し、隣接導電性樹脂層部における樹脂成分の含有比率を求めた。観察した数であるn数は100箇所とし、それらの平均値を隣接導電性樹脂層部における樹脂成分の含有比率とした。
(i)基板曲げ試験によるクラックの有無の確認方法
 まず、試料である積層セラミックコンデンサを、半田ペーストを用いて1.6mmの厚さの実装基板に実装した。その後、積層セラミックコンデンサの実装されていない実装基板の裏面から径5μmの押し棒にて基板を曲げ、機械的ストレスをかけた。このときの保持時間は60秒とし、曲げ量は17mmとした。なお、今回の試験では通常の条件よりも厳しい条件とした。基板曲げを行った後、実装基板から積層セラミックコンデンサを外し、断面研磨を行い積層体の内部におけるクラックの有無を観察した。断面研磨は、積層セラミックコンデンサの第1の側面および第2の側面を結ぶ幅方向yの1/2Wとなる位置まで積層セラミックコンデンサのLT面が露出するように研磨を行った。実施例、ならびに比較例1ないし比較例3の各試料として、それぞれ100個準備した。なお、20個以下の場合、効果ありと判定した。
(j)ESRの測定方法
 ESRの測定は、次のとおりの方法により行った。すなわち、まず、測定前に、試料である積層セラミックコンデンサを空気雰囲気で150℃の条件で1時間の熱処理を行い、その後、測定用基板に実装し、熱処理完了後24±2時間後に、測定周波数を1MHzとし、ネットワークアナライザを用いて測定した。実施例、ならびに比較例1ないし比較例3の各試料として、それぞれ100個準備したうえで、100個測定し、その平均値を、実施例、ならびに比較例1ないし比較例3の各試料のESRの測定値とした。なお、100mΩ以下を合格として判定した。
(k)結果
 表1は、実施例、ならびに比較例1ないし比較例3の各試料に対する基板曲げ試験による積層体の内部におけるクラックの有無の確認、およびESRの測定を行った結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1によれば、比較例1の試料では、端面側導電性樹脂層部および隣接導電性樹脂層部の金属成分の含有比率が、いずれも40%であったため、ESRの測定結果は、90mΩであったが、端面側導電性樹脂層部および隣接導電性樹脂層部の樹脂成分の含有比率が、いずれも60%であったため、クラックの有無を確認した結果、100個中20個のクラックが発生した。また、比較例2では、端面側導電性樹脂層部の金属成分の含有比率が40%であったため、ESRの測定結果は、90mΩであったが、隣接導電性樹脂層部の樹脂成分の含有比率が30%と比較的低いため、クラックの有無を確認した結果、100個中50個のクラックが発生した。さらに、比較例3では、導電性樹脂層自体が形成されていないため、ESRの測定結果は、20mΩであったが、クラックの有無を確認した結果、100個中70個のクラックが発生した。
 一方、実施例の試料では、隣接導電性樹脂層部に含まれる樹脂成分の含有比率が60%であり、端面側導電性樹脂層部に含まれる樹脂成分の含有比率30%であることから、隣接導電性樹脂層部に含まれる樹脂成分の含有比率が、端面側導電性樹脂層部に含まれる樹脂成分の含有比率よりも多い、よりも多いため、ESRの測定結果が25mΩと良好であり、クラックの有無を確認した結果、100個中0個と良好な結果が得られた。
 以上の結果から、実施例の積層セラミックコンデンサの構造によれば、端面側導電性樹脂層部および隣接導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、隣接導電性樹脂層部に含まれる樹脂成分の含有比率が、端面側導電性樹脂層部に含まれる樹脂成分の含有比率よりも多いことから、導通性が確保されており、ESRが比較的低い結果が得られ、また、積層体の内部にクラックが入ることを抑制することができる。以上より、本願発明に係る積層セラミックコンデンサによれば、積層セラミックコンデンサに対する機械強度を有しつつ、所望のESR特性を有しうることが確認された。
4.実験例2
 次に、上述した製造方法にしたがって、端面側導電樹脂層部および隣接導電性樹脂層部それぞれの樹脂成分の含有比率を変化させた試料を準備し、ESRの測定および基板曲げ試験による積層体内へのクラックの有無を確認することにより評価を行った。実験例2に用いた試料において、樹脂成分の含有比率以外の仕様は、実験例1における実施例1の仕様と同一とした。
(a)実験例2において用いた試料
 表2に示すように、試料番号1ないし試料番号7の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が5%であり、隣接導電性樹脂層部の樹脂成分の含有比率を変化させ、試料番号8ないし試料番号15の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が10%であり、隣接導電性樹脂層部の樹脂成分の含有比率を変化させ、試料番号16ないし試料番号22の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が30%であり、隣接導電性樹脂層部の樹脂成分の含有比率を変化させ、試料番号23ないし試料番号26の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が40%であり、隣接導電性樹脂層部の樹脂成分の含有比率を変化させ、試料番号27ないし試料番号31の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が60%であり、隣接導電性樹脂層部の樹脂成分の含有比率を変化させ、試料番号32ないし試料番号35の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が65%であり、隣接導電性樹脂層部の樹脂成分の含有比率を変化させた試料を準備した。
(b)実験方法
 積層体の内部におけるクラックの有無の確認方法、およびESRの測定方法は、実験例1と同様の方法により行った。
(c)結果
 表2は、試料番号1ないし試料番号35の各試料に対する基板曲げ試験による積層体の内部におけるクラックの有無の確認、およびESRの測定を行った結果を示す。
Figure JPOXMLDOC01-appb-T000002
 試料番号1ないし試料番号7の各試料は、端面側導電性樹脂層部の樹脂成分の含有比率が5%であり、10%より小さいため、ESRの値が110mΩであった。これは、隣接導電性樹脂層部の樹脂成分の含有比率とは別に、端面側導電性樹脂層部の樹脂成分として必要な含有比率が存在していることを示している。試料番号1および試料番号2の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が、隣接導電性樹脂層部の樹脂成分の含有比率以上であり、かつ、端面側導電性樹脂層部の樹脂成分の含有比率および隣接導電性樹脂層部の樹脂成分の含有比率がいずれも比較的低いので、試料番号1の試料では、100個中100個の試料において、積層体の内部にクラックが入り、試料番号2の試料では、100個中90個の試料において、積層体の内部にクラックが入った。なお、試料番号3ないし試料番号7の各試料では、ESRが110mΩであったが、隣接導電性樹脂層部の樹脂成分の含有比率が10%以上であったので、いずれの試料番号の試料においても、積層体の内部にクラックが生じた試料が、100個中20個以下と比較的少ない試料数であった。
 試料番号8ないし試料番号15の各試料は、端面側導電性樹脂層部の樹脂成分の含有比率が10%であるが、試料番号8および試料番号9の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が、隣接導電性樹脂層部の樹脂成分の含有比率以上であるので、試料番号8の試料では、100個中90個の試料において、積層体の内部にクラックが入り、試料番号9の試料では、100個中80個の試料において、積層体の内部にクラックが入った。一方、試料番号10ないし試料番号15の各試料では、ESRが20mΩと100mΩ以下であり、いずれの試料番号の試料においても、積層体の内部にクラックが生じた試料が、100個中15個以下と比較的少ない試料数であった。特に、試料番号11ないし試料番号14では、隣接導電性樹脂層部の樹脂成分の含有比率が40%以上90%以下であったので、クラックが入った試料は100個中0個であった。
 試料番号16ないし試料番号22の各試料は、端面側導電性樹脂層部の樹脂成分の含有比率が30%であるが、試料番号16および試料番号17の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が、隣接導電性樹脂層部の樹脂成分の含有比率以上であるので、試料番号16の試料では、100個中80個の試料において、積層体の内部にクラックが入り、試料番号17の試料では、100個中50個の試料において、積層体の内部にクラックが入った。一方、試料番号18ないし試料番号22の各試料では、ESRが25mΩと100mΩ以下であり、いずれの試料番号の試料においても、積層体の内部にクラックが生じた試料が、100個中10個以下と比較的少ない試料数であった。特に、試料番号18ないし試料番号21では、隣接導電性樹脂層部の樹脂成分の含有比率が40%以上90%以下であったので、クラックが入った試料は100個中0個であった。
 試料番号23ないし試料番号26の各試料では、端面側導電性樹脂層部の樹脂成分の含有比率が40%であるが、試料番号23の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が、隣接導電性樹脂層部の樹脂成分の含有比率以上であるので、試料番号23の試料では、100個中50個の試料において、積層体の内部にクラックが入った。一方、試料番号24ないし試料番号26の各試料では、ESRが45mΩと100mΩ以下であり、いずれの試料番号の試料においても、積層体の内部にクラックが生じた試料が、100個中15個以下と比較的少ない試料数であった。特に、試料番号24および試料番号25では、隣接導電性樹脂層部の樹脂成分の含有比率が40%以上90%以下であったので、クラックが入った試料は100個中0個であった。
 試料番号27ないし試料番号31の各試料では、端面側導電性樹脂層部の樹脂成分の含有比率が60%であるが、試料番号27および試料番号28の試料は、端面側導電性樹脂層部の樹脂成分の含有比率が、隣接導電性樹脂層部の樹脂成分の含有比率以上であるので試料番号27の試料では、100個中50個の試料において、積層体の内部にクラックが入り、試料番号28の試料では、100個中20個の試料において、積層体の内部にクラックが入った。一方、試料番号29ないし試料番号31の各試料では、ESRが90mΩと100mΩ以下であり、いずれの試料番号の試料においても、積層体の内部にクラックが生じた試料が、100個中15個以下と比較的少ない試料数であった。特に、試料番号29および試料番号30では、隣接導電性樹脂層部の樹脂成分の含有比率が40%以上90%以下であったので、クラックが入った試料は100個中0個であった。
 試料番号32ないし試料番号35の各試料では、端面側導電性樹脂層部の樹脂成分の含有比率が65%であるので、ESRの値が120mΩであった。なお、試料番号32ないし試料番号35の各試料では、端面側導電性樹脂層部の樹脂成分の含有比率が65%であるので、いずれの試料番号の試料においても、積層体の内部にクラックが生じた試料が、100個中15個以下と比較的少ない試料数であった。
 以上の結果から、端面側導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、端面側導電性樹脂層部の樹脂成分の含有比率を10%以上60%以下とし、隣接導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、隣接導電性樹脂層部における樹脂成分の含有比率を40%以上90%以下とした場合、所望のESRを有し、かつ、クラックが生じない積層セラミックコンデンサの得られることが確認された。換言すると、前記端面側導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、端面側導電性樹脂層部における金属成分の含有比率を40%以上90%以下とし、前記隣接導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、隣接導電性樹脂層部における金属成分の含有比率を10%以上60%以下とした場合、所望のESRを有し、かつ、クラックが生じない積層セラミックコンデンサの得られることが確認された。
 なお、以上のように、本発明の実施の形態は、前記記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明の技術的思想および目的の範囲から逸脱することなく、以上説明した実施の形態に対し、機序、形状、材質、数量、位置または配置等に関して、様々の変更を加えることができるものであり、それらは、本発明に含まれるものである。
  10 積層セラミックコンデンサ
  12 積層体
  12a 第1の主面
  12b 第2の主面
  12c 第1の側面
  12d 第2の側面
  12e 第1の端面
  12f 第2の端面
  14 セラミック層
  16 内部電極層
  16a 第1の内部電極層
  16b 第2の内部電極層
  18 有効層部
  20a 第1の外層部
  20b 第2の外層部
  22a 第1の対向電極部
  22b 第2の対向電極部
  22c 対向電極部
  24a 第1の引出電極部
  24b 第2の引出電極部
  26 側部(Wギャップ)
  28 端部(Lギャップ)
  30 外部電極
  30a 第1の外部電極
  30b 第2の外部電極
  32 下地電極層
  32a 第1の下地電極層
  32b 第2の下地電極層
  34 導電性樹脂層
  34a 第1の導電性樹脂層
  34a 第1の端面側導電性樹脂層部
  34a 第1の隣接導電性樹脂層部
  34b 第2の導電性樹脂層
  34b 第2の端面側導電性樹脂層部
  34b 第2の隣接導電性樹脂層部
  36 めっき層
  36a 第1のめっき層
  36b 第2のめっき層
  x 高さ方向
  y 幅方向
  z 長さ方向

Claims (3)

  1.  積層された複数のセラミック層を含み、高さ方向に相対する第1の主面および第2の主面と、前記高さ方向に直交する幅方向に相対する第1の側面および第2の側面と、前記高さ方向および前記幅方向に直交する長さ方向に相対する第1の端面および第2の端面と、を有する積層体と、
     前記複数のセラミック層上に配置され、前記第1の端面に露出する第1の内部電極層と、
     前記複数のセラミック層上に配置され、前記第2の端面に露出する第2の内部電極層と、
     前記第1の内部電極層と電気的に接続され、前記第1の端面上、前記第1の主面の一部、前記第2の主面の一部、前記第1の側面の一部および前記第2の側面の一部に配置される第1の外部電極と、
     前記第2の内部電極層と電気的に接続され、前記第2の端面上、前記第1の主面の一部、前記第2の主面の一部、前記第1の側面の一部および前記第2の側面の一部に配置される第2の外部電極と、を有する積層セラミック電子部品において、
     前記第1の外部電極および前記第2の外部電極は、金属成分およびガラス成分を含む下地電極層と、前記下地電極層上に配置される金属成分および樹脂成分を含む導電性樹脂層と、前記導電性樹脂層上に配置されるめっき層とを有し、
     前記導電性樹脂層は、前記第1の端面上および前記第2の端面上に位置する端面側導電性樹脂層部と、前記端面側導電性樹脂層部の端部から延びて前記第1の主面上、前記第2の主面上、前記第1の側面上および前記第2の側面上に位置する隣接導電性樹脂層部と、を有し、
     前記端面側導電性樹脂層部および前記隣接導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、前記隣接導電性樹脂層部に含まれる樹脂成分の含有比率が、前記端面側導電性樹脂層部に含まれる樹脂成分の含有比率よりも多く、かつ、前記端面側導電性樹脂層部における樹脂成分の含有比率は、10%以上60%以下である、積層セラミック電子部品。
  2.  前記隣接導電性樹脂層部における樹脂成分の含有比率は、前記隣接導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、40%以上90%以下である、請求項1に記載の積層セラミック電子部品。
  3.  前記端面側導電性樹脂層部における金属成分の含有比率は、前記端面側導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、40%以上90%以下であり、
     前記隣接導電性樹脂層部における金属成分の含有比率は、前記隣接導電性樹脂層部における樹脂成分と金属成分との合計を100%とした際に、10%以上60%以下である、請求項1または請求項2に記載の積層セラミック電子部品。
PCT/JP2022/041769 2021-11-26 2022-11-09 積層セラミック電子部品 WO2023095620A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021192512 2021-11-26
JP2021-192512 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095620A1 true WO2023095620A1 (ja) 2023-06-01

Family

ID=86539466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041769 WO2023095620A1 (ja) 2021-11-26 2022-11-09 積層セラミック電子部品

Country Status (1)

Country Link
WO (1) WO2023095620A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034440A (ja) * 2019-08-20 2021-03-01 株式会社村田製作所 積層セラミック電子部品
JP2021034458A (ja) * 2019-08-21 2021-03-01 株式会社村田製作所 積層セラミック電子部品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034440A (ja) * 2019-08-20 2021-03-01 株式会社村田製作所 積層セラミック電子部品
JP2021034458A (ja) * 2019-08-21 2021-03-01 株式会社村田製作所 積層セラミック電子部品

Similar Documents

Publication Publication Date Title
US10840021B2 (en) Multilayer ceramic electronic component
US10453612B2 (en) Multilayer ceramic capacitor
JP6371365B2 (ja) 積層セラミックコンデンサ
US9406443B2 (en) Ceramic electronic component
US11062848B2 (en) Multilayer ceramic electronic component
JP2015109410A (ja) セラミック電子部品及びセラミック電子部品の製造方法
US11205542B2 (en) Multilayer ceramic electronic component
KR20120133717A (ko) 적층 세라믹 커패시터
KR20190011219A (ko) 적층 세라믹 콘덴서
US11114241B2 (en) Multilayer ceramic electronic component
US10879004B2 (en) Multilayer ceramic capacitor and multilayer ceramic capacitor-mounting structure
JP2021034458A (ja) 積層セラミック電子部品
JP2004235377A (ja) セラミック電子部品
JP2019040943A (ja) 積層セラミックコンデンサ
KR102018310B1 (ko) 적층 세라믹 커패시터 및 그 실장 기판
WO2023095620A1 (ja) 積層セラミック電子部品
US11361906B2 (en) Multilayer ceramic electronic component
JP7273373B2 (ja) 積層セラミック電子部品
US20230126382A1 (en) Multilayer ceramic electronic component
WO2024062753A1 (ja) 積層セラミック電子部品
US11817266B2 (en) Conductive paste and ceramic electronic component
JP7276646B2 (ja) セラミック電子部品
US11495404B2 (en) Multilayer ceramic electronic component
WO2024018718A1 (ja) 積層セラミック電子部品および積層セラミック電子部品の実装構造
JP2023122670A (ja) 積層セラミックコンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898404

Country of ref document: EP

Kind code of ref document: A1