WO2023095395A1 - ショットキーバリアダイオード - Google Patents

ショットキーバリアダイオード Download PDF

Info

Publication number
WO2023095395A1
WO2023095395A1 PCT/JP2022/030765 JP2022030765W WO2023095395A1 WO 2023095395 A1 WO2023095395 A1 WO 2023095395A1 JP 2022030765 W JP2022030765 W JP 2022030765W WO 2023095395 A1 WO2023095395 A1 WO 2023095395A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
barrier diode
schottky barrier
anode electrode
drift layer
Prior art date
Application number
PCT/JP2022/030765
Other languages
English (en)
French (fr)
Inventor
潤 有馬
実 藤田
克己 川崎
潤 平林
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2023095395A1 publication Critical patent/WO2023095395A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to Schottky barrier diodes, and more particularly to Schottky barrier diodes using gallium oxide.
  • a Schottky barrier diode is a rectifying element that utilizes a Schottky barrier formed by a junction between a metal and a semiconductor, and is characterized by a lower forward voltage and a faster switching speed than ordinary diodes having a PN junction. are doing. Therefore, Schottky barrier diodes are sometimes used as switching elements for power devices.
  • gallium oxide has a very large bandgap of 4.8 to 4.9 eV and a large dielectric breakdown field of approximately 8 MV/cm. It is very promising as a device.
  • An example of a Schottky barrier diode using gallium oxide is described in Patent Document 1.
  • the Schottky barrier diode described in Patent Document 1 has a structure in which a plurality of trenches are provided in a gallium oxide layer and part of the anode electrode is embedded in the trenches via an insulating film.
  • a plurality of trenches are provided in the gallium oxide layer, the mesa regions located between the trenches become depletion layers when a reverse voltage is applied, so that the channel region of the drift layer is pinched off.
  • leak current when a reverse voltage is applied can be greatly suppressed.
  • the on-resistance increases.
  • the impurity concentration of the drift layer may be increased, but in this case the reverse withstand voltage is lowered.
  • an object of the present invention is to reduce the on-resistance while ensuring a sufficient reverse breakdown voltage in a Schottky barrier diode using gallium oxide.
  • a Schottky barrier diode comprises a semiconductor substrate made of gallium oxide, a drift layer made of gallium oxide provided on the semiconductor substrate, an anode electrode in Schottky contact with the drift layer, and a cathode in ohmic contact with the semiconductor substrate.
  • the drift layer has a center trench in which the anode electrode is embedded, the bottom surface of the center trench is covered with an insulating film without being in contact with the anode electrode, and at least a part of the side surface of the center trench is between the anode electrode and the shot. It is characterized by key contact.
  • the anode electrode embedded in the central trench is in Schottky contact with the side surface of the central trench, it is possible to reduce the on-resistance without increasing the impurity concentration of the drift layer.
  • the anode electrodes are a first anode electrode in Schottky contact with the upper surface of the drift layer and a second anode electrode in Schottky contact with the side surface of the central trench and made of a metal material different from that of the first anode electrode. and electrodes. This makes it easier to produce an anode electrode without voids.
  • the drift layer may further have a peripheral trench in which the anode electrode is embedded and which surrounds the central trench, and the bottom surface and peripheral side surfaces of the peripheral trench may be covered with an insulating film without being in contact with the anode electrode. According to this, the electric field generated at the outer peripheral bottom portion of the outer peripheral trench when a reverse voltage is applied is alleviated. In this case, at least part of the inner peripheral side surface of the outer trench may be in Schottky contact with the anode electrode. According to this, since the area of Schottky contact is enlarged, it is possible to further reduce the on-resistance.
  • the drift layer may further have a peripheral trench surrounding the central trench, and the peripheral trench may be filled with a semiconductor material having a conductivity type opposite to that of the drift layer. According to this, when a reverse voltage is applied, the depletion layer spreads around the outer trench. As a result, the electric field generated at the outer peripheral bottom portion of the outer peripheral trench when a reverse voltage is applied is alleviated.
  • the side surface of the central trench is in Schottky contact with the anode electrode, so it is possible to reduce the on-resistance of the Schottky barrier diode using gallium oxide.
  • FIG. 1(a) is a schematic plan view showing the configuration of a Schottky barrier diode 1 according to a first embodiment of the present invention.
  • FIG. 1(b) is a schematic cross-sectional view along line AA shown in FIG. 1(a).
  • 2A to 2C are schematic cross-sectional views for explaining the positions of the inner walls of the central trench 61 and the outer peripheral trench 62 that are covered with the insulating film 70.
  • FIG. FIG. 3 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 2 according to a second embodiment of the invention.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 3 according to a third embodiment of the invention.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 4 according to a fourth embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 5 according to a fifth embodiment of the invention.
  • FIG. 7 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 6 according to a sixth embodiment of the invention.
  • FIG. 8 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 7 according to a seventh embodiment of the invention.
  • FIG. 9(a) is a schematic plan view showing the configuration of a Schottky barrier diode 8 according to the eighth embodiment of the present invention.
  • FIG. 9(a) is a schematic plan view showing the configuration of a Schottky barrier diode 8 according to the eighth embodiment of the present invention.
  • FIG. 9(b) is a schematic cross-sectional view along line AA shown in FIG. 9(a).
  • FIG. 10 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 9 according to the ninth embodiment of the invention.
  • FIG. 11 is a schematic cross-sectional view showing the configuration of Schottky barrier diode 10 according to the tenth embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 11 according to the eleventh embodiment of the invention.
  • FIG. 13(a) is a schematic plan view showing the configuration of a Schottky barrier diode 12 according to the twelfth embodiment of the present invention.
  • FIG. 13(b) is a schematic cross-sectional view along line AA shown in FIG. 13(a).
  • FIG. 14(a) is a schematic plan view showing the configuration of a Schottky barrier diode 13 according to the thirteenth embodiment of the present invention.
  • FIG. 14(b) is a schematic cross-sectional view taken along line AA shown in FIG. 14(a).
  • FIG. 15(a) is a schematic plan view showing the configuration of a Schottky barrier diode 14 according to the fourteenth embodiment of the present invention.
  • FIG. 15(b) is a schematic cross-sectional view along line AA shown in FIG. 15(a).
  • FIG. 16(a) is a schematic plan view showing the configuration of a Schottky barrier diode 15 according to the fifteenth embodiment of the present invention.
  • FIG. 16(b) is a schematic cross-sectional view taken along line AA shown in FIG. 16(a).
  • FIG. 17(a) is a schematic plan view showing the configuration of a Schottky barrier diode 16 according to the sixteenth embodiment of the present invention.
  • FIG. 17(b) is a schematic cross-sectional view taken along line AA shown in FIG. 17(a).
  • FIG. 18 is a graph showing simulation results of the example.
  • FIG. 1(a) is a schematic plan view showing the configuration of a Schottky barrier diode 1 according to a first embodiment of the present invention.
  • FIG. 1(b) is a schematic cross-sectional view along line AA shown in FIG. 1(a).
  • the Schottky barrier diode 1 includes a semiconductor substrate 20 and a drift layer 30 both made of gallium oxide ( ⁇ -Ga 2 O 3 ). Silicon (Si) or tin (Sn) is introduced into the semiconductor substrate 20 and the drift layer 30 as an n-type dopant.
  • the dopant concentration is higher in the semiconductor substrate 20 than in the drift layer 30, so that the semiconductor substrate 20 functions as an n + layer and the drift layer 30 functions as an n ⁇ layer.
  • the semiconductor substrate 20 is obtained by cutting a bulk crystal formed using a melt growth method or the like, and its thickness is about 250 ⁇ m.
  • the planar size of the semiconductor substrate 20 is not particularly limited, but is generally selected according to the amount of current flowing through the element. It may be about 2.4 mm.
  • the semiconductor substrate 20 has an upper surface 21 positioned on the upper surface side during mounting, and a back surface 22 positioned on the lower surface side during mounting on the opposite side of the upper surface 21 .
  • a drift layer 30 is formed on the entire upper surface 21 .
  • the drift layer 30 is a thin film obtained by epitaxially growing gallium oxide on the upper surface 21 of the semiconductor substrate 20 using reactive sputtering, PLD, MBE, MOCVD, HVPE, or the like. Although the thickness of the drift layer 30 is not particularly limited, it is generally selected according to the reverse withstand voltage of the device.
  • An anode electrode 40 is formed on the upper surface 31 of the drift layer 30 to make Schottky contact with the drift layer 30 .
  • the anode electrode 40 is made of metal such as platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), molybdenum (Mo), and copper (Cu).
  • the anode electrode 40 may be a multi-layer structure in which different metal films are laminated, such as Pt/Au, Pt/Al, Pd/Au, Pd/Al, Pt/Ti/Au or Pd/Ti/Au.
  • the back surface 22 of the semiconductor substrate 20 is provided with a cathode electrode 50 that makes ohmic contact with the semiconductor substrate 20 .
  • the cathode electrode 50 is made of metal such as titanium (Ti).
  • the cathode electrode 50 may have a multi-layer structure in which different metal films are laminated, such as Ti/Au or Ti/Al.
  • the drift layer 30 is provided with a central trench 61 and a peripheral trench 62 .
  • Both the central trench 61 and the peripheral trench 62 are provided at positions overlapping with the anode electrode 40 in plan view, and are filled with the same metal material as the anode electrode 40 .
  • Center trench 61 is sandwiched between mesa regions M that are part of drift layer 30 .
  • the outer trench 62 surrounds the mesa region M and the central trench 61 in a ring shape.
  • the central trench 61 and the peripheral trench 62 do not need to be completely separated, and may be connected to each other as shown in FIG. 1(a).
  • the central trench 61 and the peripheral trench 62 may have the same depth or may have different depths.
  • the mesa region M is a part of the drift layer 30 defined by the central trench 61 and the peripheral trench 62 and becomes a depletion layer when a reverse voltage is applied between the anode electrode 40 and the cathode electrode 50 .
  • the channel region of the drift layer 30 is pinched off, thereby greatly suppressing leakage current when a reverse voltage is applied.
  • the bottom surface 32 is covered with an insulating film 70 .
  • the side surfaces 33 of the inner walls of the central trench 61 and the peripheral trench 62 are not covered with the insulating film 70 . Therefore, the bottom surfaces 32 of the central trench 61 and the peripheral trench 62 are not in contact with the anode electrode 40 , whereas the side surfaces 33 of the central trench 61 and the peripheral trench 62 are not covered with the insulating film 70 and are shot from the anode electrode 40 . key contact.
  • the drift layer 30 and the anode electrode 40 are in Schottky contact not only at the upper surface 31 of the drift layer 30 but also at the side surfaces 33 of the central trench 61 and the outer peripheral trench 62 , so that the inner walls of the central trench 61 and the outer peripheral trench 62
  • the on-resistance is reduced as compared with the case where the whole is covered with the insulating film 70 .
  • the dopant concentration of the drift layer 30 can be suppressed to about 3 ⁇ 10 16 cm ⁇ 3 , a decrease in reverse withstand voltage is also prevented.
  • As the material of the insulating film 70 it is desirable to use an insulating material having a high dielectric constant such as HfO 2 or Al 2 O 3 . According to this, the pressure resistance effect is enhanced.
  • the anode electrode 40 is in Schottky contact with the side surfaces 33 of the central trench 61 and the outer peripheral trench 62 . It is possible to reduce the on-resistance compared to the case covered with .
  • FIG. 3 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 2 according to a second embodiment of the invention.
  • the Schottky barrier diode 2 according to the second embodiment is characterized in that, of the side surfaces 33 of the central trench 61 and the peripheral trench 62, a portion near the bottom surface 32 is covered with the insulating film 70. , differs from the Schottky barrier diode 1 according to the first embodiment. Since other basic configurations are the same as those of the Schottky barrier diode 1 according to the first embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. In the present embodiment, it is possible to adjust the depth T of the anode electrode 40 in contact with the side surfaces 33 of the central trench 61 and the peripheral trench 62 depending on the height position of the insulating film 70 .
  • FIG. 4 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 3 according to a third embodiment of the invention.
  • the upper surface of the insulating film 70 is substantially flat, and the bottoms of the central trench 61 and the peripheral trench 62 are filled with the second insulating film. is different from the Schottky barrier diode 2 according to the embodiment of . Since other basic configurations are the same as those of the Schottky barrier diode 2 according to the second embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 4 according to a fourth embodiment of the invention.
  • the Schottky barrier diode 4 according to the fourth embodiment differs from the Schottky barrier diode according to the first embodiment in that the width of the peripheral trench 62 is wider than the width of the central trench 61 . is different from 1. Since other basic configurations are the same as those of the Schottky barrier diode 1 according to the first embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. By increasing the width of the outer trench 62 in this way, it is possible to alleviate the electric field concentrated near the bottom of the outer trench 62 when a reverse voltage is applied.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 5 according to a fifth embodiment of the invention.
  • the Schottky barrier diode 5 according to the fifth embodiment is different from the Schottky barrier diode 1 according to the first embodiment in that the drift layer 30 located outside the outer peripheral trench 62 is removed. is different from Since other basic configurations are the same as those of the Schottky barrier diode 1 according to the first embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. Since almost no on-current flows in the portion of the drift layer 30 located outside the outer peripheral trench 62, the drift layer 30 located in this portion may be removed as exemplified in this embodiment.
  • FIG. 7 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 6 according to a sixth embodiment of the invention.
  • an insulating film 71 is provided between the upper surface 31 of the drift layer 30 located outside the peripheral trench 62 and the anode electrode 40. is different from the Schottky barrier diode 1 according to the first embodiment. Since other basic configurations are the same as those of the Schottky barrier diode 1 according to the first embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. According to the present embodiment, a so-called field plate structure is obtained by the insulating film 71, so that the electric field applied to the bottom of the outer peripheral trench 62 can be further relaxed. As a material for the insulating film 71, it is desirable to use a material having a high withstand voltage such as SiO 2 or Al 2 O 3 . According to this, the pressure resistance effect is enhanced.
  • FIG. 8 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 7 according to a seventh embodiment of the invention.
  • the anode electrode 41 covering the upper surface of the drift layer 30 and the anode electrode 42 embedded in the center trench 61 and the outer trench 62 are made of different metal materials. is different from the Schottky barrier diode 1 according to the first embodiment. Since other basic configurations are the same as those of the Schottky barrier diode 1 according to the first embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • Such a structure can be obtained, for example, by forming the anode electrode 42 by electrolytic plating and forming the anode electrode 41 by vapor deposition. According to such a manufacturing method, voids are less likely to occur in the anode electrode 42 embedded in the central trench 61 and the peripheral trench 62 .
  • FIG. 9(a) is a schematic plan view showing the configuration of a Schottky barrier diode 8 according to the eighth embodiment of the present invention.
  • FIG. 9(b) is a schematic cross-sectional view along line AA shown in FIG. 9(a).
  • the Schottky barrier diode 8 according to the eighth embodiment differs from the Schottky barrier diode 1 according to the first embodiment in that the entire inner wall of the outer trench 62 is covered with the insulating film 70. are different. Since other basic configurations are the same as those of the Schottky barrier diode 1 according to the first embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • FIG. 9A the surface of the mesa region M that is in Schottky contact with the drift layer 30 is indicated by a broken line, and the surface of the mesa region M that is covered with the insulating film 70 is indicated by a solid line. According to this, it becomes possible to further increase the reverse breakdown voltage.
  • FIG. 10 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 9 according to the ninth embodiment of the invention.
  • the height position of the insulating film 70 covering the side surface 33 of the outer trench 62 is lower than that of the Schottky barrier diode 8 according to the eighth embodiment.
  • the Schottky barrier diode 8 according to the eighth embodiment differs from the Schottky barrier diode 8 in that a part of the side surface 33 of the outer trench 62 is in Schottky contact with the anode electrode 40 . Since other basic configurations are the same as those of the Schottky barrier diode 8 according to the eighth embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. According to this embodiment, it is possible to increase the reverse breakdown voltage and lower the on-resistance than the Schottky barrier diode 8 according to the eighth embodiment.
  • FIG. 11 is a schematic cross-sectional view showing the configuration of Schottky barrier diode 10 according to the tenth embodiment of the present invention.
  • the Schottky barrier diode 10 according to the tenth embodiment differs from the eighth embodiment in that the insulating film 70 on the inner side surface 33a of the side surfaces 33 of the outer trench 62 is removed. It differs from the Schottky barrier diode 8 .
  • the outer side surface 33 b is entirely covered with an insulating film 70 . Since other basic configurations are the same as those of the Schottky barrier diode 8 according to the eighth embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. Also in this embodiment, it is possible to increase the reverse breakdown voltage and lower the on-resistance than the Schottky barrier diode 8 according to the eighth embodiment.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of a Schottky barrier diode 11 according to the eleventh embodiment of the invention.
  • the anode electrode 41 covering the upper surface of the drift layer 30 and the anode electrode 42 embedded in the center trench 61 and the outer trench 62 are made of different metal materials.
  • the Schottky barrier diode 8 according to the eighth embodiment in that Since other basic configurations are the same as those of the Schottky barrier diode 8 according to the eighth embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • Such a structure can be obtained, for example, by forming the anode electrode 42 by electrolytic plating and forming the anode electrode 41 by vapor deposition. According to such a manufacturing method, voids are less likely to occur in the anode electrode 42 embedded in the central trench 61 and the peripheral trench 62 .
  • FIG. 13(a) is a schematic plan view showing the configuration of a Schottky barrier diode 12 according to the twelfth embodiment of the present invention.
  • FIG. 13(b) is a schematic cross-sectional view along line AA shown in FIG. 13(a).
  • FIG. 13 in the Schottky barrier diode 12 according to the twelfth embodiment, another peripheral trench 63 surrounding the peripheral trench 62 is provided in the drift layer 30, and the entire inner wall of this peripheral trench 63 is made of the insulating film 70. It differs from the Schottky barrier diode 2 according to the second embodiment in that it is covered.
  • the outer trench 63 is provided independently of the outer trench 62 . Since other basic configurations are the same as those of the Schottky barrier diode 2 according to the second embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. In FIG.
  • the surface of the mesa region M that is in Schottky contact with the drift layer 30 is indicated by a broken line
  • the surface of the mesa region M that is covered with the insulating film 70 is indicated by a solid line.
  • FIG. 14(a) is a schematic plan view showing the configuration of a Schottky barrier diode 13 according to the thirteenth embodiment of the present invention. Also, FIG. 14(b) is a schematic cross-sectional view taken along line AA shown in FIG. 14(a).
  • the Schottky barrier diode 13 according to the thirteenth embodiment differs from the twelfth embodiment in that the width of the peripheral trench 63 is wider than the widths of the central trench 61 and the peripheral trench 62 . It differs from the Schottky barrier diode 12 .
  • Other basic configurations are the same as those of the Schottky barrier diode 12 according to the twelfth embodiment.
  • FIG. 15(a) is a schematic plan view showing the configuration of a Schottky barrier diode 14 according to the fourteenth embodiment of the present invention.
  • FIG. 15(b) is a schematic cross-sectional view along line AA shown in FIG. 15(a).
  • the Schottky barrier diode 14 according to the fourteenth embodiment differs from the Schottky barrier diode 12 according to the twelfth embodiment in that the peripheral trench 63 is filled with a p-type semiconductor material 80. are different. A p-type semiconductor material 80 is in contact with the anode electrode 40 .
  • Other basic configurations are the same as those of the Schottky barrier diode 12 according to the twelfth embodiment. Si, GaAs, GaN, SiC, Ge, ZnSe, CdS, InP, SiGe, AlN, BN, AlGaN, NiO, Cu2O , Ir2O3 , and Ag2O are used as the p-type semiconductor material 80.
  • p-type oxides such as NiO are preferred because they do not have the problem of oxidation.
  • FIG. 16(a) is a schematic plan view showing the configuration of a Schottky barrier diode 15 according to the fifteenth embodiment of the present invention. Also, FIG. 16(b) is a schematic cross-sectional view taken along line AA shown in FIG. 16(a).
  • the Schottky barrier diode 15 includes the upper surface 31 of the drift layer 30 located outside the outer peripheral trench 63, the outer side surface 33b of the outer peripheral trench 63, and the outer side surface 33b of the outer peripheral trench 63. It differs from the Schottky barrier diode 1 according to the thirteenth embodiment in that the bottom surface 32b is covered with an insulating film 71.
  • FIG. The inner bottom surface 32 a of the outer trench 63 is covered with the anode electrode 40 via the insulating film 70 .
  • the inner side surface 33 a of the outer trench 63 has a lower portion near the bottom surface 32 covered with an insulating film 70 and an upper portion in contact with the anode electrode 40 .
  • the insulating film 70 and the insulating film 71 may be made of the same insulating material, or may be made of different insulating materials. According to such a configuration, it is possible to lower the on-resistance and increase the reverse withstand voltage as compared with the Schottky barrier diode 13 according to the thirteenth embodiment.
  • FIG. 17(a) is a schematic plan view showing the configuration of a Schottky barrier diode 16 according to the sixteenth embodiment of the present invention. Also, FIG. 17(b) is a schematic cross-sectional view taken along line AA shown in FIG. 17(a).
  • the Schottky barrier diode 16 according to the sixteenth embodiment is similar to the Schottky barrier diode 15 according to the fifteenth embodiment in that the drift layer 30 located outside the outer peripheral trench 63 is removed. is different from Other basic configurations are the same as those of the Schottky barrier diode 15 according to the fifteenth embodiment. Since almost no on-current flows in a portion of the drift layer 30 located outside the outer peripheral trench 63, the drift layer 30 located in this portion may be removed as exemplified in this embodiment.
  • Example 1 Assuming a simulation model of an embodiment having the same structure as the Schottky barrier diode 2 shown in FIG.
  • the dopant concentration of the semiconductor substrate 20 was set to 1 ⁇ 10 18 cm ⁇ 3 and the dopant concentration of the drift layer 30 was set to 3 ⁇ 10 16 cm ⁇ 3 .
  • the thickness of the drift layer 30 was set to 7 ⁇ m.
  • the depths of the central trench 61 and the peripheral trench 62 were both set to 3 ⁇ m.
  • the widths of the center trench 61 and the peripheral trench 62 and the width of the upper surface 31 of the drift layer 30 (the width of the mesa region M) in the cross section shown in FIG. 3 are all set to 1.5 ⁇ m.
  • the curvature radius of the curved surface 34 positioned between the flat bottom surface 32 and the side surface 33 of the central trench 61 and the outer peripheral trench 62 was set to 0.05 ⁇ m.
  • the insulating film 70 was a HfO 2 film with a thickness of 50 nm.
  • the material of the anode electrode 40 was Ni, and the material of the cathode electrode 50 was a laminated film of Ti and Au.
  • a simulation was performed using the depth T of the anode electrode 40 in contact with the side surfaces 33 of the central trench 61 and the peripheral trench 62 as a variable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】酸化ガリウムを用いたショットキーバリアダイオードにおいて、十分な逆方向耐圧を確保しつつオン抵抗を低減する。 【解決手段】ショットキーバリアダイオード1は、酸化ガリウムからなる半導体基板20と、半導体基板20上に設けられた酸化ガリウムからなるドリフト層30と、ドリフト層30とショットキー接触するアノード電極40と、半導体基板20とオーミック接触するカソード電極50とを備える。ドリフト層30はアノード電極40が埋め込まれた中心トレンチ61を有する。中心トレンチ61の底面はアノード電極40と接することなく絶縁膜70で覆われ、中心トレンチ61の側面の少なくとも一部は、絶縁膜70で覆われることなくアノード電極40とショットキー接触する。これにより、ドリフト層の不純物濃度を高めることなく、オン抵抗を低減することができる。

Description

ショットキーバリアダイオード
 本発明はショットキーバリアダイオードに関し、特に、酸化ガリウムを用いたショットキーバリアダイオードに関する。
 ショットキーバリアダイオードは、金属と半導体の接合によって生じるショットキー障壁を利用した整流素子であり、PN接合を有する通常のダイオードに比べて順方向電圧が低く、且つ、スイッチング速度が速いという特徴を有している。このため、ショットキーバリアダイオードはパワーデバイス用のスイッチング素子として利用されることがある。
 ショットキーバリアダイオードをパワーデバイス用のスイッチング素子として用いる場合、十分な逆方向耐圧を確保する必要があることから、シリコン(Si)の代わりに、よりバンドギャップの大きい炭化シリコン(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)などが用いられることがある。中でも、酸化ガリウムは、バンドギャップが4.8~4.9eVと非常に大きく、絶縁破壊電界も約8MV/cmと大きいことから、酸化ガリウムを用いたショットキーバリアダイオードは、パワーデバイス用のスイッチング素子として非常に有望である。酸化ガリウムを用いたショットキーバリアダイオードの例は、特許文献1に記載されている。
 特許文献1に記載されたショットキーバリアダイオードは、酸化ガリウム層に複数のトレンチを設け、絶縁膜を介してアノード電極の一部をトレンチ内に埋め込んだ構造を有している。このように、酸化ガリウム層に複数のトレンチを設ければ、逆方向電圧が印加されるとトレンチ間に位置するメサ領域が空乏層となるため、ドリフト層のチャネル領域がピンチオフされる。これにより、逆方向電圧が印加された場合のリーク電流を大幅に抑制することができる。
特開2017-199869号公報
 しかしながら、内壁が絶縁層で覆われたトレンチをドリフト層に設けると、オン抵抗が高くなるという問題があった。オン抵抗を下げるためには、ドリフト層の不純物濃度を高めれば良いが、この場合には逆方向耐圧が低下してしまう。
 したがって、本発明は、酸化ガリウムを用いたショットキーバリアダイオードにおいて、十分な逆方向耐圧を確保しつつ、オン抵抗を低減することを目的とする。
 本発明によるショットキーバリアダイオードは、酸化ガリウムからなる半導体基板と、半導体基板上に設けられた酸化ガリウムからなるドリフト層と、ドリフト層とショットキー接触するアノード電極と、半導体基板とオーミック接触するカソード電極とを備え、ドリフト層はアノード電極が埋め込まれた中心トレンチを有し、中心トレンチの底面はアノード電極と接することなく絶縁膜で覆われ、中心トレンチの側面の少なくとも一部はアノード電極とショットキー接触することを特徴とする。
 本発明によれば、中心トレンチに埋め込まれたアノード電極が中心トレンチの側面とショットキー接触することから、ドリフト層の不純物濃度を高めることなく、オン抵抗を低減することが可能となる。
 本発明において、アノード電極は、ドリフト層の上面とショットキー接触する第1のアノード電極と、中心トレンチの側面とショットキー接触し、第1のアノード電極とは異なる金属材料からなる第2のアノード電極とを含んでいても構わない。これよれば、ボイドのないアノード電極を作製しやすくなる。
 本発明において、ドリフト層は、アノード電極が埋め込まれ中心トレンチを囲む外周トレンチをさらに有し、外周トレンチの底面及び外周側面は、アノード電極と接することなく絶縁膜で覆われていても構わない。これによれば、逆方向電圧が印加された場合に外周トレンチの外周底部に生じる電界が緩和される。この場合、外周トレンチの内周側面の少なくとも一部は、アノード電極とショットキー接触しても構わない。これによれば、ショットキー接触する面積が拡大することから、オン抵抗をより低減することが可能となる。
 本発明において、ドリフト層は、中心トレンチを囲む外周トレンチをさらに有し、外周トレンチは、ドリフト層とは導電型が逆の半導体材料で埋め込まれていても構わない。これによれば、逆方向電圧を印加した場合に、外周トレンチの周囲に空乏層が広がる。これにより、逆方向電圧が印加された場合に外周トレンチの外周底部に生じる電界が緩和される。
 このように、本発明によれば、中心トレンチの側面がアノード電極とショットキー接触することから、酸化ガリウムを用いたショットキーバリアダイオードのオン抵抗を低減することが可能となる。
図1(a)は、本発明の第1の実施形態によるショットキーバリアダイオード1の構成を示す模式的な平面図である。また、図1(b)は、図1(a)に示すA-A線に沿った略断面図である。 図2(a)~(c)は、中心トレンチ61及び外周トレンチ62の内壁のうち絶縁膜70で覆われる位置を説明するための模式的な断面図である。 図3は、本発明の第2の実施形態によるショットキーバリアダイオード2の構成を示す略断面図である。 図4は、本発明の第3の実施形態によるショットキーバリアダイオード3の構成を示す略断面図である。 図5は、本発明の第4の実施形態によるショットキーバリアダイオード4の構成を示す略断面図である。 図6は、本発明の第5の実施形態によるショットキーバリアダイオード5の構成を示す略断面図である。 図7は、本発明の第6の実施形態によるショットキーバリアダイオード6の構成を示す略断面図である。 図8は、本発明の第7の実施形態によるショットキーバリアダイオード7の構成を示す略断面図である。 図9(a)は、本発明の第8の実施形態によるショットキーバリアダイオード8の構成を示す模式的な平面図である。また、図9(b)は、図9(a)に示すA-A線に沿った略断面図である。 図10は、本発明の第9の実施形態によるショットキーバリアダイオード9の構成を示す略断面図である。 図11は、本発明の第10の実施形態によるショットキーバリアダイオード10の構成を示す略断面図である。 図12は、本発明の第11の実施形態によるショットキーバリアダイオード11の構成を示す略断面図である。 図13(a)は、本発明の第12の実施形態によるショットキーバリアダイオード12の構成を示す模式的な平面図である。また、図13(b)は、図13(a)に示すA-A線に沿った略断面図である。 図14(a)は、本発明の第13の実施形態によるショットキーバリアダイオード13の構成を示す模式的な平面図である。また、図14(b)は、図14(a)に示すA-A線に沿った略断面図である。 図15(a)は、本発明の第14の実施形態によるショットキーバリアダイオード14の構成を示す模式的な平面図である。また、図15(b)は、図15(a)に示すA-A線に沿った略断面図である。 図16(a)は、本発明の第15の実施形態によるショットキーバリアダイオード15の構成を示す模式的な平面図である。また、図16(b)は、図16(a)に示すA-A線に沿った略断面図である。 図17(a)は、本発明の第16の実施形態によるショットキーバリアダイオード16の構成を示す模式的な平面図である。また、図17(b)は、図17(a)に示すA-A線に沿った略断面図である。 図18は、実施例のシミュレーション結果を示すグラフである。
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
<第1の実施形態>
 図1(a)は、本発明の第1の実施形態によるショットキーバリアダイオード1の構成を示す模式的な平面図である。また、図1(b)は、図1(a)に示すA-A線に沿った略断面図である。
 図1に示すように、第1の実施形態によるショットキーバリアダイオード1は、いずれも酸化ガリウム(β-Ga)からなる半導体基板20及びドリフト層30を備える。半導体基板20及びドリフト層30には、n型ドーパントとしてシリコン(Si)又はスズ(Sn)が導入されている。ドーパントの濃度は、ドリフト層30よりも半導体基板20の方が高く、これにより半導体基板20はn層、ドリフト層30はn層として機能する。
 半導体基板20は、融液成長法などを用いて形成されたバルク結晶を切断加工したものであり、その厚みは250μm程度である。半導体基板20の平面サイズについては特に限定されないが、一般的に素子に流す電流量に応じて選択することになり、順方向の最大電流量が20A程度であれば、平面視で2.4mm×2.4mm程度とすればよい。
 半導体基板20は、実装時において上面側に位置する上面21と、上面21の反対側であって、実装時において下面側に位置する裏面22を有する。上面21の全面にはドリフト層30が形成されている。ドリフト層30は、半導体基板20の上面21に反応性スパッタリング、PLD法、MBE法、MOCVD法、HVPE法などを用いて酸化ガリウムをエピタキシャル成長させた薄膜である。ドリフト層30の膜厚については特に限定されないが、一般的に素子の逆方向耐電圧に応じて選択することになり、600V程度の耐圧を確保するためには、例えば7μm程度とすればよい。
 ドリフト層30の上面31には、ドリフト層30とショットキー接触するアノード電極40が形成されている。アノード電極40は、例えば白金(Pt)、パラジウム(Pd)、金(Au)、ニッケル(Ni)、モリブデン(Mo)、銅(Cu)等の金属からなる。アノード電極40は、異なる金属膜を積層した多層構造、例えば、Pt/Au、Pt/Al、Pd/Au、Pd/Al、Pt/Ti/AuまたはPd/Ti/Auであっても構わない。一方、半導体基板20の裏面22には、半導体基板20とオーミック接触するカソード電極50が設けられる。カソード電極50は、例えばチタン(Ti)等の金属からなる。カソード電極50は、異なる金属膜を積層した多層構造、例えば、Ti/AuまたはTi/Alであっても構わない。
 本実施形態においては、ドリフト層30に中心トレンチ61及び外周トレンチ62が設けられている。中心トレンチ61及び外周トレンチ62は、いずれも平面視でアノード電極40と重なる位置に設けられており、その内部はアノード電極40と同じ金属材料で埋め込まれている。中心トレンチ61は、ドリフト層30の一部であるメサ領域Mに挟まれている。外周トレンチ62は、メサ領域M及び中心トレンチ61をリング状に囲んでいる。中心トレンチ61と外周トレンチ62が完全に分離されている必要はなく、図1(a)に示すように、中心トレンチ61と外周トレンチ62が繋がっていても構わない。中心トレンチ61と外周トレンチ62の深さは同じであっても構わないし、異なっていても構わない。メサ領域Mは、中心トレンチ61及び外周トレンチ62によって区画されるドリフト層30の一部であり、アノード電極40とカソード電極50との間に逆方向電圧が印加されると空乏層となる。これにより、ドリフト層30のチャネル領域がピンチオフされることから、逆方向電圧が印加された場合のリーク電流が大幅に抑制される。
 中心トレンチ61及び外周トレンチ62の内壁のうち、底面32については絶縁膜70で覆われている。これに対し、中心トレンチ61及び外周トレンチ62の内壁のうち、側面33は絶縁膜70で覆われていない。このため、中心トレンチ61及び外周トレンチ62の底面32はアノード電極40と接しないのに対し、中心トレンチ61及び外周トレンチ62の側面33は、絶縁膜70で覆われることなく、アノード電極40とショットキー接触する。これにより、ドリフト層30とアノード電極40は、ドリフト層30の上面31だけでなく、中心トレンチ61及び外周トレンチ62の側面33においてもショットキー接触することから、中心トレンチ61及び外周トレンチ62の内壁全体を絶縁膜70で覆う場合と比べてオン抵抗が低減する。また、ドリフト層30のドーパント濃度については、3×1016cm-3程度に抑えることができるため、逆方向耐圧の低下も防止される。絶縁膜70の材料としては、HfOやAlなど誘電率の高い絶縁材料を用いることが望ましい。これによれば、耐圧効果が高められる。
 ここで、図2(a)に示すように、中心トレンチ61及び外周トレンチ62の底面32が水平であり、水平な底面32と垂直な側面33の間に位置する部分が湾曲面34である場合、底面32及び湾曲面34については絶縁膜70で覆われている必要がある。また、図2(b)に示すように、中心トレンチ61及び外周トレンチ62の底面32が全体的に湾曲している場合、湾曲した底面32全体が絶縁膜70で覆われている必要がある。さらに、図2(c)に示すように、中心トレンチ61及び外周トレンチ62の底面32が水平であり、水平な底面32と垂直な側面33の間に直角な角部35が存在する場合、底面32及び角部35については絶縁膜70で覆われている必要がある。
 このように、本実施形態によるショットキーバリアダイオード1は、中心トレンチ61及び外周トレンチ62の側面33においてアノード電極40がショットキー接触することから、中心トレンチ61及び外周トレンチ62の全面が絶縁膜70で覆われている場合と比べ、オン抵抗を低減することが可能となる。
<第2の実施形態>
 図3は、本発明の第2の実施形態によるショットキーバリアダイオード2の構成を示す略断面図である。
 図3に示すように、第2の実施形態によるショットキーバリアダイオード2は、中心トレンチ61及び外周トレンチ62の側面33のうち、底面32に近い一部が絶縁膜70で覆われている点において、第1の実施形態によるショットキーバリアダイオード1と相違している。その他の基本的な構成は第1の実施形態によるショットキーバリアダイオード1と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。本実施形態においては、絶縁膜70の高さ位置によって、中心トレンチ61及び外周トレンチ62の側面33と接するアノード電極40の深さTを調節することが可能となる。
<第3の実施形態>
 図4は、本発明の第3の実施形態によるショットキーバリアダイオード3の構成を示す略断面図である。
 図4に示すように、第3の実施形態によるショットキーバリアダイオード3は、絶縁膜70の上面がほぼ平坦であり、中心トレンチ61及び外周トレンチ62の底部に埋め込まれている点において、第2の実施形態によるショットキーバリアダイオード2と相違している。その他の基本的な構成は第2の実施形態によるショットキーバリアダイオード2と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。このように、中心トレンチ61及び外周トレンチ62の側面33のうち、底面32に近い一部を絶縁膜70で覆う場合、中心トレンチ61及び外周トレンチ62の底部全体を絶縁膜70で埋め込んでも構わない。
<第4の実施形態>
 図5は、本発明の第4の実施形態によるショットキーバリアダイオード4の構成を示す略断面図である。
 図5に示すように、第4の実施形態によるショットキーバリアダイオード4は、外周トレンチ62の幅が中心トレンチ61の幅よりも拡大されている点において、第1の実施形態によるショットキーバリアダイオード1と相違している。その他の基本的な構成は第1の実施形態によるショットキーバリアダイオード1と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。このように、外周トレンチ62の幅を拡大すれば、逆方向電圧が印加された場合に外周トレンチ62の底部近傍に集中する電界を緩和することが可能となる。
<第5の実施形態>
 図6は、本発明の第5の実施形態によるショットキーバリアダイオード5の構成を示す略断面図である。
 図6に示すように、第5の実施形態によるショットキーバリアダイオード5は、外周トレンチ62の外側に位置するドリフト層30が削除されている点において、第1の実施形態によるショットキーバリアダイオード1と相違している。その他の基本的な構成は第1の実施形態によるショットキーバリアダイオード1と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。ドリフト層30のうち、外周トレンチ62の外側に位置する部分にはオン電流がほとんど流れないため、本実施形態が例示するように、この部分に位置するドリフト層30を除去しても構わない。
<第6の実施形態>
 図7は、本発明の第6の実施形態によるショットキーバリアダイオード6の構成を示す略断面図である。
 図7に示すように、第6の実施形態によるショットキーバリアダイオード6は、外周トレンチ62の外側に位置するドリフト層30の上面31とアノード電極40の間に絶縁膜71が設けられている点において、第1の実施形態によるショットキーバリアダイオード1と相違している。その他の基本的な構成は第1の実施形態によるショットキーバリアダイオード1と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。本実施形態によれば、絶縁膜71によっていわゆるフィールドプレート構造が得られることから、外周トレンチ62の底部に印加される電界をより緩和することが可能となる。絶縁膜71の材料としては、SiOやAlなど絶縁耐圧の高い材料を用いることが望ましい。これによれば、耐圧効果が高められる。
<第7の実施形態>
 図8は、本発明の第7の実施形態によるショットキーバリアダイオード7の構成を示す略断面図である。
 図8に示すように、第7の実施形態によるショットキーバリアダイオード7は、ドリフト層30の上面を覆うアノード電極41と中心トレンチ61及び外周トレンチ62に埋め込まれたアノード電極42が互いに異なる金属材料からなる点において、第1の実施形態によるショットキーバリアダイオード1と相違している。その他の基本的な構成は第1の実施形態によるショットキーバリアダイオード1と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。このような構造は、例えば、アノード電極42を電解メッキによって形成し、アノード電極41を蒸着によって形成することによって得られる。このような製法によれば、中心トレンチ61及び外周トレンチ62に埋め込まれたアノード電極42にボイドが生じにくくなる。
<第8の実施形態>
 図9(a)は、本発明の第8の実施形態によるショットキーバリアダイオード8の構成を示す模式的な平面図である。また、図9(b)は、図9(a)に示すA-A線に沿った略断面図である。
 図9に示すように、第8の実施形態によるショットキーバリアダイオード8は、外周トレンチ62の内壁全体が絶縁膜70で覆われている点において、第1の実施形態によるショットキーバリアダイオード1と相違している。その他の基本的な構成は第1の実施形態によるショットキーバリアダイオード1と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。図9(a)においては、メサ領域Mの表面のうちドリフト層30とショットキー接触する面を破線で示し、メサ領域Mの表面のうち絶縁膜70で覆われる面を実線で示している。これによれば、逆方向耐圧をより高めることが可能となる。
<第9の実施形態>
 図10は、本発明の第9の実施形態によるショットキーバリアダイオード9の構成を示す略断面図である。
 図10に示すように、第9の実施形態によるショットキーバリアダイオード9は、外周トレンチ62の側面33を覆う絶縁膜70の高さ位置が第8の実施形態によるショットキーバリアダイオード8よりも低く、これにより、外周トレンチ62の側面33の一部がアノード電極40とショットキー接触する点において、第8の実施形態によるショットキーバリアダイオード8と相違している。その他の基本的な構成は第8の実施形態によるショットキーバリアダイオード8と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。本実施形態によれば、逆方向耐圧を高めつつ、第8の実施形態によるショットキーバリアダイオード8よりもオン抵抗を下げることが可能となる。
<第10の実施形態>
 図11は、本発明の第10の実施形態によるショットキーバリアダイオード10の構成を示す略断面図である。
 図11に示すように、第10の実施形態によるショットキーバリアダイオード10は、外周トレンチ62の側面33のうち、内側側面33aの絶縁膜70が除去されている点において、第8の実施形態によるショットキーバリアダイオード8と相違している。外周トレンチ62の側面33のうち、外側側面33bについては全面が絶縁膜70で覆われている。その他の基本的な構成は第8の実施形態によるショットキーバリアダイオード8と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。本実施形態においても、逆方向耐圧を高めつつ、第8の実施形態によるショットキーバリアダイオード8よりもオン抵抗を下げることが可能となる。
<第11の実施形態>
 図12は、本発明の第11の実施形態によるショットキーバリアダイオード11の構成を示す略断面図である。
 図12に示すように、第11の実施形態によるショットキーバリアダイオード11は、ドリフト層30の上面を覆うアノード電極41と中心トレンチ61及び外周トレンチ62に埋め込まれたアノード電極42が互いに異なる金属材料からなる点において、第8の実施形態によるショットキーバリアダイオード8と相違している。その他の基本的な構成は第8の実施形態によるショットキーバリアダイオード8と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。このような構造は、例えば、アノード電極42を電解メッキによって形成し、アノード電極41を蒸着によって形成することによって得られる。このような製法によれば、中心トレンチ61及び外周トレンチ62に埋め込まれたアノード電極42にボイドが生じにくくなる。
<第12の実施形態>
 図13(a)は、本発明の第12の実施形態によるショットキーバリアダイオード12の構成を示す模式的な平面図である。また、図13(b)は、図13(a)に示すA-A線に沿った略断面図である。
 図13に示すように、第12の実施形態によるショットキーバリアダイオード12は、外周トレンチ62を取り囲む別の外周トレンチ63がドリフト層30に設けられ、この外周トレンチ63の内壁全体が絶縁膜70で覆われている点において、第2の実施形態によるショットキーバリアダイオード2と相違している。外周トレンチ63は、外周トレンチ62とは独立して設けられている。その他の基本的な構成は第2の実施形態によるショットキーバリアダイオード2と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。図13(a)においては、メサ領域Mの表面のうちドリフト層30とショットキー接触する面を破線で示し、メサ領域Mの表面のうち絶縁膜70で覆われる面を実線で示している。このように、ドリフト層30に別の外周トレンチ63を設けるとともに、その内壁全体を絶縁膜70で覆えば、逆方向電圧が印加された場合に中心トレンチ61及び外周トレンチ62の底部近傍に集中する電界を緩和することが可能となる。
<第13の実施形態>
 図14(a)は、本発明の第13の実施形態によるショットキーバリアダイオード13の構成を示す模式的な平面図である。また、図14(b)は、図14(a)に示すA-A線に沿った略断面図である。
 図14に示すように、第13の実施形態によるショットキーバリアダイオード13は、外周トレンチ63の幅が中心トレンチ61及び外周トレンチ62の幅よりも拡大されている点において、第12の実施形態によるショットキーバリアダイオード12と相違している。その他の基本的な構成は第12の実施形態によるショットキーバリアダイオード12と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。このように、外周トレンチ63の幅を拡大すれば、逆方向電圧が印加された場合に外周トレンチ63の底部近傍に集中する電界を緩和することが可能となる。
<第14の実施形態>
 図15(a)は、本発明の第14の実施形態によるショットキーバリアダイオード14の構成を示す模式的な平面図である。また、図15(b)は、図15(a)に示すA-A線に沿った略断面図である。
 図15に示すように、第14の実施形態によるショットキーバリアダイオード14は、外周トレンチ63がp型の半導体材料80で埋め込まれている点において、第12の実施形態によるショットキーバリアダイオード12と相違している。p型の半導体材料80は、アノード電極40と接触している。その他の基本的な構成は第12の実施形態によるショットキーバリアダイオード12と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。p型の半導体材料80としては、Si、GaAs、GaN、SiC、Ge、ZnSe、CdS、InP、SiGe、AlN、BN、AlGaN、NiO、CuO、Ir、AgOを用いることができ、中でもNiOなどのp型酸化物は酸化の問題がないために好ましい。このように、外周トレンチ63をp型の半導体材料80で埋め込めば、逆方向電圧を印加した場合に、外周トレンチ63の周囲に空乏層が広がる。これにより、逆方向電圧が印加された場合に外周トレンチ63の外周底部に生じる電界が緩和される。
<第15の実施形態>
 図16(a)は、本発明の第15の実施形態によるショットキーバリアダイオード15の構成を示す模式的な平面図である。また、図16(b)は、図16(a)に示すA-A線に沿った略断面図である。
 図16に示すように、第15の実施形態によるショットキーバリアダイオード15は、外周トレンチ63の外側に位置するドリフト層30の上面31、外周トレンチ63の外側側面33b、並びに、外周トレンチ63の外側底面32bが絶縁膜71で覆われている点において、第13の実施形態によるショットキーバリアダイオード1と相違している。外周トレンチ63の内側底面32aについては絶縁膜70を介してアノード電極40で覆われている。また、外周トレンチ63の内側側面33aについては、底面32に近い下部が絶縁膜70で覆われ、上部がアノード電極40と接している。その他の基本的な構成は第13の実施形態によるショットキーバリアダイオード13と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。絶縁膜70と絶縁膜71は、同じ絶縁材料からなるものであっても構わないし、異なる絶縁材料からなるものであっても構わない。このような構成によれば、第13の実施形態によるショットキーバリアダイオード13よりもオン抵抗を下げることができるとともに、逆方向耐圧を高めることが可能となる。
<第16の実施形態>
 図17(a)は、本発明の第16の実施形態によるショットキーバリアダイオード16の構成を示す模式的な平面図である。また、図17(b)は、図17(a)に示すA-A線に沿った略断面図である。
 図17に示すように、第16の実施形態によるショットキーバリアダイオード16は、外周トレンチ63の外側に位置するドリフト層30が削除されている点において、第15の実施形態によるショットキーバリアダイオード15と相違している。その他の基本的な構成は第15の実施形態によるショットキーバリアダイオード15と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。ドリフト層30のうち、外周トレンチ63の外側に位置する部分にはオン電流がほとんど流れないため、本実施形態が例示するように、この部分に位置するドリフト層30を除去しても構わない。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
<実施例1>
 図3に示したショットキーバリアダイオード2と同様の同じ構造を有する実施例のシミュレーションモデルを想定し、アノード電極40とカソード電極50の間に順方向電圧を印加した場合の抵抗値をシミュレーションした。半導体基板20のドーパント濃度については1×1018cm-3とし、ドリフト層30のドーパント濃度としては3×1016cm-3とした。ドリフト層30の厚みは7μmとした。また、中心トレンチ61及び外周トレンチ62の深さはいずれも3μmとした。図3に示す断面における中心トレンチ61及び外周トレンチ62の幅、並びに、ドリフト層30の上面31の幅(メサ領域Mの幅)については、いずれも1.5μmとした。中心トレンチ61及び外周トレンチ62の平坦な底面32と側面33の間に位置する湾曲面34の曲率半径は0.05μmとした。絶縁膜70は厚さ50nmのHfO膜とした。アノード電極40の材料はNiとし、カソード電極50の材料はTiとAuの積層膜とした。そして、中心トレンチ61及び外周トレンチ62の側面33と接するアノード電極40の深さTを変数としてシミュレーションを行った。
 結果を図18に示す。図18に示すように、中心トレンチ61及び外周トレンチ62の側面33と接するアノード電極40の深さTが大きくなるほど、オン抵抗が低下することが分かった。また、逆方向耐圧については深さTにかかわらず7.5MV/cmであった。
1~16  ショットキーバリアダイオード
20  半導体基板
21  半導体基板の上面
22  半導体基板の裏面
30  ドリフト層
31  ドリフト層の上面
32  トレンチの底面
32a  トレンチの内側底面
32b  トレンチの外側底面
33  トレンチの側面
33a  トレンチの内側側面
33b  トレンチの外側側面
34  トレンチの湾曲面
35  トレンチの角部
40~42  アノード電極
50  カソード電極
61  中心トレンチ
62,63  外周トレンチ
70,71  絶縁膜
80  半導体材料
M  メサ領域

Claims (5)

  1.  酸化ガリウムからなる半導体基板と、
     前記半導体基板上に設けられた酸化ガリウムからなるドリフト層と、
     前記ドリフト層とショットキー接触するアノード電極と、
     前記半導体基板とオーミック接触するカソード電極と、を備え、
     前記ドリフト層は、前記アノード電極が埋め込まれた中心トレンチを有し、
     前記中心トレンチの底面は、前記アノード電極と接することなく絶縁膜で覆われ、
     前記中心トレンチの側面の少なくとも一部は、前記アノード電極とショットキー接触することを特徴とするショットキーバリアダイオード。
  2.  前記アノード電極は、前記ドリフト層の上面とショットキー接触する第1のアノード電極と、前記中心トレンチの前記側面とショットキー接触し、前記第1のアノード電極とは異なる金属材料からなる第2のアノード電極とを含むことを特徴とする請求項1に記載のショットキーバリアダイオード。
  3.  前記ドリフト層は、前記アノード電極が埋め込まれ、前記中心トレンチを囲む外周トレンチをさらに有し、
     前記外周トレンチの底面及び外周側面は、前記アノード電極と接することなく絶縁膜で覆われていることを特徴とする請求項1又は2に記載のショットキーバリアダイオード。
  4.  前記外周トレンチの内周側面の少なくとも一部は、前記アノード電極とショットキー接触することを特徴とする請求項3に記載のショットキーバリアダイオード。
  5.  前記ドリフト層は、前記中心トレンチを囲む外周トレンチをさらに有し、
     前記外周トレンチは、前記ドリフト層とは導電型が逆の半導体材料で埋め込まれていることを特徴とする請求項1又は2に記載のショットキーバリアダイオード。
PCT/JP2022/030765 2021-11-29 2022-08-12 ショットキーバリアダイオード WO2023095395A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-193059 2021-11-29
JP2021193059A JP2023079551A (ja) 2021-11-29 2021-11-29 ショットキーバリアダイオード

Publications (1)

Publication Number Publication Date
WO2023095395A1 true WO2023095395A1 (ja) 2023-06-01

Family

ID=86539135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030765 WO2023095395A1 (ja) 2021-11-29 2022-08-12 ショットキーバリアダイオード

Country Status (3)

Country Link
JP (1) JP2023079551A (ja)
TW (1) TWI827222B (ja)
WO (1) WO2023095395A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004521480A (ja) * 2000-08-31 2004-07-15 ゼネラル セミコンダクター,インク. トレンチショットキー整流器
JP2009177028A (ja) * 2008-01-25 2009-08-06 Toshiba Corp 半導体装置
US8878327B2 (en) * 2012-06-27 2014-11-04 Industrial Technology Research Institute Schottky barrier device having a plurality of double-recessed trenches
WO2020039971A1 (ja) * 2018-08-22 2020-02-27 三菱電機株式会社 酸化物半導体装置及びその製造方法
JP2021097169A (ja) * 2019-12-18 2021-06-24 Tdk株式会社 ショットキーバリアダイオード
JP2021097168A (ja) * 2019-12-18 2021-06-24 Tdk株式会社 ショットキーバリアダイオード

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323402B2 (en) * 2002-07-11 2008-01-29 International Rectifier Corporation Trench Schottky barrier diode with differential oxide thickness
TWI715711B (zh) * 2017-01-25 2021-01-11 聯華電子股份有限公司 半導體元件及其製造方法
JP7045008B2 (ja) * 2017-10-26 2022-03-31 Tdk株式会社 ショットキーバリアダイオード
JP7165322B2 (ja) * 2018-03-30 2022-11-04 Tdk株式会社 ショットキーバリアダイオード

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004521480A (ja) * 2000-08-31 2004-07-15 ゼネラル セミコンダクター,インク. トレンチショットキー整流器
JP2009177028A (ja) * 2008-01-25 2009-08-06 Toshiba Corp 半導体装置
US8878327B2 (en) * 2012-06-27 2014-11-04 Industrial Technology Research Institute Schottky barrier device having a plurality of double-recessed trenches
WO2020039971A1 (ja) * 2018-08-22 2020-02-27 三菱電機株式会社 酸化物半導体装置及びその製造方法
JP2021097169A (ja) * 2019-12-18 2021-06-24 Tdk株式会社 ショットキーバリアダイオード
JP2021097168A (ja) * 2019-12-18 2021-06-24 Tdk株式会社 ショットキーバリアダイオード

Also Published As

Publication number Publication date
TWI827222B (zh) 2023-12-21
JP2023079551A (ja) 2023-06-08
TW202322404A (zh) 2023-06-01

Similar Documents

Publication Publication Date Title
US11626522B2 (en) Schottky barrier diode
CN112005384B (zh) 肖特基势垒二极管
US11621357B2 (en) Schottky barrier diode
US11699766B2 (en) Schottky barrier diode
US11557681B2 (en) Schottky barrier diode
WO2023095395A1 (ja) ショットキーバリアダイオード
WO2023095396A1 (ja) ジャンクションバリアショットキーダイオード
US11908955B2 (en) Schottky barrier diode
US20240055536A1 (en) Schottky barrier diode
WO2023181588A1 (ja) ジャンクションバリアショットキーダイオード
JP2023141100A (ja) ジャンクションバリアショットキーダイオード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898180

Country of ref document: EP

Kind code of ref document: A1