WO2023093558A1 - 空间平行四边形连杆结构及具有其的小型化机械臂和应用 - Google Patents

空间平行四边形连杆结构及具有其的小型化机械臂和应用 Download PDF

Info

Publication number
WO2023093558A1
WO2023093558A1 PCT/CN2022/131715 CN2022131715W WO2023093558A1 WO 2023093558 A1 WO2023093558 A1 WO 2023093558A1 CN 2022131715 W CN2022131715 W CN 2022131715W WO 2023093558 A1 WO2023093558 A1 WO 2023093558A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
rotation
rotating body
mechanical arm
arm
Prior art date
Application number
PCT/CN2022/131715
Other languages
English (en)
French (fr)
Inventor
汤毅
Original Assignee
北京精准医械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京精准医械科技有限公司 filed Critical 北京精准医械科技有限公司
Publication of WO2023093558A1 publication Critical patent/WO2023093558A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms

Definitions

  • the invention relates to the technical field of medical instruments, and more specifically relates to a space parallelogram connecting rod structure, a miniaturized mechanical arm and its application.
  • Ultrasound, X-ray, computed tomography (CT), magnetic resonance imaging (MRI), digital subtraction angiography (DSA) and other medical imaging techniques are common clinical diagnostic methods and guided treatment methods.
  • Real-time medical image guidance can monitor tumors and normal organs in real time, and adjust the surgical path and treatment plan according to changes in the location, size, and shape of the lesion to achieve accurate diagnosis and treatment of the lesion.
  • CT and MRI are limited by the space limitations of the equipment itself.
  • Such a surgical robot has the disadvantages of fixed working range, large weight ratio, inconvenient maintenance, inconvenient portability, and large size, and is not suitable for some compact surgical environments.
  • medical imaging such as CT, MRI
  • existing surgical robots and navigation and positioning systems cannot enter the scanning holes of medical imaging equipment, so surgical operations under real-time image guidance cannot be performed.
  • the present invention provides a space parallelogram connecting rod structure and a miniaturized mechanical arm and application thereof, aiming at solving the above-mentioned technical problems.
  • a space parallelogram connecting rod structure comprising:
  • the installation housing has a movable notch for the connecting rod; a coaxial and non-interfering bidirectional rotating seat is fixed inside the housing;
  • the first rotating body is rotatably connected to one side of the two-way rotating seat, and the rotating output end of the first rotating body has a big arm swing rod extending out of the movable slot;
  • the second rotating body is rotatably connected to the other side of the two-way rotating seat; the rotating output end of the second rotating body has a turntable arm, and the edge of the turntable arm is hinged with an arm swing rod, the forearm swing rod extends out of the movable notch;
  • the output control body has two hinge points in the same direction and different axes, and arranged in a misplaced position; the two hinge points are respectively connected with the boom swing rod and the small arm swing rod to extend out of the The ends of the mounting shell are hinged.
  • the space parallelogram connecting rod structure provided by the present invention adopts a symmetrical arrangement of two-way rotation, which can integrate the driving force of the two degrees of freedom into the installation shell, reduce the rotation counterweight of the hinge point, and have a more Accurate driving effect, flexible range of motion of the parallelogram structure, and misplaced layout, enhanced structural stability, can realize multi-angle, multi-directional motion drive of the output control body.
  • both the first rotating body and the second rotating body realize the input and transmission of rotational power through the cooperation structure of the motor and the gear set;
  • the first rotating The central shafts of the rotating output ends of the body and the second rotating body are respectively connected to the two encoders fixed on both sides inside the installation housing, and the two encoders are respectively connected to the two motors corresponding to the two sides.
  • the closed-loop feedback circuit formed by the motor drive control and the encoder can accurately control the number of rotations of the motor and improve the control accuracy.
  • the inner structures corresponding to the first rotating body and the second rotating body on both sides of the installation housing respectively have limit grooves
  • the first rotating body Both the first rotating body and the second rotating body are provided with a limiting post matched with the corresponding limiting groove.
  • the cooperation between the limit groove and the limit post can limit the rotation strokes of the first rotating body and the second rotating body.
  • the forearm swing link is a curved link.
  • the forearm swing bar is bent in shape, mainly to avoid movement restrictions and expand the range of movement.
  • the present invention also provides a miniaturized mechanical arm, which includes a rotating base, a three-axis mechanical arm and the above-mentioned space parallelogram connecting rod structure; the installation shell is fixed on the rotating base, and the output control body is fixed on On the shell of the first rotating part of the three-axis mechanical arm.
  • the drive of the miniaturized robotic arm provided by the present invention is lowered, and the overall center of gravity is moved downward, which improves the load capacity of the robot, enables operations in a narrow space, saves space, reduces collisions, and improves safety.
  • the rotating base includes a fixed part and a rotating part that are rotationally connected, and the rotating part is driven to rotate relative to the fixed part through a matching structure of a motor and a gear set; There is a rotation stroke limiting structure between the fixed part and the rotating part; the installation shell is fixed on the rotating part.
  • the rotating base can realize the rotating drive, drive the spatial parallelogram connecting rod structure to rotate as a whole, and has the function of limiting the rotation.
  • the three-axis mechanical arm includes three sequentially connected first rotation mechanisms, second rotation mechanisms and third rotation mechanisms; the first rotation mechanism, the second rotation mechanism Both the mechanism and the third rotating mechanism are motor-driven output shaft rotating structures; the shell of the first rotating structure is fixed to the output control body, and its rotating output shaft is fixedly connected to the second rotating mechanism.
  • the rotation output shaft of the rotation mechanism is fixedly connected with the third rotation mechanism, and the rotation output shaft of the third rotation mechanism is the terminal working end.
  • the sequential transmission and connection of the first rotating mechanism, the second rotating mechanism and the third rotating mechanism can realize the action of three degrees of freedom, and the one degree of freedom of the rotating base and the two degrees of freedom of the parallelogram connecting rod structure can realize 6 degrees of freedom. degrees of freedom in drive control.
  • the rotation plane of the first rotation mechanism is perpendicular to the rotation plane of the second rotation mechanism, and the rotation plane of the second rotation mechanism is perpendicular to the rotation plane of the third rotation mechanism.
  • the plane of rotation is vertical.
  • the rotation plane of the first rotating body is parallel to the rotation plane of the second rotating body, and is perpendicular to the rotation plane of the rotation base and the rotation plane of the first rotation mechanism respectively; the rotation plane of the rotation base perpendicular to the rotation plane of the first rotation mechanism.
  • the present invention also provides an application of the above-mentioned miniaturized mechanical arm, wherein the fixed part of the rotating base is installed on the supporting device of the medical equipment.
  • the miniaturized robotic arm provided by the present invention is applied in a narrow space, especially the diagnostic and therapeutic robotic arm in the scanning hole of medical imaging equipment.
  • the diagnostic and medical instruments it is possible for the diagnostic and medical instruments to cover the lesion area from any position and angle in real time in the scanning hole of the imaging device, to perform diagnostic and therapeutic operations, and to maximize the use of the space in the scanning hole.
  • the supporting device of the medical equipment mentioned in the present invention is another patent application of the applicant with the patent number CN202210191212.7, which is called the medical equipment support frame, and is fixed by its structure.
  • the present invention discloses a space parallelogram connecting rod structure and its miniaturized mechanical arm and application, which have the following beneficial effects:
  • the miniaturized robotic arm provided by the present invention is small in size, can enter the scanning hole of medical imaging equipment, and has 6 degrees of freedom at the same time, which can meet the basic needs of diagnosis and treatment, such as puncture, biopsy, ablation, electrode implantation, etc.
  • the miniaturized robotic arm provided by the present invention can be used in the narrow space of various medical imaging equipment, and can be combined with medical equipment to complete access surgery or auxiliary testing in real time.
  • the robot has six degrees of freedom in joint space, arranged in series, has the ability to work in small size and large free space, and can complete the work without affecting the work of existing medical equipment. Robots can enter the interior of the aperture for teleoperated work.
  • FIG. 1 is the structural representation of the miniaturized mechanical arm provided by the present invention
  • Fig. 2 accompanying drawing is the side view of the miniaturized mechanical arm provided by the present invention.
  • FIG. 3 accompanying drawing is the schematic diagram of A-A in Fig. 2 provided by the present invention.
  • FIG. 4 accompanying drawing is the schematic diagram of B-B in Fig. 2 provided by the present invention.
  • FIG. 5 accompanying drawing is the schematic diagram of C-C in Fig. 2 provided by the present invention.
  • Figure 6 is an exploded view of the second rotating body in the space parallelogram connecting rod structure provided by the present invention.
  • Figure 7 is an exploded view of the first rotating body in the space parallelogram connecting rod structure provided by the present invention.
  • Figure 8 is a schematic diagram of another angle in Figure 7 provided by the present invention.
  • Figure 9 is a schematic perspective view of the second and third joints of the miniaturized robotic arm provided by the present invention.
  • Figure 10 is a schematic perspective view of the motion state of the third joint of the miniaturized mechanical arm provided by the present invention.
  • FIG. 11 accompanying drawing is the schematic diagram of the boom swing bar provided by the present invention.
  • Figure 12 is a schematic diagram of the limit state of the third joint of the miniaturized robotic arm provided by the present invention.
  • Figure 13 is a schematic diagram of the spatial configuration of the second and third joints of the miniaturized robotic arm provided by the present invention.
  • Figure 14 is a schematic diagram of the four-axis limit of the miniaturized mechanical arm provided by the present invention.
  • Figure 15 is an exploded diagram of the connection relationship between the spatial parallelogram connecting rod structure and the three-axis mechanical arm provided by the present invention.
  • Figure 16 is a schematic diagram of the application scenario of the miniaturized robotic arm provided by the present invention.
  • 501-second support shaft 502-cover plate; 503-fourth bearing; 504-fifth bearing; 505-fifth motor; 506-limit fixed shaft; 507-second output gear; ; 509-the twelfth connecting screw; 510-the second reducer and drive transmission structure;
  • 601-support frame 602-connecting block; 603-sliding block; 604-thrust bearing; 605-third reducer and drive transmission structure; 606-sixth motor; 607-output shaft.
  • this embodiment provides a miniaturized mechanical arm, including a rotating base, a three-axis mechanical arm and a space parallelogram connecting rod structure; the installation shell is fixed on the rotating base, and the output control body is fixed On the shell of the first rotating part of the three-axis mechanical arm; the fixed part of the rotating base is installed on the supporting device of the medical equipment.
  • the space parallelogram connecting rod structure includes: installation housing, first rotating body, second rotating body and output control body; the installation housing has a connecting rod movable notch; coaxial and non-interfering two-way rotating shafts are fixed inside the housing. seat; the first rotating body is rotatably connected to one side of the two-way rotating seat, and the rotating output end of the first rotating body has a large arm swing bar extending out of the movable notch; the second rotating body is rotatably connected to the other side of the two-way rotating seat ; The rotation output end of the second rotating body has a turntable forearm, and the edge of the turntable forearm is hinged with a forearm swing rod, and the forearm swing rod extends out of the movable slot; the output control body has two in the same direction and different axes, and the misalignment Arranged hinge points; the two hinge points are respectively hinged with the ends of the boom swing rod and the small arm swing rod extending out of the installation housing.
  • the base 101 is the main supporting structure of the robot, and is also a bridge connected with the supporting device 2 of the medical equipment 1, and the bottom surface adopts a U-shaped structure , reduce the contact surface, and have a positioning structure with square holes on both sides to ensure the installation and connection accuracy requirements.
  • the base 101 and the support seat 106 are supported and connected by the first connecting shaft 103 and the first bearing 104 to form a concentric rotating fit structure, and at the same time, they are tightly connected on the corresponding end surfaces between the base 101 and the support seat 106
  • a sliding thrust washer 105 which can ensure that the load-bearing requirements of the first connecting shaft 103 and the radial force borne by the first bearing 104 are shared during partial loads.
  • the bottom end of the first connecting shaft 103 is fixed to the support seat 106, and the top end passes through the base upwards 101, the top end of the first connecting shaft 103 is connected with the first lock nut 102 that pushes against the first bearing 104, the first connecting shaft 103 is covered with two first bearings 104, and is also covered with a first spacer Sleeve 110 , the first spacer 110 is located between the two first bearings 104 .
  • the base 101 and the support base 106 are installed together to ensure the overall positioning accuracy of the robot, which can effectively reduce the assembly tooling and improve the installation accuracy and structural strength. After the base 101 and the support base 106 are installed, an installation cavity is formed between the two.
  • the screw 108 connects the first gear 107 with the base 101, and the first gear 107 is located in the installation cavity.
  • the first motor 109 is installed on the support base 106 to form an integral fixed connection structure, and the power is transmitted to the first gear 107 through the rotation of its output shaft, which reversely pushes the support base 106 and the overall structure of the upper robot to rotate around the connecting shaft 104 .
  • the left limiter 112 and the right limiter 111 are structures that protrude downward inside the base 101 , reducing the number of connecting blocks, saving internal space, and mechanically limiting the movement of the support seat 106 .
  • the installation housing is composed of a first housing 311 , a second housing 211 and an intermediate housing 322 , and is fixed by fifth connecting screws 321 .
  • the second motor 301 is arranged coaxially with the first reducer 302, and the second motor 301 is connected to the first housing 311 through the fourth connecting screw 314 and the second spring washer 315 superior.
  • the second gear 303 is fixedly connected with the first speed reducer 302 by screws, and is fixedly connected with the first supporting wallboard 312 by the first connecting screw 317, the third connecting screw 316 and the first spring washer 318, all of which are connected by straight
  • the second gear 303 meshes with the first transmission gear 305, the first duplex gear 306 and the second transmission gear 307 in turn, and finally meshes with the third gear 308, and the third gear 308 passes through the small arm 309 of the turntable.
  • the second connecting screw 313 is fixedly connected and positioned through the central axis hole; the third gear 308 is a web structure, which can reduce the weight of the body and reduce the running moment of inertia while ensuring the structural strength.
  • the second connecting shaft 323 rotates concentrically with the small arm 309 of the turntable, and is coaxially connected with the first encoder 304 as a direct output rotating shaft body, which is used to form a double closed-loop signal.
  • the limit structure of the turntable arm 309 is connected with the hollow area of the boom swing bar 209 .
  • the forearm swing link 310 and the turntable forearm 309 form a hinged kinematic connection through the pin shaft 319 and the first thrust bearing 320.
  • the number of the first thrust bearings 320 is two, and the double thrust bearing structure is connected with the turntable forearm 309 and Axial rotation is formed between the forearm swing rods 310 and radial fixation is satisfied.
  • the forearm swing rods 310 and the turntable forearm 309 form a staggered layout that is not coplanar with the space of the big arm swing rods 209, which can not only enhance spatial stability but also It can form spatial dislocation and crossover without interfering with each other.
  • the curved setting of the forearm swing rod 310 is consistent with the effect of the straight rod, and can skillfully avoid the interference of rotational movement in a compact space. Form a spatial dislocation with the first support shaft 221 .
  • the third motor 201 is arranged coaxially with the second reducer 202, and the third motor 201 is connected to the second motor 201 through the tenth connecting screw 213 and the washer 214.
  • the fourth gear 204 is fixedly connected with the second speed reducer 202 by screw fastening and positioning, and is fixedly connected with the second supporting wallboard 210 by the sixth connecting screw 218 and the third spring washer 219, wherein both are positioned and connected by straight holes, and the fourth The gear 204 meshes with the third transmission gear 205, the second duplex gear 206, and the fourth transmission gear 207 in turn, and finally meshes with the fifth gear 208.
  • the fifth gear 208 and the boom swing bar 209 are connected by the seventh connecting screw 212 connected, and positioned through the center shaft hole; the fifth gear 208 is a hole plate structure, and forms a limit gap with the boom swing bar 209, as a three-axis movement mechanical limit.
  • the orifice plate gear structure can not only reduce the weight of the body and the moment of inertia of operation under the condition of determining the structural strength, but also can be used as a mechanical limit space to form a limit space with the limit pin shaft 325.
  • the limit pin shaft 325 is soft and elastic material, and fixed by the eighth connecting screw 324.
  • the third connecting shaft 220 rotates coaxially with the boom swing rod 209, is coaxially mechanically connected with the second encoder 203, cooperates with the third motor 201, and finally outputs signals to form a double closed loop of structural signals.
  • the second support wallboard 210 is provided with an arc-shaped oblong hole, and the first limiter 215 and the second limiter 217 are distributed on both sides and connected by the ninth connecting screw 216.
  • the limiter pin 223 is fixedly connected with the boom swing rod 209, And move in the arc-shaped space.
  • the arc-shaped hole distance is the movement range of the two-axis boom.
  • the limit on both sides is made of soft elastic materials.
  • the mechanical limit collision can protect the overall mechanical structure during use.
  • the structure layout uses wall panels The arrangement of internal space and limit pins saves space, increases the compactness of the structure, and improves the stability of the structure.
  • the second motor 301 drives the first speed reducer 302, and transmits the speed torque to the second gear 303, and the second gear 303 drives the first transmission gear 305, and the first transmission gear 305 drives the first duplex gear 306, and the first duplex
  • the gear 306 drives the second transmission gear 307, and the second transmission gear 307 directly drives the third gear 308, and the power is transmitted to the small arm 309 of the turntable, and the small arm 309 of the turntable drives the swing rod 310 of the small arm; the first encoder 304 and the small arm of the turntable 309 coaxial output, the first encoder 304 and the second motor 301 form a double closed loop.
  • the motor of the third motor 201 drives the second speed reducer 202, and the speed torque is transmitted to the fourth gear 204, and the fourth gear 204 drives the third transmission gear 205, and the third transmission gear 205 drives the second double gear 206, and the second double gear
  • the connecting gear 206 drives the fourth transmission gear 207, and the fourth transmission gear 207 directly drives the fifth gear 208 to transmit the power to the boom swing rod 209;
  • the second encoder 203 is coaxially output with the boom swing rod 209, and the second encoder 203 and the third motor 201 form a double closed loop.
  • the internal structure of the installation housing forms a symmetrical arrangement, which can simplify the overall structure and has strong replaceability.
  • the two-axis movement drives the boom swing bar 209 to swing
  • the three-axis movement is composed of two internal connecting rods, namely the turntable arm 309, the arm swing link 310 and the shaft arm 401 completes the movement
  • the upper internal turntable forearm 309 is in the same motion state as the shaft arm 401, which is two parallel sides of a space parallelogram, and the space quadrilateral is arranged in a misplaced position to enhance structural stability;
  • the forearm swing bar 310 is bent in shape, mainly to avoid movement Limit extended range of motion.
  • the forearm swing rod 310 needs to avoid the interference area between the boom swing rod 209 and the turntable forearm 309 during the movement, the groove-shaped space in the boom swing rod 209 is an avoidance space, and the bent and deformed swing rod needs to avoid the turntable forearm 309.
  • the first connecting pin 326 and the first sliding bearing 327 pass through the swing rod connecting hole 336 and the swing arm connecting hole 330, and pass through the second thrust bearing 328 to be fixed and locked by the second locking nut 329, and the second connecting pin 334 and The second sliding bearing 333 passes through the first arm connecting hole 337 and the second arm connecting hole 335 , and passes through the third thrust bearing 332 and is fixed and locked by the third locking nut 331 .
  • Two connections form a connection support of a spatial quadrilateral. It has structural interchangeability and increases structural stability.
  • the lock nut can adjust the starting torque of the sliding friction, and can effectively perform certain braking.
  • the limit shaft 402 is installed on the cross section of the second support shaft 501 through the eleventh connecting screw 403, there is a rotational movement between the second support shaft 501 and the shaft arm 401, the limit shaft 402 and the third limit 405 and the fourth
  • the limit position 404 is the movement limit position.
  • the limiting shaft 402 is a soft elastic body.
  • the fourth motor 406 with an encoder is connected with the first reducer and the drive transmission structure 407, and transmits power to the first output gear 408, and the first output gear 408 is connected with the fourth lock nut 410 through the set screw 409.
  • the second support shaft 501 is integrally formed.
  • the second support shaft 501 forms a coaxial transmission with the shaft arm 401 through the second bearing 414 and the third bearing 413 to realize four-axis rotation.
  • the bearing is positioned, the motor is arranged parallel to the shaft, and the reverse installation saves space, lowers the overall center of gravity and can arrange the reduction transmission structure in parallel with the first output gear 408 .
  • the fifth motor 505 with an encoder is connected to the second reducer and the drive transmission structure 510, and transmits torque to the second output gear 507, and the second output gear 507 is connected to the support frame 601 through the limit fixed shaft 506 to form power transfer.
  • Five-axis rotation is realized, and the fifth motor 505 is arranged in the rotating space without affecting the movement of other structural components, thereby realizing a compact structure.
  • the other side cover plate 502 is connected to the second support shaft 501 through the twelfth connecting screw 509, and forms a support structure on both sides to connect and fix the support frame 601, and realizes rotation with the fourth bearing 503 and the fifth bearing 504.
  • the support can increase the support strength and avoid insufficient support of the cantilever shaft.
  • the motor 606 with an encoder is connected to the third reducer and the drive transmission structure 605, and the power is transmitted to the output shaft 607, and the output shaft 607 is fixedly connected to the connection block 602, and the external equipment and devices will be connected to the connection block 602, and through The sliding block 603 realizes sliding support.
  • the connecting block 602 and the support frame 601 can be supported by the thrust bearing 604, and the center of the three-axis rotation of the whole rear intersection is at one point, which can facilitate the decoupling of the robot structure and motion control.
  • the robotic arm can be used in the narrow space of various medical imaging equipment, and can be used in the medical field, especially in CT and magnetic resonance equipment. If it is used in magnetic resonance equipment, the rotating base, three-axis mechanical arm
  • the and space parallelogram linkage structures can be made of magnetic resonance compatible materials.
  • the electrical part of the present invention is another patent No. CN202110652399.1 of the applicant, which is an invention patent of a magnetic resonance compatible robot system, using magnetic resonance compatible motors (such as ultrasonic motors) and encoders, shielding cable etc.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for relevant details, please refer to the description of the method part.

Abstract

一种空间平行四边形连杆结构(3)及具有其的小型化机械臂和应用,小型化机械臂包括转动底座、三轴机械臂和空间平行四边形连杆结构(3);安装壳体固定在转动底座上,将转动底座的固定部安装在医学设备(1)的支撑装置(2)上;空间平行四边形连杆结构(3)包括安装壳体;安装壳体具有连杆活动槽口;安装壳体内部固定有双向转动座;第一转动体转动连接在双向转动座的一侧,第一转动体的转动输出末端具有延伸出连杆活动槽口的大臂摆杆(209);第二转动体转动连接在双向转动座的另一侧;第二转动体的转动输出末端具有转盘小臂(309),转盘小臂(309)边沿铰接有小臂摆杆(310);输出控制体上具有两个铰接点,且分别与大臂摆杆(209)和小臂摆杆(310)的端头铰接;输出控制体固定在三轴机械臂的第一个转动部的外壳上。

Description

空间平行四边形连杆结构及具有其的小型化机械臂和应用 技术领域
本发明涉及医疗器械技术领域,更具体的说是涉及一种空间平行四边形连杆结构及具有其的小型化机械臂和应用。
背景技术
超声、X射线、计算机断层扫描(CT)、磁共振成像(MRI)、数字减影血管造影(DSA)等医学影像技术是临床常见的诊断方式和引导治疗手段。实时医学影像引导能够对肿瘤及正常器官进行实时的监控,并根据病变位置、大小及形态的变化调整手术路径和治疗方案,实现对病变的精确诊断治疗。然而CT和MRI受限于设备自身的空间限制,在诊疗过程中,临床医生很难实时进行一些操作,如活检、消融。
现有的手术机器人或带有机械臂的手术导航定位系统,通常是集成Universal Robots、KUKA等品牌的通用机械臂或工业机械臂及其一体化的主控台,例如专利号为CN201810950031.1,名称为一种精准定位的肿瘤手术机器人系统及其目标定位方法的发明专利申请。
这样的手术机器人具有作业范围固定、自重比大、不便维护、不便于携带、体积大等缺点,不适用于一些紧凑的手术环境。尤其是在需要医学影像(如CT、MRI)引导的情况下,现有的手术机器人、导航定位系统无法进入到医学影像设备的扫描孔内,因此不能进行实时影像引导下的手术操作。
现有的手术机器人在手术期间,需要将患者多次移入和移出MRI扫描孔,从而增加了意外风险和手术时长。
因此,为了充分利用CT和MRI在影像方面的优势,需要一种能够进入到CT、MRI扫描孔内,在扫描时或扫描结束后能够及时进行诊疗操作的机械臂。
发明内容
有鉴于此,本发明提供了一种空间平行四边形连杆结构及具有其的小型化机械臂和应用,旨在解决上述技术问题。
为了实现上述目的,本发明采用如下技术方案:
一种空间平行四边形连杆结构,包括:
安装壳体;所述安装壳体具有连杆活动槽口;所述壳体内部固定有同轴且互不干涉的双向转动座;
第一转动体;所述第一转动体转动连接在所述双向转动座的一侧,所述第一转动体的转动输出末端具有延伸出所述活动槽口的大臂摆杆;
第二转动体;所述第二转动体转动连接在所述双向转动座的另一侧;所述第二转动体的转动输出末端具有转盘小臂,所述转盘小臂边沿铰接有小臂摆杆,所述小臂摆杆延伸出所述活动槽口;
输出控制体;所述输出控制体上具有两个同向不同轴,且错位布置的铰接点;两个所述铰接点分别与所述大臂摆杆和所述小臂摆杆延伸出所述安装壳体的端头铰接。
通过上述技术方案,本发明提供的空间平行四边形连杆结构采用双向转动的对称式布置形式,能够将两个自由度的驱动力集成到安装壳体上,减轻铰接点的转动配重,具有更精准的驱动效果,平行四边形结构的运动范围灵活,且错位布置,增强结构稳定性,可以实现对输出控制体的多角度、多方位的运动驱动。
优选的,在上述一种空间平行四边形连杆结构中,所述第一转动体和所述第二转动体均通过电机和齿轮组的配合结构实现转动动力的输入和传递;所述第一转动体和所述第二转动体的转动输出末端的中心轴分别与所述安装壳体内部两侧固定的两个编码器连接,两个所述编码器分别与两侧对应的两个所述电机形成反馈闭环。电机驱动控制与编码器形成的闭环反馈电路能够精确控制电机转动圈数,提高控制精度。
优选的,在上述一种空间平行四边形连杆结构中,所述安装壳体两侧与所述第一转动体和所述第二转动体对应的内部结构上分别具有限位槽,所述第一转动体和所述第二转动体上均具有与其对应的所述限位槽配合的限位柱。限位槽和限位柱的配合能够对第一转动体和第二转动体的转动行程进行限制。
优选的,在上述一种一种空间平行四边形连杆结构中,所述小臂摆杆为弯杆。小臂摆杆形态弯曲,主要是避开运动限制扩大运动范围。
本发明还提供了一种小型化机械臂,包括转动底座、三轴机械臂和上述的空间平行四边形连杆结构;所述安装壳体固定在所述转动底座上,所述输出控制体固定在所述三轴机械臂的第一个转动部的外壳上。
通过上述技术方案,本发明提供的小型化机械臂驱动下置,整体重心下移,提升了机器人负载能力,能够实现在狭小空间内进行操作,更加节省空间,同时可以减少碰撞、提升安全性。
需要说明的是,目前市场上适用于磁共振成像(MRI)环境的介入手术机器人产品非常有限。其原因在于开发MRI引导的手术机器人所面临的多个挑战。例如,MRI双向兼容 性的要求:一方面,机器人的电气系统不能干扰MRI的扫描功能也不能造成图像伪影,另一方面,MRI设备具有的磁场、梯度场、射频场等不能干扰机器人电气系统的正常使用。再如,MRI扫描孔的空间限制是对手术机器人电气设计的巨大挑战。为了满足MRI兼容性要求,需要考虑电子元器件的布局和电气屏蔽措施。因此本发明的小型化机械臂的方案设计对于MRI环境的介入手术机器人产品的发展有着重要意义。
优选的,在上述一种小型化机械臂中,所述转动底座包括转动连接的固定部和转动部,所述转动部通过电机和齿轮组的配合结构驱动其相对所述固定部转动;所述固定部和所述转动部之间具有转动行程限位结构;所述安装壳体固定在所述转动部上。转动底座能够实现转动驱动,带动空间平行四边形连杆结构进行整体转动,且具有转动限位功能。
优选的,在上述一种小型化机械臂中,所述三轴机械臂包括三个依次连接的第一转动机构、第二转动机构和第三转动机构;所述第一转动机构、第二转动机构和第三转动机构均为电机驱动输出轴转动结构;所述第一转动结构的外壳与所述输出控制体固定,且其转动输出轴与所述第二转动机构固定连接,所述第二转动机构的转动输出轴与所述第三转动机构固定连接,所述第三转动机构的转动输出轴为末端工作端头。第一转动机构、第二转动机构和第三转动机构的依次传递连接,能够实现三个自由度的动作,配合转动底座的一个自由度和平行四边形连杆结构的两个自由度即实现了6自由度的驱动控制。
优选的,在上述一种小型化机械臂中,所述第一转动机构的转动平面与所述第二转动机构的转动平面垂直,所述第二转动机构的转动平面与所述第三转动机构的转动平面垂直。所述第一转动体的转动平面和所述第二转动体的转动平面平行,且分别与所述转动底座的转动平面和所述第一转动机构的转动平面垂直;所述转动底座的转动平面和所述第一转动机构的转动平面垂直。通过以上设置能够满足不同方向的自由度驱动设置。
本发明还提供了一种上述的小型化机械臂的应用,将所述转动底座的固定部安装在医学设备的支撑装置上。
通过上述技术方案,本发明提供的小型化机械臂应用于狭小空间内,尤其是医学影像设备扫描孔内的诊疗机械臂,其目的在于解决现有手术机器人不能进入影像设备扫描孔,不能在扫描的同时,利用影像数据实时进行手术操作等问题。通过本公开的方案,能够使得诊疗器械在影像设备扫描孔内实时地从任意位置、角度覆盖病灶区域,进行诊疗操作,最大化利用扫描孔内空间。
需要说明的是,本发明所提及的医学设备的支撑装置为本申请人的另一项专利号为CN202210191212.7,名称为诊疗器械支撑架的发明专利申请,并通过其结构进行固定。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种空间平行四边形连杆结构及具有其的小型化机械臂和应用,具有以下有益效果:
1、本发明提供的小型化机械臂体积小,可以进入医学影像设备的扫描孔内,同时有6自由度,能够满足基本的诊断、治疗需求,例如穿刺、活检、消融、电极植入等。
2、本发明提供的小型化机械臂可以应用于各个多种医疗影像设备狭小空间内部使用,联合诊疗设备实时完成接入手术或辅助测试。机器人拥有六个关节空间自由度,串联排布设置,具有小尺寸大自由空间作业能力,能够不影响现有医学设备工作情况下完成工作。机器人可以进入孔径内部进行远程操作作业。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明提供的小型化机械臂的结构示意图;
图2附图为本发明提供的小型化机械臂的侧视图;
图3附图为本发明提供的图2中A-A的示意图;
图4附图为本发明提供的图2中B-B向的示意图;
图5附图为本发明提供的图2中C-C向的示意图;
图6附图为本发明提供的空间平行四边形连杆结构中第二转动体的爆炸图;
图7附图为本发明提供的空间平行四边形连杆结构中第一转动体的爆炸图;
图8附图为本发明提供的图7中另一角度的示意图;
图9附图为本发明提供的小型化机械臂第二第三关节透视示意图;
图10附图为本发明提供的小型化机械臂第三关节运动状态的透视示意图;
图11附图为本发明提供的大臂摆杆的示意图;
图12附图为本发明提供的小型化机械臂第三关节限位状态示意图;
图13附图为本发明提供的小型化机械臂第二第三关节连杆空间构型示意图;
图14附图为本发明提供的小型化机械臂四轴限位示意图;
图15附图为本发明提供的空间平行四边形连杆结构与三轴机械臂连接关系爆炸图;
图16附图为本发明提供的小型化机械臂应用场景示意图。
其中:
1-医学设备;2-支撑装置;3-空间平行四边形连杆结构;
101-底座;102-锁紧螺母;103-第一连接轴;104-第一轴承;105-滑动止推垫圈;106-支撑座;107-第一齿轮;108-连接螺钉;109-第一电机;110-第一隔套;111-右限位;112-左限位;
201-第三电机;202-第二减速器;203-第二编码器;204第四齿轮;205-第三传动齿轮;206-第二双联齿轮;207-第四传动齿轮;208-第五齿轮;209-大臂摆杆;210-第二支撑墙板;211-第二外壳;212-第七连接螺钉;213-第十连接螺钉;214-垫片;215-第一限位柱;216-第九连接螺钉;217-第二限位柱;218-第六连接螺钉;219-第三弹簧垫圈;220-第三连接轴;221-支撑轴;223限位销;
301-第二电机;302-第一减速器;303-第二齿轮;304-第一编码器;305-第一传动齿轮;306-第一双联齿轮;307-第二传动齿轮;308-第三齿轮;309-转盘小臂;310-小臂摆杆;311-第一外壳;312-第一支撑墙板;313-第二连接螺钉;314-第四连接螺钉;315-第二弹簧垫圈;316-第二连接螺钉;317-第一连接螺钉;318-第一弹簧垫圈;319-销轴;320-第一止推轴承;321-第五连接螺钉;322-中间外壳;323-第二连接轴;324-第八连接螺钉;325;限位销轴;326-第一连接销;327-第一滑动轴承;328-第二止推轴承;329-第二锁紧螺母;330-摆臂连接孔;331-第三锁紧螺母;332-第三止推轴承;333-第二滑动轴承;334-第二连接销;335-第二大臂连接孔;336-摆杆连接孔;337-第一大臂连接孔;
401-轴臂;402-限位轴;403-第十一连接螺钉;404-第四限位;405-第三限位;406-第四电机;407-第一减速器及驱动传递结构;408-第一输出齿轮;409-紧定螺钉;410-第四锁紧螺母;411-第三隔套;412-孔用挡圈;413-第三轴承;414-第二轴承;415-第二隔套;
501-第二支撑轴;502-盖板;503-第四轴承;504-第五轴承;505-第五电机;506-限位固定轴;507-第二输出齿轮;508-轴端挡圈;509-第十二连接螺钉;510-第二减速器及驱动传递结构;
601-支撑架;602-连接块;603-滑动块;604-推力轴承;605-第三减速器及驱动传递结构;606-第六电机;607-输出轴。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见附图1和附图16,本实施例提供了一种小型化机械臂,包括转动底座、三轴机械臂和空间平行四边形连杆结构;安装壳体固定在转动底座上,输出控制体固定在三轴机械臂的第一个转动部的外壳上;转动底座的固定部安装在医学设备的支撑装置上。
空间平行四边形连杆结构包括:安装壳体、第一转动体、第二转动体和输出控制体;安装壳体具有连杆活动槽口;壳体内部固定有同轴且互不干涉的双向转动座;第一转动体转动连接在双向转动座的一侧,第一转动体的转动输出末端具有延伸出活动槽口的大臂摆杆;第二转动体转动连接在双向转动座的另一侧;第二转动体的转动输出末端具有转盘小臂,转盘小臂边沿铰接有小臂摆杆,小臂摆杆延伸出活动槽口;输出控制体上具有两个同向不同轴,且错位布置的铰接点;两个铰接点分别与大臂摆杆和小臂摆杆延伸出安装壳体的端头铰接。
关于转动底座的具体结构:参见附图1至附图2、附图4和附图16,底座101为机器人主要支撑结构,也是同医疗设备1的支撑装置2连接的桥梁,底面采用U型结构,减少接触面,同时具备两侧方孔定位结构,确保安装连接精度要求。
具体的,参见附图4,底座101与支撑座106通过第一连接轴103及第一轴承104支撑连接,形成同心旋转配合结构,同时在底座101和支撑座106之间的对应端面上紧密连接有滑动止推垫圈105,可以确保偏载时分担第一连接轴103的承载需求及第一轴承104承受的径向力,第一连接轴103底端与支撑座106固定,顶端向上穿出底座101的中心孔,第一连接轴103的顶端连接有顶紧第一轴承104的第一锁紧螺母102,第一连接轴103上套有两个第一轴承104,还套有一个第一隔套110,第一隔套110位于两个第一轴承104之间。底座101与支撑座106直口配合安装,确保机器人整体定位精度,能够有效减少装配工装及提高安装精度和结构强度,底座101与支撑座106安装后,二者之间形成一个安装空腔,连接螺钉108将第一齿轮107与底座101连接,且第一齿轮107位于安装空腔内。第一电机109安装在支撑座106上,形成整体固连结构,通过其输出轴转动将动力传递至第一齿轮107,反向推动支撑座106及上部机器人整体结构绕连接轴104旋转。左限位112和右限位111为底座101内部向下凸起的结构,减少了连接块,节约了内部空间,为支撑座106运动机械限位。
参见附图5至附图12,安装壳体由第一外壳311、第二外壳211和中间外壳322组成,并通过第五连接螺钉321固定。
参见附图6,关于第二转动体的具体结构:第二电机301与第一减速器302同轴配置,第二电机301通过第四连接螺钉314和第二弹簧垫圈315连接在第一外壳311上。第二 齿轮303与第一减速器302通过螺钉紧固定位连接,并与第一支撑墙板312通过第一连接螺钉317、第三连接螺钉316和第一弹簧垫圈318固连,其中都通过直口定位连接,第二齿轮303依次与第一传动齿轮305、第一双联齿轮306和第二传动齿轮307啮合传递,并最终与第三齿轮308啮合,第三齿轮308与转盘小臂309通过第二连接螺钉313固连,并通过中心轴孔定位;第三齿轮308结构为辐板结构,在确保结构强度的情况下,可以减少本体重量,降低运行惯性矩。第二连接轴323与转盘小臂309旋转同心,作为直接输出的转动轴体与第一编码器304同轴连接,用于结构信号双闭环。转盘小臂309的限位结构与大臂摆杆209空心区域进行连接。小臂摆杆310与转盘小臂309通过销轴319和第一止推轴承320形成铰接的运动连接,第一止推轴承320的数量为两个,双止推轴承结构与转盘小臂309及小臂摆杆310之间形成轴向转动,并满足径向固定,小臂摆杆310及转盘小臂309形成与大臂摆杆209空间不共面的交错布局,既能增强空间稳定性又能形成空间错位交叉互不干扰配置。小臂摆杆310弯曲设置与直杆效果一致,并可以巧妙避开紧凑空间内的旋转运动干涉,其圆弧角度与转盘小臂309大面直径相关,需避开旋转中的干涉,并需要与第一支撑轴221形成空间错位。
参见附图7至附图8,关于第一转动体的具体结构:第三电机201与第二减速器202同轴配置,第三电机201通过第十连接螺钉213和垫片214连接在第二外壳211上。第四齿轮204与第二减速器202通过螺钉紧固定位连接,并与第二支撑墙板210通过第六连接螺钉218和第三弹簧垫圈219固连,其中都通过直口定位连接,第四齿轮204依次与第三传动齿轮205、第二双联齿轮206和第四传动齿轮207啮合传递,并最终与第五齿轮208啮合,第五齿轮208与大臂摆杆209通过第七连接螺钉212连接,并通过中心轴孔定位;第五齿轮208为孔板结构,并与大臂摆杆209形成限位空隙,作为三轴运动机械限位。孔板齿轮结构在确定结构强度情况下既能减少本体重量,降低运行惯性矩,还能作为机械限位空间,与限位销轴325形成限位空间使用,限位销轴325为软质弹性材料,并通过第八连接螺钉324固定。第三连接轴220与大臂摆杆209同轴旋转,与第二编码器203同轴机械固连,与第三电机201配合,最终输出信号形成结构信号双闭环。第二支撑墙板210上设置有弧形长圆孔,两侧分布有第一限位215和第二限位217通过第九连接螺钉216连接,限位销223与大臂摆杆209固连,并在弧形空间内运动,弧形孔距为二轴大臂的运动范围,两侧限位为软质弹性材料,在使用中机械限位碰撞能够保护整体机械结构,该结构布置利用墙板内部空间与限位销布置,节约使用空间,增加结构紧凑性,提高结构稳定性。
第二电机301带动第一减速器302,将速度转矩传递给第二齿轮303,第二齿轮303 带动第一传动齿轮305,第一传动齿轮305带动第一双联齿轮306,第一双联齿轮306带动第二传动齿轮307,第二传动齿轮307直接带动第三齿轮308,将动力传递给转盘小臂309,转盘小臂309带动小臂摆杆310;第一编码器304与转盘小臂309同轴输出,第一编码器304与第二电机301形成双闭环。
第三电机201电机带动第二减速器202,将速度转矩传递给第四齿轮204,第四齿轮204带动第三传动齿轮205,第三传动齿轮205带动第二双联齿轮206,第二双联齿轮206带动第四传动齿轮207,第四传动齿轮207直接带动第五齿轮208将动力传递给大臂摆杆209;第二编码器203与大臂摆杆209同轴输出,第二编码器203与第三电机201形成双闭环。
安装壳体内部结构形成对称式布置,能够简化整体结构结构,可替换性强。
参见附图13,二轴三轴,同轴运动不干涉,二轴运动带动大臂摆杆209摆动,三轴运动由两个内部连杆即转盘小臂309、小臂摆杆310和轴臂401完成运动,上部内部转盘小臂309与轴臂401运动状态一致,为空间平行四边形两个平行边,空间四边形错位布置,增强结构稳定性;小臂摆杆310形态弯曲,主要是避开运动限制扩大运动范围。
小臂摆杆310在运动过程中需要避开大臂摆杆209和转盘小臂309干涉区域,大臂摆杆209中槽形空间为避让空间,摆杆弯曲异形需要避开转盘小臂309。
参见附图3、以及附图14至附图15,三轴机械臂的具体结构为:
第一连接销326与第一滑动轴承327通过摆杆连接孔336和摆臂连接孔330,并穿过第二止推轴承328由第二锁紧螺母329固定锁紧,第二连接销334与第二滑动轴承333通过第一大臂连接孔337和第二大臂连接孔335,并穿过第三止推轴承332由第三锁紧螺母331固定锁紧。两处连接形成空间四边形的连接支撑。具有结构互换性,并增加结构稳定性。锁紧螺母可以调节滑动摩擦的启动力矩,能够有效的起到一定的制动。
限位轴402通过第十一连接螺钉403安装在第二支撑轴501的断面上,第二支撑轴501与轴臂401之间有旋转运动,限位轴402与第三限位405和第四限位404接触处为运动极限位置。限位轴402为软质弹性体。
带有编码器的第四电机406与第一减速器及驱动传递结构407连接,并给与第一输出齿轮408传递动力,第一输出齿轮408通过紧定螺钉409和第四锁紧螺母410同第二支撑轴501形成一体。第二支撑轴501通过第二轴承414和第三轴承413与轴臂401形成同轴传动,实现四轴旋转,中间有第二隔套415调整轴承预紧力,并通过孔用挡圈412将轴承定位,电机与轴平行布置,反向安装,节约空间,降低整体重心并可以将减速传递结构与第一 输出齿轮408平行布置。
带有编码器的第五电机505与第二减速器及驱动传递结构510连接,并给与第二输出齿轮507传递扭矩,第二输出齿轮507通过限位固定轴506与支撑架601连接形成动力传递。实现五轴旋转,第五电机505布置于旋转空间内,不影响其他结构部件运动,实现紧凑化结构。另一侧盖板502通过第十二连接螺钉509与第二支撑轴501连接,并形成两侧支撑结构将支撑架601连接固定,同于第四轴承503和第五轴承504实现旋转,两侧支撑能够增加支撑强度,避免悬臂轴支撑不足。
带有编码器的电机606与第三减速器及驱动传递结构605连接,将动力传递给输出轴607,输出轴607与连接块602固连,外接设备及装置将与连接块602连接,并通过滑动块603实现滑动支撑。连接块602与支撑架601之间通过推力轴承604能够起到支撑作用,整体后三轴旋转中心交于一点,能够便于机器人结构解耦及运动控制。
在本实施例中,本机械臂可以在多种医疗影像设备狭小空间内部使用,可用于医疗领域,特别是CT、磁共振设备中,如果用于磁共振设备中,转动底座、三轴机械臂和空间平行四边形连杆结构可采用磁共振兼容材料制成。本发明的电气部分为本申请人的另一项专利号为CN202110652399.1,名称为一种磁共振兼容的机器人系统的发明专利,采用磁共振兼容的马达(如超声电机)及编码器、屏蔽线缆等。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种空间平行四边形连杆结构,其特征在于,包括:
    安装壳体;所述安装壳体具有连杆活动槽口;所述壳体内部固定有同轴且互不干涉的双向转动座;
    第一转动体;所述第一转动体转动连接在所述双向转动座的一侧,所述第一转动体的转动输出末端具有延伸出所述活动槽口的大臂摆杆;
    第二转动体;所述第二转动体转动连接在所述双向转动座的另一侧;所述第二转动体的转动输出末端具有转盘小臂,所述转盘小臂边沿铰接有小臂摆杆,所述小臂摆杆延伸出所述活动槽口;
    输出控制体;所述输出控制体上具有两个同向不同轴,且错位布置的铰接点;两个所述铰接点分别与所述大臂摆杆和所述小臂摆杆延伸出所述安装壳体的端头铰接。
  2. 根据权利要求1所述的一种空间平行四边形连杆结构,其特征在于,所述第一转动体和所述第二转动体均通过电机和齿轮组的配合结构实现转动动力的输入和传递;所述第一转动体和所述第二转动体的转动输出末端的中心轴分别与所述安装壳体内部两侧固定的两个编码器连接,两个所述编码器分别与两侧对应的两个所述电机形成反馈闭环。
  3. 根据权利要求1或2所述的一种空间平行四边形连杆结构,其特征在于,所述安装壳体两侧与所述第一转动体和所述第二转动体对应的内部结构上分别具有限位槽,所述第一转动体和所述第二转动体上均具有与其对应的所述限位槽配合的限位柱。
  4. 根据权利要求1所述的一种空间平行四边形连杆结构,其特征在于,所述小臂摆杆为弯杆。
  5. 一种小型化机械臂,其特征在于,包括转动底座、三轴机械臂和权利要求1-4中任一项所述的一种空间平行四边形连杆结构;所述安装壳体固定在所述转动底座上,所述输出控制体固定在所述三轴机械臂的第一个转动部的外壳上。
  6. 根据权利要求5所述的一种小型化机械臂,其特征在于,所述转动底座包括转动连接的固定部和转动部,所述转动部通过电机和齿轮组的配合结构驱动其相对所述固定部转动;所述固定部和所述转动部之间具有转动行程限位结构;所述安装壳体固定在所述转动部上。
  7. 根据权利要求5或6所述的一种小型化机械臂,其特征在于,所述三轴机械臂包括三个依次连接的第一转动机构、第二转动机构和第三转动机构;所述第一转动机构、第二转动机构和第三转动机构均为电机驱动输出轴转动结构;所述第一转动结构的外壳与所述输出控制体固定,且其转动输出轴与所述第二转动机构固定连接,所述第二转动机构的转动输出轴与所述第三转动机构固定连接,所述第三转动机构的转动输出轴为末端工作端头。
  8. 根据权利要求7所述的一种小型化机械臂,其特征在于,所述第一转动机构的转动平面与所述第二转动机构的转动平面垂直,所述第二转动机构的转动平面与所述第三转动机构的转动平面垂直。
  9. 根据权利要求8所述的一种小型化机械臂,其特征在于,所述第一转动体的转动平面和所述第二转动体的转动平面平行,且分别与所述转动底座的转动平面和所述第一转动机构的转动平面垂直;所述转动底座的转动平面和所述第一转动机构的转动平面垂直。
  10. 一种权利要求5-9中任一项所述的小型化机械臂的应用,其特征在于,将所述转动底座的固定部安装在医学设备的支撑装置上。
PCT/CN2022/131715 2021-11-29 2022-11-14 空间平行四边形连杆结构及具有其的小型化机械臂和应用 WO2023093558A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111427214.3 2021-11-29
CN202111427214.3A CN113829335A (zh) 2021-11-29 2021-11-29 用于狭小作业空间的机械臂
CN202210947412.0 2022-08-09
CN202210947412.0A CN115008448B (zh) 2021-11-29 2022-08-09 空间平行四边形连杆结构及具有其的小型化机械臂和应用

Publications (1)

Publication Number Publication Date
WO2023093558A1 true WO2023093558A1 (zh) 2023-06-01

Family

ID=78971690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131715 WO2023093558A1 (zh) 2021-11-29 2022-11-14 空间平行四边形连杆结构及具有其的小型化机械臂和应用

Country Status (2)

Country Link
CN (2) CN113829335A (zh)
WO (1) WO2023093558A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113829335A (zh) * 2021-11-29 2021-12-24 北京精准医械科技有限公司 用于狭小作业空间的机械臂

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659172B2 (ja) * 1995-01-19 1997-09-30 豊田工機株式会社 多関節型ロボット
CN204525465U (zh) * 2015-02-04 2015-08-05 浙江理工大学 一种五自由机械臂
CN105459090A (zh) * 2016-01-04 2016-04-06 江苏科技大学 一种示教型六自由度搬运机械手
CN108748115A (zh) * 2018-08-24 2018-11-06 成都克思兄弟科技有限公司 一种多连杆自检协作机械臂及控制方法
CN209504119U (zh) * 2018-11-21 2019-10-18 上海欢廷智能科技有限公司 一种重型六轴机器人
CN112405599A (zh) * 2020-10-29 2021-02-26 北京航天光华电子技术有限公司 一种机械限位外骨骼机器人关节
CN113829335A (zh) * 2021-11-29 2021-12-24 北京精准医械科技有限公司 用于狭小作业空间的机械臂

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074138Y2 (ja) * 1988-01-22 1995-02-01 豊田工機株式会社 多関節型ロボット
JPH0621674Y2 (ja) * 1988-02-10 1994-06-08 豊田工機株式会社 平行リンク式垂直多関節ロボット
JPH0623431Y2 (ja) * 1988-10-07 1994-06-22 株式会社安川電機 産業用ロボットのアーム駆動軸支持装置
SE0202264D0 (sv) * 2002-07-18 2002-07-18 Abb Ab Industrial robot
CN104211441B (zh) * 2014-08-11 2015-10-07 哈尔滨博强机器人技术有限公司 专业喷釉六轴机器人
CN104908042B (zh) * 2015-06-18 2017-02-01 华南理工大学 一种可扩展连接的6自由度力反馈机械臂
CN205111875U (zh) * 2015-11-11 2016-03-30 欢颜自动化设备(上海)有限公司 一种工业用六轴机器人末端结构
CN205111879U (zh) * 2015-11-11 2016-03-30 欢颜自动化设备(上海)有限公司 一种工业用六轴机器人第四轴结构
CN205870557U (zh) * 2016-07-12 2017-01-11 迈赫机器人自动化股份有限公司 一种大范围、灵活操控机器人
CN206011070U (zh) * 2016-08-18 2017-03-15 佛山智能装备技术研究院 一种基于自身重力保持平衡的工业机器人
CN106618736B (zh) * 2016-12-16 2019-03-08 微创(上海)医疗机器人有限公司 具有双自由度的机械臂和手术机器人
CN108527437A (zh) * 2017-03-02 2018-09-14 欢颜自动化设备(上海)有限公司 一种六轴机器人第四轴结构
CN108527316A (zh) * 2017-03-02 2018-09-14 欢颜自动化设备(上海)有限公司 一种6轴机器人手腕部分结构
CN207953846U (zh) * 2018-01-02 2018-10-12 孟恬静 一种六轴工业机器人手臂转动结构
JP7420543B2 (ja) * 2019-12-13 2024-01-23 川崎重工業株式会社 遠隔操縦装置
CN111360788B (zh) * 2020-03-19 2021-06-29 上海交通大学 七自由度串并混联防死点机械臂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659172B2 (ja) * 1995-01-19 1997-09-30 豊田工機株式会社 多関節型ロボット
CN204525465U (zh) * 2015-02-04 2015-08-05 浙江理工大学 一种五自由机械臂
CN105459090A (zh) * 2016-01-04 2016-04-06 江苏科技大学 一种示教型六自由度搬运机械手
CN108748115A (zh) * 2018-08-24 2018-11-06 成都克思兄弟科技有限公司 一种多连杆自检协作机械臂及控制方法
CN209504119U (zh) * 2018-11-21 2019-10-18 上海欢廷智能科技有限公司 一种重型六轴机器人
CN112405599A (zh) * 2020-10-29 2021-02-26 北京航天光华电子技术有限公司 一种机械限位外骨骼机器人关节
CN113829335A (zh) * 2021-11-29 2021-12-24 北京精准医械科技有限公司 用于狭小作业空间的机械臂
CN115008448A (zh) * 2021-11-29 2022-09-06 北京精准医械科技有限公司 空间平行四边形连杆结构及具有其的小型化机械臂和应用

Also Published As

Publication number Publication date
CN115008448A (zh) 2022-09-06
CN113829335A (zh) 2021-12-24
CN115008448B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
US7204168B2 (en) Hand controller and wrist device
US20180161114A1 (en) Apparatus for guiding a medical tool
JP4542710B2 (ja) 外科用マニプレータ
Najafi et al. A robotic wrist for remote ultrasound imaging
WO2023093558A1 (zh) 空间平行四边形连杆结构及具有其的小型化机械臂和应用
CN106166077B (zh) 医疗装置
JPH06217993A (ja) 医療用位置検出装置
Stoianovici et al. Endocavity ultrasound probe manipulators
Najafi et al. A novel hand-controller for remote ultrasound imaging
JP3792587B2 (ja) 手術用マニピュレータ
CN112401944A (zh) 一种微创手术装置
WO2021145792A1 (ru) Комбинированный манипулятор роботохирургического комплекса
CN210784417U (zh) 超声扫描检查的扫描运动系统
KR20190013930A (ko) 환자의 포지셔닝을 위한 로봇 및 로봇 어셈블리
CN113893036B (zh) 一种磁共振环境下的介入机器人装置
CN217645239U (zh) 位姿调整装置及医学成像系统
WO2023077605A1 (zh) 一种主操作手及手术机器人操控设备
CN209826772U (zh) 一种多自由度机械臂
Christoforou et al. Robotic manipulators with remotely-actuated joints: implementation using drive-shafts and u-joints
WO2022060793A1 (en) Medical imaging device and methods
US7063479B2 (en) Link mechanism of surgical robot
CN220001800U (zh) 超声诊疗机器人及超声诊疗系统
WO2022001224A1 (zh) 手术机器人系统
CN220113301U (zh) 通过直线电机驱动的操作组件及机器人
CN215960254U (zh) 适用于血管介入机器人的移动结构及移动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897641

Country of ref document: EP

Kind code of ref document: A1