WO2023093483A1 - 雾化器和电子雾化装置 - Google Patents

雾化器和电子雾化装置 Download PDF

Info

Publication number
WO2023093483A1
WO2023093483A1 PCT/CN2022/129351 CN2022129351W WO2023093483A1 WO 2023093483 A1 WO2023093483 A1 WO 2023093483A1 CN 2022129351 W CN2022129351 W CN 2022129351W WO 2023093483 A1 WO2023093483 A1 WO 2023093483A1
Authority
WO
WIPO (PCT)
Prior art keywords
air outlet
outlet channel
air
aerosol
atomizer
Prior art date
Application number
PCT/CN2022/129351
Other languages
English (en)
French (fr)
Inventor
谢亚军
曹润
罗帅
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023093483A1 publication Critical patent/WO2023093483A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps

Definitions

  • the present application relates to the technical field of electronic atomization devices, in particular to an atomizer and an electronic atomization device.
  • An electronic atomization device is a device that can atomize an aerosol-generating substrate into an aerosol, and is widely used in daily life.
  • the atomizing core in the electronic atomization device has an atomizing surface, and a heating layer is arranged on the atomizing surface. After the heating layer is energized, it can heat the aerosol generating substrate near the atomizing surface, so that the aerosol generating substrate is heated and atomized An aerosol is generated, and the aerosol flows out of the electronic atomization device through the air outlet for use by the user.
  • the atomizing surface of the atomizing core is set downward, that is, it is set towards the air inlet of the electronic atomizing device.
  • the atomizing surface of the atomizing core can also be set up, that is, facing the air outlet, so that the distance between the air outlet and the atomizing surface can be greatly shortened, and the flow of electrons can be improved.
  • the amount of aerosol in the nebulizer is set upward.
  • setting the atomizing side upward will increase the temperature of the aerosol flowing out from the air outlet, and the user experience will be deteriorated.
  • the atomizer and the electronic atomization device provided in the embodiments of the present application solve the problems of high temperature of the aerosol flowing out of the air outlet and poor user experience when the atomization surface is set upward.
  • the first technical solution provided by this application is: provide an atomizer, including a housing, a mounting base and an atomizing core; the housing has an air outlet channel; the mounting base has a An atomization chamber; the atomization core is arranged in the atomization chamber; the atomization core has an atomization surface, the atomization surface faces the air outlet of the mounting seat, and the air outlet channel is connected to the The air outlet hole of the mounting seat; wherein, the mounting seat is provided with an air inlet hole, and the air inlet hole is used to communicate with the external atmosphere and the atomization chamber, so that the external air can pass through the air inlet Stomata flow into the atomization cavity; a certain distance h is set between the atomization surface and the air inlet hole, and a cooling structure is provided in the air outlet channel, so that the temperature range of the aerosol at the air outlet is between 55°C-85°C.
  • the cooling structure makes the air outlet channel split into multiple sub-air outlet channels at the end away from the atomizing core and then converge together.
  • the cooling structure includes a partition arranged in the air outlet channel, so as to divide the end of the air outlet channel away from the atomizing core into two sub-air outlet channels; the extending direction of the partition is the same as that of the The extending directions of the air outlet passages are the same; the end surface of the partition near the end of the air outlet is spaced apart from the air outlet.
  • the range of the distance d between the end surface of the partition near the end of the air outlet and the air outlet is 0mm ⁇ d ⁇ 3mm.
  • the size of the end of the air outlet channel away from the atomizing core in the width direction of the atomizer becomes larger to form a widened section, and the partition is arranged on the widened section and divides the air outlet channel into Two said sub air outlet channels.
  • the two sub air outlet passages are arranged symmetrically along the partition.
  • the ratio of the length of the separator to the length of the air outlet channel is 1:5-1:4.
  • the range of h is 0mm ⁇ h ⁇ 0.7mm.
  • the range of h is 0.2mm ⁇ h ⁇ 0.5mm.
  • the installation seat is arranged in the installation cavity; the installation seat has a top wall and a side wall connected to each other, and the top wall and the side wall surround The atomization chamber is formed; the side wall of the installation seat cooperates with the side wall of the installation chamber to form an air guide channel; the side of the atomization core close to the top wall has an atomization surface; wherein, the The side wall of the installation seat is provided with the air inlet hole, so that the air guide channel communicates with the atomization chamber.
  • the mounting base includes a mounting top cover and a mounting base; the mounting top cover is sleeved on the mounting base; the outer surface of the side wall of the mounting top cover is provided with an air guide groove, and the The side wall cooperates with the bottom wall of the air guide groove to form the air guide channel, and the side of the air guide groove near the top wall of the installation top cover is provided with the air inlet hole; the installation base has an inlet An air port, the end of the air guide channel away from the air inlet hole communicates with the air inlet.
  • the cooling structure is arranged in the outlet channel, wherein the cooling structure is configured to reduce the temperature of the aerosol flowing through the outlet channel.
  • the cooling structure is a protrusion arranged on the inner wall surface of the air outlet channel.
  • the height of the protrusions is 0.3 mm-0.6 mm; and/or, the ratio of the distance between the centers of adjacent protrusions to the height of the protrusions is 7-20.
  • the length of the air outlet channel is less than or equal to 20mm, and the height of the protrusion is 0.6mm-0.7mm;
  • the length of the air outlet channel is greater than 20mm and less than or equal to 30mm, and the height of the protrusion is 0.5mm-0.6mm;
  • the length of the air outlet channel is greater than 30mm and less than or equal to 40mm, and the height of the protrusion is 0.4mm-0.5mm;
  • the length of the air outlet channel is greater than 40mm and less than or equal to 50mm, and the height of the protrusion is 0.35mm-0.45mm;
  • the length of the air outlet channel is greater than 50mm, and the height of the protrusion is 0.3mm-0.4mm.
  • the cross section of the protrusions is a square, and the ratio of the distance between the centers of adjacent protrusions to the height of the protrusions is 10-20;
  • the cross section of the protrusions is circular, and the ratio of the distance between the centers of adjacent protrusions to the height of the protrusions is 7-20.
  • the second technical solution provided by this application is: provide an electronic atomization device, including a battery assembly and an atomizer, the battery assembly is used to power the atomizer, wherein the atomizer is the above-mentioned The nebulizer described in any one.
  • the atomizer includes a housing, a mounting base and an atomizing core; the housing has an air outlet channel, and the mounting base has an atomizing chamber inside; the atomizing core is arranged In the chemical chamber; the atomizing core has an atomizing surface, the atomizing surface faces the air outlet of the mounting seat, and the air outlet channel is connected to the air outlet of the mounting seat; wherein, the mounting seat is provided with an air inlet, and the air inlet is used to communicate with the outside world
  • the atmosphere and the atomization chamber are connected so that the outside atmosphere can flow into the atomization chamber through the air inlet; a certain distance h is set between the atomization surface and the air inlet, and a cooling structure is set in the air outlet channel so that the air outlet
  • the temperature range of the aerosol is 55°C-85°C. Compared with the existing atomizer, the temperature of the aerosol at the air outlet is significantly lower, which improves the user experience.
  • Fig. 1 is a block diagram of a functional module of the electronic atomization device provided by the present application
  • Fig. 2 is a schematic diagram of a three-dimensional structure of the first embodiment of the atomizer provided by the present application;
  • Fig. 3 is a schematic diagram of the explosion structure of the atomizer in Fig. 2;
  • Fig. 4 is a cross-sectional view of the atomizer in Fig. 2 along the direction A-A;
  • Fig. 5 is a three-dimensional structural schematic diagram of an angle of installing the top cover in Fig. 3;
  • Fig. 6 is a three-dimensional structural schematic diagram of another angle of installing the top cover in Fig. 3;
  • Fig. 7 is a schematic diagram of a three-dimensional structure of the atomization core in Fig. 3;
  • Fig. 8 is a cross-sectional view of the assembly seat and atomizing core in Fig. 3;
  • Fig. 9 is a partial sectional view of the atomizer in Fig. 2 along the B-B direction;
  • Fig. 10 is another cross-sectional view of the assembled seat and atomizing core in Fig. 3;
  • Fig. 11 is a local flow velocity diagram of the gas in the atomizer of Fig. 2;
  • Figure 12 is a diagram of the local temperature distribution in the atomizer of Figure 2;
  • Fig. 13 is the curve diagram of the temperature of the aerosol of spacing-air outlet provided by the present application.
  • Fig. 14 is the curve diagram of the aerosol amount of the spacing-air outlet provided by the present application.
  • Fig. 15 is a histogram of spacing-aerosol amount and temperature at the air outlet provided by the present application.
  • Fig. 16 is a schematic diagram of an exploded structure of installing the top cover, the atomizing core, the second seal, the third seal and the installation base in Fig. 3;
  • Fig. 17 is a schematic diagram of the exploded structure of the mounting seat and the end cover in Fig. 3;
  • Fig. 18 is a schematic diagram of another explosion structure of installing the top cover, the atomizing core, the second seal, the third seal and the installation base in Fig. 3;
  • Fig. 19 is a partial structural schematic diagram of the second embodiment of the atomizer provided by the present application.
  • Fig. 20 is the structural representation of the first experimental piece
  • Fig. 21 is the structural representation of the second experimental piece
  • Fig. 22 is the airflow temperature distribution diagram at the outlet of the first experimental piece
  • Fig. 23 is the air flow temperature distribution diagram at the outlet of the second experimental piece
  • Figure 24 is a schematic diagram of the change law of the local surface heat transfer coefficient corresponding to different boundary layer forms
  • Fig. 25 is a schematic diagram of the flow path of the airflow in the outlet channel of Fig. 19;
  • Fig. 26 is a distribution diagram of the velocity field in the outlet channel of the existing atomizer
  • Fig. 27 is a distribution diagram of the velocity field in the air outlet channel in the second embodiment of the atomizer provided by the present application.
  • Fig. 28 is a schematic diagram of the structure in which the raised section in Fig. 19 is a square;
  • Fig. 29 is a structural schematic diagram of a protrusion with a circular cross-section in another embodiment
  • Fig. 30 is a chart showing the variation law of the suction resistance with the height of the protrusion calculated for different outlet channel lengths
  • Figure 31 is a temperature distribution diagram of the air outlet corresponding to different protrusion heights
  • Fig. 32 is a schematic diagram for calculation of a flow field with a raised cross-section being a square
  • Fig. 33 is a graph showing the variation law of the heat transfer coefficient of different heights of square cross-section bulges
  • Fig. 34 is the distribution diagram of the velocity field corresponding to different P/H values of the bulge in the positive direction section;
  • Fig. 35 is a graph showing the change law of the heat transfer coefficient with different P/H values of the cross-sectional protrusions in the positive direction;
  • Fig. 36 is a schematic diagram for calculation of a flow field with a convex cross-section being circular;
  • Fig. 37 is a graph showing the variation law of heat transfer coefficients of different heights of circular cross-section bulges
  • Fig. 38 is a distribution diagram of the velocity field corresponding to different P/H values of circular cross-section bulges
  • Fig. 39 is a graph showing the variation law of the heat transfer coefficient with different P/H values of circular cross-section protrusions
  • Fig. 40 is a partial structural schematic diagram of the third embodiment of the atomizer provided by the present application.
  • Fig. 41 is a schematic diagram of a partial structure of an existing atomizer
  • Fig. 42 is a cloud diagram of the aerosol temperature distribution at the air outlet of the atomizer provided in Fig. 41;
  • Figure 43 is a cloud diagram of the aerosol temperature distribution at the air outlet of the atomizer provided in Figure 40;
  • Figure 44 is a flow velocity vector distribution diagram on several surfaces of the air outlet channel of the atomizer provided in Figure 40 near the air outlet;
  • Figure 45 is a graph of the relationship between the maximum temperature of the aerosol at the air outlet and the separation distance d;
  • Fig. 46 is a graph showing the relationship between the aerosol temperature at the center position A of the air outlet and the separation distance d.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second” and “third” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • FIG. 1 is a schematic diagram of a functional module of the electronic atomization device provided in this application.
  • an electronic atomization device is provided.
  • the electronic atomization device can be used for atomization of aerosol-generating substrates.
  • the electronic atomization device includes an atomizer 11 and a battery assembly 12 electrically connected to each other.
  • the atomizer 11 is used for storing the aerosol-generating substrate and atomizing the aerosol-generating substrate to form an aerosol that can be inhaled by the user.
  • the atomizer 11 can be used in different fields, such as medical treatment, beauty care, leisure smoking, etc.; in a specific embodiment, the atomizer 11 can be used in an electronic aerosolization device for atomizing the substrate to be atomized And generate aerosol, for the sucker to inhale, the following embodiments are all taken as an example; of course, in other embodiments, the atomizer 11 can also be applied to hairspray equipment, to be used for hair styling by atomization hairspray; or equipment for the treatment of upper and lower respiratory diseases to aerosolize medical drugs.
  • the battery pack 12 includes a battery (not shown) and a controller (not shown).
  • the battery is used to supply power to the atomizer 11, so that the atomizer 11 can atomize the aerosol generating substrate to form an aerosol; the controller is used to control the operation of the atomizer 11.
  • the battery assembly 12 also includes other components such as a battery holder airflow sensor.
  • the atomizer 11 and the battery assembly 12 can be integrated or detachably connected, and can be designed according to specific needs.
  • Fig. 2 is a schematic three-dimensional structural diagram of the first embodiment of the atomizer provided in this embodiment
  • Fig. 3 is a schematic diagram of the exploded structure of the atomizer in Fig. 2
  • Fig. 4 is The sectional view of the atomizer along the A-A direction in Fig. 2 .
  • an atomizer 11 is provided, and the atomizer 11 includes a housing 111 , a mounting base 112 , an atomizing core 113 and an end cap 114 .
  • a liquid storage cavity 1111 , an air outlet channel 1112 and an installation cavity 1113 are formed in the housing 111 , and the liquid storage cavity 1111 and the air outlet channel 1112 communicate with the installation cavity 1113 respectively.
  • the liquid storage chamber 1111 is used to store the aerosol-generating substrate, and the housing 111 can be made of metal such as aluminum, stainless steel, or plastic, as long as it can store the aerosol-generating substrate and does not react with the aerosol-generating substrate. Can.
  • the shape, size and position of the liquid storage cavity 1111 are not limited, and can be designed according to needs.
  • the liquid storage chamber 1111 and the air outlet channel 1112 are arranged side by side on the same side of the installation chamber 1113 , and the liquid storage chamber 1111 is arranged around the air outlet channel 1112 .
  • the installation seat 112 is disposed in the installation cavity 1113 .
  • the installation base 112 has an atomizing cavity 1123 inside, and the atomizing core 113 is disposed in the atomizing cavity 1123 .
  • the installation seat 112 further includes an installation top cover 1121 and an installation base 1122 , and the installation top cover 1121 is sleeved on a side of the installation base 1122 close to the liquid storage cavity 1111 .
  • FIG. 5 is a schematic perspective view of the top cover in FIG. 3 at one angle
  • FIG. 6 is a schematic perspective view of the top cover in FIG. 3 at another angle.
  • the installation top cover 1121 includes a top wall 1121a and a side wall 1121b connected to each other, the side wall 1121b of the installation top cover 1121 may be an annular side wall, and is arranged on the side of the top wall 1121a of the installation top cover 1121 away from the liquid storage chamber 1111 .
  • the top wall 1121a and the side wall 1121b of the top cover 1121 can be integrally formed.
  • the top wall 1121 a of the top cover 1121 and the side wall 1121 b of the top cover 1121 are surrounded to form an atomization chamber 1123 .
  • top cover 1121 and the installation base 1122 it is also possible to install the top cover 1121 and the installation base 1122 to cooperate to form the atomization chamber 1123 , and the manner in which the installation base 112 forms the atomization chamber 1123 is not limited to the manner mentioned in this application.
  • FIG. 3 and Fig. 4 there is an air outlet 1121c on the top wall 1121a of the top cover 1121, one end of the air outlet 1121c communicates with the atomization chamber 1123, and the other end of the air outlet 1121c communicates with the air outlet channel 1112, so that the atomization
  • the cavity 1123 communicates with the gas outlet channel 1112 .
  • the aerosol atomized by the atomizing core 113 is mixed with the cold air and flows into the air outlet channel 1112 .
  • the end of the air outlet passage 1112 away from the installation cavity 1113 has an air outlet 1112a, that is, the port at one end of the air outlet passage 1112 is the air outlet 1112a, and the air outlet passage 1112 communicates with the outside atmosphere through the air outlet 1112a, so that the air in the air outlet passage 1112
  • the aerosol can flow out of the nebulizer 11 for the user to use.
  • Figure 7 is a schematic diagram of a three-dimensional structure of the atomization core in Figure 3;
  • the atomizing core 113 includes a base body 1133 , a heating layer 1134 and two electrodes 1135 .
  • the base 1133 has an atomizing surface 1131 on the side close to the liquid storage chamber 1111 , that is, the atomizing core 113 has an atomizing surface; the heating layer 1134 and two electrodes 1135 are disposed on the atomizing surface 1131 .
  • Substrate 1133 can store and direct the aerosol-generating substrate.
  • the material of the substrate 1133 can be a porous material, such as porous ceramics. The porous ceramics can use the capillary force to guide the aerosol-generating substrate to the heat-generating layer 1134, and the heat-generating layer 1134 can heat and atomize it to form an aerosol.
  • the heating layer 1134 can be a heating wire, a heating net, a heating film, a heating circuit, etc., which can be selected according to needs.
  • the two electrodes 1135 are arranged at both ends of the heating layer 1134, and the two electrodes 1135 can be electrically connected to the battery assembly 12 through the connector, so that after the two electrodes 1135 are energized, the heating layer 1134 between the two electrodes 1135 is energized to heat the gas.
  • the sol produces a matrix.
  • the atomizing surface of the atomizing core 113 faces the air outlet hole 1121c of the mounting base 112 , that is, the atomizing surface is set upward.
  • the atomizer 11 further includes a first seal 115 , a second seal 116 and a third seal 117 .
  • the first sealing member 115 is disposed at one end of the installation top cover 1121 close to the liquid storage cavity 1111 to realize the sealing between the installation top cover 1121 and the housing 111 .
  • the second sealing member 116 is sleeved on the atomizing core 113 to realize the sealing between the atomizing core 113 and the installation top cover 1121 .
  • the third seal 117 is disposed between the installation base 1122 and the atomizing core 113 to realize the sealing between the atomizing core 113 and the installation base 1122 and the sealing between the installation top cover 1121 and the installation base 1122 .
  • the material of the first sealing member 115 , the second sealing member 116 and the third sealing member 117 can be any sealing material that has certain flexibility and can withstand a certain temperature.
  • the first sealing member 115 , the second sealing member 116 and the third sealing member 117 are made of silica gel.
  • the shapes and sizes of the first sealing member 115 , the second sealing member 116 and the third sealing member 117 are not limited and can be designed according to requirements.
  • Fig. 8 is a cross-sectional view of the mounting base and the atomizing core in Fig. 3 after assembly.
  • the top wall 1121a on which the top cover 1121 is installed is also provided with a lower liquid hole 1121d, one end of the lower liquid hole 1121d communicates with the liquid storage chamber 1111, and the other end of the lower liquid hole 1121d communicates with the atomization chamber 1123, so that the liquid storage
  • the aerosol-generating substrate in the cavity 1111 can flow into the atomizing cavity 1123 through the lower liquid hole 1121d.
  • the number of the lower liquid holes 1121d can be one or more. In this embodiment, the number of the lower liquid holes 1121d is two, and they are arranged symmetrically on opposite sides of the air outlet holes 1121c.
  • the mounting base 112 has a liquid guiding channel 1124 therein.
  • the liquid guide channel 1124 can be formed in the installation top cover 1121, for example, the side wall 1121b of the installation top cover 1121 can form the liquid guide channel 1124, or the second sealing member 116 and the third sealing member 117 can be connected with the installation top cover
  • the side wall 1121b of 1121 cooperates to form a liquid guiding channel 1124, and the liquid guiding channel 1124 communicates with the lower liquid hole 1121d, so that the liquid guiding channel 1124 communicates with the liquid storage chamber 1111.
  • the liquid guiding channel 1124 can guide the aerosol-generating substrate in the liquid storage chamber 1111 to the side wall of the atomizing core 113 and/or the side of the atomizing core 113 away from the air outlet hole 1121c.
  • the liquid guiding channel 1124 guides the aerosol-generating substrate to the side of the atomizing core 113 away from the air outlet hole 1121c.
  • one end of the third sealing member 117 close to the atomizing core 113 is provided with a liquid guiding groove 1171 , and the liquid guiding groove 1171 communicates with the liquid guiding channel 1124 .
  • the liquid guiding groove 1171 can guide the aerosol generating substrate in the liquid guiding channel 1124 to the side of the atomizing core 113 away from the top wall 1121a where the top cover 1121 is installed, so that the atomizing core 113 can heat the atomized aerosol generating substrate to generate aerosol.
  • the second sealing member 116 may also be provided with a liquid guiding groove 1171 to guide the aerosol-generating substrate in the liquid guiding channel 1124 to the side wall of the atomizing core 113 .
  • the aerosol-generating substrate in the liquid storage chamber 1111 can flow to the side of the atomizing core 113 or the side opposite to the atomizing surface 1131, so that the atomizing core 113 can Absorb the aerosol-generating substrate and guide the aerosol-generating substrate to the atomizing surface 1131 to be heated to form an aerosol.
  • FIG. 9 is a partial cross-sectional view of the atomizer in FIG. 2 along the direction B-B.
  • the arrows in FIG. 9 indicate the airflow path in the atomizer 11 .
  • the side wall 1121b of the installation seat 112 cooperates with the side wall 1113a of the installation cavity 1113 to form the air guide channel 1125 .
  • One end of the air guide channel 1125 communicates with the air inlet 1122a of the atomizer 11, so that the outside atmosphere can enter the air guide channel 1125 through the air inlet 1122a of the atomizer 11; the other end of the air guide channel 1125 is connected with the atomizer
  • the cavity 1123 communicates so that the airflow in the air guiding channel 1125 can enter the atomizing cavity 1123 .
  • the mounting base 112 is provided with an air inlet 1125a, which may be provided on the side wall 1121b of the mounting top cover 1121.
  • One end of the air inlet 1125a is connected to the air guide channel 1125, and the other end is connected to the atomization chamber 1123 communicates, so that the airflow in the air guide channel 1125 enters the atomization chamber 1123 through the air inlet hole 1125a.
  • the air inlet 1125a can be arranged on the side of the atomizing surface 1131 facing the air outlet 1121c.
  • the aerosol generated by the atomizing surface 1131 carrying the atomizing core 113 flows through the air outlet hole 1121c to the air outlet channel 1112, and finally flows out of the atomizer 11 from the air outlet 1112a for use by the user.
  • FIG. 10 is another cross-sectional view of the assembly seat and atomizing core in FIG. 3 .
  • the outer surface of the side wall 1121b of the installation top cover 1121 is provided with an air guide groove 1121e, and the side wall 1113a of the installation cavity 1113 cooperates with the bottom wall of the air guide groove 1121e to form an air guide channel 1125, and the air guide channel 1125 is close to
  • One side of the top wall 1121a on which the top cover 1121 is installed is provided with an air inlet 1125a.
  • the side wall 1113a of the installation cavity 1113 may also be provided with an air guiding groove 1121e, and the side wall 1121b of the mounting seat 112 cooperates with the bottom wall of the air guiding groove 1121e to form an air guiding channel 1125 .
  • the way of forming the air guiding channel 1125 is not limited to the above-mentioned ways.
  • one end of the air guide groove 1121e is a closed end, which is arranged near the top wall 1121a of the top cover 1121; the other end of the air guide groove 1121e is an open end, extending to The bottom surface 1121f of the top cover 1121 is attached.
  • the shape of the air guide groove 1121e may be a rectangle as in this embodiment, or other shapes.
  • the number of air guide grooves 1121e can be one or more. In this embodiment, there are two air guiding grooves 1121e, which are respectively disposed on the outer surfaces of the two opposite side walls 1121b of the installation top cover 1121 .
  • the two air guide grooves 1121 e respectively form two air guide channels 1125 with the side wall 1113 a of the installation cavity 1113 , and the two air guide channels 1125 communicate with the air outlet 1112 a of the atomizer 11 .
  • Each air guiding groove 1121e of the two air guiding grooves 1121e is provided with an air inlet 1125a at one end close to the top wall 1121a where the top cover 1121 is installed.
  • the airflow entering the atomizer 11 from the air outlet 1112 a flows into the atomization chamber 1123 through two air guiding channels 1125 .
  • the bottom surface 1121g of the air guide groove 1121e near the top wall 1121a of the top cover 1121 is inclined toward the inside of the top cover 1121, and the air inlet 1122a is arranged on the top of the air guide groove 1121e near the top cover 1121.
  • the end of the wall 1121a The depth of the air guide groove 1121e increases near the end of the top wall 1121a where the top cover 1121 is installed, and the closer to the top wall 1121a where the top cover 1121 is installed, the greater the depth of the air guide groove 1121e, so that the air flow of the air guide channel 1125 is easier
  • the air is guided from the air guide channel 1125 to the air outlet hole 1121c.
  • it is also possible that the entire bottom surface 1121g of the air guide groove 1121e is inclined toward the inside of the installation top cover 1121 .
  • the width of the air inlet hole 1125a may be smaller than the width of the air guiding groove 1121e, or may be equal to the width of the air guiding groove 1121e. In this embodiment, the width of the air inlet hole 1125a is equal to the width of the air guiding groove 1121e. The wider the width of the air inlet hole 1125a, the greater the air flow that can pass through the air inlet hole 1125a, which is beneficial to increase the amount of aerosol flowing out from the air outlet 1112a.
  • FIG. 11 is a partial flow velocity diagram of the gas in the atomizer in FIG. 2 , specifically, the partial flow velocity diagram at the atomization chamber 1123 shown in FIG. 11 .
  • the aerosol generated by the atomizing surface 1131 will form a vortex area near the atomizing surface 1131 , wherein the vortex area is an area surrounded by a dotted line frame.
  • the cold air flowing into the atomizing chamber 1123 from the air guide channel 1125 will conduct thermal convection with the hot aerosol generated on the atomizing surface 1131 .
  • the increase of the vortex area near the atomizing surface 1131 reduces the heat convection between the cold air and the hot aerosol, thereby The temperature of the airflow after the cold air is mixed with the aerosol is reduced, and the temperature of the aerosol flowing out of the air outlet 1112a of the nebulizer 11 is reduced, which improves the user experience.
  • FIG. 12 is a diagram of the local temperature distribution in the atomizer of FIG. 2 , specifically, the diagram of the local temperature at the atomization chamber 1123 shown in FIG. 12 .
  • the vortex area is smaller, and the temperature of the aerosol convected with the cold air is higher, so that the temperature of the airflow after the cold air is mixed with the aerosol is higher, and the flow out of the atomizer 11
  • the temperature of the aerosol at the air outlet 1112a is relatively high, resulting in poor user experience.
  • the value of h cannot be too large.
  • the vortex area of the aerosol is too large, and the aerosol convective with the cold air is too little, which will make the aerosol flow out of the air outlet 1112a of the nebulizer 11 The amount is too small.
  • the parameters of the atomizer 11 used in the experiment are as follows: the diameter of the air outlet channel 1112 is 2.5mm, the length is 29.4mm, the initial temperature of the S-shaped heating layer 1134 on the atomization core 113 is 250°, the atomization The amount is 3s/9mg, and the input power of the battery assembly 12 to the atomizing core 113 is 6.5W.
  • Table 1 shows when h is 0mm, 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, and 0.7mm respectively, the gas outlet 1112a flowing out of the atomizer 11
  • Fig. 13 is the temperature curve of the distance-outlet 1112a drawn according to the experimental results of Table 1
  • Fig. 14 is the distance-out according to the experimental results of Table 1 drawn A graph of the amount of aerosol at the air port.
  • a certain distance h can be set between the atomizing surface 1131 and the air inlet 1125a.
  • the range corresponding to h is 0mm ⁇ h ⁇ 0.7mm.
  • the value of h can be 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm and so on.
  • the distance between the atomizing surface 1131 and the air inlet 1125a is close to the bottom surface 1125b of the atomizing surface 1131
  • the spacing is set in an appropriate range so that the temperature of the aerosol flowing out of the air outlet 1112a of the atomizer 11 is reduced while ensuring that the amount of smoke of the aerosol flowing out of the air outlet 1112a of the atomizer 11 will not be too small, which is beneficial Improve user experience.
  • the inventor also tried to reduce the temperature of the aerosol at the air outlet 1112a by increasing the length of the air outlet channel 1112.
  • the temperature of the aerosol at the air outlet 1112a is 93.16°
  • the temperature of the aerosol at the air outlet 1112a is 87°.
  • the temperature has decreased by 6.17°
  • the length of the air outlet channel 1112 has increased by more than 50%, which is unacceptable for product design. Therefore, the technical solution of setting a certain distance h between the atomizing surface 1131 and the air inlet hole 1125a has Significant performance and effectiveness improvements. Reference can be made to FIG.
  • FIG. 16 is a schematic diagram of an exploded structure of installing the top cover, the atomizing core, the second seal, the third seal and the installation base in FIG. 3 .
  • the installation base 1122 includes a bottom 1122b and a support part 1122c
  • the installation top cover 1121 is sleeved on the support part 1122c and abuts against the bottom 1122b
  • the support part 1122c is set in the atomization cavity 1123
  • the atomization core 113 is set in the support part 1122c is close to the side of the top wall where the top cover 1121 is installed.
  • FIG. 17 is a schematic diagram of the exploded structure of the mounting seat and the end cover in FIG. 3 .
  • the end cover 114 covers the end of the housing 111 away from the air outlet 1112a, for example, the end cover 114 can be sleeved on the end of the housing 111 away from the air outlet 1112a, and the housing 111 and the end cover 114 are detachably connected.
  • the side of the installation base 1122 facing away from the installation top cover 1121 has an air inlet 1122a, and the end cover 114 is provided with a through hole 1141, the through hole 1141 communicates with the external atmosphere, and the air inlet 1122a communicates with the through hole 1141, so as to The outside atmosphere is allowed to enter the air inlet 1122a.
  • the bottom 1122b of the mounting base 1122 has a first groove 1122d on a side facing away from the supporting portion 1122c, and the first groove 1122d serves as the air inlet 1125a and communicates with the through hole 1141 .
  • An end of the first groove 1122d close to the air guiding groove 1121e has a first opening 1122e penetrating through the bottom 1122b of the mounting base 1122 .
  • the first opening 1122e may be a through hole or a notch at the edge of the bottom 1122b.
  • the first opening 1122e communicates the first groove 1122d with the end of the air guide groove 1121e near the bottom 1122b, so that air can flow from the first groove 1122d into the air guide groove 1121e.
  • the number of the first openings 1122e may be the same as the number of the air guiding grooves 1121e.
  • the number of first openings 1122e is two, and the two first openings 1122e are arranged opposite to the two air guide grooves 1121e, and the two first openings 1122e respectively connect the first groove 1122d with the two The air guiding groove 1121e is connected.
  • FIG. 18 is a schematic diagram of another exploded structure for installing the top cover, the atomizing core, the second seal, the third seal and the installation base in FIG. 3 .
  • the atomizer 11 also includes two electrode connectors 118, one end of each electrode connector 118 is electrically connected to an electrode 1135; The through hole 1141 of the cover 114 is exposed, so that the electrode connector 118 can be electrically connected with the battery assembly 12 , so that the battery assembly 12 can supply power to the atomizing core 113 .
  • the two electrode connectors 118 are respectively disposed on both sides of the atomizing core 113 , and are disposed corresponding to the positions of the electrodes 1135 . That is, the two electrode connectors 118 are arranged symmetrically about the center of rotation.
  • two second grooves 1122f are provided on the surface of the bottom 1122b facing away from the supporting portion 1122c, which are respectively used for accommodating the ends of the two electrode connecting parts 118 away from the atomizing core 113 .
  • the second groove 1122f has a second opening 1122g on the side close to the housing 111, and the second opening 1122g may be a gap provided on the edge of the bottom 1122b.
  • the corresponding second openings 1122g are disposed in the corresponding second grooves 1122f.
  • the arrangement of the electrode connector 118 is not limited to the arrangement provided in this application, and other arrangements are also possible, as long as the two electrodes 1135 of the atomizing core 113 can be electrically connected with the battery assembly 12 .
  • FIG. 19 is a partial structural schematic view of the second embodiment of the atomizer provided by the present application.
  • the structure of the atomizer 11 is basically the same as that of the first embodiment of the atomizer 11, the difference is that the atomizer 11 includes a cooling structure 119, and the cooling structure 119 is arranged on In the air outlet channel 1112. Wherein, the cooling structure 119 is configured to reduce the temperature of the aerosol flowing through the air outlet channel 1112 .
  • the cooling structure 119 in the air outlet channel 1112 By setting the cooling structure 119 in the air outlet channel 1112 to interfere with the flow state of the aerosol near the wall of the air outlet channel 1112, the heat transfer coefficient of the wall surface of the air outlet channel 1112 is increased, thereby allowing the gas to flow out of the outlet of the atomizer 11 The temperature of the aerosol in 1112a is reduced, which is beneficial to improve user experience.
  • the distance h between the atomization surface of the atomization core 113 and the air inlet 1125a is set as above (atomizer 11 first
  • the content specifically introduced in the embodiment: the distance h) between the atomization surface of the atomization core 113 and the air inlet hole 1125a is optional.
  • the distance h between the atomizing surface of the atomizing core 113 and the air inlet hole 1125a is set as above, which can It is better to reduce the temperature of the aerosol at the air outlet 1112a, and the way to reduce the temperature of the aerosol at the air outlet 1112a can be designed according to specific needs.
  • the cooling structure 119 can absorb the heat of the aerosol, and on the other hand, it can interfere with the flow field near the wall of the air outlet channel 1112 to improve the heat exchange efficiency between the aerosol and the wall of the air outlet channel 1112 .
  • the cooling structure 119 is a spiral member (not shown in the figure), the spiral member is arranged in the air outlet channel 1112, and the inner wall surface of the air outlet channel 1112 is spaced apart from the spiral member, and it can close the wall surface of the air outlet channel 1112 The flow field at the position is disturbed, and the heat exchange efficiency between the aerosol and the wall surface of the air outlet channel 1112 is improved, so as to reduce the temperature of the aerosol at the air outlet 1112a.
  • the spiral member can be fixed in the air outlet channel 1112 through a fixing structure.
  • the material of the spiral member is a metal spring, the manufacturing process is simple, and the metal material has a better heat absorption effect than other materials, which is beneficial to further reduce the temperature of the aerosol in the air outlet 1112a.
  • the cooling structure 119 is a protrusion 1191 disposed on the inner wall of the air outlet channel 1112 .
  • the protrusion 1191 is integrally formed with the side wall of the air outlet channel 1112; that is, similar to the structure of a corrugated tube.
  • the cooling structure 119 is an independent component, and a spiral (not shown) is arranged in the air outlet channel 1112, and the outer wall of the spiral is attached to the inner wall of the air outlet 1112, so that the spiral serves as the air outlet 1112
  • the inner wall surface of the air outlet channel 1112 is a smooth surface, and the screw is fixed by the friction between the screw and the air outlet channel 1112; or, the inner wall of the air outlet channel 1112 is provided with a spiral groove that cooperates with the screw to realize the fixing of the screw , and the wire diameter of the helix is larger than the depth of the helical groove, so as to form the protrusion 1191 .
  • the spiral member is rotated and inserted into the spiral groove of the air outlet channel 1112.
  • the spiral member is a metal spring, and the metal material has better heat absorption and heat conduction effects than other materials, which is beneficial to further reduce the temperature of the aerosol in the air outlet 1112a.
  • the wire diameter of the metal spring is 0.2mm-0.3mm
  • the wire diameter of the metal spring is the height of the formed protrusion 1191
  • the turn pitch of the metal spring is the distance between adjacent protrusions 1191; wherein , the wire diameter of the metal spring is the diameter of the metal wire used to make the metal spring.
  • the wire diameter of the metal spring is 0.2mm-0.3mm
  • the diameter of the metal spring is 3mm
  • the length of the air outlet channel 1112 is 28mm
  • the size design of the protrusion 1191 and the size design between adjacent protrusions 1191 can refer to the height of the protrusion 1191, the adjacent The ratio of the distance between the centers of the protrusions 1191 to the height of the protrusions 1191.
  • the selection of the spiral can also refer to the height of the protrusion 1191 , the ratio of the distance between the centers of adjacent protrusions 1191 to the height of the protrusion 1191 described later.
  • Fig. 20 is the structural schematic diagram of the first experimental piece
  • Fig. 21 is the structural schematic diagram of the second experimental piece
  • Fig. 22 is the airflow temperature distribution diagram at the outlet of the first experimental piece
  • Fig. 23 is the second experimental piece Airflow temperature distribution at the outlet of the test piece.
  • the first test piece shown in FIG. 20 is a round tube 30 with a smooth inner wall, and the length of the round tube 30 is 50 mm.
  • the port on the left side of the round pipe 30 is the inlet, and the port on the right side of the round pipe 30 is the outlet, and the airflow flows from the inlet to the outlet.
  • the second experimental piece shown in Fig. 21 is the round tube 30 that is provided with protrusion 31 on the inner wall surface, and the length of round tube 30 is 50mm, and the height of protrusion 31 is 0.5mm; Wherein, along the height direction of protrusion 31 , The cross-sectional shape of the protrusion 31 is square.
  • the protrusion 31 is provided along the inner surface of the circular tube 30 for a circle.
  • the port on the left side of the round pipe 30 is the inlet, and the port on the right side of the round pipe 30 is the outlet, and the airflow flows from the inlet to the outlet.
  • the temperature from the pipe wall to the center gradually increases, that is, the highest temperature of the airflow at the outlet is in the central region; as can be seen from Figure 23, the highest temperature of the airflow at the outlet of the second experimental piece is 73.3°C.
  • the provision of protrusions 31 on the inner wall of the circular tube 30 reduces the maximum temperature at the outlet by 13.4%, and the cooling effect is obvious. That is to say, the protrusion 1191 (namely, the cooling structure 119 ) is provided on the inner wall of the air outlet channel 1112 , which can obviously reduce the temperature of the aerosol at the air outlet 1112 a, which is beneficial to improve the user experience.
  • the gas used in the experiment is aerosol or its characteristics are similar to aerosol.
  • FIG. 24 is a schematic diagram of the change law of the local surface heat transfer coefficient corresponding to different boundary layer shapes
  • FIG. 25 is a schematic diagram of the flow path of the airflow in the outlet channel of FIG. 19 .
  • the horizontal axis x represents the distance between the fluid and the inlet of the pipe
  • the vertical axis h x represents the heat transfer coefficient.
  • the fluid enters the pipeline from the inlet of the pipeline, and the shape of the boundary layer after the fluid enters the pipeline is divided into laminar boundary layer, transition zone, and turbulent boundary layer.
  • the heat transfer coefficient of the turbulent boundary layer is higher than that of the laminar boundary layer.
  • the heat transfer in the laminar boundary layer is mainly through heat conduction, and the heat transfer coefficient of air is small, so the heat transfer coefficient is at a low level as a whole; and in the laminar boundary layer, with The heat transfer coefficient decreases as the thickness of the laminar boundary layer increases.
  • the flow velocity of the aerosol in the air outlet channel 1112 is usually not high, and the flow boundary layer near the wall surface is close to the form of laminar flow; After the structure, it is equivalent to artificially disturbing the flow boundary layer near the wall, making it change from a regular laminar flow form to a turbulent flow form.
  • the heat transfer coefficient of the sol helps the aerosol to exchange heat with the side wall of the air outlet channel 1112, and more heat is absorbed by the side wall of the air outlet channel 1112, thereby reducing the temperature of the aerosol at the air outlet 1112a.
  • Fig. 26 is a distribution diagram of the velocity field in the outlet channel of the conventional atomizer
  • Fig. 27 is a distribution diagram of the velocity field in the outlet channel of the atomizer provided in the second embodiment of the present application.
  • the flow field in the air outlet channel 1112 can be divided into a near wall area and a mainstream area, and the heat exchange between the aerosol and the side wall of the air outlet channel 1112 mainly occurs in the near wall area.
  • the protrusion 1191 that is, the cooling structure 119
  • the layer state improves the heat exchange efficiency between the aerosol and the side wall of the air outlet channel 1112, while the aerosol in the mainstream region has little influence.
  • the flow velocity in the near-wall area is less than 3ms ⁇ -1, and the flow velocity in the near-wall area is faster as it is closer to the mainstream area, and the flow velocity in the mainstream area is greater than 3ms ⁇ -1.
  • the protrusion 1191 i.e., the cooling structure 119
  • the flow field is the velocity field.
  • the height of the protrusions 1191 is 0.3 mm-0.6 mm; and/or, the ratio of the distance between the centers of adjacent protrusions 1191 to the height of the protrusions 1191 is 1:20-1:7 .
  • the cross-sectional shape of the protrusion 1191 can be circular, square, rectangular, triangular, etc., and can be specifically designed according to needs.
  • the height of the protrusion 1191 and the ratio of the distance between the height of the protrusion 1191 and the center of the adjacent protrusion 1191 will be described in detail below by taking the cross-section of the protrusion 1191 as a square or a circle as an example.
  • FIG. 28 is a schematic structural diagram of a protrusion with a square cross section in FIG. 19
  • FIG. 29 is a structural schematic diagram of a protrusion with a circular cross section in another embodiment.
  • the cross section of the protrusion 1191 is a square.
  • the cross section of the protrusion 1191 is circular.
  • the height of the protrusion 1191 is represented by "H”
  • the distance between the centers of adjacent protrusions 1191 is represented by "P”.
  • the height of the protrusion 1191 has a great influence on the heat exchange efficiency and the suction resistance of the atomizer 11, so the height of the protrusion 1191 can be designed by comprehensively considering the cooling effect of the aerosol at the air outlet 1112a and the suction resistance of the atomizer 11 .
  • the distance between the centers of adjacent protrusions 1191 affects the flow field near the wall of the outlet channel 1112, and the flow field near the wall of the outlet channel 1112 is also related to the height of the protrusions 1191, so it can be analyzed through flow field analysis and
  • the height of the protrusions 1191 is used to design the distance between the centers of adjacent protrusions 1191 .
  • the upper limit of the drawing resistance additionally caused by the protrusion 1191 is set to 100 Pa. Taking the cross-section of the protrusion 1191 as a square as an example, the relationship between the height of the protrusion 1191 , the length of the air outlet channel 1112 and the suction resistance of the atomizer 11 is studied, and the optimal value of the height of the protrusion 1191 is determined.
  • Fig. 30 is the calculated change law of the suction resistance with the protrusion height for different air outlet channel lengths.
  • Fig. 31 is the temperature distribution diagram of the air outlet corresponding to different protrusion heights.
  • the suction resistance of the air outlet channel 1112 increases with the increase of the height of the protrusion 1191 and the length of the air outlet channel 1112; the shorter the length of the air outlet channel 1112, the larger the upper limit of the height of the protrusion 1191 is.
  • the height of the protrusion 1191 may be 0.6 mm, or even 0.62 mm; therefore, the upper limit of the height of the protrusion 1191 is preferably 0.6 mm.
  • the length of the air outlet channel 1112 is represented by "L" in FIG. 30 .
  • the highest temperature of the aerosol at the air outlet 1112a is in the central area, and on the premise that the length of the air outlet channel 1112 is the same, when the protrusion 1191 is not provided, the highest temperature of the aerosol at the air outlet 1112a is 84.6°C;
  • the maximum temperature of the aerosol at the air outlet 1112a is 83.8°C, which is 0.9% lower than that without the protrusion 1191;
  • the maximum temperature of the aerosol at the air outlet 1112a is 81.7°C, which is 3.4% lower than that without the protrusion 1191;
  • the maximum temperature of the aerosol at the air outlet 1112a is 78.5°C, compared with Without the protrusion 1191, the temperature is reduced by 7.2%;
  • the maximum temperature of the aerosol at the air outlet 1112a is 75.3°C, which is 1
  • FIG. 32 is a schematic diagram for calculation of a flow field with a convex section having a square shape.
  • a protrusion 31 is provided in a circular tube 30 with a diameter of 1.5 mm.
  • the cross section of the protrusion 31 is a square, and the gas flows through the circular tube 30 at a speed of 2.6 m/s. .
  • the characteristics of the selected gas are similar to those of the aerosol; the flow velocity of the gas is the real flow velocity of the aerosol in the gas outlet channel 1112 .
  • the height of the protrusions 31 is indicated by "H"
  • the distance between the centers of adjacent protrusions 31 is indicated by "P".
  • the height H of the protrusions 31 only affects the value of the heat transfer coefficient, and the variation of the heat transfer coefficient is mainly affected by the ratio (P/H) of the distance between the centers of adjacent protrusions 31 to the height of the protrusions 31 .
  • the cooling effect is the best when the ratio (P/H) of the distance between the centers of adjacent protrusions 31 to the height of the protrusions 31 is 10-20. Therefore, when the cross-section of the protrusions 1191 arranged on the inner wall of the air outlet channel 1112 is a square, the ratio of the distance between the centers of adjacent protrusions 1191 to the height of the protrusions 1191 is 10-20, optionally, 13 -17.
  • FIG. 36 is a schematic diagram for calculation of a flow field with a circular section of the protrusion.
  • a protrusion 31 is provided in a circular tube 30 with a diameter of 1.5 mm.
  • the cross section of the protrusion 31 is circular, and the gas flows through the circular tube at a speed of 2.6 m/s. 30.
  • the characteristics of the selected gas are similar to those of the aerosol; the flow velocity of the gas is the real flow velocity of the aerosol in the gas outlet channel 1112 .
  • the diameter of the protrusion 31 is indicated by "H", and the distance between the centers of adjacent protrusions 31 is indicated by "P”. Since the section of the protrusion 31 is circular, the height of the protrusion 31 is the same as the diameter of the protrusion 31 .
  • Fig. 37 is a diagram of the change law of the heat transfer coefficient at different heights of the circular section protrusions. It can be seen from Fig. 37 that the change law of the heat transfer coefficient is basically the same for different heights H of the protrusions 31 .
  • the height H of the protrusions 31 only affects the value of the heat transfer coefficient, and the variation of the heat transfer coefficient is mainly affected by the ratio (P/H) of the distance between the centers of adjacent protrusions 31 to the height of the protrusions 31 .
  • Figure 38 is The distribution diagram of the velocity field corresponding to the different P/H values of the circular cross-section bulges.
  • Figure 39 is a diagram of the change law of the heat transfer coefficient with the different P/H values of the circular cross-section bulges.
  • the cooling effect is the best when the ratio (P/H) of the distance between the centers of adjacent protrusions 31 to the height of the protrusions 31 is 7-20. Therefore, when the cross-section of the protrusions 1191 arranged on the inner wall surface of the air outlet channel 1112 is circular, the ratio of the distance between the centers of adjacent protrusions 1191 to the height of the protrusions 1191 is 7-20, and optionally, is 11-16.
  • the optimal design of the height of the protrusion 1191, the distance between the centers of adjacent protrusions 1191 and the height of the protrusion 1191 is shown in Table 2. .
  • the height of the protrusion 1191 is 0.6 mm-0.7 mm; when the length of the air outlet channel 1112 is greater than 20 mm and less than or equal to 30mm, the height of the protrusion 1191 is 0.5mm-0.6mm; when the length of the air outlet channel 1112 is greater than 30mm and less than or equal to 40mm, the height of the protrusion 1191 is 0.4mm-0.5mm; when the length of the air outlet channel is greater than 40mm and less than When equal to 50mm, the height of the protrusion 1191 is 0.35mm-0.45mm; when the length of the air outlet channel is greater than 50mm, the height of the protrusion 1191 is 0.3mm-0.4mm.
  • the height of the protrusion 1191 is 0.6 mm.
  • the length of the air outlet channel is greater than 40mm and less than 50mm, optionally, the height of the protrusion 1191 is 0.4mm.
  • the ratio of the distance between the centers of adjacent protrusions 1191 to the height of the protrusions 1191 is 10-20.
  • the ratio of the distance between the centers of adjacent protrusions 1191 to the height of the protrusions 1191 is 7-20.
  • the width of the protrusion 1191 is the same as the height of the protrusion 1191, the distance between the centers of adjacent protrusions 1191 and the distance between the centers of adjacent protrusions 1191 Designing the ratio of the distance of the protrusion 1191 to the height of the protrusion 1191 also takes into account the influence of the width of the protrusion 191 on the temperature of the aerosol at the air outlet 1112a.
  • FIG. 40 is a schematic diagram of the partial structure of the third embodiment of the atomizer provided by the present application.
  • the structure of the atomizer 11 is basically the same as that of the first embodiment of the atomizer 11, except that the air outlet channel 1112 of the atomizer 11 is far away from the atomizing core 113 One end of the first split into a plurality of sub-outlet channels 1112b and then converge together again.
  • the tongue When the user sucks through the air outlet 1112a, the tongue is located at or corresponds to the central position A of the air outlet 1112a, and the tongue is the key to temperature perception. By reducing the temperature at the central position A of the air outlet 1112a, the user can reduce the air temperature perceived by the user. Sol temperature, thereby improving the user experience.
  • the inventors of the present application have found that if the air outlet channel 1112 adopts a straight-through structure, the temperature of the aerosol flowing out from the central position A of the air outlet 1112a is higher than that of the surrounding aerosol (see the test results in Figure 42 for details).
  • the temperature of the aerosol at the central position A of the air outlet 1112a is reduced by making the air outlet channel 1112 split into a plurality of sub-air outlet channels 1112b at the end away from the atomizing core 113 and converge again. That is to say, the aerosol atomized by the atomizing core 113 first splits into multiple sub-air outlet channels 1112b at the end of the air outlet channel 1112 away from the atomizing core 113, and then gathers together and flows out from the air outlet 1112a.
  • the temperature perceived by the user when inhaling the aerosol through the air outlet 1112a is significantly lower, which is beneficial to improve the user experience.
  • the number of sub air outlet channels 1112b can be designed according to needs.
  • a separator 1112c is provided in the air outlet channel 1112 to divide the end of the air outlet channel 1112 away from the atomizing core 113 into two sub-air outlet channels 1112b, so that the air outlet channel 1112 first divides the flow; wherein, the separator 1112c
  • the extending direction is the same as the extending direction of the air outlet channel 1112 .
  • the end surface of the separator 1112c close to the air outlet 1112a is spaced from the air outlet 1112a, so that the air outlet channels 1112 are converged after being split (as shown in FIG. 40 ).
  • the air outlet channel 1112 includes a first part, a second part and a third part, the inlet of the air outlet channel 1112 is the inlet of the first part, and the outlet of the third part is the air outlet 1112a; the first part and the third part are straight pipes
  • the separator 1112c is disposed on the second part, so that the second part has an obvious split flow effect relative to the first part and the third part, so as to realize split flow cooling.
  • the number of sub-air outlet channels 1112b can be designed according to needs, and the structure of the partition 1112c can be designed according to the number of sub-air outlet channels 1112b.
  • the separator 1112c may be integrally formed with the air outlet channel 1112, or may be fixed together with the air outlet channel 1112 by clamping, etc., and is specifically designed according to needs.
  • the thickness of the separator 1112c is designed according to the needs, so that the end of the air outlet channel 1112 away from the atomizing core 113 can be divided into two sub-air outlet channels 1112b, and the temperature of the aerosol flowing through the sub-air outlet channels 1112b can be cooled.
  • the aerosol is mixed with the air in the sub-air outlet channel 1112b to cool down, and the aerosol flowing through the sub-air outlet channel 1112b is absorbed by the wall of the sub-air outlet channel 1112b, thereby reducing the temperature of the aerosol at the air outlet 1112a. Furthermore, since the aerosols in the two sub-air outlet channels 1112b converge and mix at the central position A of the air outlet 1112a, the temperature of the aerosol flowing out from the central position A is further reduced (see the test results in FIG. 44 for details).
  • the partition 1112c can be a solid plate, that is, part of the cavity wall of the two sub-air outlet channels 1112b is shared, and the thickness of the partition 1112c should be set to reduce the temperature of the aerosol in the two sub-air outlet channels 1112b.
  • the partition 1112c can be a hollow plate, that is, the interior of the partition 1112c is hollow, and the two sub-air outlet channels 1112b are two completely separated channels; the wall thickness of the partition 1112c and the width of the hollow cavity inside (The width of the hollow cavity inside the partition 1112c is the dimension along the thickness direction of the partition 1112c) determines the thickness of the partition 1112c, the wall thickness of the partition 1112c and the width of the internal hollow cavity are designed according to needs, can Realize shunt cooling.
  • the separator 1112c is a rectangular hollow plate.
  • the ratio of the length of the separator 1112c (the length of the separator 1112c is the dimension along the direction in which the outlet channel 1112 extends) to the length of the outlet channel 1112 is 1: 5-1:4.
  • the dimension of the end of the air outlet channel 1112 away from the atomizing core 113 in the width direction of the atomizer 11 becomes larger to form a widened section B; the widened section B is the second and third parts of the air outlet channel 1112 .
  • the separator 1112c is arranged on the widening section B and parallel to the thickness direction of the atomizer 11, so as to divide the end of the air outlet channel 1112 away from the atomizing core 113 into two sub-air outlet channels 1112b; the end surface of the separator 1112c close to the air outlet 1112a and the
  • the air outlets 1112a are arranged at intervals, so that the third part of the air outlet channel 1112 is a straight-through pipe, and the aerosols in the two sub-air outlet channels 1112b are gathered together in the third part and flow out from the air outlet 1112a.
  • the partition 1112c provided on the widened section B can have a larger thickness, which can better cool down the aerosol in the two sub-air outlet channels 1112b.
  • the end surface of the widening section B close to the atomizing core 113 is flush with the end surface of the partition 1112c close to the atomizing core 113, that is, the channel width of the air outlet channel 1112 is increased only at the place where the partition 1112c is installed. Width.
  • the widened section B may have the same cross-sectional shape and area along its extending direction; that is, the widened section B is a straight-through structure.
  • the widening section B may include a first section and a second section, the second section is located on the side of the first section away from the atomizing core 113; the cross-sectional area of the first section along the direction away from the atomizing core 113 gradually increases , so that the longitudinal section of the first section along the direction away from the atomizing core 113 is a tapered structure; the cross-sectional area of the second section along the direction away from the atomizing core 113 is the same, that is, the second section is a straight-through structure (such as Figure 40).
  • the aerosol can be prevented from forming a vortex at the corner of the widened section B, thereby avoiding the influence of the structure of the widened section B on the amount of aerosol flowing out of the air outlet 1112a.
  • the two sub-air outlet channels 1112b can be arranged symmetrically along the partition 1112c, so that the aerosol atomized by the atomizing core 113 flows through the two sub-air outlet channels 1112b, and the aerosol can respectively achieve the same cooling effect in the two sub-air outlet channels 1112b.
  • Figure 41 is a schematic diagram of the partial structure of the existing atomizer
  • Figure 42 is the cloud map of the aerosol temperature distribution at the air outlet of the atomizer provided in Figure 41
  • Figure 43 is the atomization provided in Figure 40
  • Fig. 44 is the flow velocity vector distribution diagram on several surfaces of the air outlet channel of the nebulizer near the air outlet provided in Fig. 40 .
  • the structure of the atomizer provided in Figure 41 is different from the structure of the atomizer 11 provided in Figure 40 only in the setting of the air outlet channel.
  • the air outlet channel of the atomizer in Figure 41 is a straight-through structure.
  • the test conditions are as follows: the diameter of the air outlet channel is 2.5mm, the length of the air outlet channel is 32.9mm, the initial temperature of the S-shaped heating layer 1134 on the atomizing core is 250°C, and the atomization amount is 3s/9mg.
  • the atomizer 11 provided in Figure 40 was tested under the following test conditions: the diameter of the end of the air outlet channel 1112 close to the atomizing core 113 before splitting is 2.5mm, and the record between the inlet of the air outlet channel and the air outlet 1112a is 32.9mm, The initial temperature of the S-shaped heating layer 1134 on the atomizing core 113 is 250°C, and the atomization amount is 3s/9mg.
  • the test results are shown in Figure 42- Figure 44.
  • the air outlet channel 1112 is divided into multiple sub-air outlet channels 1112b at the end away from the atomizing core 113 and then converged together, so that the temperature of the aerosol at the air outlet 1112a is significantly lowered, and the user experience is improved.
  • the atomizer 11 with the air outlet channel 1112 of the split flow structure is tested, and the test conditions are: the diameter of the end of the air outlet channel 1112 close to the atomizing core 113 before splitting is 2.5mm, and the record between the inlet of the air outlet channel and the air outlet 1112a
  • the initial temperature of the S-shaped heating layer 1134 on the atomizing core 113 is 250°C, and the atomization amount is 3s/9mg.
  • the test results are shown in Figure 45 and Figure 46.
  • Figure 45 is the relationship curve between the maximum temperature of the aerosol at the air outlet and the separation distance d
  • Figure 46 is the relationship between the aerosol temperature at the center position A of the air outlet and the separation distance d Graph. It can be understood that the highest aerosol temperature at the air outlet 1112a in Fig. 45 refers to the highest aerosol temperature on the entire air outlet 1112a.
  • Analyzing Figure 45 it can be concluded that the distance d between the end surface of the partition 1112c near the air outlet 1112a and the air outlet 1112a has little effect on the maximum aerosol temperature at the air outlet 1112a.
  • Analyzing Figure 46 it can be concluded that when the distance d between the end face of the partition 1112c close to the air outlet 1112a and the air outlet 1112a is greater than 3mm, the aerosol temperature at the center position A of the air outlet 1112a no longer has The relatively large change indicates that when the separation distance d is equal to 3mm, the aerosols have been mixed sufficiently, and further increasing the separation distance d has very limited influence on the temperature distribution of the aerosol at the air outlet 1112a. Therefore, the range of d is preferably 0mm ⁇ d ⁇ 3mm, and the range of d is more preferably 0mm ⁇ d ⁇ 2.5mm.
  • the atomizer 11 obtained from the experimental data in Fig. 46 is provided with an air outlet channel 1112 with a split flow structure, and the distance h between the atomization surface of the atomization core 113 and the air inlet hole 1125a is set to be 0.4 mm.
  • the temperature of the aerosol at the air outlet 1112a is reduced by making the air outlet channel 1112 split into multiple sub-air outlet channels 1112b at the end away from the atomizing core 113 and then converging together, the atomization of the atomizing core 113
  • the distance h between the surface and the air inlet 1125a is set as above (the content introduced in the first embodiment of the atomizer 11: the distance h between the atomization surface of the atomizing core 113 and the air inlet 1125a) to reduce
  • the aerosol temperature at the air outlet 1112a is optional, and it is also possible to set a cooling structure 119 (the cooling structure 119 specifically introduced in the second embodiment of the atomizer 11 ) in the air outlet channel 1112 to reduce the aerosol temperature at the air outlet 1112a selected.
  • the three implementations of reducing the aerosol temperature at the air outlet 1112a described above can be combined arbitrarily according to needs, and the aerosol temperature at the air outlet 1112a of the nebulizer 11 can be in the range of 55°C-85°C, optional Yes, the temperature range of the aerosol at the air outlet 1112a of the atomizer 11 is 70°C-80°C.

Landscapes

  • Nozzles (AREA)

Abstract

本申请实施例公开了一种雾化器和电子雾化装置,雾化器包括壳体、安装座和雾化芯;壳体具有出气通道,安装座的内部具有雾化腔;雾化芯设于雾化腔中;雾化芯具有雾化面,雾化面面向安装座的出气孔,出气通道连通于安装座的出气孔;其中,安装座上开设有进气孔,进气孔用于与外界大气以及雾化腔连通,以使外界大气能通过进气孔流入雾化腔;设置雾化面与进气孔之间相隔一定距离h,及在出气通道设置有降温结构,以使得出气口的气溶胶的温度范围在55℃-85℃,相对于现有的雾化器,出气口的气溶胶温度明显降低,提升了用户的使用体验。

Description

雾化器和电子雾化装置
相关申请的交叉引用
本申请基于2021年11月24日提交的中国专利申请202111405669.5主张其优先权,此处通过参照引入其全部的记载内容。
技术领域
本申请涉及电子雾化装置技术领域,尤其涉及一种雾化器和电子雾化装置。
背景技术
电子雾化装置是一种能将气溶胶产生基质雾化成气溶胶的装置,被广泛应用于日常生活中。电子雾化装置中的雾化芯具有雾化面,雾化面上设置有发热层,发热层通电后能对雾化面附近的气溶胶产生基质进行加热,以使气溶胶产生基质加热雾化生成气溶胶,气溶胶经由出气口流出电子雾化装置供用户使用。
通常,雾化芯的雾化面朝下设置,即朝向电子雾化装置的进气口设置。为了增加流出电子雾化装置的气雾量,雾化芯的雾化面也可以朝上设置,即朝向出气口设置,由此可以大大缩短出气口与雾化面之间的距离,提高流出电子雾化装置的气雾量。然而,雾化面朝上设置会使从出气口流出的气溶胶的温度增大,用户的使用体验变差。
发明内容
本申请实施例提供的雾化器和电子雾化装置,解决雾化面朝上设置时流出出气口的气溶胶的温度较高、用户的使用体验较差的问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种雾化器,包括壳体、安装座和雾化芯;所述壳体具有出气通道;所述安装座的内部具有雾化腔;所述雾化芯设于所述雾化腔中;所述雾化芯具有雾化面,所述雾化面面向所述安装座的出气孔,所述出气通道连通于所述安装座的所述出气孔;其中,所述安装座上开设有进气孔,所述进气孔用于与所述外界大气以及所述雾化腔连通,以使外界大气能通过所述进气孔流入所述雾化腔;设置所述雾化面与所述进气孔之间相隔一定距离h,及在所述出气通道设置有降温结构,以使得出气口的气溶胶的温度范围在55℃-85℃。
其中,所述降温结构使出气通道在远离所述雾化芯的一端先分流成多个子出气通道再汇聚在一起。
其中,所述降温结构包括设置在出气通道内的隔板,以将所述出气通道远离所述雾化芯的一端分割成两个所述子出气通道;所述隔板的延伸方向与所述出气通道的延伸方向相同;所述隔板靠近所述出气口的一端的端面与所述出气口之间间隔设置。
其中,所述隔板靠近所述出气口的一端的端面与所述出气口之间间隔的距离d的范围为0mm<d≤3mm。
其中,所述出气通道远离所述雾化芯的一端在所述雾化器宽度方向的尺寸变大形成加宽段,所述隔板设置于所述加宽段且将所述出气通道分割成两个所述子出气通道。
其中,两个所述子出气通道沿着所述隔板对称设置。
其中,所述隔板的长度与所述出气通道的长度的比值为1:5-1:4。
其中,h的范围为0mm<h≤0.7mm。
其中,h的范围为0.2mm≤h≤0.5mm。
其中,还包括:所述壳体中具有安装腔;所述安装座设于所述安装腔中;所述安装座具有相互连接的顶壁和侧壁,所述顶壁和所述侧壁围设形成所述雾化腔;所述安装座的侧壁与所述安装腔的侧壁配合形成导气通道;所述雾化芯靠近所述顶壁的一侧具有雾化面;其中,所述安装座的侧壁开设有所述进气孔,以使所述导气通道与所述雾化腔连通。
其中,所述安装座包括安装顶盖和安装底座;所述安装顶盖套设在所述安装底座上;所述安装顶盖的侧壁的外表面设有导气槽,所述安装腔的侧壁与所述导气槽的底壁配合形成所述导气通道,所述导气槽靠近所述安装顶盖的顶壁的一侧设有所述进气孔;所述安装底座具有进气口,所述导气通道远离所述进气孔的一端与所述进气口连通。
其中,所述降温结构设置于所述出气通道内,其中,所述降温结构被配置为降低流经所述出气通道的气溶胶的温度。
其中,所述降温结构为设置于所述出气通道的内壁面的凸起。
其中,所述凸起的高度为0.3mm-0.6mm;和/或,相邻的所述凸起的中心之间的距离与所述凸起的高度的比值为7-20。
其中,所述出气通道的长度小于等于20mm,所述凸起的高度为0.6mm-0.7mm;
或,所述出气通道的长度大于20mm且小于等于30mm,所述凸起的高度为0.5mm-0.6mm;
或,所述出气通道的长度大于30mm且小于等于40mm,所述凸起的高度为0.4mm-0.5mm;
或,所述出气通道的长度大于40mm且小于等于50mm,所述凸起的高度为0.35mm-0.45mm;
或,所述出气通道的长度大于50mm,所述凸起的高度为0.3mm-0.4mm。
其中,沿着所述凸起的高度方向,所述凸起的截面为正方形,相邻的所述凸起的中心之间的距离与所述凸起的高度的比值为10-20;
或,沿着所述凸起的高度方向,所述凸起的截面为圆形,相邻的所述凸起中心之间的距离与所述凸起的高度的比值为7-20。
为了解决上述技术问题,本申请提供的第二个技术方案为:提供一种电子雾化装置,包括电池组件和雾化器,电池组件用于为雾化器供电,其中,雾化器为上述任意一项所述的雾化器。
本申请实施例提供的雾化器和电子雾化装置,雾化器包括壳体、安装座和雾化芯;壳体具有出气通道,安装座的内部具有雾化腔;雾化芯设于雾化腔中;雾化芯具有雾化面,雾化面面向安装座的出气孔,出气通道连通于安装座的出气孔;其中,安装座上开设有进气孔,进气孔用于与外界大气以及雾化腔连通,以使外界大气能通过进气孔流入雾化腔;设置雾化面与进气孔之间相隔一定距离h,及在出气通道设置有降温结构,以使得出气口的气溶胶的温度范围在55℃-85℃,相对于现有的雾化器,出气口的气溶胶温度明显降低,提升了用户的使用体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请提供的电子雾化装置的一种功能模块框图;
图2为本申请提供的雾化器第一实施例的一种立体结构示意图;
图3为图2的雾化器的爆炸结构示意图;
图4为图2的雾化器沿A-A向的剖视图;
图5为图3中安装顶盖的一个角度的立体结构示意图;
图6为图3中安装顶盖的另一个角度的立体结构示意图;
图7为图3中雾化芯的一种立体结构示意图;
图8为图3中安装座和雾化芯装配后的一种剖视图;
图9为图2的雾化器沿B-B向的局部剖视图;
图10为图3中安装座和雾化芯装配后的另一种剖视图;
图11为图2的雾化器内气体的局部流速图;
图12为图2的雾化器内局部温度分布图;
图13为本申请提供的间距-出气口的气溶胶的温度的曲线图;
图14为本申请提供的间距-出气口的气溶胶量的曲线图;
图15为本申请提供的间距-出气口的气溶胶量以及温度的柱状图;
图16为图3中安装顶盖、雾化芯、第二密封件、第三密封件以及安装底座的一种爆炸结构示意图;
图17为图3中安装座与端盖的爆炸结构示意图;
图18为图3中安装顶盖、雾化芯、第二密封件、第三密封件以及安装底座的另一种爆 炸结构示意图;
图19为本申请提供的雾化器第二实施例的局部结构示意图;
图20为第一实验件的结构示意图;
图21为第二实验件的结构示意图;
图22为第一实验件出口处的气流温度分布图;
图23为第二实验件出口处的气流温度分布图;
图24为不同边界层形态对应的局部表面换热系数的变化规律示意图;
图25为图19的出气通道内的气流的流动路径示意图;
图26为现有的雾化器中出气通道内速度场分布图;
图27为本申请提供的雾化器第二实施例中出气通道内速度场分布图;
图28为图19中凸起的截面为正方形的结构示意图;
图29为另一实施方式中凸起的截面为圆形的结构示意图;
图30为计算得到的不同出气通道长度的吸阻随凸起高度的变化规律图;
图31为不同凸起高度对应的出气口的温度分布图;
图32为凸起的截面为正方形的流场计算示意图;
图33为正方形截面凸起的不同高度的换热系数变化规律图;
图34为正方向截面凸起不同的P/H值对应的速度场分布图;
图35为换热系数随正方向截面凸起不同的P/H值的变化规律图;
图36为凸起的截面为圆形的流场计算示意图;
图37为圆形截面凸起的不同高度的换热系数变化规律图;
图38为圆形截面凸起不同的P/H值对应的速度场分布图;
图39为换热系数随圆形截面凸起不同的P/H值的变化规律图;
图40为本申请提供的雾化器第三实施例的局部结构示意图;
图41为现有的雾化器局部结构示意图;
图42为图41提供的雾化器的出气口的气溶胶温度分布云图;
图43为图40提供的雾化器的出气口的气溶胶温度分布云图;
图44为图40提供的雾化器的出气通道靠近出气口一端的几面流速矢量分布图;
图45为出气口气溶胶最高温度与间隔距离d之间的关系曲线图;
图46为出气口中心位置A的气溶胶温度与间隔距离d之间的关系曲线图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个所述特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1,图1是本申请提供的电子雾化装置的一种功能模块示意图。在本实施例中,提供一种电子雾化装置。该电子雾化装置可用于气溶胶产生基质的雾化。电子雾化装置包括相互电连接的雾化器11和电池组件12。
其中,雾化器11用于存储气溶胶产生基质并雾化气溶胶产生基质以形成可供用户吸食的气溶胶。该雾化器11具体可用于不同的领域,比如,医疗、美容、休闲吸食等;在一具体实施例中,该雾化器11可用于电子气溶胶化装置,用于雾化待雾化基质并产生气溶胶,以供抽吸者抽吸,以下实施例均以此为例;当然,在其他实施例中,该雾化器11也可应用于喷发胶设备,以雾化用于头发定型的喷发胶;或者应用于治疗上下呼吸系统疾病的设备,以雾化医用药品。
雾化器11的具体结构与功能可参见以下任一实施例所涉及的雾化器11的具体结构与功能,且可实现相同或相似的技术效果,在此不再赘述。
电池组件12包括电池(图未示)和控制器(图未示)。电池用于为雾化器11供电,以使得雾化器11能够雾化气溶胶产生基质形成气溶胶;控制器用于控制雾化器11工作。电池组件12还包括电池支架气流传感器等其他元件。
雾化器11与电池组件12可以是一体设置,也可以是可拆卸连接,可以根据具体需要进行设计。
请参阅图2、图3和图4,图2是本实施例提供的雾化器第一实施例的一种立体结构示意图,图3为图2的雾化器的爆炸结构示意图,图4为图2的雾化器沿A-A向的剖视图。
本实施例中,提供一种雾化器11,该雾化器11包括壳体111、安装座112、雾化芯113和端盖114。
其中,壳体111内形成有储液腔1111、出气通道1112和安装腔1113,储液腔1111和出气通道1112分别与安装腔1113连通。
储液腔1111用于储存气溶胶产生基质,壳体111可以由铝、不锈钢等金属制成,也可以由塑料制成,只需能储存气溶胶产生基质,且不与气溶胶产生基质反应即可。储液腔1111的形状、大小和位置不限,可以根据需要进行设计。本实施例中,储液腔1111与出气通道1112并排设置在安装腔1113的同一侧,且储液腔1111环绕出气通道1112设置。
安装座112设置于安装腔1113中。安装座112内具有雾化腔1123,雾化芯113设置于雾化腔1123中。具体地,在本实施例中,安装座112进一步包括安装顶盖1121和安装底座1122,安装顶盖1121套设在安装底座1122靠近储液腔1111的一侧。请参考图5和图6,图5为图3中安装顶盖的一个角度的立体结构示意图,图6为图3中安装顶盖的另一个角度的立体结构示意图。其中,安装顶盖1121包括相互连接的顶壁1121a和侧壁1121b,安装顶盖1121的侧壁1121b可以是环形侧壁,设于安装顶盖1121的顶壁1121a远离储液腔1111的一侧。安装顶盖1121的顶壁1121a和侧壁1121b可以一体成型。安装顶盖1121的顶壁1121a和安装顶盖1121的侧壁1121b围设形成雾化腔1123。在其他实施例中,还可以是安装顶盖1121和安装底座1122配合形成雾化腔1123,安装座112形成雾化腔1123的方式不限于本申请提到的方式。
请参阅图3和图4,安装顶盖1121的顶壁1121a上具有出气孔1121c,出气孔1121c的一端与雾化腔1123连通,出气孔1121c的另一端与出气通道1112连通,以使雾化腔1123与出气通道1112连通。雾化芯113雾化后的气溶胶与冷空气混合后流入出气通道1112。进一步地,出气通道1112远离安装腔1113的一端具有出气口1112a,即,出气通道1112的一端的端口为出气口1112a,出气通道1112通过出气口1112a与外界大气连通,以使出气通道1112中的气溶胶能流出雾化器11提供给用户使用。
请参考图7,图7为图3中雾化芯的一种立体结构示意图;
其中,雾化芯113包括基体1133、发热层1134和两个电极1135。基体1133靠近储液腔1111的一侧具有雾化面1131,即,雾化芯113具有雾化面;发热层1134和两个电极1135设于雾化面1131上。基体1133可以储存和导流气溶胶产生基质。基体1133的材料可以是多孔材料,例如多孔陶瓷,多孔陶瓷可以利用毛细作用力将气溶胶产生基质导引至发热层1134上,发热层1134能对其加热雾化形成气溶胶。发热层1134可以是发热丝、发热网、发热膜、发热线路等,可以根据需要进行选择。两个电极1135设于发热层1134的两端,两个电极1135可以通过连接件与电池组件12电连接,以使两个电极1135通电后,两个电极 1135之间的发热层1134通电加热气溶胶产生基质。
在本实施方式中,雾化芯113的雾化面面向安装座112的出气孔1121c,即,雾化面朝上设置。
请参考图3和图4,雾化器11还包括第一密封件115、第二密封件116和第三密封件117。第一密封件115设于安装顶盖1121靠近储液腔1111的一端,以实现安装顶盖1121与壳体111之间的密封。第二密封件116套设于雾化芯113上,以实现雾化芯113与安装顶盖1121之间的密封。第三密封件117设于安装底座1122与雾化芯113之间,以实现雾化芯113与安装底座1122之间的密封,以及安装顶盖1121与安装底座1122之间的密封。第一密封件115、第二密封件116和第三密封件117的材质可以为任何具有一定柔性且可以耐一定温度的密封材料。本实施例中,第一密封件115、第二密封件116和第三密封件117的材质为硅胶。第一密封件115、第二密封件116和第三密封件117的形状和大小不限,可以根据需要进行设计。
请参阅图5和图8,图8为图3中安装座和雾化芯装配后的一种剖视图。
其中,安装顶盖1121的顶壁1121a上还设有下液孔1121d,下液孔1121d的一端与储液腔1111连通,下液孔1121d的另一端与雾化腔1123连通,以使储液腔1111中的气溶胶产生基质能通过下液孔1121d流至雾化腔1123中。下液孔1121d的数量可以为一个或多个,本实施例中,下液孔1121d的数量为两个,且对称设置于出气孔1121c的相对两侧。
在本实施例中,安装座112中具有导液通道1124。具体地,可以是安装顶盖1121中形成导液通道1124,例如可以是安装顶盖1121的侧壁1121b形成导液通道1124,或者,第二密封件116以及第三密封件117与安装顶盖1121的侧壁1121b配合形成导液通道1124,导液通道1124与下液孔1121d连通,以使导液通道1124与储液腔1111连通。导液通道1124可以将储液腔1111中的气溶胶产生基质导流至雾化芯113的侧壁和/或雾化芯113远离出气孔1121c的一面。在本实施例中,导液通道1124将气溶胶产生基质导流至雾化芯113远离出气孔1121c的一面。具体地,第三密封件117靠近雾化芯113的一端设有导液槽1171,导液槽1171与导液通道1124连通。导液槽1171能将导液通道1124中的气溶胶产生基质导流至雾化芯113远离安装顶盖1121的顶壁1121a的一面,以使雾化芯113能加热雾化气溶胶产生基质产生气溶胶。在其他实施例中,也可以是第二密封件116上设置有导液槽1171,以将导液通道1124中的气溶胶产生基质导流至雾化芯113的侧壁。通过设置导液通道1124和导液槽1171,能使储液腔1111中的气溶胶产生基质能流至雾化芯113的侧面或与雾化面1131相对的一面,以使雾化芯113能吸收气溶胶产生基质并将气溶胶产生基质导流至雾化面1131,以加热形成气溶胶。
请参阅图9,图9为图2的雾化器沿B-B向的局部剖视图,图9中的箭头表示雾化器11中的气流路径。
在一种实施例中,安装座112的侧壁1121b与安装腔1113的侧壁1113a配合形成导气通道1125。导气通道1125的一端与雾化器11的进气口1122a连通,以使外界大气能通过雾化器11的进气口1122a进入导气通道1125中;导气通道1125的另一端与雾化腔1123连通,以使导气通道1125中的气流能进入雾化腔1123中。
进一步地,安装座112开设有进气孔1125a,可以是安装顶盖1121的侧壁1121b上开设有进气孔1125a,进气孔1125a的一端与导气通道1125连接,另一端与雾化腔1123连通,以使导气通道1125中的气流通过进气孔1125a进入雾化腔1123中。进气孔1125a可以设于雾化面1131朝向出气孔1121c的一侧,例如,进气孔1125a可以设置于雾化面1131与出气孔1121c之间,以使进入雾化腔1123中的气流能携带雾化芯113的雾化面1131产生的气溶胶,经由出气孔1121c流至出气通道1112,最终从出气口1112a流出雾化器11供用户使用。
具体地,请参考图5和图10,图10为图3中安装座和雾化芯装配后的另一种剖视图。
本实施例中,安装顶盖1121的侧壁1121b的外表面设有导气槽1121e,安装腔1113的侧壁1113a与导气槽1121e的底壁配合形成导气通道1125,导气通道1125靠近安装顶盖1121的顶壁1121a的一侧设有进气孔1125a。在其他实施例中,也可以是安装腔1113的侧壁1113a设置导气槽1121e,安装座112的侧壁1121b与导气槽1121e的底壁配合形成导气通道1125。导气通道1125的形成方式不限于上述提到的方式。
在一种实施例中,请参考图5和图6,导气槽1121e的一端为封闭端,靠近安装顶盖1121的顶壁1121a设置;导气槽1121e的另一端为敞口端,延伸至安装顶盖1121的底面1121f。 导气槽1121e的形状可以是如本实施例的长方形,也可以是其他的形状。导气槽1121e的数量可以为一个或多个。本实施例中,导气槽1121e的数量为两个,分别设置于安装顶盖1121相对的两个侧壁1121b的外表面上。两个导气槽1121e分别与安装腔1113的侧壁1113a形成两个导气通道1125,两个导气通道1125均与雾化器11的出气口1112a连通。两个导气槽1121e中的每个导气槽1121e靠近安装顶盖1121的顶壁1121a的一端设有进气孔1125a。从出气口1112a进入雾化器11的气流经由两个导气通道1125流至雾化腔1123中。
本实施例中,导气槽1121e靠近安装顶盖1121的顶壁1121a一端的底面1121g向安装顶盖1121的内部倾斜,同时,进气口1122a设置于导气槽1121e靠近安装顶盖1121的顶壁1121a的端部。导气槽1121e靠近安装顶盖1121的顶壁1121a一端的深度增大,且越靠近安装顶盖1121的顶壁1121a,导气槽1121e的深度越大,以使导气通道1125的气流更容易从导气通道1125导流至出气孔1121c中。在其他实施例中,还可以是导气槽1121e的全部底面1121g向安装顶盖1121的内部倾斜。
进气孔1125a的宽度可以小于导气槽1121e的宽度,也可以等于导气槽1121e的宽度。本实施例中,进气孔1125a的宽度等于导气槽1121e的宽度。进气孔1125a的宽度越宽,进气孔1125a能通过的气流量越大,有利于增大从出气口1112a流出的气溶胶量。
如图10所示,进气孔1125a与雾化芯113的雾化面1131之间具有间距。具体的,雾化面1131与进气孔1125a靠近雾化面1131的底面1125b之间具有间距,且间距的距离为h。
请参考图11,图11为图2的雾化器内气体的局部流速图,具体的,为图11中所示的为雾化腔1123处的局部流速图。雾化面1131产生的气溶胶会在雾化面1131附近形成涡流区域,其中,涡流区域为虚线框围设的区域。从导气通道1125流入雾化腔1123中的冷空气会和雾化面1131生成的热的气溶胶进行热对流。
从图11可以看出,当h=0时,即进气孔1125a与雾化芯113的雾化面1131之间不具有间距时,雾化面1131附近的涡流区域较小,冷空气与热的气溶胶之间的热对流较大,冷空气与气溶胶混合后的气流温度较高,流出雾化器11的出气口1112a的气溶胶的温度较高,导致用户的使用体验较差。
从图11还可以看出,当h>0时,即进气孔1125a与雾化芯113的雾化面1131之间具有间距时,相比于h=0的结构,雾化面1131附近的涡流区域增大,且h的值越大,即间距越大,雾化面1131附近的涡流区域越大。因此,通过在进气孔1125a与雾化芯113的雾化面1131之间设置间距,雾化面1131附近的涡流区域的增大减少了冷空气与热的气溶胶之间的热对流,从而使冷空气与气溶胶混合后的气流温度降低,流出雾化器11的出气口1112a的气溶胶的温度减小,提升了用户的使用体验。
进一步请参考图12,图12为图2的雾化器内局部温度分布图,具体的,为图12中所示的为雾化腔1123处的局部温度图。从图12可以看出,当h=0时,涡流区域较小,与冷空气对流的气溶胶的温度较高,使得冷空气与气溶胶混合后的气流温度较高,流出雾化器11的出气口1112a的气溶胶的温度较高,导致用户的使用体验较差。当h>0时,雾化面1131附近的涡流区域增大,相比于h=0时,与冷空气对流的气溶胶的温度有所降低,且h的值越大,涡流区域越大,与冷空气对流的气溶胶的温度越低。因此,通过在进气孔1125a与雾化芯113的雾化面1131之间设置间距,能使冷空气与气溶胶混合后的气流温度降低,流出雾化器11的出气口1112a的气溶胶的温度减小,从而提升了用户的使用体验。
具体的,h的值不能过大,当h的值过大时,气溶胶的涡流区域过大,与冷空气对流的气溶胶过少,会使得流出雾化器11的出气口1112a的气溶胶量过小。
在本实施例中,实验所采用的雾化器11参数如下:出气通道1112的直径是2.5mm,长度29.4mm,雾化芯113上的S型发热层1134的温度初始温度250°,雾化量是3s/9mg,电池组件12对雾化芯113的输入功率是6.5W。当然,我们也可以采用其他具有不同参数的雾化器11,但是仍可以通过实验结果绘制具有相似数学关系的间距-出气口的气溶胶的烟雾量的曲线图。
可以参考表1、图13以及图14,表1为h分别为0mm、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm时,流出雾化器11的出气口1112a的气溶胶的温度和气溶胶量的实验结果;图13为根据表1的实验结果绘制的间距-出气口1112a的气溶胶的温度曲线图,图14为根据表1的实验结果绘制的间距-出气口的气溶胶量的曲线图。
表1
Figure PCTCN2022129351-appb-000001
从实验结果可以看出,当h=0时,流出雾化器11的出气口1112a的气溶胶量较大,但雾化器11的出气口1112a的气溶胶的温度较高,导致用户的体验较差。当h>0时,流出雾化器11的出气口1112a的气溶胶的温度降低,且h越大,流出雾化器11的出气口1112a的气溶胶的温度明显降低,但流出雾化器11的出气口1112a的气溶胶量随着h的增大呈降低的趋势。当h=0.7时,流出雾化器11的出气口1112a的气溶胶量降低至7.19mg/puff。
因此,可以设置雾化面1131与进气孔1125a之间相隔一定距离h,例如,针对以上实验的所用的雾化器,对应h的范围为0mm<h≤0.7mm。h的值可以为0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm等。优选地,0.2mm≤h≤0.5mm。通过设置雾化面1131与进气孔1125a之间的距离h以使得出气口1112a的气溶胶的温度降低,能使雾化面1131与进气孔1125a靠近雾化面1131的底面1125b之间的间距设置在合适的范围,使得流出雾化器11的出气口1112a的气溶胶的温度减小的同时,保证流出雾化器11的出气口1112a的气溶胶的烟雾量不会过少,有利于提升用户的使用体验。
在本实施例中,发明人还尝试通过增加出气通道1112的长度来降低出气口1112a的气溶胶的温度,实验表明:出气通道1112的长度在29.4mm时,发现出气口1112a的气溶胶的温度是93.16°;出气通道1112的长度增长13mm,达到42.4mm时,出气口1112a的气溶胶的温度是87°。虽然温度降低了6.17°,但出气通道1112的长度增长超过50%,这是产品设计所不可接受的,因此,通过设置雾化面1131与进气孔1125a之间相隔一定距离h的技术方案具有明显的性能和效果提高。可以参考图15,图15为h分别为0mm和0.4mm时,流出雾化器11的出气口1112a的气溶胶的温度和气溶胶量的实验结果的柱状图。从图15中可以看出,h=0mm时,出气口1112a的气溶胶温度为102.7℃,出气口1112a的气溶胶量为7.54mg/puff;h=0.4mm时,出气口1112a的气溶胶温度为86.4℃,出气口1112a的气溶胶量为7.33mg/puff;h=0.4mm时,流出雾化器11的出气口1112a的气溶胶的温度大大减小,且流出雾化器11的出气口1112a的气溶胶量不会过小。
在一种实施例中,如图16所示,图16为图3中安装顶盖、雾化芯、第二密封件、第三密封件以及安装底座的一种爆炸结构示意图。
其中,安装底座1122包括底部1122b和支撑部1122c,安装顶盖1121套设于支撑部1122c上并与底部1122b抵接,支撑部1122c设于雾化腔1123中,雾化芯113设于支撑部1122c靠近安装顶盖1121的顶壁的一侧。通过调整支撑部1122c的高度,可以调节雾化芯113的位置,进而调节进气孔1125a与雾化芯113的雾化面1131之间距离h的大小。
在一种实施例中,如图2和图17所示,图17为图3中安装座与端盖的爆炸结构示意图。
其中,端盖114封盖壳体111远离出气口1112a的一端,例如,端盖114可以套设在壳体111远离出气口1112a的一端,壳体111和端盖114可拆卸连接。
进一步地,安装底座1122背离安装顶盖1121的一侧具有进气口1122a,端盖114上设 有通孔1141,通孔1141与外接大气连通,且进气口1122a与通孔1141连通,以使外界大气能进入进气口1122a。
本实施例中,安装底座1122的底部1122b背离支撑部1122c的一面具有第一凹槽1122d,第一凹槽1122d作为进气孔1125a与通孔1141连通。第一凹槽1122d靠近导气槽1121e的一端具有贯穿安装底座1122的底部1122b的第一开孔1122e。第一开孔1122e可以为通孔或位于底部1122b边缘的缺口。第一开孔1122e将第一凹槽1122d与导气槽1121e靠近底部1122b的一端连通,以使气流能从第一凹槽1122d流入导气槽1121e中。
第一开孔1122e的数量可以与导气槽1121e的数量相同。本实施例中,第一开孔1122e的数量为两个,两个第一开孔1122e与两个导气槽1121e相对设置,两个第一开孔1122e分别将第一凹槽1122d与两个导气槽1121e连通。
在一种实施例中,如图17和图18所示,图18为图3中安装顶盖、雾化芯、第二密封件、第三密封件以及安装底座的另一种爆炸结构示意图。
其中,雾化器11还包括两个电极连接件118,每个电极连接件118的一端与一个电极1135电连接;另一端设置于安装底座1122的底部1122b背离支撑部1122c的表面,且通过端盖114的通孔1141暴露,以使电极连接件118能与电池组件12电连接,从而电池组件12能为雾化芯113供电。在一个实施例中,两个电极连接件118分别设置于所述雾化芯113的两侧,且分别对应电极1135位置设置。即,两个电极连接件118中心旋转对称设置。
进一步地,底部1122b背离支撑部1122c的表面设有两个第二凹槽1122f,分别用于容置两个电极连接件118远离雾化芯113的一端。具体的,第二凹槽1122f靠近壳体111的一侧具有第二开孔1122g,第二开孔1122g可以是底部1122b边缘设置的缺口,每个电极连接件118远离雾化芯113的一端穿过相应的第二开孔1122g设置于相应的第二凹槽1122f中。电极连接件118的设置方式不限于本申请提供的方式,也可以是其他的设置方式,只要能将雾化芯113的两个电极1135与电池组件12电连接即可。
请参考图19,图19为本申请提供的雾化器第二实施例的局部结构示意图。
在雾化器11第二实施例中,雾化器11的结构与雾化器11第一实施例的结构基本相同,不同之处在于:雾化器11包括降温结构119,降温结构119设置于出气通道1112内。其中,降温结构119被配置为降低流经出气通道1112的气溶胶的温度。
通过在出气通道1112内设置降温结构119,以对出气通道1112壁面附近的气溶胶的流动状态进行干涉,使得出气通道1112的壁面的换热系数增大,进而使得流出雾化器11的出气口1112a的气溶胶的温度减小,利于提升用户的使用体验。
可以理解,在设置降温结构119来降低出气口1112a的气溶胶的温度的前提下,雾化芯113的雾化面与进气孔1125a之间的距离h做如上设置(雾化器11第一实施例中具体介绍的内容:雾化芯113的雾化面与进气孔1125a之间的距离h)为可选的。相比于只在出气通道1112内设置降温结构119,在出气通道1112内设置降温结构119的基础上,雾化芯113的雾化面与进气孔1125a之间的距离h做如上设置,可以更好的降低出气口1112a的气溶胶的温度,采用那种方式来降低出气口1112a的气溶胶的温度可以根据具体需要进行设计。
降温结构119一方面可以吸收气溶胶的热量,另一方面可以对出气通道1112近壁面处的流场实现干扰,提高气溶胶与出气通道1112的壁面之间的热交换效率。在一具体实施方式中,降温结构119为螺旋件(图未示),螺旋件设置于出气通道1112内,且该螺旋件与出气通道1112的内壁面间隔设置,且能够对出气通道1112近壁面处的流场实现干扰,提高气溶胶与出气通道1112的壁面之间的热交换效率,以降低出气口1112a的气溶胶的温度。其中,螺旋件可通过固定结构固定于出气通道1112内。优选,螺旋件的材质为金属弹簧,制作工艺简单,且金属材质较其他材质具有更好的吸热效果,利于进一步降低出气口1112a的气溶胶的温度。
在一具体实施方式中,降温结构119为设置于出气通道1112的内壁面的凸起1191。可选的,凸起1191与出气通道1112的侧壁一体成型;即,类似于波节管结构。可选的,降温结构119为独立元件,在出气通道1112的内设置有螺旋件(图未示),螺旋件的外壁面贴合出气通道1112的内壁面设置,以使螺旋件作为出气通道1112的内壁面的凸起1191。出气通道1112的内壁面为光滑表面,螺旋件通过螺旋件与出气通道1112之间的摩擦力实现固定;或,出气通道1112的内壁面设置有与螺旋件配合的螺旋槽以实现螺旋件的固定,且螺旋件的线径大于螺旋槽的深度,以形成凸起1191。例如,组装时将螺旋件旋转插入出气通 道1112的螺旋槽内。优选,螺旋件为金属弹簧,金属材质较其他材质具有更好的吸热和导热效果,利于进一步降低出气口1112a的气溶胶的温度。在一个实施例中,金属弹簧的线径为0.2mm-0.3mm,金属弹簧的线径为形成的凸起1191的高度,金属弹簧的匝间距为相邻的凸起1191之间的距离;其中,金属弹簧的线径为制作金属弹簧的金属丝的直径。示例性的,当金属弹簧的线径为0.2mm-0.3mm,金属弹簧的直径为3mm,出气通道1112的长度为28mm时,可以实现较好的降温效果。
可以理解,当凸起1191与出气通道1112的侧壁一体成型时,凸起1191的尺寸设计、以及相邻的凸起1191之间的尺寸设计可参考后续介绍的凸起1191的高度、相邻的凸起1191的中心之间的距离与凸起1191的高度的比值。当通过螺旋件形成凸起1191时,对螺旋件的选择也可参考后续介绍的凸起1191的高度、相邻的凸起1191的中心之间的距离与凸起1191的高度的比值。
请参阅图20-图23,图20为第一实验件的结构示意图,图21为第二实验件的结构示意图,图22为第一实验件出口处的气流温度分布图,图23为第二实验件出口处的气流温度分布图。
图20所示的第一实验件为内壁面光滑的圆管30,圆管30的长度为50mm。圆管30的左侧的端口为入口,圆管30的右侧的端口为出口,气流从入口流向出口。
图21所示的第二实验件为内壁面上设置有凸起31的圆管30,圆管30的长度为50mm,凸起31的高度为0.5mm;其中,沿着凸起31的高度方向,凸起31的截面形状为方形。凸起31沿着圆管30的内表面设置一周。圆管30的左侧的端口为入口,圆管30的右侧的端口为出口,气流从入口流向出口。
使用同样的气体,以相同的流速分别流经第一实验件和第二实验件,得到第一实验件出口处的气流温度(如图22所示)和第二实验件出口处的气流温度(如图23所示)。对于第一实验件出口处的气流温度,从管壁到中心的温度逐渐升高,即,出口处的气流最高温度在中心区域;由图22可知,第一实验件出口处的气流最高温度为84.6℃。对于第二实验件出口处的气流温度,从管壁到中心的温度逐渐升高,即,出口处的气流最高温度在中心区域;由图23可知,第二实验件出口处的气流最高温度为73.3℃。可见,在圆管30的内壁面上设置凸起31使出口处的最高温度降低了13.4%,降温效果明显。也就是说,在出气通道1112的内壁面上设置凸起1191(即,降温结构119),可以明显降低出气口1112a处气溶胶的温度,利于提高用户的使用体验感。其中,进行实验的气体为气溶胶或其特性与气溶胶相似。
可以理解,将第二实验件中的凸起31沿着圆管30的内表面周向间隔设置,同样可以明显降低出气口处气溶胶的温度。
请参考图24和图25,图24为不同边界层形态对应的局部表面换热系数的变化规律示意图,图25为图19的出气通道内的气流的流动路径示意图。
对于在出气通道1112内设置凸起1191(即,降温结构119)来降低出气口1112a处气溶胶的温度的原理如下:
在图24中,横轴x表示流体与管道入口之间的距离,纵轴h x表示换热系数。流体从管道的入口进入管道,流体进入管道后边界层的形态分为层流边界层、过渡区、湍流边界层,湍流边界层的换热系数要高于层流边界层的换热系数。对于层流边界层形态,层流边界层内的热量传递主要通过热传导方式进行,而空气的热传导系数小,因此换热系数整体上处于较低的水平;且在层流边界层中,随着层流边界层厚度增加换热系数减小。当边界层形态由过渡区转变为充分发展的湍流边界层形态后,湍流边界层内同时存在热传导和热对流两种形式的热量传递,因此局部表面换热系数可以一直维持在较高的数值。由于流体在流动的过程中,会有部分粘附在管道的管壁上,在湍流边界层存在有层流底层。
在出气通道1112的内壁面为光滑的前提下,通常气溶胶在出气通道1112内的流速不大,其近壁面的流动边界层接近层流的形态;在出气通道1112的内壁面增加凸起1191结构后,相当于人为的对近壁面流动边界层进行干扰,使其从规则的层流形态向湍流形态转变,如图25所示,提升了出气通道1112的侧壁与出气通道1112内的气溶胶的换热系数。换热系数提升后有助于气溶胶与出气通道1112的侧壁换热,更多的热量被出气通道1112的侧壁吸收,从而达到降低出气口1112a处气溶胶的温度的目的。
请参考图26和图27,图26为现有的雾化器中出气通道内速度场分布图,图27为本申请提供的雾化器第二实施例中出气通道内速度场分布图。
通常出气通道1112内的流场可分为近壁面区和主流区,气溶胶与出气通道1112的侧壁的换热主要发生在近壁面区。参考图26和图27可知,在出气通道1112的内壁面上设置凸起1191(即,降温结构119),对近壁面区的气溶胶产生作用较大,使层流边界层状态转变成湍流边界层状态,提升气溶胶与出气通道1112的侧壁之间的换热效率,而主流区中的气溶胶影响较小。由图26和图27可知,近壁面区的流速小于3ms^-1,近壁面区的流速均是越靠近主流区部分的流速越快,主流区的流速大于3ms^-1。也就是说,在出气通道1112的内壁面上设置凸起1191(即,降温结构119),对出气通道1112的近壁面局部流场产生作用,对于主流区及其他区域的流场影响较小,不会影响用户的气溶胶吸入量。其中,流场为速度场。
在具体实施方式中,凸起1191的高度为0.3mm-0.6mm;和/或,相邻的凸起1191的中心之间的距离与凸起1191的高度的比值为1:20-1:7。通过对凸起1191进行如上尺寸设置,对降低出气口1112a处气溶胶的温度的效果较好。沿着凸起1191的高度方向,凸起1191的截面形状可以是圆形、正方形、长方形、三角形等,具体根据需要进行设计。下面以凸起1191的截面为正方形和圆形为例,对凸起1191的高度、凸起1191的高度与相邻的凸起1191的中心之间的距离的比值进行详细介绍。
请参考图28和图29,图28为图19中凸起的截面为正方形的结构示意图,图29为另一实施方式中凸起的截面为圆形的结构示意图。
在图28中,沿着凸起1191的高度方向,凸起1191的截面为正方形。在图29中,沿着凸起1191的高度方向,凸起1191的截面为圆形。图28和图29中,凸起1191的高度均用“H”表示,相邻的凸起1191的中心之间的距离均用“P”表示。
凸起1191的高度对于换热效率、雾化器11吸阻影响较大,因此可以综合考虑出气口1112a处气溶胶的降温效果、雾化器11的吸阻来对凸起1191的高度进行设计。相邻的凸起1191中心之间的距离影响着出气通道1112的近壁面处的流场,出气通道1112的近壁面处的流场还与凸起1191的高度相关,因此可通过流场分析及凸起1191的高度来对相邻的凸起1191中心之间的距离进行设计。
可以理解,凸起1191尺寸(例如,沿同一方向凸起1191的截面积)相差不大时,截面形状对于吸阻的影响较小。根据雾化器11设计标准的吸阻要求,将凸起1191额外导致的吸阻上限设定为100Pa。以凸起1191的截面为正方形为例,对凸起1191的高度、出气通道1112的长度与雾化器11吸阻的关系进行研究,并由此确定凸起1191的高度最佳数值。
研究结果如图30和图31所示,图30为计算得到的不同出气通道长度的吸阻随凸起高度的变化规律图,图31为不同凸起高度对应的出气口的温度分布图。
由图30可知,出气通道1112的吸阻随凸起1191高度、出气通道1112的长度的增大而增大;出气通道1112的长度越小,凸起1191高度可取的上限越大。例如,当出气通道1112的长度为20mm时,凸起1191高度可取0.6mm,甚至可取0.62mm;因此,优选凸起1191的高度的上限为0.6mm。其中,出气通道1112的长度在图30中用“L”表示。其中,实验条件:出气通道1112直径为3mm。
由图31可知,出气口1112a的气溶胶的最高温度在中心区域,在出气通道1112的长度相同的前提下,不设置凸起1191时,出气口1112a的气溶胶的最高温度为84.6℃;凸起1191的高度为0.1mm时,出气口1112a的气溶胶的最高温度为83.8℃,相比于不设置凸起1191,温度降低了0.9%;凸起1191的高度为0.2mm时,出气口1112a的气溶胶的最高温度为81.7℃,相比于不设置凸起1191,温度降低了3.4%;凸起1191的高度为0.3mm时,出气口1112a的气溶胶的最高温度为78.5℃,相比于不设置凸起1191,温度降低了7.2%;凸起1191的高度为0.4mm时,出气口1112a的气溶胶的最高温度为75.3℃,相比于不设置凸起1191,温度降低了11%;凸起1191的高度为0.5mm时,出气口1112a的气溶胶的最高温度为73.3℃,相比于不设置凸起1191,温度降低了13.4%。即,凸起1191的高度越高,出气口1112a的气溶胶的最高温度越低,降温效果越好;优选凸起1191的高度大于等于0.3mm。其中,实验条件:出气通道1112直径为3mm,气溶胶进出气通道1112的温度为100℃。
请参考图32,图32为凸起的截面为正方形的流场计算示意图。
参考图32,在一直径为1.5mm的圆管30中设置凸起31,沿着凸起31的高度方向,凸起31的截面为正方形,气体以2.6m/s的速度流过圆管30。其中,选用的气体的特性与气溶胶特性相似;气体的流速为出气通道1112中气溶胶的真实流速。凸起31的高度用“H”表 示,相邻的凸起31中心之间的距离用“P”表示。
取不同的凸起31高度,以图32的结构示意图进行实验,研究换热系数随相邻的凸起31中心之间的距离与凸起31的高度的比值(P/H)的变化规律。研究结果如图33所示,图33为正方形截面凸起的不同高度的换热系数变化规律图。由图33可知,不同凸起31高度H,换热系数的变化规律基本一致。因此,凸起31的高度H仅影响换热系数的数值,换热系数的变化规律主要受相邻的凸起31中心之间的距离与凸起31高度的比值(P/H)的影响。
以凸起31截面为正方形,凸起31高度H为0.2mm为例,对不同的P/H值对应的速度场分布继续进行研究,研究结果如图34和图35所示,图34为正方向截面凸起不同的P/H值对应的速度场分布图,图35为换热系数随正方向截面凸起不同的P/H值的变化规律图。
由图34可知,无论P/H值是多少,越远离壁面处的流速越快。从图可见,P/H数值过小,存在较大的低速区域;随着数值增大低速区域逐渐减小,等于17时刚好发生再附着,此时换热效果最好;继续增大数值后(P/H=25),低速区域减少,但是重新发展出新的层流边界层,影响换热效率。
可见,当P/H值过小时(例如,P/H为5),相邻的凸起31之间间隔区域的流场未被充分干扰,换热效率提升效果微弱;当P/H值为17时,气流在相邻的凸起31之间的间距面上发生了再附着,再附着区域边界层厚度薄、换热效率高;当P/H数值过大时(例如,P/H为25),气流发生再附着后重新发展出层流边界层,换热效率降低。因此,过小或过大的P/H值均不利于气溶胶与出气通道1112的壁面换热。
由图35可知,对于正方形截面的凸起31,相邻的凸起31中心之间的距离与凸起31高度的比值(P/H)为10-20时降温效果最好。因此,当设置于出气通道1112内壁面上的凸起1191的截面为正方形时,相邻的凸起1191中心之间的距离与凸起1191高度的比值为10-20,可选的,为13-17。
请参考图36,图36为凸起的截面为圆形的流场计算示意图。
参考图36,在一直径为1.5mm的圆管30中设置凸起31,沿着凸起31的高度方向,凸起31的截面为圆形,气体以2.6m/s的速度流过圆管30。其中,选用的气体的特性与气溶胶特性相似;气体的流速为出气通道1112中气溶胶的真实流速。凸起31的直径用“H”表示,相邻的凸起31中心之间的距离用“P”表示。由于凸起31的截面为圆形,凸起31的高度与凸起31的直径相同。
取不同的凸起31高度,以图36的结构示意图进行实验,研究换热系数随相邻的凸起31中心之间的距离与凸起31的高度的比值(P/H)的变化规律。研究结果如图37所示,图37为圆形截面凸起的不同高度的换热系数变化规律图。由图37可知,不同凸起31高度H,换热系数的变化规律基本一致。因此,凸起31的高度H仅影响换热系数的数值,换热系数的变化规律主要受相邻的凸起31中心之间的距离与凸起31高度的比值(P/H)的影响。
以凸起31截面为圆形,凸起31高度H为0.2mm为例,对不同的P/H值对应的速度场分布继续进行研究,研究结果如图38和图39所示,图38为圆形截面凸起不同的P/H值对应的速度场分布图,图39为换热系数随圆形截面凸起不同的P/H值的变化规律图。
由图38可知,无论P/H值是多少,越远离壁面处的流速越快。从图可见,P/H数值过小,存在较大的低速区域;随着数值增大低速区域逐渐减小,等于14时刚好发生再附着,此时换热效果最好;继续增大数值后(P/H=20),低速区域减少,但是重新发展出新的层流边界层,影响换热效率。
可见,当P/H值过小时,相邻的凸起31之间间隔区域的流场未被充分干扰,换热效率提升效果微弱;当P/H值为14时,气流在相邻的凸起31之间的间距面上发生了再附着,再附着区域边界层厚度薄、换热效率高;当P/H数值过大时,气流发生再附着后重新发展出层流边界层,换热效率降低。因此,过小或过大的P/H值均不利于气溶胶与出气通道1112的壁面换热。
由图39可知,对于圆形截面的凸起31,相邻的凸起31中心之间的距离与凸起31高度的比值(P/H)为7-20时降温效果最好。因此,当设置于出气通道1112内壁面上的凸起1191的截面为圆形时,相邻的凸起1191中心之间的距离与凸起1191高度的比值为7-20,可选的,为11-16。
因此,对于凸起1191的截面为正方形或圆形时,凸起1191的高度、相邻的凸起1191的中心之间的距离与凸起1191的高度的比值的最佳设计如表2所示。
表2
Figure PCTCN2022129351-appb-000002
也就是说,无论凸起1191的截面为正方形还是圆形,当出气通道1112的长度小于等于20mm时,凸起1191的高度为0.6mm-0.7mm;当出气通道1112的长度大于20mm且小于等于30mm时,凸起1191的高度为0.5mm-0.6mm;当出气通道1112的长度大于30mm且小于等于40mm时,凸起1191的高度为0.4mm-0.5mm;当出气通道的长度大于40mm且小于等于50mm时,凸起1191的高度为0.35mm-0.45mm;当出气通道的长度大于50mm时,凸起1191的高度为0.3mm-0.4mm。其中,当出气通道1112的长度小于20mm时,可选的,凸起1191的高度为0.6mm。当出气通道的长度大于40mm且小于50mm时,可选的,凸起1191的高度为0.4mm。
当凸起1191的截面为正方形,相邻的凸起1191的中心之间的距离与凸起1191的高度的比值为10-20。当凸起1191的截面为圆形,相邻的凸起1191中心之间的距离与凸起1191的高度的比值为7-20。可以理解,当凸起1191的截面为正方形或圆形,凸起1191的宽度与凸起1191的高度相同,对相邻的凸起1191中心之间的距离以及相邻的凸起1191中心之间的距离与凸起1191的高度的比值进行设计,也就考虑了凸起191的宽度对出气口1112a处气溶胶的温度的影响。
请参阅图40,图40为本申请提供的雾化器第三实施例的局部结构示意图。
在雾化器11第三实施例中,雾化器11的结构与雾化器11第一实施例的结构基本相同,不同之处在于:雾化器11的出气通道1112在远离雾化芯113的一端先分流成多个子出气通道1112b再次汇聚在一起。
用户在通过出气口1112a抽吸时,舌头位于或对应于出气口1112a的中心位置A,而舌头是感知温度的关键,通过降低出气口1112a的中心位置A的温度即可降低用户感知到的气溶胶的温度,进而提升用户的使用体验。本申请发明人研究发现,如果出气通道1112采用直通结构,出气口1112a中心位置A流出的气溶胶比周围流出的气溶胶的温度高(具体可参见图42的测试结果)。本申请通过使出气通道1112在远离雾化芯113的一端先分流成多个子出气通道1112b再次汇聚在一起的方式来降低出气口1112a的中心位置A的气溶胶温度。也就是说,雾化芯113雾化好的气溶胶在出气通道1112远离雾化芯113的一端先分流流入多个子出气通道1112b再汇聚在一起从出气口1112a流出,分流的过程中对气溶胶进行降温,相对于直通的出气通道1112,用户通过出气口1112a抽吸气溶胶时感知到的温度明显降低,利于提升用户的使用体验。其中,多个子出气通道1112b的个数可以根据需要进行设计。
在一实施方式中,在出气通道1112内设置隔板1112c,以将出气通道1112远离雾化芯113的一端分割成两个子出气通道1112b,以使出气通道1112先分流;其中,隔板1112c的延伸方向与出气通道1112的延伸方向相同。隔板1112c靠近出气口1112a的一端的端面与出气口1112a之间间隔设置,以使出气通道1112在分流后又汇聚在一起(如图40所示)。也就是说,出气通道1112包括第一部分、第二部分和第三部分,出气通道1112的入口即第一部分的入口,第三部分的出口即出气口1112a;第一部分和第三部分均为直通管,隔板1112c设置于第二部分,使得第二部分相对于第一部分和第三部分具有明显的分流效果,以实现分流降温。可以理解,多个子出气通道1112b的个数可以根据需要进行设计,隔板1112c的结构可以根据子出气通道1112b的个数进行设计。
其中,隔板1112c可以是与出气通道1112一体成型,也可以是与出气通道1112通过卡接等方式固定在一起,具体根据需要进行设计。隔板1112c的厚度根据需要进行设计,能够使出气通道1112远离雾化芯113的一端分割成两个子出气通道1112b,并能够对流经子出 气通道1112b的气溶胶降温即可。可以理解,气溶胶与子出气通道1112b内的空气进行混合降温,流经子出气通道1112b的气溶胶被子出气通道1112b的腔壁吸热,从而降低出气口1112a的气溶胶温度。进一步,由于两个子出气通道1112b内的气溶胶在出气口1112a的中心位置A汇聚混合,使得中心位置A流出的气溶胶的温度进一步被降低(具体可参见图44的测试结果)。
可选的,隔板1112c可以是实心板,即,两个子出气通道1112b的部分腔壁是共用的,此时隔板1112c厚度的设置需能够使两个子出气通道1112b内的气溶胶温度降低。
可选的,隔板1112c可以是空心板,即,隔板1112c的内部是中空的,两个子出气通道1112b为完全分离的两个通道;隔板1112c的壁厚及其内部中空空腔的宽度(隔板1112c内部中空空腔的宽度为沿着隔板1112c厚度方向的尺寸大小)决定着隔板1112c的厚度,隔板1112c的壁厚及其内部中空空腔的宽度根据需要进行设计,能够实现分流降温即可。可选的,隔板1112c为矩形空心板。
可选的,无论隔板1112c是矩形实心板还是矩形空心板,隔板1112c的长度(隔板1112c的长度为沿着出气通道1112延伸方向的尺寸)与出气通道1112的长度的比值为1:5-1:4。通过如上设置,可以实现较好的分流降温效果;在雾化器11的整体尺寸几乎不变的前提下,并不会使储液腔1111的存储空间减少太多,避免储液腔1111的存储量无法满足用户需求。
具体地,出气通道1112远离雾化芯113的一端在雾化器11宽度方向的尺寸变大形成加宽段B;加宽段B为出气通道1112的第二部分和第三部分。隔板1112c设置于加宽段B且平行于雾化器11的厚度方向,以将出气通道1112远离雾化芯113的一端分割成两个子出气通道1112b;隔板1112c靠近出气口1112a的端面与出气口1112a间隔设置,以使出气通道1112的第三部分为直通管,且两个子出气通道1112b中的气溶胶在第三部分汇聚在一起再从出气口1112a流出。通过在出气通道1112上设置加宽段B,设置于加宽段B的隔板1112c可以具有较大的厚度,能够更好的对两个子出气通道1112b中的气溶胶降温。在一实施方式中,加宽段B靠近雾化芯113的端面与隔板1112c靠近雾化芯113的端面齐平,即,设置有隔板1112c处才开始对出气通道1112的通道宽度进行加宽。
加宽段B可以是沿着其延伸方向的横截面形状、面积一致的;即,加宽段B为直通结构。加宽段B可以是包括第一段和第二段,第二段位于第一段远离雾化芯113的一侧;第一段沿着远离雾化芯113的方向的横截面积逐渐增大,使得第一段沿着远离雾化芯113的方向的纵截面为锥形结构;第二段沿着远离雾化芯113的方向的横截面积相同,即,第二段为直通结构(如图40所示)。通过将加宽段B的第一段设置为锥形结构,可以避免气溶胶在加宽段B的拐角处形成涡流,进而避免加宽段B的结构对气溶胶流出出气口1112a量的影响。
两个子出气通道1112b可以沿着隔板1112c对称设置,以使雾化芯113雾化好的气溶胶流经两个子出气通道1112b,气溶胶分别在两个子出气通道1112b可以实现相同的降温效果。
请参阅图41-图44,图41为现有的雾化器局部结构示意图,图42为图41提供的雾化器的出气口的气溶胶温度分布云图,图43为图40提供的雾化器的出气口的气溶胶温度分布云图,图44为图40提供的雾化器的出气通道靠近出气口一端的几面流速矢量分布图。
图41提供的雾化器的结构与图40提供的雾化器11的结构只有出气通道的设置方式不同,图41中的雾化器的出气通道为直通结构,对图41提供的现有雾化器进行测试,测试条件为:出气通道的直径为2.5mm,出气通道的长度为32.9mm,雾化芯上的S型发热层1134的初始温度为250℃,雾化量为3s/9mg。对图40提供的雾化器11进行测试,测试条件为:出气通道1112靠近雾化芯113的一端未分流前的直径为2.5mm,出气通道入口至出气口1112a之间的记录为32.9mm,雾化芯113上的S型发热层1134的初始温度为250℃,雾化量为3s/9mg。测试结果如图42-图44所示。
通过图44可以看出,气溶胶在出气通道1112中分流进入两个子出气通道1112b之后汇聚混合时在中心位置A会存在混合涡旋区,即在汇聚混合过程中会进一步使出气口1112a中心位置A的气溶胶温度降低,使得出气口1112a的最高温度位于中心位置A的两侧,利于降低用户感知到的气溶胶温度。
比较图42和图43,出气通道为直通结构时,气溶胶流经出气通道后直接流出,出气口的气溶胶混合较差,出气口的气溶胶温度相对集中在出气通道的中心位置,最高温度高达80℃;出气通道1112中设置有分流降温结构时,由于分流作用,气溶胶分别与两个子出气 通道1112b内的空气混合降温以及被两个子出气通道1112b的腔壁吸热,虽然气溶胶在出气口1112a又再次汇聚在一起,但中心位置A的温度明显降低,中心位置A的温度约为69℃,出气口1112a的最高温度位于中心位置A的两侧,且出气口1112a的最高温度也降低至约74℃,整体的降温效果约5℃-10℃。
经测试证明,出气通道1112在远离雾化芯113的一端先分流成多个子出气通道1112b再汇聚在一起,使得出气口1112a的气溶胶温度明显降低,提升了用户的使用体验。
下面对隔板1112c靠近出气口1112a的端面与出气口1112a之间间隔的间隔距离d进行研究。对具有分流结构的出气通道1112的雾化器11进行测试,测试条件为:出气通道1112靠近雾化芯113的一端未分流前的直径为2.5mm,出气通道入口至出气口1112a之间的记录为32.9mm,雾化芯113上的S型发热层1134的初始温度为250℃,雾化量为3s/9mg。测试结果如图45和图46所示,图45为出气口气溶胶最高温度与间隔距离d之间的关系曲线图,图46为出气口中心位置A的气溶胶温度与间隔距离d之间的关系曲线图。可以理解,图45中出气口1112a气溶胶最高温度指的是整个出气口1112a上的气溶胶最高温度。
对图45进行分析,可得出:隔板1112c靠近出气口1112a的端面与出气口1112a之间间隔的间隔距离d的大小对出气口1112a气溶胶最高温度影响不大。对图46进行分析,可得出:当隔板1112c靠近出气口1112a的端面与出气口1112a之间间隔的间隔距离d大于3mm后,出气口1112a的中心位置A处的气溶胶温度不再有比较大的变化,说明在间隔距离d等于3mm时,气溶胶的混合已经比较充分,继续增大间隔距离d对出气口1112a处的气溶胶温度分布的影响非常有限了。因此,优选d的范围为0mm<d≤3mm,更优选d的范围为0mm<d≤2.5mm。
其中,得出图46实验数据的雾化器11除了具有分流结构的出气通道1112,还设置了雾化芯113的雾化面与进气孔1125a之间的距离h为0.4mm。
可以理解,在通过使出气通道1112在远离雾化芯113的一端先分流成多个子出气通道1112b再汇聚在一起来降低出气口1112a的气溶胶的温度的前提下,雾化芯113的雾化面与进气孔1125a之间的距离h做如上设置(雾化器11第一实施例中具体介绍的内容:雾化芯113的雾化面与进气孔1125a之间的距离h)来降低出气口1112a的气溶胶温度为可选的,在出气通道1112中设置降温结构119(雾化器11第二实施例中具体介绍的降温结构119)来降低出气口1112a的气溶胶温度也为可选的。上述介绍的降低出气口1112a的气溶胶温度的三种实施方式,可以根据需要进行任意组合,能够使雾化器11的出气口1112a的气溶胶温度范围为55℃-85℃即可,可选的,使雾化器11的出气口1112a的气溶胶温度范围为70℃-80℃。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (17)

  1. 一种雾化器,其中,包括:
    壳体,具有出气通道;
    安装座,所述安装座的内部具有雾化腔;
    雾化芯,设于所述雾化腔中;所述雾化芯具有雾化面,所述雾化面面向所述安装座的出气孔,所述出气通道连通于所述安装座的所述出气孔;
    其中,所述安装座上开设有进气孔,所述进气孔用于与所述外界大气以及所述雾化腔连通,以使外界大气能通过所述进气孔流入所述雾化腔;设置所述雾化面与所述进气孔之间相隔一定距离h,及在所述出气通道设置有降温结构,以使得出气口的气溶胶的温度范围在55℃-85℃。
  2. 根据权利要求1所述的雾化器,其中,所述降温结构使出气通道在远离所述雾化芯的一端先分流成多个子出气通道再汇聚在一起。
  3. 根据权利要求1所述的雾化器,其中,所述降温结构包括设置在出气通道内的隔板,以将所述出气通道远离所述雾化芯的一端分割成两个所述子出气通道;所述隔板的延伸方向与所述出气通道的延伸方向相同;所述隔板靠近所述出气口的一端的端面与所述出气口之间间隔设置。
  4. 根据权利要求3所述的雾化器,其中,所述隔板靠近所述出气口的一端的端面与所述出气口之间间隔的距离d的范围为0mm<d≤3mm。
  5. 根据权利要求3所述的雾化器,其中,所述出气通道远离所述雾化芯的一端在所述雾化器宽度方向的尺寸变大形成加宽段,所述隔板设置于所述加宽段且将所述出气通道分割成两个所述子出气通道。
  6. 根据权利要求3所述的雾化器,其中,两个所述子出气通道沿着所述隔板对称设置。
  7. 根据权利要求3所述的雾化器,其中,所述隔板的长度与所述出气通道的长度的比值为1:5-1:4。
  8. 根据权利要求1-7任一项所述的雾化器,其中,h的范围为0mm<h≤0.7mm。
  9. 根据权利要求8所述的雾化器,其中,h的范围为0.2mm≤h≤0.5mm。
  10. 根据权利要求1-7任一项所述的雾化器,其中,还包括:
    所述壳体中具有安装腔;所述安装座设于所述安装腔中;所述安装座具有相互连接的顶壁和侧壁,所述顶壁和所述侧壁围设形成所述雾化腔;所述安装座的侧壁与所述安装腔的侧壁配合形成导气通道;所述雾化芯靠近所述顶壁的一侧具有雾化面;其中,所述安装座的侧壁开设有所述进气孔,以使所述导气通道与所述雾化腔连通。
  11. 根据权利要求10所述的雾化器,其中,所述安装座包括安装顶盖和安装底座;所述安装顶盖套设在所述安装底座上;
    所述安装顶盖的侧壁的外表面设有导气槽,所述安装腔的侧壁与所述导气槽的底壁配合形成所述导气通道,所述导气槽靠近所述安装顶盖的顶壁的一侧设有所述进气孔;所述安装底座具有进气口,所述导气通道远离所述进气孔的一端与所述进气口连通。
  12. 根据权利要求1-7任一权利要求所述的雾化器,其中,所述降温结构设置于所述出气通道内,其中,所述降温结构被配置为降低流经所述出气通道的气溶胶的温度。
  13. 根据权利要求12所述的雾化器,其中,所述降温结构为设置于所述出气通道的内壁面的凸起。
  14. 根据权利要求13所述的雾化器,其中,所述凸起的高度为0.3mm-0.6mm;和/或,相邻的所述凸起的中心之间的距离与所述凸起的高度的比值为7-20。
  15. 根据权利要求14所述的雾化器,其中,所述出气通道的长度小于等于20mm,所述凸起的高度为0.6mm-0.7mm;
    或,所述出气通道的长度大于20mm且小于等于30mm,所述凸起的高度为0.5mm-0.6mm;
    或,所述出气通道的长度大于30mm且小于等于40mm,所述凸起的高度为0.4mm-0.5mm;
    或,所述出气通道的长度大于40mm且小于等于50mm,所述凸起的高度为0.35mm-0.45mm;
    或,所述出气通道的长度大于50mm,所述凸起的高度为0.3mm-0.4mm。
  16. 根据权利要求14所述的雾化器,其中,沿着所述凸起的高度方向,所述凸起的截面为正方形,相邻的所述凸起的中心之间的距离与所述凸起的高度的比值为10-20;
    或,沿着所述凸起的高度方向,所述凸起的截面为圆形,相邻的所述凸起中心之间的距离与所述凸起的高度的比值为7-20。
  17. 一种电子雾化装置,其中,包括电池组件和雾化器,所述电池组件用于为所述雾化器供电,其中,所述雾化器为权利要求1-16任一项所述的雾化器。
PCT/CN2022/129351 2021-11-24 2022-11-02 雾化器和电子雾化装置 WO2023093483A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111405669.5 2021-11-24
CN202111405669.5A CN116158556A (zh) 2021-11-24 2021-11-24 雾化器和电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023093483A1 true WO2023093483A1 (zh) 2023-06-01

Family

ID=86416868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129351 WO2023093483A1 (zh) 2021-11-24 2022-11-02 雾化器和电子雾化装置

Country Status (2)

Country Link
CN (1) CN116158556A (zh)
WO (1) WO2023093483A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132823A (zh) * 2005-02-02 2008-02-27 奥格尔斯比&巴特勒研究与发展有限公司 用于蒸发可蒸发物质的装置
CN209788476U (zh) * 2019-01-10 2019-12-17 深圳市合元科技有限公司 电子烟
CN111109682A (zh) * 2020-01-14 2020-05-08 云南中烟工业有限责任公司 一种具有曲折气流通道的雾化器
CN113243568A (zh) * 2021-04-25 2021-08-13 深圳市基克纳科技有限公司 一种雾化装置及气溶胶产生装置
CN214594168U (zh) * 2020-09-11 2021-11-05 深圳麦克韦尔科技有限公司 一种雾化器及其电子雾化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132823A (zh) * 2005-02-02 2008-02-27 奥格尔斯比&巴特勒研究与发展有限公司 用于蒸发可蒸发物质的装置
CN209788476U (zh) * 2019-01-10 2019-12-17 深圳市合元科技有限公司 电子烟
CN111109682A (zh) * 2020-01-14 2020-05-08 云南中烟工业有限责任公司 一种具有曲折气流通道的雾化器
CN214594168U (zh) * 2020-09-11 2021-11-05 深圳麦克韦尔科技有限公司 一种雾化器及其电子雾化装置
CN113243568A (zh) * 2021-04-25 2021-08-13 深圳市基克纳科技有限公司 一种雾化装置及气溶胶产生装置

Also Published As

Publication number Publication date
CN116158556A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
US20210177048A1 (en) Electronic cigarette and atomizer thereof
CN105559147B (zh) 电子雾化装置
WO2019113747A1 (zh) 电子烟及其雾化器
CN107951079A (zh) 电子烟及其雾化器
WO2023124498A1 (zh) 雾化顶座、雾化器及电子雾化装置
WO2023040836A1 (zh) 电子雾化装置及其雾化器
WO2023093482A1 (zh) 气溶胶基质结构和气溶胶产生装置
WO2022099649A1 (zh) 一种雾化器及其电子雾化装置
WO2023221612A1 (zh) 气溶胶产生装置
WO2023065743A1 (zh) 电子烟雾化装置以及电子烟
WO2022179300A9 (zh) 发热组件、雾化器及电子雾化装置
WO2023093483A1 (zh) 雾化器和电子雾化装置
WO2023092337A1 (zh) 雾化器和电子雾化装置
WO2022237453A1 (zh) 一种雾化器及其电子雾化装置
CN116158555A (zh) 雾化器和电子雾化装置
CN116158557A (zh) 雾化器和电子雾化装置
CN214854326U (zh) 电子雾化装置及其雾化器和雾化组件
JP2023542017A (ja) 加熱器及び加熱霧化装置
WO2023207677A1 (zh) 一种雾化器
WO2024077415A1 (zh) 雾化芯及气溶胶生成装置
WO2023231010A1 (zh) 雾化组件、雾化器及电子雾化装置
WO2022237452A1 (zh) 发热体、加热组件和电子雾化器
CN218483791U (zh) 雾化芯、雾化组件及电子雾化器
WO2023123244A1 (zh) 一种电子雾化装置及其雾化器
WO2023123248A1 (zh) 电子雾化装置及其雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897566

Country of ref document: EP

Kind code of ref document: A1