WO2023093371A1 - 温度感测器 - Google Patents

温度感测器 Download PDF

Info

Publication number
WO2023093371A1
WO2023093371A1 PCT/CN2022/125779 CN2022125779W WO2023093371A1 WO 2023093371 A1 WO2023093371 A1 WO 2023093371A1 CN 2022125779 W CN2022125779 W CN 2022125779W WO 2023093371 A1 WO2023093371 A1 WO 2023093371A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
sensing housing
housing
temperature sensor
channel
Prior art date
Application number
PCT/CN2022/125779
Other languages
English (en)
French (fr)
Inventor
周聪
黄小腾
侯跃攀
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22897454.9A priority Critical patent/EP4357742A1/en
Publication of WO2023093371A1 publication Critical patent/WO2023093371A1/zh
Priority to US18/428,125 priority patent/US20240167893A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/026Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of temperature sensing, and in particular relates to a temperature sensor.
  • the liquid temperature sensor in the existing temperature sensing technology field is usually provided with special-shaped spots on the inner wall of its delivery pipeline, and a temperature sensing element is installed to realize the sensing of the liquid temperature.
  • a temperature sensing element is installed to realize the sensing of the liquid temperature.
  • the thickness of the wall at the special-shaped site on the existing pipeline is thicker due to the influence of its production process, and because it is a special shape, it is difficult to control in production, resulting in poor wall thickness uniformity of products obtained from different batches.
  • the consistency in the actual temperature measurement has a great influence.
  • the implementation mode of the present application provides a temperature sensor, which can optimize the structure of the existing temperature sensor and ensure the consistency of temperature measurement during use.
  • An embodiment of the present application provides a temperature sensor, including:
  • the main body is provided with passages for the flow of the heat exchange liquid inside;
  • the sensing component is arranged on the body, including a temperature sensing element and a sensing housing.
  • One end of the sensing housing is open, and a chamber is provided in it.
  • the sensing housing is installed on the body, and its closed end extends into the channel , the temperature sensing element is arranged in the chamber for sensing the temperature of the heat exchange liquid through the sensing shell, the thermal conductivity of the sensing shell is greater than the thermal conductivity of the body.
  • the speed of temperature conduction can be accelerated by making the sensing housing adopt a material with higher thermal conductivity, so that the detection result of the temperature sensor is more accurate.
  • the extension dimension of the sensing housing in the third direction is smaller than the extension dimension of the sensing housing in the second direction
  • the second direction is the axis direction of the channel extension
  • the third direction is orthogonal to the second direction.
  • the flow resistance at the sensing housing in the main body can be effectively reduced, ensuring the flow efficiency of the heat exchange liquid in the channel, and Promoting the flow efficiency of the heat exchange liquid can also further fit the actual flow state in the channel and improve the measurement accuracy of the temperature sensing element.
  • the dimension of the sensing housing protruding from the wall surface of the channel is smaller than the radius of the channel.
  • the occupation of the radial flow area in the channel by the sensing housing can be significantly reduced, and the flow resistance in the channel can be effectively reduced.
  • the sensing housing extends in the channel along a first direction, and the first direction is a radial direction of the channel.
  • the sensing housing is made of metal and is injection molded with the body insert
  • the use of metal materials can significantly increase the thermal conductivity of the sensing shell, and through insert injection molding, it can not only ensure the airtightness of the body, but also independently produce the sensing shell, improving the sensing shell.
  • the uniformity of body structure ensures the consistency of temperature measurement results
  • each corner of the sensing housing is provided with an arc surface.
  • the curved surface setting can effectively reduce the degree of change in the shape of the outer wall of the sensing housing, reduce the turbulent flow generated when the fluid passes through the outer wall of the sensing housing, improve the measurement accuracy of the temperature sensing element, and reduce the flow resistance in the channel.
  • the body is provided with a through hole communicating with the channel.
  • the sensing housing includes a shell body and a first flange protruding from the outer surface of the shell body.
  • the shell body extends into the channel through the through hole, and the first flange is inserted into the channel.
  • the hole wall of the through hole is used to fix the sensing housing to the body.
  • a protrusion for fixing with the main body can be provided for the sensing housing.
  • the arrangement of the second flange can enhance the stability of the connection between the sensing housing and the main body during insert injection molding, and can significantly enhance the connection between the sensing housing and the main body through the protruding and extending structure in the peripheral direction.
  • the airtightness of the connection between the bodies can enhance the stability of the connection between the sensing housing and the main body during insert injection molding, and can significantly enhance the connection between the sensing housing and the main body through the protruding and extending structure in the peripheral direction.
  • the temperature sensor further includes a connecting wire, which is connected to the temperature sensing element through an opening and/or a through hole of the sensing housing.
  • the data sensed by the temperature sensing element can be derived.
  • the temperature sensor also includes a connector and a clamping block, the clamping block is connected to the outer wall of the body, the connector is engaged with the clamping block, and the connector is connected to a connecting line for communicating with the processing device. connect.
  • the connection between the temperature sensor and external devices can be facilitated through the arrangement of the plug.
  • the temperature sensor further includes an encapsulation layer, and the encapsulation layer wraps around the temperature sensing element.
  • the temperature sensor further includes a potting layer and is fixed to the sensing housing, and the potting layer is wrapped around the encapsulation layer.
  • the above structure can not only improve the airtightness of the sensing housing, but also effectively fill the remaining space in the sensing housing, reduce the cavity structure in the sensing housing, and reduce the resonance effect caused by the fluid on the outer wall of the sensing housing.
  • the temperature conduction speed can be accelerated by making the sensing shell adopt metal material, so that the detection result of the temperature sensor is more accurate, and the This method can not only ensure the airtightness of the body, but also independently produce the sensing shell, improve the uniformity of the sensing shell structure, and ensure the consistency of the temperature measurement results.
  • Fig. 1 is a schematic structural diagram of an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the internal structure of the embodiment shown in Fig. 1 .
  • Fig. 3 is a schematic diagram of the body structure of the embodiment shown in Fig. 1 .
  • Fig. 4 is a schematic structural diagram of an embodiment of the sensing housing in the embodiment shown in Fig. 1 .
  • Fig. 5 is a schematic structural diagram of another embodiment of the present application.
  • Fig. 6 is a schematic structural view of an embodiment of the end portion of the body in the embodiment shown in Fig. 5 .
  • FIG. 7 is a schematic diagram of the internal structure of the embodiment shown in FIG. 5 .
  • FIG. 8 is an exploded view of the embodiment shown in FIG. 5 .
  • the temperature sensor detector of the switch joint type is usually provided with special-shaped points on the inner wall of the delivery pipeline, and the temperature sensing element is installed to sense the temperature of the liquid.
  • the thickness of the wall at the special-shaped site on the existing pipeline is thicker due to the influence of its production process, and because it is a special shape, it is difficult to control in production, resulting in poor wall thickness uniformity of different batches of products obtained, and
  • the raw materials used in special-shaped sites are usually consistent with the pipeline, and the heat transfer ability is not ideal, which has a great impact on the consistency and measurement accuracy of the actual temperature measurement.
  • the applicant found that by adjusting the material of the special-shaped point on the pipeline of the temperature sensor, the main body and the special-shaped point can be used
  • the method of independent production ensures the accuracy of each structure, thereby improving the accuracy and consistency of the measurement process.
  • the inventor of the present application designed a temperature sensor after in-depth research.
  • the aforementioned energy-utilizing equipment can be components with driving force used in fields such as industry, life, and transportation.
  • industrial equipment such as fans, pumps, drive shafts, generators, etc.
  • living equipment such as household generators, computer columns and so on.
  • transportation equipment such as fuel vehicles, gas vehicles, new energy vehicles and spacecraft, etc.
  • new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.; spacecraft include aircraft, rockets, space shuttles and spacecraft, etc. wait.
  • the embodiment of the present application does not impose special limitations on the above-mentioned energy utilization equipment.
  • the aforementioned energy utilization device can also be a driving element, such as a battery.
  • the battery When used in actual equipment, the battery includes multiple battery cells and a heat exchange mechanism, and the temperature sensor can be arranged in series in the pipeline of the heat exchange mechanism to detect the temperature in the battery in real time.
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • the first direction referred to in the embodiments of the present application is the X-axis direction
  • the second direction is the Y-axis direction
  • the third direction is the Z-axis direction.
  • FIG. 1 is a schematic structural view of an embodiment of the present application
  • FIG. 2 is a schematic internal structure of the embodiment shown in FIG. 1
  • a temperature sensor including a body 1 and a sensing component 2 . Inside the main body 1 is provided a channel 11 through which the heat exchange liquid flows.
  • the sensing component 2 is arranged on the main body 1 and includes a temperature sensing element 21 and a sensing housing 22.
  • the sensing housing 22 is open at one end and has a chamber inside it.
  • the sensing housing 22 is installed on the main body 1, and its The closed end extends into the channel 11 , and the temperature sensor 21 is arranged in the chamber for sensing the temperature of the heat exchange liquid through the sensing housing 22 , the thermal conductivity of the sensing housing 22 is greater than that of the body 1 .
  • the channel 11 provided inside the body 1 runs through both ends of the body 1 .
  • the cross section of the channel 11 can be in various shapes and sizes, such as cube, cylinder, hexagonal prism and so on.
  • the shape of the channel 11 can be determined according to the pipeline structure at the access position of the temperature sensor and the flow rate per unit time.
  • the material of channel 11 can be injection-molded plastic, such as UPVC, polyethylene, rigid polyvinyl chloride, polyethylene, chlorinated polyvinyl chloride, three-type polypropylene, cross-linked polyethylene, polybutene, etc.
  • the temperature sensing element 21 can be a semiconductor temperature measuring element, such as germanium, silicon and other semiconductors.
  • the temperature sensing element 21 can adopt an NTC (Negative Temperature Coefficient, negative temperature coefficient) thermistor, and utilize a semiconductor material or component with a large negative temperature coefficient to realize a fast response to temperature sensing, such as manganese, Metal oxides such as cobalt, nickel and copper are the main materials and are made by ceramic technology.
  • NTC Negative Temperature Coefficient, negative temperature coefficient
  • FIG. 1 is a schematic structural view of an embodiment of the present application
  • FIG. 3 is a schematic structural view of the body of the embodiment shown in FIG. 1
  • the main body 1 can be arranged as a tubular body arranged transversely, and the channel 11 is a cavity in the middle of the tubular body.
  • one end of the opening of the sensing housing 22 is fixed in the wall of the pipe body, and the closed end extends into the channel 11, and the pipe body is provided with a reinforcement platform 13 at a position corresponding to the opening of the sensing housing 22, and the reinforcement platform 13 can be strengthened.
  • the thickness of the joint of the sensing housing 22 on the thick body 1 enables the top of the sensing housing 22 to be completely embedded in the body 1 when connected. Without limitation, the sensing housing 22 extends downward from the top of the main body 1 along the first direction.
  • FIG. 5 is a schematic structural diagram of another embodiment of the present application.
  • Both ends of the body 1 can be provided with joints for connecting with pipelines in the liquid temperature control circulation system.
  • the joint is provided with multiple layers of annular protrusions arranged at intervals in the direction of the joint axis, and the radii of the multi-layered annular protrusions are different.
  • the temperature transmission speed around the temperature sensing element 21 can be significantly enhanced, the measurement accuracy of the temperature sensing element 21 can be significantly improved, and the consistency of the measurement results can be ensured.
  • Fig. 1 is a schematic structural diagram of an embodiment of the present application
  • Fig. 2 is a schematic diagram of the internal structure of the embodiment shown in Fig. 1
  • Fig. 3 is a schematic diagram of The schematic diagram of the body structure of the embodiment shown in 1.
  • the extension dimension of the sensing housing 22 in the third direction is smaller than the extension dimension of the sensing housing 22 in the second direction.
  • the second direction is the axial direction along which the channel 11 extends, and the third direction is orthogonal to the second direction.
  • FIG. 4 is a schematic structural view of an embodiment of the sensing housing 22 in the embodiment shown in FIG. 1 .
  • the part of the sensing housing 22 located in the channel 11 can be a rectangular parallelepiped whose long side is arranged axially along the channel 11, and whose height is along the radial direction of the channel 11, extending into the channel 11, and the turning angles of the sensing housing 22 are
  • the arc surface 221 is set.
  • the part of the sensing housing 22 located in the channel 11 may be arranged on an arc surface facing the side of the channel 11 where the heat exchange liquid flows.
  • the flow resistance at the sensing housing 22 in the main body 1 can be effectively reduced, ensuring the flow efficiency of the heat exchange liquid in the channel 11, and Promoting the flow efficiency of the heat exchange liquid can also further fit the actual flow state in the channel 11 and improve the measurement accuracy of the temperature sensing element 21 .
  • the arrangement of the arc surface 221 can effectively reduce the degree of change in the shape of the outer wall of the sensing housing 22, reduce the turbulent flow generated when the fluid passes through the outer wall of the sensing housing 22, improve the measurement accuracy of the temperature sensing element 21, and reduce the flow in the channel 11. resistance.
  • Figure 2 is a schematic diagram of the internal structure of the embodiment shown in Figure 1
  • Figure 6 is an implementation of the end of the body 1 in the embodiment shown in Figure 5
  • the structure diagram of the mode Fig. 7 is a schematic diagram of the internal structure of the embodiment shown in Fig. 5 .
  • the dimension of the sensing housing 22 protruding from the wall of the channel 11 is smaller than the radius of the channel 11 .
  • the maximum dimension of the sensing housing 22 protruding from the wall surface of the channel 11 in the radial direction is smaller than the radius of the channel 11 .
  • the extending direction of the sensing housing 22 in the channel 11 is a first direction in the radial direction, and the first direction is orthogonal to the second direction and the third direction.
  • the occupancy of the sensing housing 22 on the flow area in the radial direction of the channel 11 can be significantly reduced, ensuring that there is a sufficient flow area at the position where the sensing housing 22 is set, effectively reducing the Flow resistance in channel 11.
  • FIG. 2 is a schematic diagram of the internal structure of the embodiment shown in FIG. 1
  • FIG. 7 is a schematic diagram of the internal structure of the embodiment shown in FIG. 5 .
  • the sensing housing 22 is made of metal and is insert molded with the main body 1 .
  • the sensing housing 22 is made of a metal material resistant to corrosion by the heat exchange liquid.
  • water is used as the heat exchange liquid
  • the sensing housing 22 is made of water-resistant metal material, such as copper, nickel, cobalt, and the like.
  • the sensing housing 22 is made of a metal material, it is fixed on the main body 1 by insert technology during the injection molding process of the main body 1 .
  • the thermal conductivity of the sensing housing 22 can be significantly increased, so that the temperature sensing element 21 in the sensing housing 22 can perform sensing work more accurately.
  • the method of insert injection molding can also make the sensing housing 22 a separate part, ensure that the wall thickness of the sensing housing 22 is uniform everywhere, and reduce the pressure caused by the integral molding of the body 1 and the sensing housing by using the injection molding process.
  • the problem of uneven wall thickness at the special-shaped position is caused, which reduces the influence of the wall thickness of the sensing shell 22 on the sensing process, ensures the consistency of the temperature measurement results, and the use of insert injection molding technology can also ensure that the sensing shell
  • the airtightness of the connection between the body 22 and the body 1 prevents liquid leakage at the connection between the sensing case 22 and the body 1 and prolongs the service life of the temperature sensing element in actual use.
  • FIG. 2 is a schematic diagram of the internal structure of the embodiment shown in FIG. 1
  • FIG. 7 is a schematic diagram of the internal structure of the embodiment shown in FIG. 5
  • the body 1 is provided with a through hole 12 communicating with the channel 11.
  • the sensing housing 22 includes a shell body and a first flange 222 protruding from the outer surface of the shell body.
  • the shell body extends into the channel 11 through the through hole 12.
  • the first The flange 222 is inserted into the wall of the through hole 12 to fix the sensing housing 22 to the body 1 .
  • the setting of the through hole 12 is used to enable the chamber in the sensing housing 22 to communicate with the outside of the main body 1 .
  • the through hole 12 cooperates with the shell body and the first flange 222 , so that when the sensing housing 22 is fixed on the through hole 12 , the communication between the through hole 12 and the channel 11 is blocked.
  • the case body can fill up the space in the through hole 12 .
  • the housing body may fill at least part of the space within the through hole 12 .
  • the first flange 222 may be at least partially embedded in the hole wall of the through hole 12 .
  • the first flange 222 can be disposed at the opening of the through hole 12 on the outer wall of the body 1 .
  • the first flange 222 may be disposed at the communication place between the through hole 12 and the channel 11 .
  • the first flange 222 may be disposed on the top end of the case body, further, the first flange 222 is formed by bending the top end of the case body toward the peripheral side.
  • first flange 222 Through the arrangement of the first flange 222 , a protrusion for fixing the sensing housing 22 to the main body 1 can be provided.
  • the first flange 222 When the first flange 222 is arranged on the top of the shell main body and at the communication place between the through hole 12 and the channel 11, it can meet the requirements for the extension size of the sensing housing 22 in the channel 11 and the sensing housing 22
  • the demand is fixed on the body 1, while maximizing the size of the compact sensing housing 22, reducing the impact of increased self-weight due to the metal material used for the sensing housing 22, and reducing production waste.
  • FIG. 2 is a schematic diagram of the internal structure of the embodiment shown in FIG. 1
  • FIG. 4 is a sensing housing 22 in the embodiment shown in FIG.
  • the structural diagram of the embodiment FIG. 7 is a schematic diagram of the internal structure of the embodiment shown in FIG. 5 .
  • the sensing housing 22 also includes a second flange 223 protruding from the outer surface of the housing body, the first flange 222 and the second flange 223 are arranged at intervals, and a part of the body 1 is clamped between the first flange 222 and the second flange 223. between the second flanges 223 .
  • the setting of the second flange 223 can enhance the stability of the connection between the sensing housing 22 and the main body 1 in the insert injection molding, and through the structure that protrudes toward the peripheral side, the connection between the through hole 12 and the sensing housing More tortuous changes are produced on the connection surface between 22, so that the heat exchange liquid is not easy to penetrate between the through hole 12 and the sensing shell 22, and the airtightness of the connection between the sensing shell 22 and the main body 1 can be significantly enhanced.
  • FIG. 7 is a schematic diagram of an internal structure of the embodiment shown in FIG. 5
  • FIG. 8 is an exploded view of the embodiment shown in FIG. 5
  • the temperature sensor further includes a connecting wire 3 , which is connected to the temperature sensing element 21 through the opening of the sensing housing 22 and/or the through hole 12 .
  • the connecting wire 3 extends from the outside of the main body 1 to the cavity in the sensing housing 22 to connect with the temperature sensing element 21 for transmitting the data information sensed by the temperature sensing element 21 from the temperature sensing element 21 .
  • the opening of the sensing housing 22 directly communicates with the outer space of the body 1, and the connecting wire 3 can directly extend from the opening to the chamber, and connect with the temperature sensing element 21 connected.
  • the connecting wire 3 first extends from the outer space of the body 1 into the through hole 12, then enters the opening, and finally communicates with the remaining space of the through hole 12.
  • connection line 3 is a data transmission line, such as a double-wire transmission line, a microstrip transmission line, a waveguide transmission line, a surface wave transmission line, and an optical fiber, which can be selected according to actual needs.
  • FIG. 5 is a schematic structural diagram of another embodiment of the present application
  • FIG. 8 is an exploded view of the embodiment shown in FIG. 5
  • the temperature sensor also includes a plug 4 and a clamping block 5, the clamping block 5 is connected to the outer wall of the body 1, the plug 4 is engaged with the clamping block 5, and the plug 4 is connected to the connecting line 3 for connected to the processing device.
  • the clamping block 5 can be injection molded integrally with the body 1 .
  • a sliding rail is provided on the clamping block 5
  • a sliding groove is provided on the connector plug 4 , and the sliding groove cooperates with the sliding rail to realize the clamping connection between the clamping block 5 and the sliding rail.
  • the plug 4 is provided with a signal for conducting the connection line 3, and a data output connector derived, such as a universal serial port (Universal Serial Bus, USB), an IEEE1394 interface (FireWire), a serial communication port (commercial) wait.
  • the selection of the data output connector can be selected according to the communication protocol used in actual use, such as RS-485, RS-232C and so on.
  • the processing device may be a control terminal provided on a mobile vehicle, such as a vehicle-mounted processor.
  • the connection of the temperature sensor with the external processing device can be facilitated by the arrangement of the plug 4 .
  • the plug 4 can be effectively integrated on the body 1 through the clamping block 5, and the obtained temperature sensor is highly integrated, so that the temperature sensor only passes through the ends of the two ends of the channel 11, and is connected in series to the temperature control cycle of the liquid to be measured.
  • the pipeline in the system can be used without additional fixed structures, ensuring that the temperature sensor can be generally applied to the working environment of various liquid temperature control circulation systems.
  • FIG. 7 is a schematic diagram of an internal structure of the embodiment shown in FIG. 5
  • FIG. 8 is an exploded view of the embodiment shown in FIG. 5
  • the temperature sensor also includes an encapsulation layer 6 wrapped around the temperature sensing element 21 .
  • the encapsulation layer 6 is made of anti-corrosion material.
  • the encapsulation layer 6 can be made of phenolic resin, epoxy resin, polyester resin, polyethylene, polypropylene, polyvinyl chloride, chlorinated polyether and the like.
  • the airtightness of the temperature sensing element 21 can be improved, preventing other fillers in the chamber from affecting the temperature sensing element 21 .
  • the potting layer 7 is used to fill the remaining space in the through hole 12 and the cavity, and fix the temperature sensing element 21 and the connecting wire 3 .
  • the temperature sensing element 21 is fixed at the bottom of the chamber.
  • the potting layer 7 fills in the cavity.
  • the potting layer 7 may use thermally conductive silicone grease.
  • the temperature sensor includes a body 1 , a sensing component 2 , a connecting wire 3 , a plug 4 , a clamping block 5 , an encapsulation layer 6 and an encapsulation layer 7 .
  • the main body 1 is a tubular body arranged transversely, and the channel 11 is a cavity in the middle of the tubular body, and the channel 11 is cylindrical and runs through both ends of the main body 1 . Both ends of the body 1 can be provided with joints for connecting with pipelines in the liquid temperature control circulation system.
  • the sensing component 2 includes a sensing housing 22 and a temperature sensing element 21 , and the temperature sensing element 21 is disposed in a cavity in the sensing housing 22 .
  • the part of the sensing housing 22 located in the channel 11 can be a rectangular parallelepiped whose long side is arranged axially along the channel 11, and whose height is along the radial direction of the channel 11, extending into the channel 11, and the turning angles of the sensing housing 22 are
  • the arc surface 221 is set.
  • the maximum dimension of the sensing housing 22 protruding from the wall of the channel 11 in the radial direction is smaller than the radius of the channel 11 , and is made of metal material and is insert-molded with the body 1 .
  • the body 1 is provided with a through hole 12 communicating with the channel 11.
  • the sensing housing 22 includes a shell body and a first flange 222 and a second flange 223 protruding from the outer surface of the shell body.
  • the first flange 222 is formed by the shell body.
  • the top end of the main body is bent toward the peripheral side, and the second flange 223 and the first flange 222 are arranged at intervals.
  • the sensing housing 22 is connected to the main body 1 , the first flange 222 is disposed above the second flange 223 in the first direction, and the second flange 223 is disposed at the connection between the through hole 12 and the channel 11 .
  • the space in the through hole 12 of the shell main body is filled, and the opening of the sensing housing 22 communicates with the remaining space of the through hole 12.
  • the connecting wire 3 first extends from the outer space of the body 1 to the through hole 12, then enters the opening, and finally communicates with the through hole 12.
  • the temperature sensor 21 in the chamber is connected.
  • the encapsulation layer 6 wraps around the temperature sensing element 21 .
  • the potting layer 7 fills the remaining space in the through hole 12 and the cavity, and fixes the temperature sensing element 21 and the
  • the metal material of the sensing housing 22 can speed up the temperature conduction speed, making the detection result of the temperature sensor more accurate, and the This method can not only ensure the airtightness of the main body 1, but also independently produce the sensing housing 22, improve the uniformity of the structure of the sensing housing 22, and ensure the consistency of the temperature measurement results.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种温度感测器,包括:本体(1),内部设有供换热液体流动的通道(11);感测组件(2),设于本体(1)上,包括温感件(21)及感测壳体(22),感测壳体(22)一端开口,且其内设有腔室,感测壳体(22)安装于本体(1),且其封闭端延伸至通道(11)内,温感件(21)设置于腔室内,用于通过感测壳体(22)感测换热液体的温度,感测壳体(22)的热导率大于本体(1)的热导率。通过使感测壳体(22)采用热导率更高的材质能够加快温度传导速度,使温度感测器的检测结果更精确。

Description

温度感测器
相关申请的交叉引用
本申请要求享有于2021年11月26日提交的名称为“温度感测器”的中国专利申请202111421093.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于温度感测技术领域,尤其涉及一种温度感测器。
背景技术
现有温度感测技术领域中的液体温度感测器,通常为在其输送管路内壁上设置异形位点,并安装温感元件实现对液体温度的感测。但是现有管路上的异形位点处的壁体厚度受其生产工艺的影响较厚,且由于为异形状,在生产中难以控制,导致不同批次所得产品的壁厚均一性较差,对实际测温中的一致性存在较大影响。
因此,亟需一种温度感测器。
申请内容
本申请实施方式提供了一种温度感测器,能够优化现有温度感测器的架构,保证使用时测温一致性。
本申请实施方式,提供了一种温度感测器,包括:
本体,内部设有供换热液体流动的通道;
感测组件,设于本体上,包括温感件及感测壳体,感测壳体一端开口,且其内设有腔室,感测壳体安装于本体,且其封闭端延伸至通道内,温感件设置于腔室内,用于通过感测壳体感测换热液体的温度,感测壳体的热导率大于本体的热导率。
采用上述结构,通过使感测壳体采用热导率更高的材质能够加快温度传导速度,使温度感测器的检测结果更精确。
可选地,感测壳体在第三方向上的延伸尺寸小于感测壳体在第二方向上的延伸尺寸,第二方向为通道延伸的轴线方向,第三方向与第二方向正交。
采用上述结构,通过对感测壳体在第二方向及第三方向上延伸长度的设置,能够有效降低本体内感测壳体的处的流动阻力,保证换热液体在通道内的流动效率,且促进换热液体的流动效率也能够进一步贴合通道内的实际流动状态,提升温感件的测量精度。
可选地,在通道的径向上,感测壳体凸出通道壁面的尺寸小于通道的半径。
采用上述结构,通过感测壳体在径向上的延伸长度设置,能够显著降低感测壳体对通道内径向上流通面积的占用,有效降低通道内的流动阻力。
进一步地,感测壳体在通道内沿第一方向延伸,第一方向为通道的径向方向。
可选地,感测壳体采用金属材质并与本体嵌件注塑成型
采用上述结构,使用金属材质能够显著增大感测壳体的导热率,且通过嵌件注塑的方式,不仅能够保证本体内的密闭性,还能够将感测壳体独立生产,提高感测壳体结构的均一性,保证测温结果的一致性
可选地,感测壳体各转折角处为弧面设置。
采用上述结构,弧面设置能够有效降低感测壳体外壁形状的变化程度,减少流体经过感测壳体外壁时产生的乱流,能够提升温感件的测量精度,降低通道内的流动阻力。
可选地,本体设有与通道连通的通孔,感测壳体包括壳主体和凸出于壳主体的外表面的第一凸缘,壳主体经过通孔伸入通道,第一凸缘嵌入通孔的孔壁,以将感测壳体固定于本体。
采用上述结构,通过第一凸缘的设置,能够为感测壳体提供与本体固定用的凸起。
可选地,感测壳体还包括凸出于壳主体的外表面的第二凸缘,第一凸缘和第二凸缘间隔设置,且本体的一部分夹持于第一凸缘和第二凸缘之间。
采用上述结构,通过第二凸缘的设置,能够加强嵌件注塑中感测壳体与本体间连接的稳定性,并通过向周侧方向凸起延伸的结构,能够显增强感测壳体与本体间连接处的密闭性。
可选地,温度感测器还包括连接线,连接线通过感测壳体的开口和/或通孔与温感件相连接。
采用上述结构,能够将温感件所感测得到数据导出。
可选地,温度感测器还包括接插头及卡接块,卡接块与本体外壁相连接,接插头与卡接块卡合连接,接插头与连接线相连接,用于与处理器件相连接。
采用上述结构,通过接插头的设置,能够促进温度感测器与外部器件相连接。
可选地,温度感测器还包括包封层,包封层包裹在温感件周侧。
采用上述结构,能够提高温感件的密闭性。
可选地,温度感测器还包括灌封层并固定于感测壳体,灌封层包裹在包封层周侧。
采用上述结构,不仅能够提升感测壳体内的密闭性,也能够有效填充感测壳体内的剩余空间,减少感测壳体内的空腔结构,降低由于感测壳体外壁流体引起的共振影响。
与现有技术相比,本申请实施方式的温度感测器中,通过使感测壳体采用金属材质能够加快温度传导速度,使温度感测器的检测结果更精确,且通过嵌件注塑的方式,不仅能够保证本体内的密闭性,还能够将感测壳体独立生产,提高感测壳体结构的均一性,保证测温结果的一致性。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一实施方式的结构示意图。
图2是图1所示实施方式的内部结构示意图。
图3是图1所示实施方式的本体结构示意图。
图4是图1所示实施方式中感测壳体一实施方式的结构示意图。
图5是本申请另一实施方式的结构示意图。
图6是图5所示实施方式中本体端部一实施方式的结构示意图。
图7是图5所示实施方式的一内部结构示意图。
图8是图5所示实施方式的爆炸图。
附图中:
1、本体;11、通道;12、通孔;2、感测组件;21、温感件;22、感测壳体;221、弧面;222、第一凸缘;223、第二凸缘;3、连接线;4、接插头;5、卡接块;6、包封层;7、灌封层。
在附图中,附图未必按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的 独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
目前,从市场形势的发展来看,以石油为首的传统化石能源的使用,且难以完全替代,必还将长期使用,同时以电能为代表的清洁能源也在蓬勃发展。如各类移动载具中,广泛出现以电能作为驱动源的类型,但是涉及到能源利用的设备,由于存在内能损坏的缘故,设备内必然离不开对液体温控循环系统的设置,以对产生内能在设备内的积蓄情况进行监测。目前此类设备中液体温控循环系统的架构中,为了实现小型化,常将检测元件集成至管路上,形成换接头式的温感检测器,直接串联到换热液体流经的管路中,实现小型化及高效检测的目的。
本申请发明人注意到,现有液体温控循环系统中换接头式的温感检测器通常为在其输送管路内壁上设置异形位点,并安装温感元件实现对液体温度的感测。但是现有管路上的异形位点处的壁体厚度受其生产工艺的影响较厚,且由于为异形状,在生产中难以控制,导致不同批次所得产品的壁厚均一性较差,且当前异形位点所用的原料通常与管路一致,对热量的传递能力不理想,对实际测温中的一致性及测量精度存在较大影响。
为了缓解现有液体温控循环系统中换接头式的温感检测器的缺陷,申请人研究发现,可以通过对温感检测器在管路上的异形位点材质进行调整,利用主体与异形位点单独生产的方式,保证各自的结构精度,进而提升测量过程中的精度及一致性。
基于以上考虑,为了解决现有液体温控循环系统中换接头式的温感检测器的问题,本申请发明人经过深入研究,设计了一种温度感测器。
前述能源利用的设备可以是工业、生活、运输等领域中所用具有 驱动力的部件。工业设备中,例如风机、泵体、驱动轴、发电机等。生活设备中,例如家用发电器、计算机柱及等。运输设备中,例如燃油汽车、燃气汽车、新能源汽车及航天器等,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等。本申请实施例对上述能源利用的设备不做特殊限制。
其次,前述能源利用的设备也可以是驱动元件,如电池。实际设备内使用时,电池包括多个电池单体和换热机构,温度感测器可串联设置于换热机构中的管路中,对电池内的温度进行实时检测。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
参照图1-图3,本申请实施方式中所称第一方向为X轴方向,第二方向为Y轴方向,第三方向为Z轴方向。
在本申请一些实施方式中,如图1及图2所示,图1是本申请一实施方式的结构示意图,图2是图1所示实施方式的内部结构示意图。提供了一种温度感测器包括本体1及感测组件2。本体1内部设有供换热液体流动的通道11。感测组件2设于本体1上,包括温感件21及感测壳体22,感测壳体22一端开口,且其内设有腔室,感测壳体22安装于本体1,且其封闭端延伸至通道11内,温感件21设置于腔室内,用于通过感测壳体22感测换热液体的温度,感测壳体22的热导率大于本体1的热导率。
其中,本体1内部设置的通道11,贯穿本体1两端。不限地,通道11的横截面可以是多种形状和多种尺寸的,例如正方体形、圆柱体形、六棱柱形等。具体地,通道11的形状可以根据温度感测器接入位置的管路结构及单位时间过流量确定。不限地,通道11的材质可采用注塑塑料,例如可以是UPVC、聚乙烯、硬质聚氯乙烯、聚乙烯、氯化聚氯乙烯、三型聚丙烯、交联聚乙烯、聚丁烯等。不限地,温感件21可采用半导体测温元件,例如锗、硅等半导体。具体地,温感件21可采用NTC(Negative Temperature Coefficient,负温度系数)热敏电阻器,利用负温度系数较 大的半导体材料或元器件,实现对温度感测的快速响应,例如以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制成。本申请实施方式对此不作特殊限制。
参考图1及图3,图1是本申请一实施方式的结构示意图,图3是图1所示实施方式的本体结构示意图。本体1可设置为横向设置的管体,通道11为该管体内的中部空腔。具体地,感测壳体22开口一端固定于管体壁中,封闭端延伸至通道11中,且管体上在感测壳体22开口的对应位置设置有加固台13,加固台13能够加厚本体1上感测壳体22连接处的厚度,使连接时,感测壳体22顶端能够完全埋设于本体1中。不限地,感测壳体22由本体1顶部沿第一方向向下延伸。
参考图5,图5是本申请另一实施方式的结构示意图。本体1两端可设有用于与液体温控循环系统中的管路相连接的接头。具体地,该接头处设有多层在接头轴线方向上间隔设置有环状凸起,且该多层环状凸起的半径不同。
通过将感测壳体22的热导率更换为更高的材质,能够显著加强温感件21周侧的温度传递速度,使温感件21的测量精度显著提高,保证测量结果的一致性。
在本申请一些实施方式中,如图1、图2及图3所示,图1是本申请一实施方式的结构示意图,图2是图1所示实施方式的内部结构示意图,图3是图1所示实施方式的本体结构示意图。感测壳体22在第三方向上的延伸尺寸小于感测壳体22在第二方向上的延伸尺寸,第二方向为通道11延伸的轴线方向,第三方向与第二方向正交。
参考图4,图4是图1所示实施方式中感测壳体22一实施方式的结构示意图。感测壳体22位于通道11内的部分,可为长边沿通道11轴向设置,高沿通道11的径向,向通道11内延伸设置的长方体,且感测壳体22各转折角处为弧面221设置。不限地,感测壳体22位于通道11内的部分,面向通道11内换热液体流向的一面,可采用弧面设置。
通过对感测壳体22在第二方向及第三方向上延伸长度的设置,能够有效降低本体1内感测壳体22的处的流动阻力,保证换热液体在通道 11内的流动效率,且促进换热液体的流动效率也能够进一步贴合通道11内的实际流动状态,提升温感件21的测量精度。其次弧面221设置能够有效降低感测壳体22外壁形状的变化程度,减少流体经过感测壳体22外壁时产生的乱流,能够提升温感件21的测量精度,降低通道11内的流动阻力。
在本申请一些实施方式中,如图2、图6及图7所示,图2是图1所示实施方式的内部结构示意图,图6是图5所示实施方式中本体1端部一实施方式的结构示意图,图7是图5所示实施方式的一内部结构示意图。在通道11的径向上,感测壳体22凸出通道11壁面的尺寸小于通道11的半径。
其中,当感测壳体22在径向方向上为不规则延伸时,感测壳体22在径向方向凸出通道11壁面的最大尺寸小于通道11的半径。具体地,感测壳体22在通道11内的延伸方向为径向中的第一方向,第一方向与第二方向及第三方向正交。
通过感测壳体22在径向上的延伸长度设置,能够显著降低感测壳体22对通道11内径向上流通面积的占用,保证在感测壳体22设置位置具有充足的过流面积,有效降低通道11内的流动阻力。
在本申请一些实施方式中,如图2及图7所示,图2是图1所示实施方式的内部结构示意图,图7是图5所示实施方式的一内部结构示意图。感测壳体22采用金属材质并与本体1嵌件注塑成型。
其中,感测壳体22采用耐换热液体腐蚀的金属材质。不限地,换热液体采用水,感测壳体22采用耐水腐蚀的金属材质,例如,铜、镍、钴等。具体地,感测壳体22采用金属材质单独完成制件后,在本体1注塑过程中采用嵌件技术固定于本体1上。
通过使用金属材质能够显著增大感测壳体22的导热率,使感测壳体22内的温感件21能够更精确的进行感测工作。其中,采用嵌件注塑的方式,也能够使感测壳体22实现单独制件,保证感测壳体22上各处的壁厚均匀,减少由于使用注塑工艺一体成型本体1及感测壳体22时,造成的异形位置壁厚不均匀的问题,减少感测壳体22壁厚对感测过程造成的影响,保证测温结果的一致性,且采用嵌件注塑工艺也能够保证感测壳体22 与本体1连接的密闭性,防止感测壳体22及本体1间连接处出现漏液,延长温度感测件在实际使用中的使用寿命。
在本申请一些实施方式中,如图2及图7所示,图2是图1所示实施方式的内部结构示意图,图7是图5所示实施方式的一内部结构示意图。本体1设有与通道11连通的通孔12,感测壳体22包括壳主体和凸出于壳主体的外表面的第一凸缘222,壳主体经过通孔12伸入通道11,第一凸缘222嵌入通孔12的孔壁,以将感测壳体22固定于本体1。
其中,通孔12的设置用于使感测壳体22内的腔室能够与本体1外相连通。具体地,通孔12与壳主体及第一凸缘222相配合,使感测壳体22固定于通孔12上时,通孔12与通道11间的连通被阻断。不限地,壳主体可填充满通孔12内的空间。不限地,壳主体可填充至少部分的通孔12内的空间。不限地,第一凸缘222可至少部分嵌入通孔12的孔壁。不限地,第一凸缘222可设置在通孔12在本体1外壁开口处。不限地,第一凸缘222可设置在通孔12与通道11的连通处。不限地,第一凸缘222可设置在壳主体的顶端,进一步,第一凸缘222由壳主体顶端向周侧弯折形成。
通过第一凸缘222的设置,能够为感测壳体22提供与本体1固定用的凸起。当第一凸缘222设置于壳主体的顶端,且设置在通孔12与通道11的连通处时,能够在满足对感测壳体22在通道11内延伸尺寸的需求及感测壳体22在本体1上固定需求,同时最大化紧凑感测壳体22的尺寸,减少由于感测壳体22采用金属材料,造成的自重加大的影响,并且能够减少生产浪费。
在本申请一些实施方式中,如图2、图4及图7所示,图2是图1所示实施方式的内部结构示意图,图4是图1所示实施方式中感测壳体22一实施方式的结构示意图,图7是图5所示实施方式的一内部结构示意图。感测壳体22还包括凸出于壳主体的外表面的第二凸缘223,第一凸缘222和第二凸缘223间隔设置,且本体1的一部分夹持于第一凸缘222和第二凸缘223之间。
其中,第二凸缘223至少设置有一个。具体地,第二凸缘223与第一凸缘222间隔设置,多个第二凸缘223间隔设置。具体地,本体1的 至少一部分夹持于第二凸缘223间。不限地,第二凸缘223设置有一个,进一步,感测壳体22与本体1连接时,第一凸缘222设置在第二凸缘223在第一方向上的上方,且第二凸缘223设置于通孔12与通道11的连通处。不限地,第二凸缘223下沿可与通道11空间相接触。
通过第二凸缘223的设置,能够加强嵌件注塑中感测壳体22与本体1间连接的稳定性,并通过向周侧方向凸起延伸的结构,在通孔12与感测壳体22间的连接面上产生更多的曲折变化,使换热液体不易在通孔12与感测壳体22间渗透,能够显增强感测壳体22与本体1间连接处的密闭性。
在本申请一些实施方式中,如图7及图8所示,图7是图5所示实施方式的一内部结构示意图,图8是图5所示实施方式的爆炸图。温度感测器还包括连接线3,连接线3通过感测壳体22的开口和/或通孔12与温感件21相连接。
其中,连接线3从本体1外部延伸至感测壳体22内的腔室中与温感件21相连接,用于将温感件21感测的数据信息从温感件21处传输出去。不限地,当壳主体完全充满通孔12内空间时,感测壳体22的开口直接与本体1外部空间相连通,连接线3能够直接从开口延伸至腔室,并与温感件21相连接。不限地,当壳主体填充部分的通孔12内空间时,开口与通孔12的剩余空间相连通,连接线3先从本体1外部空间延伸至通孔12内,再进入开口,最后与腔室内的温感件21相连接。具体地,连接线3采用数据传输线,如双线传输线、微带传输线、波导管传输线、表面波传输线和光导纤维等,可根据实际使用需要选择。
连接线3的设置,能够将温感件21所感测得到数据导出。且在壳主体填充部分的通孔12内空间及当壳主体完全充满通孔12内空间两种状态下,连接线3与温感件21间的连接,均能够被包覆在多层结构中,保证连接稳定性。
在本申请一些实施方式中,如图5及图8所示,图5是本申请另一实施方式的结构示意图,图8是图5所示实施方式的爆炸图。温度感测器还包括接插头4及卡接块5,卡接块5与本体1外壁相连接,接插头4与 卡接块5卡合连接,接插头4与连接线3相连接,用于与处理器件相连接。
其中,卡接块5可与本体1一体注塑成型。具体地,卡接块5上设置有滑轨,接插头4上设有滑槽,滑槽与滑轨相配合,实现卡接块5与滑轨间的卡合连接。不限地,接插头4设有用于将连接线3传导的信号,导出的数据输出接头,如通用串行端口(Universal Serial Bus,USB)、IEEE1394接口(FireWire)、串行通讯端口(commercial)等。具体地,数据输出接头的选用可根据实际使用中所用的通讯协议选用,如RS-485、RS-232C等。具体地,处理器件可为移动载具上所设置的控制终端,如车载处理器等。
通过接插头4的设置,能够促进温度感测器与外部处理器件相连接。且能够将接插头4通过卡接块5有效整合至本体1上,所得的温度感测器高度集成化,使温度感测器仅通过通道11两端的端部,串联在待测液体温控循环系统中的管路上即可,不需要额外的固定结构,保证温度感测器能够普遍适用于多种液体温控循环系统的工作环境。
在本申请一些实施方式中,如图7或图8所示,图7是图5所示实施方式的一内部结构示意图,图8是图5所示实施方式的爆炸图。温度感测器还包括包封层6,包封层6包裹在温感件21周侧。
其中,包封层6采用防腐蚀材料。不限地,包封层6可采用酚醛树脂、环氧树脂、聚酯树脂、聚乙烯、聚丙烯、聚氯乙烯、氯化聚醚等。
通过包封层6的设置,能够提高温感件21的密闭性,防止腔室内其他填充物对温感件21造成影响。
在本申请一些实施方式中,如图7及图8所示,图7是图5所示实施方式的一内部结构示意图,图8是图5所示实施方式的爆炸图。温度感测器还包括灌封层7,灌封层7包裹在包封层6周侧。
其中,灌封层7用于填充通孔12及腔室内的剩余空间,将温感件21及连接线3固定。不限地,温感件21被固定于腔室底部。不限地,当壳主体完全充满通孔12内空间时,灌封层7填充在腔室内。不限地,当壳主体填充部分的通孔12内空间时,灌封层7填充在腔室及通孔12中。不限地,灌封层7可采用导热硅脂。
通过灌封层7的设置,不仅能够提升感测壳体22内的密闭性,也能够有效填充感测壳体22内的剩余空间,减少感测壳体22内的空腔结构,降低由于感测壳体22外壁流体引起的共振影响。其次,灌封层7的设置也能够促进热量从感测壳体22传导至温感件21周侧。
在本申请一些可选实施方式中,温度感测器包括本体1、感测组件2、连接线3、接插头4、卡接块5、包封层6及灌封层7。本体1为横向设置的管体,通道11为该管体内的中部空腔,且通道11为圆柱体形,并贯穿本体1两端。本体1两端可设有用于与液体温控循环系统中的管路相连接的接头。感测组件2包括感测壳体22及温感件21,温感件21设于感测壳体22内的腔室中。感测壳体22位于通道11内的部分,可为长边沿通道11轴向设置,高沿通道11的径向,向通道11内延伸设置的长方体,且感测壳体22各转折角处为弧面221设置。感测壳体22在径向方向凸出通道11壁面的最大尺寸小于通道11的半径,并采用金属材质并与本体1嵌件注塑成型。本体1设有与通道11连通的通孔12,感测壳体22包括壳主体和凸出于壳主体的外表面的第一凸缘222及第二凸缘223,第一凸缘222由壳主体顶端向周侧弯折形成,第二凸缘223和第一凸缘222间隔设置。感测壳体22与本体1连接时,第一凸缘222设置在第二凸缘223在第一方向上的上方,且第二凸缘223设置于通孔12与通道11的连通处。壳主体填充部分的通孔12内空间,感测壳体22的开口与通孔12的剩余空间相连通,连接线3先从本体1外部空间延伸至通孔12内,再进入开口,最后与腔室内的温感件21相连接。包封层6包裹在温感件21周侧。灌封层7填充通孔12及腔室内的剩余空间,将温感件21及连接线3固定。
与现有技术相比,本申请实施方式的温度感测器中,通过感测壳体22采用金属材质能够加快温度传导速度,使温度感测器的检测结果更精确,且通过嵌件注塑的方式,不仅能够保证本体1内的密闭性,还能够将感测壳体22独立生产,提高感测壳体22结构的均一性,保证测温结果的一致性。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部 件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种温度感测器,包括:
    本体,内部设有供换热液体流动的通道;
    感测组件,设于本体上,包括温感件及感测壳体,所述感测壳体一端开口,且其内设有腔室,所述感测壳体安装于所述本体,且其封闭端延伸至所述通道内,所述温感件设置于所述腔室内,用于通过所述感测壳体感测所述换热液体的温度,所述感测壳体的热导率大于所述本体的热导率。
  2. 根据权利要求1所述的温度感测器,其中,所述感测壳体在第三方向上的延伸尺寸小于所述感测壳体在所述第二方向上的延伸尺寸,所述第二方向为所述通道延伸的轴线方向,所述第三方向与所述第二方向正交。
  3. 根据权利要求1或2所述的温度感测器,其中,在所述通道的径向上,所述感测壳体凸出所述通道壁面的尺寸小于所述通道的半径。
  4. 根据权利要求1-3任一项所述的温度感测器,其中,所述感测壳体采用金属材质并与所述本体嵌件注塑成型。
  5. 根据权利要求1-4任一项所述的温度感测器,其中,所述本体设有与所述通道连通的通孔,所述感测壳体包括壳主体和凸出于壳主体的外表面的第一凸缘,所述壳主体经过所述通孔伸入所述通道,所述第一凸缘嵌入所述通孔的孔壁,以将所述感测壳体固定于所述本体。
  6. 根据权利要求5所述的温度感测器,其中,所述感测壳体还包括凸出于壳主体的外表面的第二凸缘,所述第一凸缘和所述第二凸缘间隔设置,且所述本体的一部分夹持于所述第一凸缘和所述第二凸缘之间。
  7. 根据权利要求5所述的温度感测器,其中,还包括连接线,所述连接线通过所述感测壳体的开口和/或所述通孔与所述温感件相连接。
  8. 根据权利要求7所述的温度感测器,其中,还包括接插头及卡接块, 所述卡接块与所述本体外壁相连接,所述接插头与卡接块卡合连接,所述接插头与连接线相连接,用于与处理器件相连接。
  9. 根据权利要求1-8任一项所述的温度感测器,其中,还包括包封层,所述包封层包裹在所述温感件周侧。
  10. 根据权利要求9所述的温度感测器,其中,还包括灌封层,所述灌封层包裹在所述包封层周侧并固定于所述感测壳体。
PCT/CN2022/125779 2021-11-26 2022-10-17 温度感测器 WO2023093371A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22897454.9A EP4357742A1 (en) 2021-11-26 2022-10-17 Temperature sensor
US18/428,125 US20240167893A1 (en) 2021-11-26 2024-01-31 Temperature sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111421093.1A CN116183048A (zh) 2021-11-26 2021-11-26 温度感测器
CN202111421093.1 2021-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/428,125 Continuation US20240167893A1 (en) 2021-11-26 2024-01-31 Temperature sensor

Publications (1)

Publication Number Publication Date
WO2023093371A1 true WO2023093371A1 (zh) 2023-06-01

Family

ID=86442716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125779 WO2023093371A1 (zh) 2021-11-26 2022-10-17 温度感测器

Country Status (4)

Country Link
US (1) US20240167893A1 (zh)
EP (1) EP4357742A1 (zh)
CN (1) CN116183048A (zh)
WO (1) WO2023093371A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614443A (en) * 1984-11-29 1986-09-30 Societe De Dietrich & Cie Thermal sensor for chemical reactor
CN201352160Y (zh) * 2008-09-28 2009-11-25 哈尔滨东安志阳汽车电气有限公司 电喷发动机用冷却液温度传感器
CN202255677U (zh) * 2011-08-25 2012-05-30 比亚迪股份有限公司 一种汽车冷却液温度传感器
CN212458704U (zh) * 2020-06-30 2021-02-02 奇瑞汽车股份有限公司 一种发动机冷却液温度传感器
CN212513475U (zh) * 2020-06-22 2021-02-09 苏州卓晋通信有限公司 温度传感器气密性检测装置
CN212621197U (zh) * 2020-08-12 2021-02-26 合肥江淮汽车制管有限公司 一种用于监测汽车冷却水管中冷却液温度的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614443A (en) * 1984-11-29 1986-09-30 Societe De Dietrich & Cie Thermal sensor for chemical reactor
CN201352160Y (zh) * 2008-09-28 2009-11-25 哈尔滨东安志阳汽车电气有限公司 电喷发动机用冷却液温度传感器
CN202255677U (zh) * 2011-08-25 2012-05-30 比亚迪股份有限公司 一种汽车冷却液温度传感器
CN212513475U (zh) * 2020-06-22 2021-02-09 苏州卓晋通信有限公司 温度传感器气密性检测装置
CN212458704U (zh) * 2020-06-30 2021-02-02 奇瑞汽车股份有限公司 一种发动机冷却液温度传感器
CN212621197U (zh) * 2020-08-12 2021-02-26 合肥江淮汽车制管有限公司 一种用于监测汽车冷却水管中冷却液温度的装置

Also Published As

Publication number Publication date
EP4357742A1 (en) 2024-04-24
CN116183048A (zh) 2023-05-30
US20240167893A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
WO2019001585A9 (zh) 电加热器
CN107559116B (zh) 集成式加热器及滤清器
WO2023093371A1 (zh) 温度感测器
CN113890274A (zh) 环状直插式脉动热管、散热测试装置及车用电机冷却装置
WO2023125140A1 (zh) 一种端子测温结构
CN214173703U (zh) 温控测试箱
CN211556077U (zh) 一种单通道密封连接装置
CN210741682U (zh) 一种防爆温度传感器
CN209925833U (zh) 一种多功能流体转接头
US4735511A (en) Temperature sensing device for thin-walled thermoplastic pressure vessels
CN202215373U (zh) 摩托车节气门总成
CN220474718U (zh) 液冷结构及电池包
CN214150642U (zh) 气体检测装置
CN214893840U (zh) 一种曲轴箱压力传感器
CN105705941A (zh) 气体传感器
CN218765772U (zh) 一种耐高温压力变送器
CN211976982U (zh) 一种空气能热泵与燃气炉组合加热机组
CN215930947U (zh) 一种温度压力一体化变送器
CN112161423A (zh) 换热器
CN216643425U (zh) 连接接头、冷却装置及电动汽车
CN209592261U (zh) 液冷电池系统及车辆
CN218000772U (zh) 一种管路连接结构及液冷系统
CN221035306U (zh) 用于储能系统的液冷管路系统和储能系统
CN210487662U (zh) 一种管道热损测量装置
CN220960364U (zh) 温度测量装置及低温泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 22897454.9

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2022897454

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022897454

Country of ref document: EP

Effective date: 20240118