WO2023093847A1 - 一种转基因抗虫耐除草剂玉米及其培育方法 - Google Patents

一种转基因抗虫耐除草剂玉米及其培育方法 Download PDF

Info

Publication number
WO2023093847A1
WO2023093847A1 PCT/CN2022/134347 CN2022134347W WO2023093847A1 WO 2023093847 A1 WO2023093847 A1 WO 2023093847A1 CN 2022134347 W CN2022134347 W CN 2022134347W WO 2023093847 A1 WO2023093847 A1 WO 2023093847A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant
corn
insect
resistance
gene
Prior art date
Application number
PCT/CN2022/134347
Other languages
English (en)
French (fr)
Inventor
王磊
张兰
邹俊杰
杨德志
罗彦忠
刘源
郑红艳
Original Assignee
中国农业科学院生物技术研究所
北京博艾远上生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业科学院生物技术研究所, 北京博艾远上生物科技有限公司 filed Critical 中国农业科学院生物技术研究所
Publication of WO2023093847A1 publication Critical patent/WO2023093847A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8275Glyphosate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • C12N9/10923-Phosphoshikimate 1-carboxyvinyltransferase (2.5.1.19), i.e. 5-enolpyruvylshikimate-3-phosphate synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010193-Phosphoshikimate 1-carboxyvinyltransferase (2.5.1.19), i.e. 5-enolpyruvylshikimate-3-phosphate synthase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the invention relates to the field of plant biotechnology, in particular to a transgenic insect-resistant and herbicide-resistant corn and a breeding method thereof.
  • the corn borer commonly known as the borer, belongs to the family Lepidoptera and is a worldwide moth pest that seriously affects the yield and quality of corn.
  • the world's annual losses due to insect pests account for more than 15% of crop production.
  • the corn borer can damage all parts of the corn plant above the ground, making the damaged part lose its function and reducing the grain yield.
  • the control measures of corn borer mainly use a large amount of chemical insecticides, which not only seriously affects the ecological environment and biodiversity, but also increases the production cost and labor intensity, and also increases the chance of human poisoning.
  • the corn armyworm eats the leaves of corn with its larvae, and when it occurs seriously, it will eat up the leaves in a short period of time, resulting in reduced yield or even no harvest. Symptoms of damage are mainly larvae biting leaves.
  • the harm of cotton bollworm on corn is also increasing year by year, and has become an important pest affecting the yield and quality of corn.
  • the larvae of cotton bollworm mainly feed on corn kernels, and the newly hatched larvae concentrate on the top of corn ears to bite filaments.
  • Spodoptera frugiperda is an important agricultural pest for global warning by the Food and Agriculture Organization of the United Nations (FAO). It harms more than 80 species of plants such as corn, rice, and tomato.
  • Bt insect resistance genes from Bacillus thuringiensis, which can be divided into different types according to different classification basis.
  • Hofte and Whiteley named the gene encoding the insecticidal crystal protein as the Cry gene, which was represented by a combination of Roman numerals I, II, III, IV, V and English letters.
  • CryI class has the best anti-insect effect on Lepidoptera insects
  • CryII class mainly resists Lepidoptera and Diptera insects
  • CryIII class has better effect on Coleoptera insects
  • CryIV class insect resistance is mainly against Diptera insects
  • CryV class It is toxic to both Lepidoptera and Coleoptera insects.
  • Cry1Ab and Cry1Ac genes have specific toxicity to corn borer and other Lepidoptera pests.
  • Cry1Ab/Ac, Cry3Bb, and Cry2Ab are monogenic insect-resistant corn, among which insect-resistant genes Cry1Ab/Ac, Cry3Bb, and Cry2Ab are widely used.
  • Field and laboratory experiments in China have shown that the Cry1Ab gene-transferred corn can control the whole growth period of the Asian corn borer, and has an impact on the feeding of the Asian corn borer; bug effect.
  • Cry1Ab has good insecticidal effect on cotton bollworm and armyworm
  • Cry3Bb has good insecticidal effect on corn rootworm and other Coleoptera insects.
  • the insect-resistant genes used in my country's transgenic insect-resistant corn include Cry1Ab, Cry1Ah, Cry1Ie, etc., but most of them use single-gene insect-resistant methods.
  • Glyphosate is a systemic, broad-spectrum, organophosphine herbicide applied to foliage. It has the characteristics of high efficiency, low toxicity, and easy degradation. It can competitively inhibit the activity of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the shikimate pathway of plants and bacteria.
  • EPSPS is an enzyme in the pathway of aromatic amino acid synthesis, which reversibly catalyzes the condensation of S3P (Shikimate-3-phosphate) and PEP (Phosphoenopyrate) into EPSP and inorganic phosphine. Transferring the CP4EPSPS gene capable of resisting glyphosate herbicides into crops can make the transgenic crops resistant to glyphosate.
  • the present invention provides a method for cultivating transgenic insect-resistant and herbicide-resistant corn and the insect-resistant and herbicide-resistant corn obtained therefrom. Genetically modified maize resistant to herbicide complexes.
  • the present invention provides a synthetic gene tandem expression cassette, which comprises mCry1Ab, mCry3Bb and mCP4EPSPS genes.
  • the mCry1Ab gene sequence is shown in sequence 1
  • the mCry3Bb gene sequence is shown in sequence 2
  • the mCP4EPSPS gene sequence is shown in sequence 3.
  • Another aspect of the present invention provides a plant expression vector comprising the tandem expression cassettes of the above-mentioned genes.
  • the plant expression vector is pL2.
  • Another aspect of the present invention provides a host cell comprising the above-mentioned gene tandem expression cassette, or comprising the above-mentioned plant expression vector.
  • the host cell is Agrobacterium, more preferably Agrobacterium EHA105.
  • Another aspect of the present invention provides the application of the gene tandem expression cassette, the plant expression vector, or the host cell in improving insect resistance and herbicide tolerance of corn.
  • the insect resistance is against Lepidoptera and Coleoptera insects, more preferably anti-Lepidoptera insects are against corn borer, armyworm, cotton bollworm and Spodoptera frugiperda, anti-Coleoptera insects More preferably, it is resistant to two-spot firefly beetle, and the herbicide resistance is glyphosate resistant.
  • Another aspect of the present invention provides a method for cultivating insect-resistant and herbicide-tolerant transgenic corn, comprising integrating the gene tandem expression cassette, the plant expression vector, or the host cell into a recipient corn material.
  • the insect resistance is against Lepidoptera and Coleoptera insects, more preferably anti-Lepidoptera insects are against corn borer, armyworm, cotton bollworm and Spodoptera frugiperda, anti-Coleoptera insects More preferably, it is resistant to two-spot firefly beetle, and the herbicide resistance is glyphosate resistant.
  • Another aspect of the present invention provides a combination of primers for detecting insect-resistant and herbicide-tolerant transgenic corn, the nucleotide sequences of which are shown in sequences 11 and 12.
  • the transgenic corn comprises the gene tandem expression cassette described in the present invention, and the insect resistance is resistance to Lepidoptera and Coleoptera insects, and the resistance to Lepidoptera insects is more preferably resistance to corn borer and armyworm , Cotton bollworm and Spodoptera frugiperda, the resistance to Coleoptera insects is more preferably resistance to the two-spot firefly beetle, and the resistance to herbicides is preferably glyphosate resistance.
  • Another aspect of the present invention provides a method for detecting insect-resistant and herbicide-tolerant transgenic corn, which uses the primer combination described in the present invention to detect the transgenic corn.
  • the transgenic corn comprises the gene tandem expression cassette described in the present invention, and the insect resistance is resistance to Lepidoptera and Coleoptera insects, and the resistance to Lepidoptera insects is more preferably resistance to corn borer and armyworm , Cotton bollworm and Spodoptera frugiperda, the resistance to Coleoptera insects is more preferably resistance to the two-spot firefly beetle, and the resistance to herbicides is preferably glyphosate resistance.
  • the last aspect of the present invention provides a sequence for identifying an exogenous insert in insect-resistant and herbicide-tolerant transgenic maize, which includes the exogenous insert and its flanking sequences.
  • the sequence is shown in SEQ ID NO: 10.
  • the exogenous insertion fragment comprises the gene tandem expression cassette described in the present invention, and the insect resistance is resistance to Lepidoptera and Coleoptera insects, and the resistance to Lepidoptera insects is more preferably resistance to corn borer , Armyworm, cotton bollworm and Spodoptera frugiperda, the resistance to Coleoptera insects is more preferably resistance to the two-spotted firefly beetle, and the resistance to herbicides is preferably glyphosate resistance.
  • the present invention significantly improves the resistance of transgenic corn to Lepidoptera insects such as corn borer, armyworm, cotton bollworm and fall armyworm.
  • the resistance to the two-spot firefly beetle and other coleopteran insects, and the tolerance to glyphosate has also reached a high level of resistance.
  • Figure 1 Plasmid map of pL2.
  • RB right border sequence
  • pVS1-REF Agrobacterium replicon
  • ColE1 Escherichia coli replicon
  • Kan kanamycin resistance gene
  • T35s CaMV35S terminator
  • mCP4EPSPS glyphosate resistance gene
  • Ubi maize ubiquitin promoter
  • Thsp17 heat shock protein terminator
  • mCry3Bb insect resistance gene
  • ZmSP signal peptide
  • OsAct2 rice promoter
  • E35S Enhanced CaMV35S promoter
  • mCry1Ab insect resistance gene
  • Tnos Nos terminator
  • Figure 2 PCR detection of mCry1Ab, mCry3Bb, mCP4EPSPS genes in BBL2-1 and BBL2-2 strains.
  • M 100bp molecular weight standard
  • 1 mCry1Ab (BBL2-1);
  • BBL2-1 mCry3Bb
  • BBL2-1 mCP4EPSPS
  • Figure 3 BBL2-2 strain-specific PCR detection.
  • M 100bp molecular weight standard; 1: BBL2-1;
  • Figure 4 Gene expression levels of mCry1Ab, mCry3Bb, and mCP4EPSPS genes in BBL2-2 materials.
  • A The test results at the 4-5 leaf stage of corn; B: The test results at the mature stage of corn.
  • Example 1 Obtaining of transgenic materials
  • codon usage frequency of maize conduct comprehensive codon optimization for Cry1Ab, Cry3Bb and CP4EPSPS genes, remove sequences that affect mRNA stability, such as ATTTA, AATTAA and other AT-rich sequences, and increase the GC content in the coding region. Add the sequence that improves the translation efficiency, so that it can be expressed and translated efficiently in maize.
  • codon optimized Cry1Ab, Cry3Bb and CP4EPSPS gene sequences in maize they are respectively named as mCry1Ab, mCry3Bb and mCP4EPSPS, and the nucleotide sequences are as shown in sequence 1-3 shown.
  • the basic vector is pCAMBIA1300, and its selection marker in bacteria is Kan gene, which encodes aminoglycoside phosphotransferase, and there is no report that its encoded product has toxic side effects on animals. Since it is located outside the T-DNA region, it cannot be transferred into plant cells.
  • ColE1 comes from Escherichia coli, and its main function is to help the replication of vectors in Escherichia coli. It is widely used in the construction of engineering vectors. It only exists as the origin of replication and does not encode proteins. Moreover, it is located outside the T-DNA region and cannot be transferred into plant cells.
  • pVS1-REP comes from Pseudomonas, and its main function is to help the plasmid replicate in Agrobacterium. It is widely used in the construction of engineering vectors. Because it is located outside the T-DNA region, it cannot be transferred to plant cells.
  • T-DNA is derived from Ti plasmid, but oncogenic genes and sequences irrelevant to T-DNA transfer have been removed, and only the right border sequence (RB) and left border sequence (LB) necessary for T-DNA transfer are retained.
  • RB and LB are exonuclease recognition sequences during T-DNA transfer and do not encode any gene products.
  • the target genes mCP4EPSPS, mCry3Bb, mCry1Ab and their supporting promoters and terminators were inserted between RB and LB, and a plant expression vector was constructed according to conventional molecular biology methods, named pL2 plasmid, size: 17.8kb.
  • the carrier map is shown in Figure 1.
  • the expression cassettes of the target genes mCP4EPSPS, mCry3Bb, and mCry1Ab are shown in Table 1-3.
  • mCry3Bb Encodes Cry3Bb protein, anti-coleopteran insects Thsp17 Hsp17 terminator, terminates transcription.
  • mCP4EPSPS Encodes CP4EPSPS protein, resistant to glyphosate.
  • T35S CaMV35S terminator terminates transcription.
  • mCry1Ab Encodes Cry1Ab protein, anti-Lepidoptera insects. Tnos Nos terminator, terminates transcription.
  • the target gene and other gene elements are introduced into the recipient corn material.
  • the transformation process is as follows: take corn young ears 9-12 days after pollination, peel off immature embryos, place them in a liquid medium for infection, and use them for Agrobacterium infection.
  • Resistant calli were transferred to regeneration medium to obtain mature embryoid bodies. Put the embryoid bodies on the MS medium to form seedlings and take root to obtain regenerated corn seedlings. And through the method of backcross breeding, the transformation event was backcrossed with the corn inbred line Zheng 58, and the insect-resistant and herbicide-resistant corn BBL2 with the genetic background of Zheng 58 containing the exogenous gene was obtained.
  • Example 2 Detection of genetic stability of target gene in transgenic material
  • Each gene was stably inherited in each generation of the transformant, and its segregation ratio conformed to the Mendelian single-site inheritance rule, indicating that the three target genes were only integrated at one site.
  • the PCR band map of the BBL2 target gene is shown in Figure 2.
  • the primers for the PCR of the target gene are shown in Table 4 to Table 6, and the PCR composition and reaction conditions are shown in Table 7.
  • Primer I(T35s) 5'-ctcaacacatgagcgaaaccc-3' (SEQ ID NO: 4)
  • Primer II CP4 5'-acccatctcgatcaccgcat-3' (SEQ ID NO: 5)
  • Example 3 BBL2 flanking sequence analysis and specific PCR detection
  • the 30 transgenic corn events obtained were first identified for glyphosate resistance, and 13 events had a resistance of more than 4 times. The insect resistance was identified for each of them, and 5 events were screened out. High resistance, further using the whole genome resequencing method to preliminarily determine the integration of the target gene in the maize genome. One of the event expression frames was missing, 2 were inserted inside the maize gene, and 2 were inserted in the intergenic region. Further research found that the BBL2-2 event had no effect on the growth and development of maize, and the expression frame was complete and the gene expression was high. , genetically stable.
  • the maize genome sequence next to the obtained BBL2-2 insertion fragment was used to obtain the maize genome specific sequence near the insertion site of the BBL2-2 event, through BLAST in the maize genome database
  • the primer pair for Tnos specific PCR detection consists of the single-stranded DNA molecule shown in sequence 11 and the single-stranded DNA molecule shown in sequence 12, and the amplified sequence is shown in sequence 10.
  • Tnos specific amplification primers The sequence of Tnos specific amplification primers is:
  • Primer 1 (BBL2-2n): 5'-ctgtaacgctaactgtagcat-3'; (SEQ ID NO: 11)
  • Theoretical amplification size is 298bp.
  • the PCR products were subjected to agarose gel electrophoresis.
  • Example 4 BBL2-2 target gene qRT-PCR detection
  • Example 5 BBL2-2 target protein assay method and its expression level detection in different tissues
  • the expression of the target gene proteins Cry1Ab, Cry3Bb and CP4EPSPS in the root, stem, leaf and grain tissues of maize transformant BBL2-2 was analyzed by double-antibody sandwich enzyme-linked immunosorbent assay (ELISA).
  • ELISA double-antibody sandwich enzyme-linked immunosorbent assay
  • the results of ELISA showed that the target proteins Cry1Ab, Cry3Bb and CP4EPSPS could be detected in different organ samples of maize transformant BBL2-2, and the content of the target protein in different organs varied greatly, with higher content in leaves and lower content in grains.
  • the expression levels of target proteins in different tissues are shown in Table 10.
  • Table 10 The expression level of target protein in different tissues of maize transformant BBL2-2
  • means the standard deviation
  • NA means the value is lower than the effective detection range of the standard curve, not detected.
  • Embodiment 6 BBL2-2 insect resistance test
  • the tested insects Asian corn borer, armyworm, cotton bollworm and Spodoptera frugiperda, were continuously reared on artificial feed indoors for multiple generations. During the feeding process, no contact with any Bt preparations and Bt insecticidal proteins. Raise under the conditions of temperature 27 ⁇ 1°C, relative humidity 70%-80%, and photoperiod L16:D8h.
  • Two-spotted long-tailed beetle Absorbent cotton, filter paper and corn leaves were placed in insect cages, and 20 two-spotted long-spotted beetle adults were cultured in each cage. Temperature 26°C ⁇ 1°C, photoperiod L16:D8h, relative humidity (RH) (80 ⁇ 5)%.
  • the transgenic corn materials used in the experiment were: BBL2-2 (including optimized expression cassettes of mCry1Ab, mCry3Bb and mCP4EPSPS), Cry1Ab-transformed corn, Cry3Bb-transformed corn, and parental control Zheng 58.
  • the corn materials were all grown in pots in the greenhouse.
  • Bioassay of corn borer, cotton bollworm, and Spodoptera frugiperda Take 4-6 corn plants at the 4-6 leaf stage and bring them back to the room, select the young heart leaves that have just unfolded, rinse them with tap water, and rinse them once with distilled water , use filter paper to absorb water droplets on the surface and then dry it. Cut the corn leaves from which the main veins have been removed into leaves with a length and width of about 1 cm, and put them into 24-well cell culture plates, with 1-2 pieces per well. One newly hatched larva for testing was inserted into each well. Each plate is 1 replicate, repeated 4 times. Place them under the conditions of 27 ⁇ 1°C, 70%-80% relative humidity, and photoperiod L16:D8h.
  • Two-spot firefly beetle adults Feed two-spot adults of different varieties of corn leaves (4-6 leaf stage) using an insect culture device, and replace fresh corn leaves every 24 hours. 20 adults of the two-spot firefly beetle were placed in each insect cage, and 3 insect cages (three repetitions) were set for each corn variety. Place them at a temperature of 26°C ⁇ 1°C, a photoperiod of L16:D8h, and a relative humidity (RH) of (80 ⁇ 5)%. Observe and count the death of the two spots in the insect cages at 24h, 48h, and 96h, respectively.
  • RH relative humidity
  • Embodiment 7 BBL2-2 field anti-glyphosate test
  • the transgenic corn BBL2-2 (hereinafter referred to as BBL2-2) and the corresponding non-transgenic corn were the control Zheng 58.
  • the target herbicide is Roundup (41% glyphosate isopropylamine salt) produced by Monsanto Company.
  • a random block design was adopted with 3 repetitions. There is a 1.0m wide isolation zone between the residential areas, and the area of the residential area is 24m 2 .
  • transgenic corn was not sprayed with herbicide
  • transgenic corn was sprayed with target herbicide glyphosate
  • corresponding non-transgenic corn was not sprayed with herbicide
  • Level 3 Moderate phytotoxicity of corn, which can recover in the future without affecting the yield
  • the medium dose 2 times of the medium dose, 4 times and 6 times of the pesticide registration label are 900g a.i./ha, 1800g a.i./ha, 3600g a.i./ha and 5400g a.i. / ha.
  • Application method stem and leaf treatment, spray volume 450L/ha.
  • the seedling rate of BBL2-2 was 100% after 1, 2 and 4 weeks without spraying and spraying four concentrations of glyphosate: 900g a.i./ha, 1800g a.i./ha, 3600g a.i./ha and 5400g a.i./ha.
  • the seedling rate of the non-transgenic corn control without spraying treatment was 100% after 1, 2 and 4 weeks, and the plants could not form seedlings after spraying 900, 1800, 3600 and 5400g a.i./ha glyphosate for 1 week, and the seedling rate was 0.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于植物生物技术领域,公开了一种转基因抗虫耐除草剂玉米及其培育方法。本发明通过将基因mCry1Ab、mCry3Bb和mCP4EPSPS组合为基因串联表达框的形式,整合到受体玉米材料中,从而与现有技术中采用的单基因抗虫或耐除草剂基因相比,显著提高了转基因玉米对鳞翅目和鞘翅目昆虫的抗性,对草甘膦的耐性也达到了高抗的水平。

Description

一种转基因抗虫耐除草剂玉米及其培育方法 技术领域
本发明涉及植物生物技术领域,具体涉及一种转基因抗虫耐除草剂玉米及其培育方法。
背景技术
玉米已成为我国第一大粮食作物,用途广泛,不仅是重要的饲料原料,也是重要的工业原料,在国家粮食安全和国民经济发展中占有重要地位。
在玉米生长发育过程中,常遭受病害、虫害、草害的影响。世界范围内玉米害虫达350多种之多,其中以蛀茎性和食叶性的玉米螟最为严重。玉米螟俗名钻心虫,属鳞翅目螟蛾科,为世界性的蛀食性害虫,严重影响玉米的产量和品质,世界每年因虫害造成的损失约占农作物产量的15%以上。玉米螟可危害玉米植株地上的各个部位,使受害部分丧失功能,降低籽粒产量。目前玉米螟的防治措施主要是大量使用化学杀虫剂,这不仅严重影响了生态环境和生物多样性,增加了生产成本和劳动强度,也加大了人体中毒几率。玉米黏虫以幼虫暴食玉米叶片,严重发生时,短期内吃光叶片,造成减产甚至绝收。危害症状主要以幼虫咬食叶片。棉铃虫在玉米上危害也逐年加重,已成为影响玉米产量和品质的一种重要害虫,棉铃虫幼虫主要取食玉米籽粒,初孵幼虫集中在玉米果穗顶部咬食花丝,目前的防治措施主要是大量使用化学杀虫剂。草地贪夜蛾是联合国粮农组织(FAO)全球预警的重要农业害虫,为害玉米、水稻、番茄等超过80种植物,具有危害大、繁殖能力强、迁飞速度快、食量大等特点。
来自苏云金芽孢杆菌的Bt抗虫基因种类繁多,根据不同的分类依据可将其分为不同类型。在1989年,Hofte和Whiteley将编码杀虫晶体蛋白基因称为Cry基因,同时用罗马数字I、II、III、IV、V和英文字母结合起来表示。Bt蛋白基因有5大类、14个亚类。CryI类对鳞翅目昆虫抗虫效果最佳,CryII类主要抗鳞翅目和双翅目昆虫,CryIII类对鞘翅目昆虫效果较好,CryIV类抗虫性主要针对双翅目昆虫,CryV类对鳞翅目和鞘翅目昆虫均有毒性。Cry1Ab、Cry1Ac基因对玉米螟等鳞翅目害虫具有专一性毒性。
当前推广利用的转基因玉米品种大部分是单基因抗虫玉米,其中抗虫基因Cry1Ab/Ac,Cry3Bb,Cry2Ab等应用较多。国内的田间和室内实验表明:转Cry1Ab基因玉米可对亚洲玉米螟实现全生育期防治,并对亚洲玉米螟的取食有影响;转Cry1F基因玉米人工饲料对亚洲玉米螟幼虫有较高的杀虫效果。此外,Cry1Ab对棉铃虫、黏虫具有较好的杀虫作用,Cry3Bb对玉米根虫等鞘翅目昆虫具有较好的杀虫作用。目前我国转基因抗虫玉米采用的抗虫基因包括Cry1Ab、Cry1Ah、Cry1Ie等,但大多采用单基因抗虫方式。
草甘膦(Glyphosate)是一种内吸性、广谱性、施用于叶面的有机膦类除草剂,具有高效、低毒、易降解等特点。其可以竞争性抑制植物和细菌的莽草酸途径中5-烯醇丙酮莽草酸-3-磷酸合成酶(EPSPS)的活性。EPSPS是芳香族氨基酸合成途径中的一个酶,它可逆地催化S3P(Shikimate-3-phosphate)和PEP(Phosphoenopyrate)缩合成EPSP和无机膦。将具有抗草甘膦除草剂能力的CP4EPSPS基因转入农作物中,可使转基因作物具有抗草甘膦能力。
鉴于目前我国转基因抗虫玉米采用的多为单基因抗虫,且没有将Cry1Ab和Cry3Bb联合串联表达抗虫的研究,并与耐除草剂基因联用。因此,生产中亟需一种具有抗鳞翅目和鞘翅目复合抗虫兼耐除草剂的转基因作物及其培育方法。
发明内容
本发明针对生产中亟需一种具有抗鳞翅目和鞘翅目兼耐除草剂复合抗性的转基因玉米,提供了一种培育转基因抗虫耐除草剂玉米的方法以及由此获得的抗虫耐除草剂复合抗性的转基因玉米。
为此,本发明一方面提供了一种合成的基因串联表达框,其包含mCry1Ab、mCry3Bb和mCP4EPSPS基因。
在本发明优选的实施方案中,mCry1Ab基因序列如序列1所示,mCry3Bb基因序列如序列2所示,mCP4EPSPS基因序列如序列3所示。
本发明另一方面提供了包含上述基因串联表达框的植物表达载体。
在本发明优选的实施方案中,所述植物表达载体为pL2。
本发明另一方面提供了包含上述基因串联表达框、或包含上述植物表达载体的宿主细胞。
在本发明优选的实施方案中,所述宿主细胞为农杆菌,更加优选为农杆菌EHA105。
本发明另一方面提供了所述基因串联表达框、所述植物表达载体、或所述宿主细胞在提高玉米抗虫和耐除草剂特性上的应用。
在本发明优选的实施方案中,所述抗虫为抗鳞翅目和鞘翅目昆虫,抗鳞翅目昆虫更加优选为抗玉米螟、黏虫、棉铃虫和草地贪夜蛾,抗鞘翅目昆虫更加优选为抗双斑萤叶甲,耐除草剂为耐草甘膦。
本发明另一方面提供了一种培育抗虫耐除草剂转基因玉米的方法,包括将所述基因串联表达框、所述植物表达载体、或所述宿主细胞整合到受体玉米材料中。
在本发明优选的实施方案中,所述抗虫为抗鳞翅目和鞘翅目昆虫,抗鳞翅目昆虫更加优选为抗玉米螟、黏虫、棉铃虫和草地贪夜蛾,抗鞘翅目昆虫更加优选为抗双斑萤叶甲,耐除草剂为耐草甘膦。
本发明另一方面提供了一种检测抗虫耐除草剂转基因玉米的引物组合,其核苷酸序列如序列11和12所示。
在本发明优选的实施方案中,所述转基因玉米包含本发明所述的基因串联表达框,抗虫为抗鳞翅目和鞘翅目昆虫,抗鳞翅目昆虫更加优选为抗玉米螟、黏虫、棉铃虫和草地贪夜蛾,抗鞘翅目昆虫更加优选为抗双斑萤叶甲,耐除草剂优选为耐草甘膦。
本发明另一方面提供了一种检测抗虫耐除草剂转基因玉米的方法,其采用本发明所述的引物组合对转基因玉米进行检测。
在本发明优选的实施方案中,所述转基因玉米包含本发明所述的基因串联表达框,抗虫为抗鳞翅目和鞘翅目昆虫,抗鳞翅目昆虫更加优选为抗玉米螟、黏虫、棉铃虫和草地贪夜蛾,抗鞘翅目昆虫更加优选为抗双斑萤叶甲,耐除草剂优选为耐草甘膦。
本发明最后一方面提供了一种用于鉴定抗虫耐除草剂转基因玉米的外源插入片段的序列,其包含外源插入片段及其旁侧序列,所述序列如序列10所示。
在本发明优选的实施方案中,所述的外源插入片段包含本发明所述的基因串联表达框,抗虫为抗鳞翅目和鞘翅目昆虫,抗鳞翅目昆虫更加优选为抗 玉米螟、黏虫、棉铃虫和草地贪夜蛾,抗鞘翅目昆虫更加优选为抗双斑萤叶甲,耐除草剂优选为耐草甘膦。
由上述描述可知,与现有技术中采用的单基因抗虫或耐除草剂基因相比,本发明显著提高了转基因玉米对玉米螟、黏虫、棉铃虫和草地贪夜蛾等鳞翅目昆虫的抗性,以及对双斑萤叶甲等鞘翅目昆虫的抗性,对草甘膦的耐性也达到了高抗的水平。
附图说明
图1:pL2质粒图谱。
RB:右边界序列;pVS1-REF:农杆菌复制子;
ColE1:大肠杆菌复制子;Kan:卡那霉素抗性基因;
LB:左边界序列;T35s:CaMV35S终止子;
mCP4EPSPS:抗草甘膦基因;Ubi:玉米泛素启动子;
Thsp17:热激蛋白终止子;mCry3Bb:抗虫基因;
ZmSP:信号肽;OsAct2:水稻启动子;
E35S:增强型CaMV35S启动子;
mCry1Ab:抗虫基因;Tnos:Nos终止子。
图2:mCry1Ab、mCry3Bb、mCP4EPSPS基因在BBL2-1和BBL2-2株系中PCR检测。
M:100bp分子量标准;1:mCry1Ab(BBL2-1);
2:mCry3Bb(BBL2-1);3:mCP4EPSPS(BBL2-1);
4:mCry1Ab(BBL2-2);5:mCry3Bb(BBL2-2);
6:mCP4EPSPS(BBL2-2);7:mCry1Ab(质粒,阳性对照);
8:mCry3Bb(质粒,阳性对照);9:mCP4EPSPS(质粒,阳性对照);
10:mCry1Ab(郑58,阴性对照);11:mCry3Bb(郑58,阴性对照);
12:mCP4EPSPS(郑58,阴性对照)。
图3:BBL2-2株系特异性PCR检测。
M:100bp分子量标准;1:BBL2-1;
2:BBL2-2;3:郑58:(阴性对照)。
图4:mCry1Ab、mCry3Bb、mCP4EPSPS基因在BBL2-2材料中的基因表达量。
A:在玉米4-5叶期检测结果;B:在玉米成熟期检测结果。
具体实施方式
下面通过实施例对本发明作进一步的详细说明,旨在用于说明本发明而非限定本发明。应当指出,对于本领域技术人员而言,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也同样落入本发明的保护范围之内。
实施例1:转基因材料的获得
1、密码子优化
根据玉米的密码子使用频率对Cry1Ab、Cry3Bb和CP4EPSPS基因进行全面的密码子优化,去除影响mRNA稳定性的序列如ATTTA、AATTAA等富含AT序列,提高编码区GC含量,在起始密码子前添加提高翻译效率的序列,使其在玉米中能够高效表达和翻译,依据玉米密码子优化后的Cry1Ab、Cry3Bb和CP4EPSPS基因序列分别命名为mCry1Ab、mCry3Bb和mCP4EPSPS,核苷酸序列如序列1-3所示。
2、表达载体构建
基础载体为pCAMBIA1300,其在细菌中的选择标记是Kan基因,其编码氨基糖苷磷酸转移酶,目前尚没有报道认为其编码产物对动物有毒副作用。由于其位于T-DNA区域外围,因此不能转移至植物细胞中。
ColE1来自于大肠杆菌,主要作用是帮助载体在大肠菌中的复制,被广泛应用于工程载体的构建,其只是作为复制起点存在,没有编码蛋白。而且其位于T-DNA区域外围,不能转移至植物细胞中。
pVS1-REP来自于假单胞杆菌,主要作用是帮助质粒在农杆菌中进行复制,被广泛应用于工程载体的构建,由于其位于T-DNA区域外围,因此不能转移至植物细胞中。
T-DNA来源于Ti质粒,但已去除了致瘤基因和与T-DNA转移无关的序列,只保留了T-DNA转移所必须的右边界序列(RB)和左边界序列(LB)。RB和LB为T-DNA转移时核酸外切酶识别序列,不编码任何基因产物。
目的基因mCP4EPSPS、mCry3Bb、mCry1Ab及其配套启动子和终止子插入到RB和LB之间,按照常规分子生物学方法构建了植物表达载体,命名为pL2质粒,大小:17.8kb。
载体图谱如附图1所示。目的基因mCP4EPSPS、mCry3Bb、mCry1Ab的表达框如表1-3所示。
表1 mCry3Bb表达框
名称 功能
OsAct2 水稻肌动蛋白基因启动子。
mCry3Bb 编码Cry3Bb蛋白,抗鞘翅目昆虫
Thsp17 Hsp17终止子,终止转录。
表2 mCP4EPSPS表达框
名称 功能
Ubi 玉米泛素蛋白基因启动子。
mCP4EPSPS 编码CP4EPSPS蛋白,抗草甘膦。
T35S CaMV35S终止子,终止转录。
表3 mCry1Ab表达框
名称 功能
E35S 增强型CaMV35S启动子。
mCry1Ab 编码Cry1Ab蛋白质,抗鳞翅目昆虫。
Tnos Nos终止子,终止转录。
3、转基因材料获得
采用农杆菌介导的方法,将目的基因及其它基因元件导入受体玉米材料中。
转化过程如下:取授粉9-12天的玉米幼穗,剥离幼胚,置于侵染用液体培养基,用于农杆菌侵染。将含有目的基因的质粒转化入农杆菌EHA105菌株,待OD 600=0.3-0.4时,用侵染液重悬农杆菌,将玉米幼胚材料放入侵染液,进行农杆菌侵染。培养基中加入草甘膦作为选择压力,对被转化的材料进行筛选培养,每两周继代一次。经过2-3月的选择培养后,抗性愈伤组织在选择性培养基上生长迅速,颜色新鲜。将抗性愈伤组织转到再生培养基上,得到成熟的胚状体。将胚状体放到MS培养基上成苗和生根,得到再生玉米苗。并通过回交转育的方法,将转化事件与玉米自交系郑58进行回交,获得含有外源基因的郑58遗传背景的抗虫耐除草剂玉米BBL2。
实施例2:转基因材料中目的基因遗传稳定性检测
利用PCR技术分析目的基因mCry1Ab、mCry3Bb、mCP4EPSPS在玉米转化体BBL2中的整合情况及遗传稳定性。
结果表明,目的基因mCry1Ab、mCry3Bb、mCP4EPSPS在BC4F1、BC5F1、BC6F1代检测群体中均能检出,阳性特异片段大小分别与预期片段大小一致,且只有一条带。各基因在转化体各代间稳定遗传,其分离比符合孟德尔单位点遗传规律,说明三个目标基因中只整合在了一个位点。
BBL2目的基因PCR泳带图谱如附图2所示。
目的基因PCR的引物如表4至表6所示,PCR组成及反应条件如表7所示。
表4 mCP4EPSPS特异引物
Primer I(T35s) 5'-ctcaacacatgagcgaaaccc-3'(序列4)
Primer II(CP4) 5'-acccatctcgatcaccgcat-3'(序列5)
表5 mCry3Bb特异引物
Primer I(C3B) 5'-ctgctcttcctgaaggagtcg-3'(序列6)
Primer II(Hsp) 5'-cagactcgcaagaactcgcac-3'(序列7)
表6 mCry1Ab特异引物
Primer I(Nos) 5'-gaccggcaacaggattcaatc-3'(序列8)
Primer II(C1A) 5'-ctacttgtaccagaagatcga-3'(序列9)
表7 PCR检测反应体系及反应条件
Figure PCTCN2022134347-appb-000001
实施例3:BBL2旁侧序列分析及特异性PCR检测
对获得的30个转基因玉米事件首先进行草甘膦抗性鉴定,抗性达到4倍以上的有13个事件,对其分别进行抗虫性鉴定,筛选出5个事件对玉米螟等害虫表现出高抗,进一步利用全基因组重测序方法初步确定了目的基因在玉米基因组中的整合情况。其中1个事件表达框有序列丢失,2个插入在玉米基因内部,2个插入在基因间区,进一步研究发现BBL2-2事件对玉米的生长发育没有影响,且表达框完整,基因表达量高,遗传稳定。
根据获得的BBL2-2插入片段旁侧的玉米基因组序列,并进一步用PCR扩增测序的方法获得了BBL2-2事件的插入位点附近的玉米基因组特异性序列,通过在玉米基因组数据库中的BLAST分析确定了目的基因在基因组中的整合位置,其Tnos一侧的特异性序列如序列10所示。Tnos端特异性PCR检测引物对由序列11所示的单链DNA分子和序列12所示的单链DNA分子组成,扩增的序列如序列10所示。
提BBL2-2基因组DNA进行特异性PCR扩增。Tnos端特异性扩增引物序列为:
Primer I(BBL2-2n):5’-ctgtaacgctaactgtagcat-3’;(序列11)
Primer II(Tnos):5’-agagtcccgcaattatacat-3’;(序列12)
理论扩增大小为298bp。
PCR反应体系及反应条件如表8所示。
表8 PCR检测反应体系及反应条件
Figure PCTCN2022134347-appb-000002
反应结束后,PCR产物进行琼脂糖凝胶电泳。
结果表明,BBL2-2的不同植株都能检测到清晰的、与预期大小片段一致的单一目的条带,表明检测系统正常,无非特异性扩增,回交转育受体郑58和空白对照没有扩增条带,PCR电泳结果见附图3。
实施例4:BBL2-2目的基因qRT-PCR检测
提取玉米BBL2-2植株4-5片叶时期的幼苗的根、茎、叶,以及成熟植株的根、茎、叶以及种子中的RNA。RNA的提取参照试剂盒SV Total RNA Isolation System(Promega,USA)方法进行、反转录参照试剂盒A3500-Reverse Transcription System(Promega,USA)方法进行。目的基因qRT-PCR检测用引物见表9。
表9 BBL2-2转化材料中外源基因qRT-PCR引物信息
引物名称 序列
mCry1Ab fw 5'-ctacttgtaccagaagatcgac-3'(序列13)
mCry1Ab rv 5'-tcagtcctcgttcaggtcggtg-3'(序列14)
mCry3Bb fw 5'-ctgctcttcctgaaggagtcg-3'(序列15)
mCry3Bb rv 5'-gatgaactcgatcttgtcgatg-3'(序列16)
mCP4EPSPS fw 5'-acccatctcgatcaccgca-3'(序列17)
mCP4EPSPS rv 5'-cagccttcgtatcggagagttc-3'(序列18)
zmActin1 fw 5'-caccttctacaacgagctccg-3'(序列19)
zmActin1 rv 5'-taatcaagggcaacgtaggca-3'(序列20)
采用SYBR Premix ExTaq TM(Code DRR041A,TAKARA)荧光定量试剂盒,PCR仪为Applied Biosystems(http://www.AppliedBiosystems.com)Prism 7500 analyzer。BBL2-2植株mCry1Ab、mCry3Bb和mCP4EPSPS基因的表达量见附图4。
实施例5:BBL2-2目的蛋白测定方法及其在不同组织的表达量检测
采用双抗夹心酶联免疫法(ELISA),分析玉米转化体BBL2-2的根、茎、叶和籽粒组织中目的基因蛋白Cry1Ab、Cry3Bb和CP4EPSPS的表达。ELISA实验方法和分析方法按照EnviroLogix公司试剂盒说明书进行。
首先称量0.1g各组织样品,经液氮研磨后,将样品加入到1mL样品提取缓冲液,同时用2mL样品提取缓冲液稀释标准品。使用CP4EPSPS、Cry1Ab/Ac、Cry3Bb的ELISA试剂盒检测目的蛋白的表达量。通过酶标仪分析不同样品的吸光值,根据标准蛋白的浓度及光密度值读数,拟合出标准曲线方程,最后利用Microsoft Excel计算各器官中表达的蛋白占样品组织重量来表示(μg/g)。
ELISA检测结果表明,目的蛋白Cry1Ab、Cry3Bb和CP4EPSPS在玉米转化体BBL2-2的不同器官样品中均可检出,不同器官中目的蛋白含量变化较大,叶片中含量较高,籽粒含量较低。目的蛋白在不同组织中的表达量见表10。
表10目的蛋白在玉米转化体BBL2-2不同组织中的表达量
Figure PCTCN2022134347-appb-000003
注:±表示标准差;NA表示数值低于标准曲线有效检测范围,未检出。
实施例6:BBL2-2抗虫性试验
1、供试昆虫
供试昆虫亚洲玉米螟、黏虫、棉铃虫、草地贪夜蛾均为在室内人工饲料上连续饲养多代。饲养过程中,不接触任何的Bt制剂和Bt杀虫蛋白。在温度27±1℃,相对湿度70%-80%,光周期L16:D8h的条件下饲养。
双斑长跗萤叶甲:养虫笼中放置有脱脂棉、滤纸和玉米叶片,每笼养殖20头双斑长跗萤叶甲成虫。温度26℃±1℃,光周期L16:D8h,相对湿度(RH)(80±5)%。
2、供试Bt玉米
试验用转基因玉米材料分别为:BBL2-2(包含优化的mCry1Ab、mCry3Bb及mCP4EPSPS表达框)、转Cry1Ab玉米、转Cry3Bb玉米、亲本对照郑58。玉米材料均为在温室花盆种植。
3、抗虫性试验
玉米螟、棉铃虫、草地贪夜蛾生测:取4-6叶期的玉米植株4-6株带回室内,选取刚展开的幼嫩心叶,用自来水冲洗干净,再用蒸馏水冲洗1遍,用滤纸吸去表面水珠后晾干。将剔除主叶脉的玉米叶片,裁剪为长和宽均为1cm左右大小的叶片,放入24孔细胞培养板,每孔1-2片。每孔接入供试初孵幼虫1头。每板为1个重复,重复4次。置于27±1℃,相对湿度70%-80%,光周期L16:D8h的条件下饲养。
黏虫生测:取4-6叶期的玉米植株4-6株带回室内,选取幼嫩心叶清洗晾干后放入小养虫盒内,每盒接入20头初孵幼虫。每盒为1个重复,重复4次。置于27±1℃,相对湿度70%-80%,光周期L16:D8h的条件下饲养。
每2天调查1次,根据叶片组织被取食消耗情况随时添加或更换相同来源的新鲜叶片,并记录存活幼虫数,试验观察6天。
双斑萤叶甲成虫:利用养虫装置分别饲喂双斑成虫不同品种的玉米叶片(4-6叶期),每24h更换新鲜的玉米叶片。每个养虫笼中放置20头双斑萤叶甲成虫,每个玉米品种设置3个养虫笼(三个重复)。置于温度26℃±1℃,光周期L16:D8h,相对湿度(RH)(80±5)%饲养,分别于24h、48h和96h时观察统计养虫笼中的双斑死亡情况。
采用统计分析软件对不同害虫取食不同玉米材料后的存活率进行方差分析。
4、数据统计与分析
(1)对亚洲玉米螟的室内抗虫性测定
转基因玉米BBL2-2对亚洲玉米螟的室内抗虫性结果表明,亚洲玉米螟初孵幼虫取食转基因材料BBL2-2叶片4天后全部死亡,转Cry1Ab基因玉米4天仍有17.7%存活,而在非转基因对照郑58上存活率达80%以上,存在显 著性差异。说明BBL2-2对亚洲玉米螟的抗性明显优于转Cry1Ab单基因的材料。
表11转基因玉米BBL2-2对亚洲玉米螟的室内抗虫性
Figure PCTCN2022134347-appb-000004
注:表中数据为平均值±标准差,同列数据后不同小写字母表示差异显著(P<0.05)。
(2)对黏虫幼虫的室内抗虫性测定
转基因玉米BBL2-2对黏虫的室内抗虫性结果表明,黏虫初孵幼虫取食转基因材料BBL2-2叶片6天后绝大部分死亡,转Cry1Ab基因玉米6天后仍有80%以上存活,而在非转基因对照郑58上存活率达90%以上,存在显著性差异。说明BBL2-2对黏虫的抗性显著优于转Cry1Ab单基因。
表12转基因玉米BBL2-2对黏虫的室内抗虫性
Figure PCTCN2022134347-appb-000005
注:表中数据为平均值±标准差,同列数据后不同小写字母表示差异显著(P<0.05)。
(3)对棉铃虫的室内抗虫性测定
转基因玉米BBL2-2对棉铃虫的室内抗虫性结果表明,棉铃虫初孵幼虫取食转基因材料BBL2-2叶片4天后绝大部分死亡;转Cry1Ab基因玉米4天仍有12.5%存活;非转基因对照郑58存活率为70%以上,存在显著性差异。说明BBL2-2对棉铃虫的抗性明显优于转Cry1Ab单基因。
表13转基因玉米BBL2-2对棉铃虫的室内抗虫性
Figure PCTCN2022134347-appb-000006
Figure PCTCN2022134347-appb-000007
注:表中数据为平均值±标准差,同列数据后不同小写字母表示差异显著(P<0.05)。
(4)对草地贪夜蛾的室内抗虫性测定
转基因玉米BBL2-2对草地贪夜蛾的室内抗虫性结果表明,草地贪夜蛾幼虫取食转基因材料BBL2-2叶片6天后有42.7%存活;转Cry1Ab基因玉米有59.4%存活;非转基因对照郑58存活率为90%以上。说明BBL2-2对草地贪夜蛾的抗性明显优于转Cry1Ab单基因。
表14转基因玉米BBL2-2对草地贪夜蛾的室内抗虫性
Figure PCTCN2022134347-appb-000008
注:表中数据为平均值±标准差,同列数据后不同小写字母表示差异显著(P<0.05)。
(5)对双斑萤叶甲的室内抗虫性测定
转基因玉米BBL2-2对双斑萤叶甲的室内抗虫性结果表明,双斑萤叶甲成虫取食转基因材料BBL2-2叶片4天后存活率为26.7%,转Cry3Bb基因玉米有62.5%存活,对照郑58有80%存活。说明BBL2-2对双斑萤叶甲的抗性明显优于转Cry3Bb基因玉米。
表15转基因玉米BBL2-2对萤叶甲的室内抗虫性
Figure PCTCN2022134347-appb-000009
注:表中数据为平均值±标准差,同列数据后不同小写字母表示差异显著(P<0.05)。
实施例7:BBL2-2田间抗草甘膦试验
1、试验材料
转基因玉米BBL2-2(以下称BBL2-2)、对应的非转基因玉米为对照郑58。目标除草剂采用孟山都公司生产的农达(41%草甘膦异丙胺盐)。
2、试验设计
采用随机区组设计,3次重复。小区间设有1.0m宽隔离带,小区面积24m 2
设以下处理:(1)转基因玉米不喷施除草剂;(2)转基因玉米喷施目标除草剂草甘膦;(3)对应的非转基因玉米不喷施除草剂;(4)对应的非转基因玉米喷施目标除草剂草甘膦。
除草剂的施用剂量设4个梯度:(1)农药登记标签的中剂量;(2)中剂量的2倍量;(3)中剂量的4倍量;(4)中剂量的6倍量。
3、调查方法
分别在用药后1周、2周和4周调查和记录成苗率、植株高度(选取最高的5株)、药害症状(选取药害症状最轻的5株),包括:生长抑制、褪绿、枯斑、畸形等。
药害症状分级按GB/T 19780.42执行,具体如下:
1级:玉米生长正常,无任何受害症状;
2级:玉米轻微药害,药害少于10%;
3级:玉米中等药害,以后能恢复,不影响产量;
4级:玉米药害较重,难以恢复,造成减产;
5级:玉米药害严重,不能恢复,造成明显减产或绝产。
除草剂受害率按下列公式计算:X=[∑(N×S)/(T×M)]×100
其中:X为受害率,单位为百分数(%);N为同级受害株数;S为级别数;T为总株数;M为最高级别。
4、除草剂施用剂量及方法
除草剂的施用剂量设4个梯度:农药登记标签的中剂量、中剂量的2倍量、4倍量和6倍量分别为900g a.i./ha、1800g a.i./ha、3600g a.i./ha和5400g a.i./ha。
施药方法:茎叶处理,喷液量450L/ha。
5、结果分析
BBL2-2不喷药及喷施900g a.i./ha、1800g a.i./ha、3600g a.i./ha和5400g a.i./ha四个浓度草甘膦处理1、2和4周后成苗率均为100%。非转基因玉米对照不喷药处理1、2和4周后成苗率均为100%,在喷施900、1800、3600和5400g a.i./ha草甘膦1周后植株均不能成苗,成苗率为0。
表16供试玉米材料喷施草甘膦后成苗率(%)
Figure PCTCN2022134347-appb-000010
注:表中数值为3个小区的平均值,成苗率均为100%或0%,因此未进行显著性分析。
BBL2-2不喷药及喷施900g a.i./ha、1800g a.i./ha、3600g a.i./ha和5400g a.i./ha四个浓度草甘膦处理1、2和4周后没有观察到药害。非转基因玉米对照在喷施900g a.i./ha草甘膦1周后,受害率为98.67%,有个别植株仍然存活,喷药2周后植株全部死亡。非转基因玉米对照在喷施1800、3600和5400g a.i./ha草甘膦1周后植株全部死亡,受害率均为100%。
表17供试玉米材料喷施草甘膦后受害率(%)
Figure PCTCN2022134347-appb-000011
注:表中数值为3个小区的平均值。受害率均分别为0%或100%,因此未进行显著性分析。

Claims (10)

  1. 一种合成的基因串联表达框,其包含mCry1Ab、mCry3Bb和mCP4EPSPS基因,其中mCry1Ab基因序列优选如序列1所示,mCry3Bb基因序列优选如序列2所示,mCP4EPSPS基因序列优选如序列3所示。
  2. 包含权利要求1所述的基因串联表达框的植物表达载体,其优选为表达载体pL2。
  3. 包含权利要求1所述的基因串联表达框、或包含权利要求2所述的植物表达载体的宿主细胞,其优选为农杆菌,更加优选为农杆菌EHA105。
  4. 权利要求1所述的基因串联表达框、权利要求2所述的植物表达载体、或权利要求3所述的宿主细胞在提高玉米抗虫和耐除草剂特性上的应用,其中抗虫优选为抗鳞翅目和鞘翅目昆虫,抗鳞翅目昆虫更加优选为抗玉米螟、黏虫、棉铃虫和草地贪夜蛾,抗鞘翅目昆虫更加优选为抗双斑萤叶甲,耐除草剂优选为耐草甘膦。
  5. 一种培育抗虫耐除草剂转基因玉米的方法,包括将权利要求1所述的基因串联表达框、权利要求2所述的植物表达载体、或权利要求3所述的宿主细胞整合到受体玉米材料中,其中抗虫优选为抗鳞翅目和鞘翅目昆虫,抗鳞翅目昆虫更加优选为抗玉米螟、黏虫、棉铃虫和草地贪夜蛾,抗鞘翅目昆虫更加优选为抗双斑萤叶甲,耐除草剂优选为耐草甘膦。
  6. 一种检测抗虫耐除草剂转基因玉米的引物组合,其核苷酸序列如序列11和12所示。
  7. 一种检测抗虫耐除草剂转基因玉米的方法,其采用权利要求6所述的引物组合对转基因玉米进行检测。
  8. 根据权利要求6所述的引物组合或权利要求7所述的方法,其中转基因玉米包含权利要求1所述的基因串联表达框,抗虫优选为抗鳞翅目和鞘翅 目昆虫,抗鳞翅目昆虫更加优选为抗玉米螟、黏虫、棉铃虫和草地贪夜蛾,抗鞘翅目昆虫更加优选为抗双斑萤叶甲,耐除草剂优选为耐草甘膦。
  9. 一种用于鉴定抗虫耐除草剂转基因玉米的外源插入片段的序列,其包含外源插入片段及其旁侧序列,所述序列如序列10所示。
  10. 根据权利要求9所述的序列,其中外源插入片段包含权利要求1所述的基因串联表达框,抗虫优选为抗鳞翅目和鞘翅目昆虫,抗鳞翅目昆虫更加优选为抗玉米螟、黏虫、棉铃虫和草地贪夜蛾,抗鞘翅目昆虫更加优选为抗双斑萤叶甲,耐除草剂优选为耐草甘膦。
PCT/CN2022/134347 2021-11-26 2022-11-25 一种转基因抗虫耐除草剂玉米及其培育方法 WO2023093847A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111420945.5 2021-11-26
CN202111420945.5A CN113980989B (zh) 2021-11-26 2021-11-26 一种转基因抗虫耐除草剂玉米及其培育方法

Publications (1)

Publication Number Publication Date
WO2023093847A1 true WO2023093847A1 (zh) 2023-06-01

Family

ID=79732045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134347 WO2023093847A1 (zh) 2021-11-26 2022-11-25 一种转基因抗虫耐除草剂玉米及其培育方法

Country Status (2)

Country Link
CN (1) CN113980989B (zh)
WO (1) WO2023093847A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089553A (zh) * 2023-10-18 2023-11-21 莱肯生物科技(海南)有限公司 一种核酸分子及其在培育抗虫植物中的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113980989B (zh) * 2021-11-26 2022-09-09 中国农业科学院生物技术研究所 一种转基因抗虫耐除草剂玉米及其培育方法
WO2023118418A1 (en) * 2021-12-23 2023-06-29 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. A novel glv-phenolamide: biosynthesis and function in protecting plants from herbivore attack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038067A1 (en) * 2014-09-10 2016-03-17 Basf Se Use of afidopyropene in genetically modified plants
CN110144363A (zh) * 2018-02-11 2019-08-20 中国种子集团有限公司 抗虫耐除草剂玉米转化事件
CN110951727A (zh) * 2020-02-24 2020-04-03 中国农业科学院生物技术研究所 转基因玉米bfl4-2外源插入片段旁侧序列及其应用
CN110951728A (zh) * 2020-02-25 2020-04-03 中国农业科学院生物技术研究所 转基因玉米bbhtl8-1外源插入片段旁侧序列及其应用
CN113980989A (zh) * 2021-11-26 2022-01-28 中国农业科学院生物技术研究所 一种转基因抗虫耐除草剂玉米及其培育方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106916844B (zh) * 2016-12-31 2020-08-04 浙江大学 一种抗虫耐草甘膦表达载体、质粒及其应用
WO2019134840A1 (en) * 2018-01-05 2019-07-11 Basf Se Control of pests of soybean plants with mesoionic compounds
MX2021008240A (es) * 2019-01-10 2021-08-16 Syngenta Crop Protection Ag Composiciones y metodos para controlar plagas de insectos.
CN113201531B (zh) * 2021-04-27 2023-06-27 隆平生物技术(海南)有限公司 转基因玉米事件lw2-1及其检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038067A1 (en) * 2014-09-10 2016-03-17 Basf Se Use of afidopyropene in genetically modified plants
CN110144363A (zh) * 2018-02-11 2019-08-20 中国种子集团有限公司 抗虫耐除草剂玉米转化事件
CN110951727A (zh) * 2020-02-24 2020-04-03 中国农业科学院生物技术研究所 转基因玉米bfl4-2外源插入片段旁侧序列及其应用
CN110951728A (zh) * 2020-02-25 2020-04-03 中国农业科学院生物技术研究所 转基因玉米bbhtl8-1外源插入片段旁侧序列及其应用
CN113980989A (zh) * 2021-11-26 2022-01-28 中国农业科学院生物技术研究所 一种转基因抗虫耐除草剂玉米及其培育方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU WEIXIAO, MENG LIXIA, ZHAO WEILING, WANG ZHANCHAO, MIAO CHAOHUA, WAN YUSONG, JIN WUJUN: "Proteomic and Metabolomic Evaluation of Insect- and Herbicide-Resistant Maize Seeds", METABOLITES, vol. 12, no. 11, 1 January 2022 (2022-01-01), pages 1 - 14, XP093068752, DOI: 10.3390/metabo12111078 *
ZOU JUNJIE;XU MIAOYUN;ZHANG LAN;LUO YANZHONG;LIU YUAN;ZHENG HONGYAN;WANG LEI: "Molecular Characterizations of Stacked Transgenic Maize BBHTL8-1 with Insect Resistance,Glyphosate Tolerance and Improved Quality)", JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, vol. 24, no. 2, 15 February 2022 (2022-02-15), pages 77 - 85, XP093068756, ISSN: 1008-0864, DOI: 10.13304/j.nykjdb.2020.0703 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089553A (zh) * 2023-10-18 2023-11-21 莱肯生物科技(海南)有限公司 一种核酸分子及其在培育抗虫植物中的应用
CN117089553B (zh) * 2023-10-18 2023-12-19 莱肯生物科技(海南)有限公司 一种核酸分子及其在培育抗虫植物中的应用

Also Published As

Publication number Publication date
CN113980989A (zh) 2022-01-28
CN113980989B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2023093847A1 (zh) 一种转基因抗虫耐除草剂玉米及其培育方法
CN106916844B (zh) 一种抗虫耐草甘膦表达载体、质粒及其应用
WO2023093848A1 (zh) 一种转基因抗虫耐除草剂玉米及其培育方法
RU2648155C2 (ru) Объект кукурузы mon 87411
Gao et al. Transgenic sugarcane with a cry1Ac gene exhibited better phenotypic traits and enhanced resistance against sugarcane borer
WO2016173361A1 (zh) 玉米植物dbn9936及用于检测其的核酸序列和方法
WO2016173362A1 (zh) 玉米植物dbn9978及用于检测其的核酸序列和方法
Mao et al. Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination
US20100218278A1 (en) Method for improved stress tolerance
CN112852801A (zh) 转基因玉米事件lp007-1及其检测方法
Bakhsh et al. Insect resistance and risk assessment studies in advance lines of Bt cotton harboring Cry1Ac and Cry2A genes
US20150135372A1 (en) Transgenic Plants With Enhanced Agronomic Traits
Krens et al. Performance and long-term stability of the barley hordothionin gene in multiple transgenic apple lines
Singh et al. High expression of Cry1Ac protein in cotton (Gossypium hirsutum) by combining independent transgenic events that target the protein to cytoplasm and plastids
CN110951728A (zh) 转基因玉米bbhtl8-1外源插入片段旁侧序列及其应用
CN105219781A (zh) 抗虫转基因水稻T1c-19的培育方法
Wan et al. Development of elite rice restorer lines in the genetic background of R022 possessing tolerance to brown planthopper, stem borer, leaf folder and herbicide through marker-assisted breeding
CN112368296A (zh) 新型昆虫抑制性蛋白
US20170233755A1 (en) Transgenic Plants with Enhanced Traits
Babu et al. Sugarcane transgenics: developments and opportunities
CN112877454A (zh) 转基因玉米事件lp007-3及其检测方法
Gadag et al. Resistance to biotic stress: theory and applications in maize breeding
CN101812462B (zh) 水稻GT转录因子家族基因OsGTγ-1在控制水稻耐盐性中的应用
US10626411B2 (en) Gene for encoding Bacillus thuringiensis crystal proteins, and use thereof
Torres et al. Transgenic cotton for sustainable pest management: a review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897929

Country of ref document: EP

Kind code of ref document: A1